
SciPost Phys. 17, 018 (2024)

The fate of the spin polaron in the 1D antiferromagnets
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Abstract

The stability of the spin polaron quasiparticle, well established in studies of a single
hole in the 2D antiferromagnets, is investigated in the 1D antiferromagnets using a t–J
model. We perform an exact slave fermion transformation to the holon-magnon basis,
and diagonalize numerically the resulting model in the presence of a single hole. We
demonstrate that the spin polaron collapses – and the spin-charge separation takes over –
due to the specific role played by the magnon-magnon interactions and the magnon hard-
core constraint in the 1D t–J model. Moreover, we prove that the spin polaron is stable
for any strength of the magnon-magnon interaction other than the unique value found
in a 1D antiferromagnet with the continuous symmetry of the spin interactions. Fine-
tuning to this unique value is extremely unlikely to occur in quasi-1D antiferromagnets,
therefore the spin polaron is the stable quasiparticle of realistic 1D materials. Our results
lead to a new interpretation of the ARPES spectra of quasi-1D antiferromagnets in the
spin polaron language.
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1 Introduction

A central problem in the study of strongly correlated systems is to understand the differences
between quantum many-body systems that have stable low-energy quasiparticles, and those
that do not [1–5]. A famous example, which we revisit, relates to expected fundamental differ-
ences between the low-energy physics of 1D and 2D antiferromagnets doped with a single hole.
The widely accepted paradigm is that in a 2D antiferromagnet, the hole is dressed with collec-
tive 2D spin excitations (magnons) and together they form a spin polaron quasiparticle [6–15],
whereas in 1D, the spin polaron is unstable to splitting into an elementary 1D spin excitation
(spinon) and a spinless hole (holon), a phenomenon called spin-charge separation [16–24].

The paradigmatic explanation for this difference relies on the fact that spinons (magnons)
are well-defined collective excitations in 1D (2D) antiferromagnets [1]. Because our goal is to
understand the intrinsic origin of the different single hole behaviour in 1D and 2D antiferro-
magnets, we have to use the same language to describe both cases. As the 1D case is always
easier to study [25], we choose to recast the 1D problem using the 2D magnon language so that
we can answer the question: what is the fate of the spin polaron in the 1D antiferromagnets?

In this paper we answer this question by: (i) developing a novel numerical simulation of the
1D t–J model in the magnon-holon basis [8], and (ii) performing a detailed finite size scaling
of the quasiparticle properties. We show that the spin polaron quasiparticle is destroyed in
the ground state of the 1D antiferromagnet with a single hole only when the magnon-magnon
interaction is precisely tuned to the unique value dictated by the 1D t–J model. For any other
value of the magnon-magnon interaction, whether stronger or weaker than this critical value,1

the spin polaron is the stable quasiparticle of the 1D antiferromagnet.
We explain this result first by noting that tuning the magnon-magnon attraction away from

its critical value gaps out the magnon energy in this 1D model. Moreover, we show that the
mere onset of gapless magnetic excitations is not a sufficient condition for the spin polaron
quasiparticle collapse – as exemplified by the here studied linear spin wave theory version of
the 1D t–J model or by the already-mentioned profound stability of the spin polaron in the
2D t–J model [7,8]. What is further needed is a nonzero coupling of the hole to these gapless
magnetic excitations at low momenta and energies.2 Our analytic study of the closely-related
1D t–JXY model presented below shows that such a finite coupling is enabled by the effectively

1Interestingly, this situation is distinct from the one reported in [5], in which interactions support the stability
of a quasiparticle.

2This is a quite general situation: a quasiparticle description can collapse in a boson-fermion system once
fermions have a finite coupling to the 0-energy bosons [26,27].
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fermionic nature of magnons in 1D. The latter follows from the implementation of the hard-
core magnon constraint in 1D. Altogether, we can summarise that the spin polaron collapses
(or, equivalently, the spin-charge separation takes over) in the 1D t–J model due to the specific
role played by the magnon-magnon interactions as well as the magnon hard-core constraint
in 1D.

Finally, we show that the intrinsic, staggered magnetic field present in quasi-1D antifer-
romagnets of real materials [28–30] disrupts this fine balance between the on-site magnon
energy and the magnon-magnon interaction of the 1D t–J model. This makes the spin polaron
quasiparticle stable in the quasi-1D cuprates and leads to the interpretation of the ARPES spec-
tra [31] of quasi-1D cuprates [18–20, 22, 23] in the spin polaron language. Altogether, these
results show an unexpected, impressive robustness of the spin polaron picture in the quasi-1D
antiferromagnets, proving that the accepted spin-charge separation paradigm is in fact an ex-
ception [32–38], not the rule [25]. The obtained results have important consequences not only
for the quasi-2D ‘high-Tc cuprate’ doped antiferromagnets but also reaches beyond condensed
matter, inter alia into the interpretation of cold atom experiments [13,39].

The paper is organised as follows. In Sec. 2 we express the 1D t–J model in the magnon-
holon basis. The obtained in this way holon-magnon model is then generalised by allowing the
strength of magnon-magnon interaction to be tunable—this allows us to study the impact of
the magnon-magnon interaction on the properties of the 1D t–J model. We solve the problem
using exact diagonalisation and show in Sec. 3 how the ground state (3.1) and the excited state
(3.2) properties of the single hole in 1D antiferromagnet change once the magnon-magnon
interaction is switched off. Next, in Sec. 4 we expand this discussion to the case of varying
strength of magnon-magnon interaction and explain that solely its value given by the 1D t–J
model is critical and leads to suppression of the spin polaron. Sec. 5 explains these results
(cf. discussion above) by a detailed study of two toy-models: the linear spin wave theory
version of the 1D t–J model and the 1D t–JXY model. Finally, in Sec. 6 we argue that such a
critical value is never reached in realistic materials, such as quasi-1D cuprates—hence showing
that in this case the spin polaron solution is always stabilised. The paper ends with a short
conclusion 7 and is supplemented by three appendices, (A, B, and C), which are referred to in
the appropriate sections of the main text.

2 Model and methods

The Hamiltonian of the standard model of a doped antiferromagnetic chain, the t–J model
[40], reads,

H = −t
∑

〈i, j〉,σ

�

c̃†
i,σ c̃ j,σ+h.c.

�

+ J
∑

〈i, j〉

�

Si ·S j−
1
4

ñi ñ j

�

, (1)

where c̃†
i,σ = c†

i,σ(1 − ni,σ̄) creates the electron only on unoccupied site, ni,σ = c†
i,σci,σ and

ñi =
∑

σ c̃†
i,σ c̃i,σ. Moreover, Si are spin-1/2 Heisenberg operators at site i. We rewrite the

model in terms of bosonic magnon ai and fermionic holon hi operators by means of Holstein-
Primakoff (HP) and slave-fermion transformations, respectively. For detailed expressions see
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Eqs. (A.3-A.4) in Appendix A or Ref. [8]. This leads to the following holon-magnon model:

H = t
∑

〈i, j〉

h†
i h j Pi

�

ai + a†
j

�

Pj +H.c.

