

1 1 **Trehalose or Not-Trehalose: The Question of Direct vs. Indirect Transcriptional Responses**
2 2 **to the sugar trehalose-6-phosphate**

3 3 Thu M Tran^{1,2} and Kyle W Swentowsky^{1,2}

4 4 ¹Assistant Features Editor, *Plant Physiology*, American Society of Plant Biologists, Rockville,
5 5 MD, USA

6 6 ²Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA

7 7 ORCID: 0000-0001-6877-713X and 0000-0002-5148-3642

8 8 For correspondence: tran@cshl.edu

9 9 In terrestrial ecosystems, plants act as primary producers by sequestering carbon from CO₂ and
10 10 incorporating it into the soluble sugar form. These sugars are transported out of the leaves,
11 11 usually in the form of sucrose, and into sink organs such as roots and fruits. The distribution of
12 12 sugars within the plant at any given time is non-uniform, and plants must continually monitor
13 13 their sugar levels to control carbohydrate homeostasis and other signaling processes. In addition
14 14 to directly sensing the primary soluble sugar, it has been proposed that plants can also perceive
15 15 trehalose-6-phosphate (Tre6P) as a signal of sugar availability. Tre6P is the intermediate
16 16 molecule in the synthesis of the sugar trehalose. Trehalose metabolism is facilitated by two
17 17 enzymes: trehalose-6-phosphate synthase (TPS) and trehalose-phosphate phosphatase (TPP). In
18 18 the first step, TPS catalyzes the synthesis of Tre6P from uridine diphosphate (UDP)-glucose and
19 19 glucose-6-phosphate. TPP then dephosphorylates Tre6P to produce trehalose (Figure 1).

20 20 In addition to its role in sugar sensing, Tre6P controls developmental processes such as
21 21 flowering time, inflorescence architecture, and shoot branching (Wahl et al., 2013, Satoh-
22 22 Nagasawa et al., 2006, Fichtner et al., 2021, reviewed in Fichtner and Lunn, 2021). While it is
23 23 understood that Tre6P can rapidly induce changes in gene expression, the mechanisms of Tre6P
24 24 perception and downstream signaling are still elusive.

25 25 In this study, **Avidan et al., (2024)** used an inducible TPS enzyme to identify the direct gene-
26 26 expression targets of Tre6P. The authors used an ethanol-inducible version
27 27 of the TPS enzyme from *E. coli* (iTPS) transformed into *Arabidopsis* to analyze the short-term (4-6
28 28 hours) transcriptional responses to Tre6P. Previous studies have been limited by genetic interventions
29 29 that altered TPS and TPP expression causing constitutive changes in both Tre6P and sucrose
30 30 contents. The short-term inducible system allowed the researchers to capture the rapid
31 31 responses before Tre6P affected sucrose synthesis, therefore partially overcoming technical
32 32 issues associated with constitutively altering TPS expression. The authors compared the
33 33 transcriptional output of iTPS with
34 34 the response to increased sugar availability across nine treatments from previous studies and
35 35 calculated an average response, termed a carbon response factor (CRF). Transcripts that
36 36 showed a similar response to iTPS and elevated sugar were considered likely targets of Tre6P
37 37 signaling.
38 38 In agreement with previous studies of Tre6P-induced gene expression, elevated Tre6P led to
39 39 widespread changes in transcript abundance for almost half of the transcriptome. Through this
40 40 deconvolution process, around 40% of these transcripts are likely responses to Tre6P. This
41 41 data set was used to elucidate how Tre6P affects related biological processes.
42 42

43 37 The authors then analyzed the effects of induced Tre6P on global gene expression, focusing on
44 38 interactions between Tre6P and three well-known sugar-signaling modules: SnRK1, TORC,
45 39 and S₁ bZIP transcription factors. SUCROSE-NON-FERMENTING1-RELATED KINASE1
46 (SnRK1 plays a key role in low-energy signaling (Jossie et. al, 2009). Previous studies suggested
47 that

