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In the Age of Machine Learning Cryo-EM Research is Still
Necessary: A Path toward Precision Medicine
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Machine learning has proven useful in analyzing complex biological data and

1. Machine Learning and Protein
Structure Prediction

has greatly influenced the course of research in structural biology and

precision medicine. Deep neural network models oftentimes fail to predict the
structure of complex proteins and are heavily dependent on experimentally
determined structures for their training and validation. Single-particle
cryogenic electron microscopy (cryoEM) is also advancing the understanding
of biology and will be needed to complement these models by continuously
supplying high-quality experimentally validated structures for improvements
in prediction quality. In this perspective, the significance of structure
prediction methods is highlighted, but the authors also ask, what if these
programs cannot accurately predict a protein structure important for
preventing disease? The role of cryoEM is discussed to help fill the gaps left
by artificial intelligence predictive models in resolving targetable proteins and
protein complexes that will pave the way for personalized therapeutics.

Prediction of accurate 3D protein struc-
tures has been a big challenge for
structural biologists for decades. Indeed,
over this timespan, it has been widely
accepted that the instructions for pre-
dicting protein folds are encoded within
its amino acid sequence. In recent times,
however, there emerged two sides of
this phenomenon, researchers that are
interested in the fold, and researchers in-
terested in the folding. Advancements in
computing power and capabilities have
ushered in machine learning and artifi-
cial intelligence (AI) approaches through-
out research and have significantly
advanced protein structure prediction.
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These advancements are transforming the rate at which discov-
eries can be made that will ultimately lead to better treatments
and health outcomes. Breakthroughs from the first wave of Al-
based protein structure prediction methods, such as Deepmind’s
AlphaFold and RoseTTAFold are significantly accelerating the
discovery of new mechanistic questions, and new treatments,
by providing detailed knowledge of protein structures. Protein
structure prediction methods were reported as The Method of
the Year 2021, and each method is a constantly improving neural
network trained to produce protein structures from amino acid
sequences, multiple sequence alignments, and homologous pro-
teins with unprecedented speed and accuracy.'*] RoseTTAFold,
and the second version of AlphaFold, AlphaFold2, shifted the
landscape to provide researchers, particularly those outside of
structural biology, with access to 3D protein structure models.[*5]
In a short time, AlphaFold2 has created a database of over 200
million predicted protein structures allowing a better under-
standing of proteins that is sure to accelerate the development
of new drugs to treat diseases. This tool can create accurate mod-
els and predictions for many folded proteins, as well as identify
some of the dynamic behaviors within domains.[!

With such accuracy in protein structure prediction, an ongo-
ing debate in the field is whether experimental structural biology
methods are still necessary. A variety of protein structure predic-
tion methods exist and have long been useful tools in computa-
tional structural biology to predict a folded protein.l”->] The ability
to make these predictions have been based on the understanding
of the folding process of which thermal motions cause confor-
mational changes moving the protein toward an energetically fa-
vored, native structure, commonly known as the funnel shape
energy landscape.l'”! This theory helps to explain how proteins
follow a path to adopt a specific, stable conformation, and why
they sometimes undergo structural changes in response to cer-
tain stimuli, such as changes in temperature, pH, or the presence
of ligands. This implies that proteins adopt multiple structural
conformations in a variety of environments. AlphaFold alone can-
not predict the conformational folding landscape of proteins.

Machine learning prediction programs rely on experimen-
tal structural biology details, whether determined by X-ray, nu-
clear magnectic resonance, or cryogenic electron microscopy
(cryoEM) to build and validate predictions. Much of the suc-
cess of AlphaFold2, RoseTTAFold, and other machine-learning
approaches is attributed to the archive of 3D protein structures
housed in the Protein Data Bank. The experimental data within
the PDB contributes to the accuracy and reliability, however, pro-
tein prediction programs are in essence hypotheses. Experts in
structural biology agree that machine learning methods are vi-
tal aspects of science and will likely help to significantly ad-
vance biology. However, the results obtained need to be taken
with caution because of the limitations AlphaFold2 possesses.
Terwillinger et al. (2021) compared AlphaFold predictions to ex-
perimentally determined crystal structures and found that some
predictions disagree with experimental data.!!! In another ex-
ample, a recent study used a dataset of cryoEM density maps
of viruses to assess predictive modeling methods for resolving
atomic models."?! The biological data sets ranged from 1.8 to
4.5 A resolution and the AlphaFold2 models were compared with
the experimentally resolved models. As expected, Alpha Fold2
was able to accurately predict known areas, but struggled with
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novel structures.'?) In the case of the Mud Crab Reovirus model
in this study, despite numerous related structures, none of the
four capsid proteins predicted by AlphaFolds2 agreed with the
density map or experimentally resolved models.['"12] The authors
emphasize the power of AlphaFold2 in predicting individual pro-
teins, but difficulty in modeling protein assemblies.