+
J
2

∑

〈i, j〉

hih
†
i

�

Pi Pjaia j + a†
i a†

j Pi Pj

�

h jh
†
j

+
J
2

∑

〈i, j〉

hih
†
i

�

a†
i ai + a†

j a j − 2λa†
i aia

†
j a j − 1

�

h jh
†
j , (2)

where Pi ≡ 1− a†
i ai [41]. The above model with λ= 1 follows from the exact mapping of the

t–J model. However, we also extend our discussion to the modified 1D t–J model with λ ̸= 1
so as to understand the effects of tuning the strength of the magnon-magnon interaction. We
solve the above model numerically using Lanczos algorithm [42].

Naively one might have some doubts about using the magnon language to describe a 1D
critical problem. Let us make two comments on this issue:

From the formal point of view there is nothing wrong with such approach—provided
that the constraint on the number of bosons, always present in the slave-fermion transfor-
mation [8], is rigorously employed. (This is indeed done in all but one calculations below.)
This statement can also be reformulated by stating that the magnons are here expressed in
terms of hard-core bosons—in which case the constraint on number of bosons need not be
employed.

On the other hand, employing the magnon language in 1D can give rise to new insights.
First, it allows the comparison of the 1D and 2D cases—for the latter case it is the magnon
language that is typically used to describe the low-energy excitations. In fact, this is the pro-
gram that some of us adopted in the past to study the problem of a single hole in the Ising limit
of the 1D t–J model [43]: quite surprisingly in that case the linear spin wave theory breaks
down and the magnon-magnon interaction are crucial to explain the destruction of the string
potential and the ladder spectrum in 1D t–J z model [44]. We expect at least some of these
interesting results to carry on once the spin flips are included.

3 Results: Switching on and off the magnon-magnon interaction

3.1 Ground state

We begin by studying the influence of the magnon-magnon interaction on the magnetic prop-
erties of the ground state of the holon-magnon model (2) with a single hole, cf. Fig. 1(a) vs.
Fig. 1(b). To this end we choose the following three-point correlation function

C(s, d) = (−1)d4L



Sz
0(1− ñs+d/2)S

z
d

�

. (3)

Here, d denotes the distance between the two spins, s is the distance of the hole from the center
of mass of the two spins and L is the number of sites. As shown in Ref. [45] this ‘hole-spins’
correlator tracks the sign changes of the spin correlations due to the presence of the hole and
hence can be used to verify whether spin-charge separation occurs in the system. Indeed, for
the 1D t–J model, i.e. once the parameter governing magnon-magnon attraction is tuned to
the value of λ= 1 in the holon-magnon model (2), we fully recover the result of Ref. [45] and
as shown in Fig. 1(a), the positive and negative correlation regimes are separated and extend
to the largest accessible distance, reflecting the spin-charge separation nature. This contrasts
with the hole-spins correlator calculated for the holon-magnon model (2) with λ= 0. Once the
magnon-magnon interaction is switched off, cf. Fig. 1(b), the negative correlation is restricted
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Figure 1: Magnetic properties of the holon-magnon model (2) ground state with a
single hole as probed by the hole-spin correlation function C(s, d): (a) with magnon-
magnon interaction ‘correctly’ included, i.e. with their value as in the 1D t–J model
[model (2) with λ = 1], (b) without the magnon-magnon interaction [model (2)
with λ = 0]. Calculation performed on a 28 sites long periodic chain using exact
diagonalization and for J = 0.4t, see text for further details.

Figure 2: Dependence of the ground state quasiparticle properties in the holon-
magnon model (2) with a single hole with system size L: (a) the energy difference
∆E between the ground state and the first excited state at the same pseudomen-
tum k = π/2; (b) the quasiparticle spectral weight z, i.e. the overlap between the
ground state and the ‘Bloch wave’ single particle state. Results with the magnon-
magnon interaction correctly included in the 1D t–J model [λ= 1 in (2)] are shown
using orange symbols. Values of the magnon-magnon interaction for the modified
t–J model case λ = 0 (i.e. no magnon-magnon interaction) is shown using purple
symbols. Calculation performed on chains of length L and with J = 0.4t; see text for
details on the finite-size-scaling functions fitted to the data.
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to a very small regime with small d, indicating that the spinon and holon cannot be arbitrarily
far apart. This sign structure of the hole-spins correlator is a signature of the spin polaron.

To irrevocably verify the stability of the spin polaron in a 1D antiferromagnet without
magnon-magnon interaction, we perform a finite-size scaling analysis of the two crucial quan-
tities defining the quasiparticle properties of the ground state: (i) the energy gap (∆E) be-
tween the ground and first excited states (at the same pseudomomentum k = π/2), and (ii)
the quasiparticle spectral weight (z), i.e. the overlap between the ground state and the corre-
sponding ‘Bloch wave’ single particle state.

To obtain the value of the energy gap ∆E in the thermodynamic limit we assume that ∆E
scales linearly, up to a small logarithmic correction, as a function of the inverse system size
1/L.3 The finite size scaling analysis on the 1D t–J model unambiguously shows that the
energy gap quickly decreases with increasing system size and we obtain a vanishing∆E in the
thermodynamic limit within 10−2 t accuracy, cf. Fig. 2(a). This scaling behavior is consistent
with the appearance of a low-energy continuum, which has been well demonstrated by exact
diagonalization of the t–J model. This result for the 1D t–J model stands in stark contrast with
the one obtained for the modified t–J model with switched off magnon-magnon interaction
(λ = 0); in that case the energy gap ∆E scales to a finite value, cf. Fig. 2(a), consistent with
the quasiparticle picture.

We also calculated the quasiparticle spectral weight z in the thermodynamic limit, cf.
Fig. 2(b), by assuming that it scales as 1/

p
L with system size L, based on the exact result

known for the 1D t–J model.4 We again obtain strongly contrasting behaviors: in the 1D t–J
case [i.e. λ = 1 in (2)], z vanishes asymptotically within 10−2 numerical accuracy, further
confirming the absence of a quasiparticle. On the other hand, for λ= 0 z converges to a finite
value—for instance z ≈ 0.2 for J = 0.4t.

3.2 Excited states

The impact of magnon-magnon interaction should not only be restricted to the low-energy
quasiparticle but also extend to the distribution of the high-energy excited states. Therefore,
we calculate the single particle spectral function of the holon-magnon model (as measured by
ARPES) both at the critical value λ = 1 and for λ = 0 (in the next section we will also vary
the strength of the magnon-magnon interaction beyond these two specific values):

A(k,ω) = −
1
π

Im G(k,ω+ i0+) , (4)

G(k,ω) = 〈ψGS| c̃
†
k

1
ω−H+ EGS

c̃k |ψGS〉 , (5)

where |ψGS〉 and EGS stand for ground state wave function of the antiferromagnetic Heisenberg
model and its ground state energy respectively, and c̃k = (c̃k↑ + c̃k↓)/

p
2. Note that replacing

c̃k → c̃kσ does not affect the result. Rewriting G(k,ω) in terms of the holon-magnon model
operators, we obtain,

G(k,ω) =
1

2N

∑

i, j

〈ψfb
GS| (1+ a†

j )Pjh j
e−ik(ri−r j)

ω−H+ EGS
h†

i Pi(1+ ai) |ψfb
GS〉 . (6)

Here |ψfb
GS〉 and |ψGS〉 are related by a rotation of one sublattice and slave-fermion transfor-

mation.
3This is due to: (i) the mapping of the problem of a single hole in the t–J model onto a Heisenberg model with

the shifted boundaries, cf. [44], and (ii) the energy gaps scaling in the latter model as 1/L with a small logarithmic
correction, cf. [46].