48 40 Tre6P can act by inhibiting SnRK1, but there is a missing link in the evidence: the *in vitro*
49 41 inhibition of SnRK1 by Tre6P was only observed in the extraction from sink tissues, and the
50 42 change of downstream targets of SnRK1 transcripts was only observed in mature leaves (source
51 43 tissues). The results presented here reveal a complex relationship between Tre6P and SnRK1-
52 44 signaling modules with implications for cellular responses to sugar availability. Elevated Tre6P
53 45 levels consistently and primarily inhibit the SnRK1 starvation response. Additionally, Tre6P
54 46 influences the expression of SnRK1 protein subunits and the expression of its interactors,
55 47 indicating a tight interplay between Tre6P signaling and SnRK1 function.

56 48 Next, the interaction of Tre6P with the TARGET OF RAPAMYCIN COMPLEX (TORC)-
57 49 signaling module was considered. TORC is a canonical positive regulator of ribosome biogenesis,
58 50 and SnRK1 represses TORC signaling in plants (Baena-González et al., 2007), suggesting a
59 51 possible relationship between Tre6P and TORC. Interestingly, the authors found that Tre6P
60 52 likely influences ribosome production through SnRK1 rather than directly impacting TORC
61 53 signaling. Additionally, Tre6P affects the expression of TORC phosphorylation targets,
62 54 suggesting that coordinated actions between Tre6P and TORC regulate cellular responses.

63 55 Finally, Avidan et al. (2024) investigated the interactions between Tre6P and bZIP signaling,
64 56 focusing on sugar translationally-regulated bZIPs (S₁ bZIPs). Under low sugar conditions, S₁
65 57 bZIPs activate starvation responses (Ma et al., 2011). There is an overlapping set of transcripts
66 58 between iTPS and overexpression of the S₁ bZIP, bZIP11, and most of these transcripts showed
67 59 opposite
68 60 responses, suggesting that Tre6P adds another control layer, making plants more responsive to
low sugar conditions.

70 61 In summary, the results from this study improve our understanding of the complex Tre6P
71 62 signaling networks that plants use to react to changes in internal metabolic status and external
72 63 conditions. Tre6P coordinates with other important sugar-signaling modules, SnRK1, TORC,
73 64 and S₁ bZIP, in response to sugar availability, but the main function of Tre6P signaling is to
74 65 inhibit SnRK1 activity to prevent starvation responses when sugar availability is high (Figure 1).
75 66 However, as mentioned by the authors, since *E. coli* TPS protein is induced in all cell types while
76 67 native AtTPS1 is mainly expressed in the companion and guard cells, the iTPS inducible system
77 68 did not completely remove the complications due to the secondary changes. Therefore, a future
78 69 study could develop a cell type-specific inducible system to further understand the spatial aspect
79 70 of Tre6P signaling. Considering the importance of Tre6P signaling and its complex connections
80 71 with other signaling modules in response to sugar availability, this study provides insight into
81 72 how plants cope with carbon starvation.

82 73 **Figure 1. Model of relationship between trehalose-6-phosphate, signaling modules, and**
83 74 **biological processes.** Simplified metabolic pathway (top panel) resulting in trehalose synthesis.
84 75 TREHALOSE PHOSPHATE SYNTHASE (TPS) catalyzes the formation of Trehalose-6-
85 76 phosphate (Tre6P) from Glucose-6-phosphate and UDP-glucose; TREHALOSE PHOSPHATE
86 77 PHOSPHATASE (TPP) catalyzes the dephosphorylation of Tre6P to Trehalose. Tre6P

87 78 influences *TORC*, *SnRK1*, and *S1 bZIP* signaling modules (middle panel) which control

88 79 biological processes (bottom panel). Solid arrows indicate known connections, dashed arrows
89 80 denote potential connections.
90 84
91 85 **References**

92 86 Avidan O, Martins M, Feil R, Lohse M, Giorgi F, Schlereth R, Lunn J, Stitt M (2024). Direct and
93 87 indirect responses of the *Arabidopsis* transcriptome to an induced increase in trehalose 6-
94 88 phosphate. *Plant Physiology*.