At the same time as machine learning approaches are advanc-
ing and revolutionizing structural biology, the resolution revolu-
tion in cryoEM is happening. CryoEM provides high-resolution
images of macromolecular structures that can reveal important
details that may not be captured through sequence information
alone, and this advancement also garnered it to win Method of
the Year in 2015.1% A key strength of CryoEM is the ability to
resolve large proteins and assemblies in their native state, which
is essential for understanding their function and behavior. X-ray
crystallography is still the most prominent method for determin-
ing protein structures and for a long time, NMR has been the
second. However, more researchers are resolving structures by
cryoEM which has significantly increased the total number of
EM structures deposited in the PDB over the years, so much
that it has now surpassed NMR for second place. For example,
as of April 2023, the total number of proteins and complexes re-
solved by cryoEM (15150), has now surpassed the total number
of structures determined by NMR (13986). The revolution in Cry-
oEM has ushered in more detailed and accurate structural infor-
mation of macromolecular complexes and cellular systems. This
resolution revolution has been achieved through improved sam-
ple preparation, better detectors and cameras, advanced image
processing algorithms, and increased computational power.'*]
This has enabled researchers to study the structures of previously
intractable biospecimens, leading to a deeper understanding of
cellular processes, disease mechanisms, and potential drug tar-
gets. Although CryoEM has countless advantages, this popular
technique also has its own deficiencies. For example, only rel-
atively large protein complexes can be used for cryo-EM (i.e, >
~100 kDa) because smaller protein particles are difficult to ob-
serve under the electron microscope. Also, sample homogeneity
is still very important and flexible proteins make it difficult to get
good results.['*] Despite these limitations, the CryoEM revolution
will continue to advance our knowledge of proteins based on tech-
nological advancements and integration with machine learning.

2. Machine Learning and CryoEM: The Synergy
Needed to Tackle Precision Medicine

Precision health considers a patient’s unique genes, environ-
ment, and lifestyle to create a specialized treatment plan to im-
prove health outcomes. Precision (personalized) medicine has
been around for many years, but only recently has there been
a shift toward enabling machine learning technology to predict
and interpret patient data. Without accurate experimental data,
machine learning technology would struggle to develop accu-
rate models and structures, limiting its ability to interpret patient
data for a personalized treatment plan. This is the goal of preci-
sion medicine, using the data gathered from a patient’s genetics
and environment to select a treatment plan that best suits their
specific ailment, the right drug for the right person at the right
dose at the right time. One of the biggest limitations of deliver-
ing precision medicine for everyone is that genomic medicine
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Figure 1. Structural biology guided precision medicine model. Genetic
variants in humans can present the same phenotype, but display differ-
ences in disease manifestation. Dysregulated proteins from these genetic
dispositions can be structurally determined computationally and experi-
mentally. This information will capture the details about key changes in
protein function, which will help target altered pathways. Precise treat-
ments can be tailored based on the individual patient’s mutation status
rather than treating the disease.

does not inform scientists and clinicians of the key interactions
and pathways needed for precise treatment. For the successful
treatment of an individual, we must understand how genetic dis-
positions influence the encoded protein dynamics and behav-
ior, of which this data can be used to unveil relevant protein
interactions and pathways leading to unique characteristics of
that patient (Figure 1). This is critically important since more
than 99% of drugs target proteins. CryoEM can address the lim-
itations of predictive tools and really shape efforts toward pre-
cision medicine. In an intriguing discovery, Yang et al., (2020)
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reported the cryoEM structures of isolated amyloid £ peptides
(AR 42) from human brains differed from the filaments assem-
bled in vitro. These AR42 filaments had two structural related S-
shape folds that are categorized into two types . [1°! In individuals
with sporadic Alzheimer’s disease, type I filaments were com-
mon, whereas in individuals with familial Alzheimer’s disease
and other conditions, type II was found. The impact of this work
will lead to better-informed in vitro and animal models, as well
as the potential for personalized treatments for sporadic versus
familial disease. Precision medicine is broadly defined but ap-
proaches that isolate and characterize proteins directly from pa-
tients will have a major impact in accelerating novel treatments
and ultimately improving health outcomes.