4As per exact result obtained for the 1D t–J model with J = 2t and for ‘ground state’ momentum p = π/2,
cf. [47].
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The results are shown in Fig. 3(a-b). The spectrum for λ = 1 is identical to the well-
known spectral function of the t–J model at half-filling [18,48], cf. Fig. 3(a). The incoherent
spectrum is usually understood in terms of a convolution of the spinon and holon dispersion
relations [shown by the dashed lines in Fig. 3(a)].

The spectrum in the absence of the magnon-magnon interaction, i.e. at λ = 0, is shown
in Fig. 3(b). This spectrum contains a dispersive low-energy feature which is visibly split from
the rest of the spectrum at momenta k > π/2 and which, at k = π/2, corresponds to the spin
polaron quasiparticle characterized in Fig. 2. Crucially, the whole spectrum exhibits typical
features of the spin polaron physics. To verify that this is the case, we qualitatively reproduced
the result of Fig. 3(b) using a linear spin wave theory approximation and self-consistent Born
approximation [cf. spectrum of Fig. 9(a), discussed in Sec. 5.2, and spectrum of Fig. 3(b) at
q = π/2], i.e. using an ‘archetypical’ spin polaronic calculation.

Interestingly, apart from the dispersive low-energy quasiparticle feature particularly pro-
nounced for k > π/2, the two spectra seem to be qualitatively similar: (i) Almost all the
spectral weight is tightly enclosed by the dashed and dotted lines (indicating the dispersion
of the free holon and the edges of the spinon-holon continuum); (ii) Dashed lines track quite
well the position of the enhanced spectral weight in the (k,ω) plane (this is for all lines except
for the lower-left dashed holon line).5 This stunning result originates from the fact that: (i)
excited states with a predominantly moderate number of sparsely distributed magnon pairs
have an important contribution to the excited states of model (2) at any λ, (ii) for such states
the magnon-magnon interaction do not matter, hence they contribute in a similar manner to
the spectral function for any λ, in particular λ= 1 and λ= 0.

These results enable us to give an alternative, albeit approximate, understanding of the
dominant features appearing at ω∝ t| cos k| in the spectrum at λ= 1. These dispersions are
well accounted for in the spin-charge separation picture as the ‘free’ holons, cf. [19, 50] and
dashed lines of Fig. 3(a-b). Here, based on the similarity between λ = 1 and λ = 0 spectra,
we can approximately interpret the two dominant spectral features as being due to a holon
propagating in a polaronic way by exciting a single magnon (Born approximation) at a vertex
t| cos k|.

4 Results: Tuning the value of the magnon-magnon interaction

A striking feature of the holon-magnon model (2) is that, at the qualitative level, the spin
polaron solution to the single hole problem dictated by (2) exists not only when the magnon-
magnon attraction is switched off but also for all values of the magnon-magnon attraction
except for the ‘critical’ λ= 1, which preserves the SU(2) symmetry of the spin interactions [the
SU(2) symmetry is broken in the model once λ ̸= 1 in (2), see Appendix B for details]. This
result is visible when looking at the observables used above for values of magnon-magnon
interaction λ other than 0 or 1:

First, we present below the results for the three-point correlation function C(s, d) [defined
in Eq. (3)] for the intermediate value of magnon-magnon interaction λ= 0.5 as well as λ= 0.9
and λ = 1.1, which are ‘close’ to ideal t–J model case (i.e. λ = 1.0)—see Fig. 4. Even for λ
close to 1, it is very clear that the cloud of magnetic excitations (flipped spins) can be observed

5The main difference between the λ = 1 and λ = 0 spectra is related to the distinct nature of ‘stripes’ in
the spectrum: for λ = 1 the ‘stripes’ come from the finite size effect and disappear in the thermodynamic limit,
merging into a continuum of states; for λ = 0 the ‘stripes’ are determined by the strength of the string potential,
as the ‘stripes’ follow from the ladder spectrum. Note that the latter stripes should largely be washed out in the
thermodynamic limit, cf. the hardly visible ladder spectrum of the cluster perturbation theory spectrum of the 2D
t–J model of Ref. [49]. Considering that experimentally measured spectra are broadened because of a variety of
factors, we think it is unlikely that this fine structure could be resolved experimentally. This is why we claim that
the higher-energy part of the spectrum (the continuum) is likely to look quite similar at λ= 1 and at λ= 0.
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Figure 3: Properties of the excited state of the holon-magnon model (2) with a sin-
gle hole as probed by the spectral function A(k,ω): (a) with the magnon-magnon
interaction correctly included [1D t–J model, λ= 1 in (2)]; (b) without the magnon-
magnon interaction [λ= 0 in (2)]. The dashed (dotted) lines in (a-b) show the holon
(spinon) dispersion relations respectively, as obtained from the spin-charge separa-
tion Ansatz [19, 50]. The highest intensity peak at lowest energy in (b) is the spin
polaron quasiparticle peak. Calculation performed on a 28 sites long periodic chain
using exact diagonalization and with J = 0.4t.

Figure 4: Magnetic properties of the holon-magnon model (2) ground state with
a single hole as probed by the hole-spin correlation function C(s, d): (a) with an
‘intermediate’ value of magnon-magnon interaction λ= 0.5, (b-c) with the magnon-
magnon interaction λ= 0.9 and λ= 1.1 ‘close’ to the ideal t–J model case (λ= 1.0).
Calculation performed on the L sites long periodic chain using exact diagonalization
and for J = 0.4t.

8

https://scipost.org
https://scipost.org/SciPostPhys.17.1.018


SciPost Phys. 17, 018 (2024)

Figure 5: Dependence of the ground state quasiparticle properties in the holon-
magnon model (2) with a single hole with system size L: (a) the energy differ-
ence ∆E between the ground state and the first excited state at the same pseudo-
mentum k = π/2; (b) the quasiparticle spectral weight z, i.e. the overlap between
the ground state and the ‘Bloch wave’ single particle state. Results obtained for the
holon-magnon model (2)] with the magnon-magnon interaction λ = 0.5, λ = 0.9
and λ = 1.1. Calculation performed on chains of length L and with J = 0.4t; see
text for details on the finite-size-scaling functions fitted to the data.