95 89 Baena-González E, Rolland F, Thevelein JM, Sheen J (2007). A central integrator of
96 90 transcription networks in plant stress and energy signaling. *Nature* 448:938–942

97 91 Fichtner F, Barbier FF, Annunziata MG, Feil R, Olas JJ, Mueller-Roeber B, Stitt M, Beveridge A,
98 92 Lunn JE (2021). Regulation of shoot branching in *Arabidopsis* by trehalose 6-phosphate. *New
99 93 Phytol* 229:2135–2151.

00 94 Fichtner F, Lunn JE (2021). The Role of trehalose 6-phosphate (Tre6P) in plant metabolism and
01 95 development. *Annu Rev Plant Biol* 72:737-760.

02 96 Jossier M, Bouly JP, Meimoun P, Arjmand A, Lessard P, Hawley S, Hardie GD, Thomas M
03 97 (2009). SnRK1 (SNF1-related kinase 1) has a central role in sugar and ABA signaling in
04 98 *Arabidopsis thaliana*. *Plant J* 59:316–328

05 99 Ma J, Hanssen M, Lundgren K, Hernández L, Delatte T, Ehlert A, Liu CM, Schluepmann H,
06 100 Dröge-Laser W, Moritz T, et al (2011). The sucrose-regulated *Arabidopsis* transcription factor
07 101 bZIP11 reprograms metabolism and regulates trehalose metabolism. *New Phytol* 191:733-745

08 102 Satoh-Nagasawa N, Nagasawa N, Malcomber S, Sakai H, Jackson D (2006). A trehalose
09 103 metabolic enzyme controls inflorescence architecture in maize. *Nature* 441:227–230

10 104 Wahl V, Ponnu J, Schlereth A, Arrivault S, Langenecker T, Franke A, Feil R, Lunn JE, Stitt M,
11 105 Schmid M (2013). Regulation of flowering by trehalose-6-phosphate signaling in *Arabidopsis*
12 106 *thaliana*. *Science* 339:704-707.

13 107
14 108
15 109
16 110

Parsed Citations

Avidan O, Martins M, Feil R, Lohse M, Giorgi F, Schlereth R, Lunn J, Stitt M (2024). Direct and indirect responses of the Arabidopsis transcriptome to an induced increase in trehalose 6-phosphate. *Plant Physiology*.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Baena-González E, Rolland F, Thevelein JM, Sheen J (2007). A central integrator of transcription networks in plant stress and energy signaling. *Nature* 448:938–942

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Fichtner F, Barbier FF, Annunziata MG, Feil R, Olas JJ, Mueller-Roeber B, Stitt M, Beveridge A, Lunn JE (2021). Regulation of shoot branching in Arabidopsis by trehalose 6-phosphate. *New Phytol* 229:2135–2151.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