3. Precision Medicine Challenge

The majority of protein structures predicted can be reliably used
for additional studies in biology. However, there are proteins
that machine learning programs cannot predict very well and
some that cryoEM has not been able to resolve. Key examples are
proteins with multiple flexible domains and intrinsic disordered
regions. One such example is the Breast Cancer Susceptibility
protein 1 (BRCAL1). There are extensive studies on how genetic
variants of BRCA1 are associated with an increased risk of breast,
ovarian, and pancreatic cancer.'’] Therapies that target these ma-
lignancies based on BRCA1 mutation status exist, however novel
therapies of BRCA1l-associated cancers are still urgently needed.
The BRCA1 RING and BRCT domains have been structurally
characterized extensively,'81°] yet after 30 years since its discov-
ery, no structural information for the majority of the protein,
which consists of a large, disordered region. Using AlphaFold2
to predict the folded structure results in an unreliable prediction,
primarily due to the intrinsically disordered region (Figure 2).
The accuracy of this model is based on a per-residue confidence
score, called the predicted local distance difference test, which
uses a scale from 0-100. Values greater than 90 are designated
blue and indicate high confidence, between 90 and 70 are confi-
dent, between 70 and 50 are low, while values below 50 are des-
ignated orange and represents very low confidence or unstruc-
tured. Not being able to resolve the full-length BRCA1 structure
represents a major challenge in providing complete molecular
details of this protein, and hence potential cancer therapies.!*’]
However, combing the power of structure prediction and cryoEM
will help overcome this challenge and provide an opportunity
for new treatments for the many BRCA1 mutation carriers. To
achieve this, more experimentally determined BRCA1 structures
will be needed in a variety of conditions, either alone or as part
of large DNA repair or transcriptional complexes. This experi-
mental data can then be used to train prediction methods and
lead to advancements in predicting structures with comparable
amino acid sequences. Combining machine learning tools with
cryo-EM can help address the shortcomings of each individual
technique, allowing for the identification of structural models of
unknown proteins in a heterogenous endogenous mixture.l?!]
There is precedence for this synergetic relationship. In recent
studies, researchers have combined cryoEM and AlphaFold2 to
be able to predict and refine protein structures. Terashi et al.,
designed a method using AlphsFold2 that refines protein struc-
tures created by cryoEM maps.[?2] This synergistic relationship
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Figure 2. Challenges in AlphaFold2 predictions. A) The predicted full-length structure of the BRCA1 protein (1863 amino acids), contains a central region
of disorder. Protein structure prediction methods cannot accurately model regions of large disorder. B) AlphaFold predicted the structure for Mediator
Complex Subunit 23, which recently had a crystal structure uncovered to validate the precise structure.

between predictive models and cryoEM has shown to be the next
step in identifying new novel interactions of the SARS-CoV-2
Omicron variant, that can push healthcare toward a precision
medicine approach for the Covid-19 pandemic.[*! In this study,
Mostafavi et al., describe how cryoEM is used to analyze the struc-
ture of the SARS-CoV-2 Omicron spike protein and how it forms
a complex with human ACE2. They also discuss how Al, big data
reservoirs, bioinformatic systems, and advanced in vitro 3D mod-
els can be employed to provide more specific therapies and better
patient outcomes utilizing the experimental data from collected
patient samples.[?!] These powerful tools can predict, discover,
and interpret unique changes in protein-protein interactions that
result in altered pathways from patient samples experiencing dis-
eases, which is critical for developing personalized and effective
treatment plans. As predictive technology continues to progress,
cryoEM will still be a dependable technique to experimentally
confirm structural predictions. Precision medicine is rapidly ad-
vancing by integrating machine learning tools with cryoEM, al-
lowing for accurate predictions and interpretations of patient data
and human disease. This is the direction needed to provide novel
strategies to find the drug at the right dose, for the right person
at the right time.
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