Figure 6: Properties of the excited state of the holon-magnon model (2) with a single
hole as probed by the spectral function A(k,ω) with different values of the magnon-
magnon interaction: (a) λ = 0.5, (b) λ = 0.9 , (c) λ = 1.1 in (2). The highest
intensity peak at lowest energy in (a-c) is the spin polaron quasiparticle peak. Cal-
culation performed on a 24 sites long periodic chain using exact diagonalization and
with J = 0.4t.

in a small region around a hole. Such a picture is a signature of a spin polaron and shows the
breakdown of the spin-charge separation once λ ̸= 1. This result can be further confirmed by
checking how quasiparticle properties of the holon-magnon model (2) ground state vary with
the magnon-magnon interaction, see Fig. 5. We observe that the energy gap∆E as well as the
quasiparticle spectral weight remains finite even once λ is close to one—but not exactly equal
to one. Altogether, this shows that the spin polaron quasiparticle solution is stable once the
magnon-magnon interaction is tuned away from their value given by the 1D t–J model.

Second, we investigate how the properties of the excited states of the holon-magnon model
(2) change once the magnon-magnon interaction is tuned, see Fig. 6. Just as for the ground
state, also the spectral function A(k,ω) is qualitatively the same as soon as the value of the
magnon-magnon interaction is tuned away from its value in the 1D t–J model.

In order to obtain a more intuitive understanding of the crucial role played by the specific
value of the magnon-magnon interaction, as well as to connect with the results for the t–J z

9

https://scipost.org
https://scipost.org/SciPostPhys.17.1.018


SciPost Phys. 17, 018 (2024)

Figure 7: Properties of the holon-magnon model (2) with a single hole and with
different strength of the magnon-magnon interactionλ. Panel (a) shows probabilities
cn of finding a configuration with n consecutive magnons attached to one side of the
hole in the ground state of the respective model; panel (b) shows a pictorial view of
a configuration with n = 4 magnons attached to the left side of the hole; All data
obtained using exact diagonalization on a 28 sites periodic chain using J = 0.4t.

model of [43], we introduce one more observable: The probability cn of finding a state with
n magnons forming a chain attached to one side of the single hole in the ground state of (2),
see Fig. 7(b) for a pictorial view of this observable. The probabilities cn for various values of
the magnon-magnon interaction are shown in Fig. 7(a). The first result here is that only at
the critical value of the magnon-magnon interaction λ = 1 the cn’s are almost the same for
all n, consistent with spin-charge separation, cf. Fig. 7(a). This is because, at λ = 1 only, the
cost of creating an extra magnon next to an existing magnon is precisely cancelled by their
attraction. Hence, none of the magnons created by the mobile hole costs any energy apart
from the first one, as long as they form a string. This, together with the magnon pair creation
and annihilation terms [terms ∝ aia j + h.c. in Eq. (2)], allows for almost constant cn’s in the
bulk of the chain.

Once λ ̸= 1 the probability cn is never a constant function of n and spin-charge separation
cannot take place [cf. Fig. 7(a), inter alia note the distinct behavior for λ = 0.99 and λ = 1].
This is due to the fact that for λ ̸= 1 there can never be an exact ‘cancellation’ between the
on-site magnon energy and the interaction one. In particular, for the physically interesting
case of 0 ≤ λ < 1, that interpolates between the exact expression for the 1D t–J model
and the linear spin-wave approximation, cn decreases superexponentially with increasing the
number of magnons n, cf. Fig. 7(a). This is due to the mobile hole exciting magnons whose
energy cost grows linearly with their number. Hence, the total energy is optimised through
a subtle competition between the hole polaronic energy and the magnon energy leading to
the superexponentially suppressed probability of finding a configuration with an increasing
number of magnons. This signals the onset of the string potential and the spin polaron picture,
as discussed in detail in the context of the 2D t–J z model (as well as the 1D t–J z model with
tuned magnon-magnon interactions) in Ref. [43].
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Figure 8: Properties of 1D t–J model (1) with a single hole and with added stag-
gered magnetic field arising due to the coupling [J⊥/J in Eq. (A.1) in Appendix A] to
neighboring chains in a quasi-1D geometry, cf. text and Appendix A. Panel (a) shows
probabilities cn of finding a configuration with n consecutive magnons attached to
one side of the hole in the ground state of the respective model; panel (b) shows
the spectral function A(k,ω) calculated for the 1D t–J model with added staggered
magnetic field J⊥ = 0.1J . All data obtained using exact diagonalization on a 28 sites
periodic chain using J = 0.4t.

5 Discussion: Intuitive origin of the spin polaron collapse

5.1 Conjecture: Onset of gapless magnetic excitations crucial

The discussion so far shows that once we tune λ ̸= 1 in the holon-magnon model (2) a holon
experiences the string potential and the spin polaron quasiparticle is stable. This case quali-
tatively resembles the 2D t–J z model or the 1D t–J z model with tuned magnon-magnon in-
teractions, i.e. with λ ̸= 1 [6, 43]. Moreover, tuning the magnon-magnon attraction to its its
‘proper’ value in the t–J -like models, i.e. to λ= 1, destroys the string potential in both in the
1D t–J (see above) and in the 1D t-J z model [43]. However, whereas in the 1D t–J z case
the quasiparticle survives [35, 36, 43, 44], this is not the case of the 1D t–J . This shows that
the simple real space cartoon picture behind the hole motion in the 1D t–J z model (see Fig. 1
of [43]), which inter alia introduces the concept that effective zero-energy magnons appear
due to magnon-magnon attraction [27, 43], cannot fully explain the physics of the 1D t–J
model and the collapse of the spin polaron quasiparticle.

The most apparent explanation for the distinct behavior of the hole in the 1D t–J and
1D t–J z model is that the magnetic excitations are gapless in the former and gapped in the
latter case [35, 36]. Furthermore, once λ ̸= 1 the magnetic excitations of the holon-magnon
model 2 are gapped (since a λ ̸= 1 effectively leads to a staggered field acting on all spins,
cf. App. B). This brings us to the conjecture that the spin polaron quasiparticle collapses in
the 1D t–J model due to the onset of gapless excitations once λ = 1. Below we investigate
this hypothesis and show that, while this statement is not incorrect, the situation is far more
intricate in detail.

5.2 Sole onset of gapless magnetic excitations not a sufficient condition

In this subsection we show that a mere onset of gapless excitations in a 1D holon-magnon
model is not a sufficient condition to obtain a quasiparticle collapse. To this end, we consider
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the following toy-model:

Hlsw = t
∑

〈i, j〉

�

h†
i h j

�

ai + a†
j

�

+H.c.
�

+
J
2

∑

〈i, j〉

�

aia j + a†
i a†

j + a†
i ai + a†

j a j

�

, (7)

where (again) ai is a bosonic magnon and hi is a fermionic holon and model parameters have
similar meanings as above. Toy-model (7) is the starting point for our calculations and its
precise origin does not matter for the point we want to make below. Nevertheless, as already
suggested by the subscript used in the definition (7), this model can also be regarded as a linear
spin wave (LSW) approximation of the 1D t–J model written in the holon-magnon language:
It follows from Eq. (2) after the magnon-magnon interactions are neglected and the hard-core
boson constraint is skipped.6

To solve model (7) we follow a standard procedure [8] and perform successive Fourier and
(bosonic) Bogoliubov transformation. These transformations are exact and Hamiltonian (7)
takes the form

Hlsw =
2t
p

L

∑

k,q

�

M lsw
k,q h†

khk−qα
†
q +H.c.

�

+ J
∑

q

ωlsw
q α†

qαq , (8)

where αk is a Bogoliubov- and Fourier-transformed bosonic magnon. The magnon-holon ver-
tex and the magnon dispersion relation are defined in the usual manner

M lsw
k,q = ulsw

q γk−q + vlsw
q γk , ωlsw

q =
Ç

1− γ2
q , (9)

with the Bogoliubov and structure factors being equal to

ulsw
q =

√

√

√

1
2ωlsw

q
+

1
2

, vlsw
q = −sgn(γq)

√

√

√

1
2ωlsw

q
−

1
2

, γq = cos q . (10)

As elsewhere in the paper, our main aim is to investigate the motion of a single holon cou-
pled in a polaronic manner, now via (7). Hence, we calculate a single-holon spectral function
A(k,ω) that is defined in an analogous manner to Eqs. (4-5) – but with the electronic ck oper-
ators replaced by the holon hk operators, with the Hamiltonian given by (8), and Hamiltonian
ground state being a vacuum for holons and Bogoliubov magnons. We calculate the spectral
function using SCBA, i.e. by summing all rainbow holon-magnon diagrams up to infinite order
and assuming a finite broadening δ. This method is exact here, since in 1D there are no closed
loops. The spectral function at k = π/2 point is shown in the left panel of Fig. 9. The most
interesting feature of this spectrum is related to the fact that it contains a well-defined quasi-
particle peak at lowest energy. This is also visible from the vanishing of the imaginary part of
the self energy ImΣ at the energy and momentum in question, cf. left panel of Fig. 9. We trace
back the stability of this quasiparticle solution to the vanishing magnon-holon vertex M lsw

k,q at
q = 0,π, i.e. once the holon could in principle be coupled to a gapless magnon excitation,
cf. right panel of Fig. 9.

6Naturally, we should be quite cautious with the LSW approximation in 1D. Since the LSW leads to divergent
local magnetisation, it is not an internally consistent theory. Despite this, the LSW is not a completely meaningless
approach in 1D, cf. [51]. In particular, the main result obtained below is that the quasiparticle solution is stable
in the ‘LSW-originated’ toy-model (7). So while this result is an artefact of the LSW method and is obviously not
valid for the 1D t–J model (see above), there is no reason to believe that such a wrong result stems from the
diverging quantum fluctuations. On the other hand, had we obtained the opposite result below, i.e. an unstable
quasiparticle, then we could have speculated that this followed from the diverging local quantum fluctuations in
the LSW approximation.
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Figure 9: Properties of the 1D holon-magnon toy-model (7), which is a 1D t–J model
with a single hole subject to the LSW approximation, cf. main text for more details:
Spectral function A(π/2,ω) and imaginary part of the self-energy ImΣ(π/2,ω) (left
panel) and magnon-holon vertex M lsw

k,q (right panel). Calculations using SCBA on a
40 sites periodic chain with J = 0.4t and broadening δ = 0.01t.

Altogether, this shows that the onset of ‘a’ gapless magnetic excitation is not a sufficient
condition for the fermionic quasiparticle collapse in a holon-magnon ‘t–J -like’ system. In par-
ticular, it turns out that, once the gapless magnetic excitations of the 1D t–J model are replaced
by gapless bosons, the coupling of the fermionic hole to the bosons can vanish at low energy-
momentum transfer and the fermionic quasiparticle survives. Such a stability of quasiparticles,
despite the onset of gapless collective excitations to which a single hole or impurity is coupled,
has been observed in several other systems, e.g.: (i) holon-magnon systems with bosons being
gapless Goldstone modes and hence a vanishing coupling at low energy-momentum transfers
and stable fermionic quasiparticles [26, 52]; (ii) a single impurity with linear dispersion and
coupled to the Tomonaga-Luttinger liquid in a polaronic manner [53,54].

5.3 Sufficient condition: Nonvanishing coupling to a gapless magnetic excita-
tion

In this subsection we argue how the nonvanishing coupling of a hole to a gapless spin excitation
leads to a spin polaron collapse. We start by considering the following 1D holon-magnon toy-
model:

Hxy = t
∑

〈i, j〉

�

h†
i h j Pi

�

ai + a†
j

�

Pj +H.c.
�

+
J
2

∑

〈i, j〉

hih
†
i

�

Pi Pjaia j + a†
i a†

j Pi Pj

�

h jh
†
j , (11)

where all operators are defined as in (2). This Hamiltonian describes, in the holon-magnon ba-
sis, the so-called t–Jxy model, i.e. a t–J model with solely X Y spin interactions and neglected
Ising term. This model does not include the magnon-magnon interactions by definition, which
greatly simplifies the magnon-holon problem and allows for a far more detailed insight into
the issue of the holon quasiparticle stability.

To solve model (11) we first map it onto a fermionic-only model, using the Jordan-Wigner
transformation for hard-core bosons Piai (for reasons why we need take the hard-core con-
straint ‘seriously’, see further below). Next, we neglect the Jordan-Wigner string operators that
are present in the polaronic hopping ∝ t as well as the constraint on the number of magnons
and holes on the same site. In Appendix C we present exact diagonalisation numerical results
which take these two effects into account and likewise show the same main result as below,
i.e. the unstable holon quasiparticle in the spectral function. Finally, we perform successive
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Figure 10: Properties of the 1D holon-magnon toy-model (12), which is a 1D t–Jxy

model with a single hole and with the Jordan-Wigner strings neglected, cf. main text
for more details: Spectral function A(π/2,ω) and imaginary part of the self-energy
ImΣ(π/2,ω) (left panel) and magnon-holon vertex Mxy

k,q (right panel). Calculations
using SCBA on a 40 sites periodic chain with J = 0.4t and broadening δ = 0.01t.

Fourier and (fermionic) Bogoliubov transformation to obtain:

Hxy ≈
2t
p

L

∑

k,q

�

Mxy
k,q h†

khk−qd†
q +H.c.

�

+ J
∑

q

ωxy
q d†

q dq , (12)

where dq is a Bogoliubov- and Fourier-transformed (Jordan-Wigner) fermionic magnon. The
magnon-holon vertex and the magnon dispersion relation read

Mxy
k,q = uxy

q γk−q + v̄xy
−qγk , ωxy

q =
Ç

1− γ2
q , (13)

with the structure factor γq defined above and the (almost) momentum-independent fermionic
Bogoliubov factors defined as

uxy
q =

p
2

2
, vxy

q = i sgn(q)
p

2
2

. (14)

Similarly as above we calculate the single holon-spectral function A(k,ω) for Hamiltonian
(12) using SCBA. The obtained (exact) spectrum at q = π/2 is shown in the right panel of
Fig. 10. It is clear that the spectrum does not possess a quasiparticle solution (cf. imaginary
part of the self-energy plotted below). The lack of quasiparticles may be explained by the fact
that the holon couples here to the gapless magnetic excitations through a vertex Mxy

k,q that in
principle does not vanish at q = 0,π/2, cf. left panel of Fig. 10.

To sum up, studying the single hole in the t–JXY model shows that, as the hole is subject to
a nonvanishing coupling to a gapless magnetic excitation (i.e. such a coupling does not vanish
for low energy-momentum transfer), the quasiparticle solution disappears. Naturally, the non-
vanishing coupling to gapless magnetic excitations does not contradict the already-mentioned
paradigm that states that such a coupling should vanish once the magnetic excitations are
gapless Goldstone bosons [26] – for here the gapless magnetic excitations are not Goldstone
modes. In fact, here the nonvanishing coupling of the holon to the gapless magnon excita-
tions is reproduced once the hard-core nature of the bosonic representation of spins is taken
into account.7 Thus, one can conclude that the hard-core constraint stands behind the finite
coupling to the gapless magnetic excitations.

7Skipping the hard-core constraint in Eq. (11) yields an ill-defined bosonic theory with a purely anomalous
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Finally, we discuss the impact of the results obtained for the 1D t–Jxy model on the under-
standing of the 1D t–J model. First, we note that the coupling between the fermionic holon
and the hard-core bosonic magnon is not altered once the Ising interaction between spins is
added to the 1D t–Jxy model. Hence, this coupling does not vanish at small energy-momentum
transfers also in the 1D t–J model. Second, the magnetic excitations still remain gapless in the
1D t–J model. This is a fundamental property of the Heisenberg model. (In fact, the gapless
excitations, and hence the conclusions that follow below, pertain to any 1D XXZ model with
continuous symmetry of the spin interactions: i.e. of the 1D XY model, the easy-plane 1D XXZ
model, and the 1D Heisenberg model.) Moreover, the magnetic excitations become gapped
once the magnon-magnon interactions are tuned to λ ̸= 1 in the 1D holon-magnon model (2)
– as most easily visible by the onset of an effective staggered magnetic field at λ ̸= 1, cf. (B.3).
Intuitively, this is due to the fact that once the magnon-magnon attraction is not at its critical
value of λ = 1, the valence-bond-like magnon ‘pair’ states are suppressed and the Neel-like
states are favored. Altogether, this means that the spin polaron quasiparticle collapses in the
1D t–J model as a result of the interplay of two effects: (i) onset of gapless magnon excitations
at the (critical) value of the magnon-magnon attraction λ = 1 that is inherent to the model,
(ii) nonzero coupling between the fermionic holon and the gapless magnons at low-energy
momentum-energy transfer that stems from the hard-core bosonic nature of the magnons.

6 Discussion: Relevance for real materials

The existence of just one critical value of the magnon-magnon interaction [λ = 1 in (2)] sta-
bilising the spin-charge separation solution, and at the same time onset of the spin polaron
solution for all other values of the magnon-magnon interaction, is a striking feature of the
holon-magnon model (2). Interestingly, this rather abstract result, has an important conse-
quence for real materials.

Due to the nature of atomic wavefunctions and crystal structures, the best-known ‘1D’
antiferromagnetic materials (cf. Sr2CuO3, SrCuO2, or KCuF3) are solely quasi-1D [28–30]. A
precise model of these materials should include a small but finite staggered magnetic field J⊥
[see Appendix A for details], which originates in the magnetic coupling between the spins on
neighboring chains [56–58]. Importantly, the single-hole dynamics in a 1D t–J model with
staggered field is qualitatively the same (and quantitatively very similar, as discussed in the
Appendix A) as that in a 1D t–J model with modified magnon-magnon interaction. Indeed,
the strength of the staggered field can be mapped to that of the magnon-magnon interaction,
see Appendix A. Altogether this means that the presence of the staggered field disrupts the
above-discussed fine balance between the on-site magnon energy and the magnon-magnon
attraction seen in the 1D t–J model. Therefore, the mobile hole in the quasi-1D cuprates
experiences the string potential and forms the spin polaron, cf. Fig 8(a). This indicates that
the spin polaron picture is realised (and the spin-charge separation is, strictly speaking, not
valid) in real materials below the Neel ordering temperature T < TN , i.e. once the staggered
magnetic field description is fully valid.

We note that this fine balance will be disrupted for any quasi-1D antiferromagnetic system,
also above the small Neel ordering temperature T > TN , i.e. once the staggered field descrip-
tion is in principle not valid. Nevertheless, the T > TN case is pretty complex and we leave
the problem of stability of the spin polaron at T > TN as an open question for future studies,
see Appendix A for details.

bosonic terms in the Hamiltonian. Alternatively, one could introduce magnons in the XY spin model just as in
[51,55]. This would yield gapless bosonic excitations after skipping the hard-core constraint and magnon-magnon
interactions. However, then the obtained approximate holon-magnon Hamiltonian would qualitatively be similar
to Eq. (7) with the vanishing holon-magnon coupling at low energies. This would stay in contrast to the exact
results and hence, incorrectly, would predict a stable spin polaron quasiparticle.
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One may wonder how to reconcile the above finding with the fact that ARPES experiments
on quasi-1D cuprates have reported spin-charge separation [18–20,22,23] based on the exper-
imentally measured spectrum being similar to the one obtained for the 1D t–J model [λ = 1
in Eq. (2)], cf. Fig. 3(a) [18–20, 22, 23]. One explanation is that in general these ARPES ex-
periments were obtained at high temperature, for which it is still not clear whether the spin
polaron is indeed valid (see above). However, the salient fact is that the spectrum obtained
when a small staggered field 0 < J⊥ ≲ 0.1J acts on the 1D t–J model, cf. Fig 8(b), is al-
most indistinguishable from the one of Fig. 3(a), especially when we broaden the latter by a
finite ARPES resolution. In fact, for the available finite size calculations with the numerical
broadening δ = 0.05t, the only visible difference between the two spectra lies in an extremely
faint quasiparticle feature present for k > π/2. Since the latter feature cannot be discerned
with the current ARPES resolution, especially at high temperature and with a typically weaker
signal for k > π/2 in ARPES, we conclude that so-far all ARPES measurements on quasi-1D
cuprates [18–20, 22, 23] are equally well interpreted using the spin polaron picture, with its
dominant cosine-like features interpreted as the holon exciting a magnon at a vertex∝ t| cos k|
(see above).

7 Summary and outlook

In this work we discussed the extent to which the concept of the spin polaron, well-known
from the studies of a single hole in 2D antiferromagnets [59], can be applied to the single hole
problem in the 1D antiferromagnets. We find that only in the ‘purely’ 1D case and with a contin-
uous symmetry of the spin interactions the spin polaron is unstable to spin-charge separation.
In contrast, the spin polaron quasiparticle is stable in the real quasi-1D antiferromagnets such
as SrCuO2, Sr2CuO3 or KCuF3. In fact, the spin polaron spectral function matches well all of
the so-far observed ARPES spectra of these compounds [18–20,22,23].

We explain that the spin polaron collapse, and consequently onset of the spin-charge sepa-
ration, in the 1D t–J model follows from the interplay of two mechanisms. First, the magnetic
excitations are gapless in the 1D Heisenberg model due to the critical value of the magnon-
magnon attraction in this model. Second, the single hole experiences nonzero coupling to
the gapless magnons: This is facilitated by an effectively fermionic nature of magnons in 1D
that follows from their hard-core constraint. These two conditions are rather special to 1D
and hard to realise in higher dimensions. This suggests a robust spin polaron in all t–J -like
models that are not strictly 1D. In particular, the spin polaron might be a good quasiparticle in
the quasi-2D doped antiferromagnets, even once the magnetic long-range order collapses due
to high hole doping. We leave the latter hypothesis as an important open problem for future
studies.
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A The t–J model for quasi-1D cuprates: Tunable staggered
magnetic field vs. tunable magnon-magnon interaction

In order to construct the t–J model for quasi-1D cuprates, we make the following assumptions:
First, to get qualitative insight into the hole motion, we note that hopping between the

chains can be neglected [61] and that the longer-range hopping is very small for quasi-1D
cuprates [62]. Besides, the recently postulated strong coupling to phonons in 1D cuprates [63],
not included here, would only further disrupt the (mentioned below and in the main text of the
paper) fine balance between the magnon-magnon interaction and the magnon on-site energy.

Second, the Heisenberg exchange interaction between the chains is approximated by the
Ising one. Including the spin-flip terms between the chains would require obtaining numerical
results on small clusters [64–66] or at relatively high temperatures [66–68] – both being not
very reliable methods to obtain information on the question of quasiparticle collapse vs. its
stability. At the same time, the analytical insight suggests that allowing for the spin flips be-
tween the chains does not contribute to the spin polaron collapse: (i) the SCBA results, which
give a stable spin polaron quasiparticle even at vanishing interchain coupling (see Sec. 5.2),
take into account the spin-flip terms [this approximation skips the hard-core boson constraint
as well as the magnon-magnon attraction due to the (included in SCBA) linear spin wave
approximation]; (ii) the (mobile) hard-core bosons in the quasi-1D or 2D geometry are very
different than in the 1D case, since their fermionic nature (known from 1D, see Sec. 5.3) ef-
fectively disappears [69] – hence the Bogoliubov factors which constitute the core part of the
magnon-holon vertex are not of fermionic character and the scenario of the nonzero coupling
to gapless modes, shown for the 1D t–JXY model in Sec. 5.3, should not hold in 2D. Altogether,
this means that in order to investigate the question of the spin polaron quasiparticle stability
once the interchain coupling is nonzero we should turn our attention to the interchain Ising
terms and can neglect the interchain spin-flip terms.

Third, the remaining Ising exchange interaction between the chains can be represented as
the staggered magnetic field (which, due can be obtained from the spin exchange between the
chains [56], hence is called J⊥ below and in the main text of the paper):

HJ⊥ =
J⊥
2

∑

〈i, j〉

�

(−1)iSz
i + (−1) jSz

j

�

. (A.1)

The above term follows by assuming the onset of the long-range magnetic order at low temper-
atures: the magnetic interactions between the chains can be treated on a mean-field level—
which, irrespective of the sign of the interchain coupling, yields a staggered magnetic field
acting on the antiferromagnetic chain in which the hole moves [56–58]. Following [56] one
can estimate the value of J⊥ in various quasi-1D cuprates: e.g. for KCuF3 we obtain J⊥ ≈ 0.06J
[hence the assumed in Fig. 4(d) of the main text value J⊥ = 0.1J , being the upper bound of
that estimate].
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We note that, also at higher temperatures, i.e. when there is no long-range order and
the staggered field cannot be used to simulate the coupling between the chains, the (men-
tioned in the main text of the paper) fine balance between the magnon-magnon interaction
and their onsite energies will also be disrupted due to the change of magnon on-site energies
by the exchange interaction between the chains. Thus, only a specific ‘fluctuating-singlet’ (i.e.
RVB-like) phase might preserve such a fine balance also in a quasi-1D system. While we are
skeptical that this may indeed happen, we leave it as an important open problem for future
verification using unbiased sophisticated numerical (this e.g. requires exact diagonalisation
of a full 2D problem at finite temperature, which heavily suffers from finite size effects and
is beyond the scope of this work, see also comment above.). Finally, we also add a warning
here for the possible future discussion of the relation between the T > TN and T < TN cases:
Any onset of ‘relatively’ broad peaks in the ARPES – or theoretically calculated – spectra at
T > TN temperature should not be immediately regarded as a signature of the collapse of
the quasiparticle picture at T < TN , since the quasiparticle peak broadens fast with increasing
temperature T and acquires all sorts of extra structure that make it impossible to say anything
very concrete about the quasiparticle nature at low temperature [70–72].

Now let us investigate how the additional staggered field looks like in the polaronic descrip-
tion already used in the main text. In order to do this we firstly show in detail the polaronic
descritpion of the 1D t–J model [i.e. how to go from Eq. (1) to Eq. (2) of the main text]. To
this end, we start with a rotation of spins in one of the system’s sublattices. This results in

Hrot = −t
∑

〈i, j〉,σ

�

c̃†
iσ c̃ jσ̄ +H.c

�

+ J
∑

〈i, j〉

�

1
2

�

S+i S+j + S−
i S−

j

�

− Sz
i Sz

j −
1
4

ñi ñ j

�

. (A.2)

This allows for the introduction of holes and magnons according to the following transforma-
tions

c̃†
i↑ = Pihi , c̃i↑ = h†

i Pi ,

c̃†
i↓ = a†

i Pihi , c̃i↓ = h†
i Piai ,

(A.3)

S+i = hih
†
i Piai , Sz

i =
�

1
2
− a†

i ai

�

hih
†
i ,

S−
i = a†

i Pihih
†
i , ñi = 1− h†

i hi = hih
†
i ,

(A.4)

where a†
i are bosonic creation operation at site i denoting magnons and h†

i are fermionic
creation operators at site i denoting holons. Operator Pi projects onto a subspace with 0
magnons at site i. Here magnons can be understood as deviations from the state that has all
the spins pointing up after the applied sublattice rotation. In the end, the 1D t–J model (up
to a shift by constant energy) reads:

H =Ht +HJ , (A.5)

where,

Ht = t
∑

〈i, j〉

¦

h†
i h j Pi

�

ai + a†
j

�

Pj + h†
j hi Pj

�

a j + a†
i

�

Pi

©

, (A.6)

HJ =
J
2

∑

〈i, j〉

hih
†
i

�

Pi Pjaia j + a†
i a†

j Pi Pj

�

h jh
†
j

+
J
2

∑

〈i, j〉

hih
†
i

�

a†
i ai + a†

j a j − 2a†
i aia

†
j a j − 1

�

h jh
†
j .

(A.7)
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Table 1: Table presenting the relation between the value of the staggered field J⊥ in
the quasi-1D t–J model and the t–J model with rescaled magnon-magnon interaction
λ and the XXZ anisotropy ∆.

J⊥/J ∆ λ

0.01 0.01 100
101

0.1 0.1 10
11

0.5 0.5 2
3

Now let us investigate the staggered magnetic field term given by Eq. (A.1) above. Per-
forming the same set of transformations we obtain (up to a constant energy shift),

HJ⊥ =
J⊥
2

∑

〈i, j〉

�

a†
i aihih

†
i + a†

j a jh jh
†
j

�

≈
J⊥
2

∑

〈i, j〉

hih
†
i

�

a†
i ai + a†

j a j

�

h jh
†
j . (A.8)

The omitted terms on the right hand side of the approximation modify the magnetic field only
around the hole and they are ∝ J⊥

�

a†
i aih jh

†
j + a†

j a jhih
†
i

�

. In the end, we obtain for the spin
part of the Hamiltonian [Ht is not affected, i.e. given by Eq. (A.6) above]

HJ+J⊥ ≡HJ +HJ⊥

≈
J
2

∑

〈i, j〉

hih
†
i

�

Pi Pjaia j + a†
i a†

j Pi Pj

�

h jh
†
j

+
J
2

∑

〈i, j〉

hih
†
i

��

1+
J⊥
J

�

�

a†
i ai + a†

j a j

�

− 2a†
i aia

†
j a j − 1

�

h jh
†
j .

(A.9)

Let us introduce the XXZ anisotropy,

∆=
J⊥
J

, (A.10)

and the rescaled magnon-magnon interaction parameter

λ=
1

1+∆
. (A.11)

Then, in the single hole limit, we can write

HJ+J⊥ ≈
J
2

∑

〈i, j〉

hih
†
i

�

Pi Pjaia j + a†
i a†

j Pi Pj

�

h jh
†
j

+ (1+∆)
J
2
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〈i, j〉

hih
†
i

�

a†
i ai + a†

j a j − 2λa†
i aia

†
j a j

�

h jh
†
j .

(A.12)

Thus, once J⊥ ̸= 0 the final model is the t–J model with the XXZ anisotropy ∆ and rescaled
magnon-magnon interaction λ. In TABLE 1. we present the values of λ, ∆ calculated for the
corresponding values of J⊥ used in calculations for Fig. 4(b) and 4(d) in the main text.

B SU(2) symmetry breaking in the t–J model with tunable
magnon-magnon interaction

We start by re-expressing the magnon-magnon interaction term in the ‘standard’ (i.e. spin)
language,

a†
i aia

†
j a j = −Sz

i Sz
j +

1
4

ñi ñ j −
1
2

�

ξAi Sz
i + ξ

A
j Sz

j

�

ñi ñ j , (B.1)
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where ξAi equals −1 for i ∈A and 1 otherwise, with A,B denoting the two sublattices of the
bipartite lattice. Thus, Hamiltonian (2) of the main text (i.e. the t–J model with tuneable
magnon-magnon interaction) reads,

H = −t
∑

〈i, j〉

�

c̃†
iσ c̃ jσ +H.c.

�

+ J
∑

〈i, j〉

§

SiS j −
1
4

ñi ñ j + (λ− 1)
�

Sz
i Sz

j −
1
4

ñi ñ j +
1
2

�

ξAi Sz
i + ξ

A
j Sz

j

�

ñi ñ j

�ª

.
(B.2)

In the above Hamiltonian (B.2), the term

1
2

�

ξAi Sz
i + ξ

A
j Sz

j

�

ñi ñ j , (B.3)

can be understood as a staggered field acting on all spins although it is halved for the neighbors
of the hole. This term contributes to the Hamiltonian once λ ̸= 1 and explicitly breaks the
SU(2) symmetry.

C Absence of a spin-polaron ground state in the 1D t–JXY model

In what follows we calculate the spectral properties of a single hole introduced to the otherwise
undoped (half-filled) ground state of the t–JXY model in 1D, as e.g. defined by Eq. (11) in
the magnon-holon language. Note that already the approximate treatment of this model in
Sec. 5.3 as well as the preliminary considerations in [44] suggest the lack of the spin polaron
quasiparticle in this model – nevertheless, to unambiguously prove the lack of quasiparticles in
this model below we perform an exact diagonalisation study that is supplemented by a detailed
finite size scaling.

The numerically calculated (exact diagonalisation, cf. Sec. 2) spectral function A(k,ω)
of a single hole in the t–JXY model is shown in Fig. 11. The eigenstates of the model are
symmetric not only with respect to k = 0 but also to k = π

2 . While this cannot be seen in the

Figure 11: Spectral function A(k,ω) calculated for the 1D t–JXY model obtained
using exact diagonalization on a 24 sites periodic chain with J = 0.4t.
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Figure 12: Dependence of the ground state quasiparticle properties in the 1D t–JXY

model with a single hole with system size L: (a) the energy difference ∆E between
the ground state and the first excited state at the same pseudomentum k = π/2; (b)
the quasiparticle spectral weight z, i.e. the overlap between the ground state and the
‘Bloch wave’ single particle state. Calculation performed on chains of length L and
with J = 0.4t.

spectral function of the single hole in the t–J model, there is small but non-zero weight visible
in the t–JXY model outside of the compact support known from the spin-charge separation
Ansatz [73]. Note that the numerically exact spectrum of Fig. 11 differs quantitatively from
the approximate spectrum shown in Fig. 10(a) – however, qualitatively they both show the
same incoherent (‘unparticle’) physics.

While the onset of spin-charge separation is already quite apparent in the spectral function
of Fig. 11, this result on its own does not yet give a conclusive answer for the character of the
ground state. Thus we calculate the gap from the ground state to the first excited state ∆E at
k = π

2 for system sizes L = 12,16, 20,24 sites. as well as the corresponding residues z. The
results are shown in Fig. 12. Following the same Ansatz for the finite size scaling as in the
main text we observe that both ∆E as well as z approach zero in the thermodynamic limit.
This shows the lack of the spin-polaron quasiparticle in the t–JXY model.

Finally, to fully verify the above claim, we also calculate the spin-hole-spin correlation
function C(s, d) [as defined by Eq. (3) in the main text]. The extensive region of negative spin-
spin correlations (see blue region in Fig. 13) appears due to the motion of the hole. Since it
extends to the boundary of the system, where correlation eventually disappears, the conclusion
is clear. The ground state of a single hole in the t–JXY model cannot be described as a spin-
polaron of a finite size (in the thermodynamic limit), but instead it could be understood e.g.
in terms of the spin-charge separation.
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Figure 13: Magnetic properties of the 1D t–JXY model ground state with a single
hole as probed by the hole-spin correlation function C(s, d). Calculation performed
on a 24 sites long periodic chain using exact diagonalization and for J = 0.4t.
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