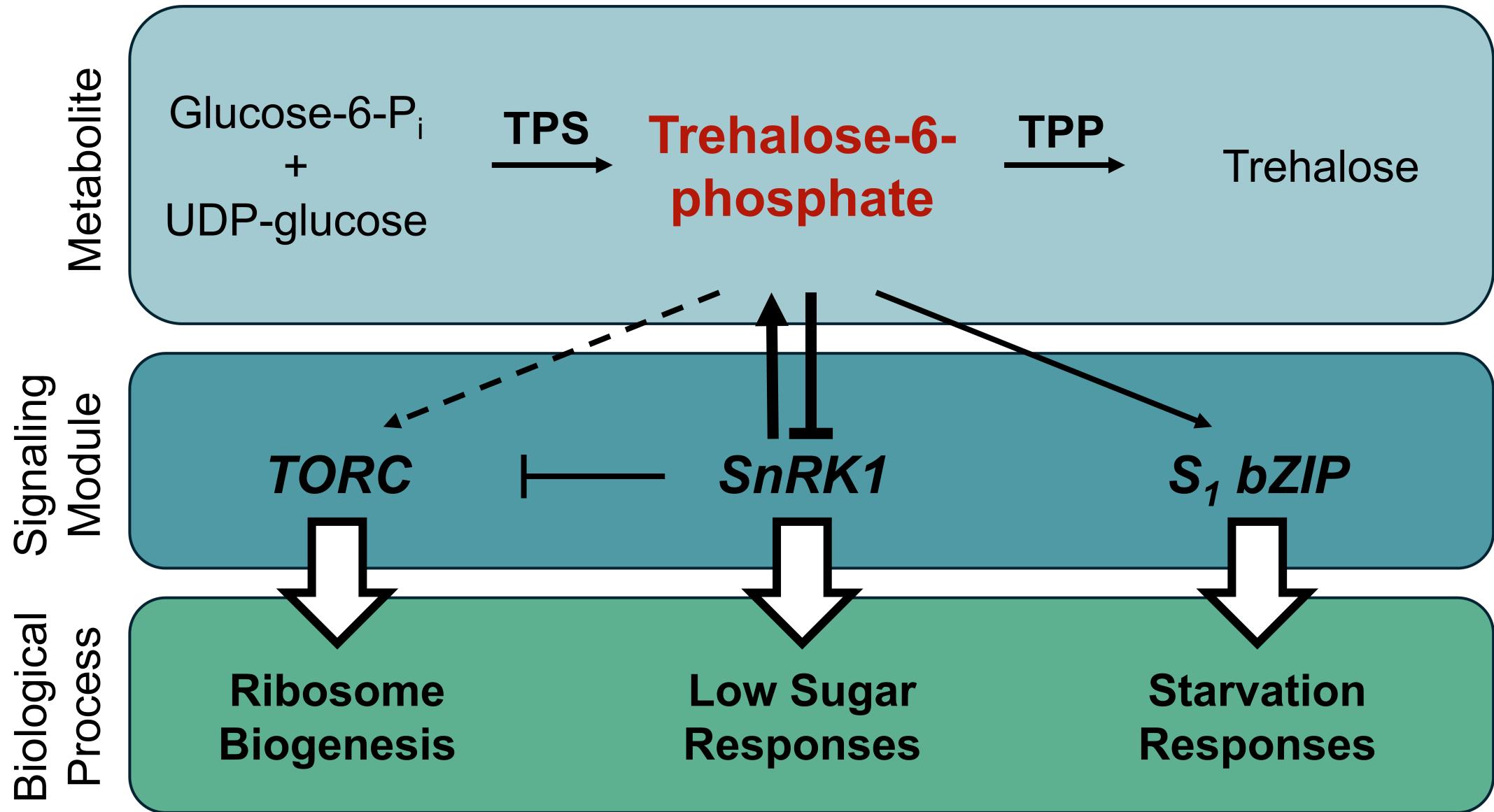
Fichtner F, Lunn JE (2021). The Role of trehalose 6-phosphate (Tre6P) in plant metabolism and development. *Annu Rev Plant Biol* 72:737–760.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Jossier M, Bouly JP, Meimoun P, Arjmand A, Lessard P, Hawley S, Hardie GD, Thomas M (2009). SnRK1 (SNF1-related kinase 1) has a central role in sugar and ABA signaling in *Arabidopsis thaliana*. *Plant J* 59:316–328

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Ma J, Hanssen M, Lundgren K, Hernández L, Delatte T, Ehlert A, Liu CM, Schluepmann H, Dröge-Laser W, Moritz T, et al (2011). The sucrose-regulated *Arabidopsis* transcription factor bZIP11 reprograms metabolism and regulates trehalose metabolism. *New Phytol* 191:733–745


Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Satoh-Nagasawa N, Nagasawa N, Malcomber S, Sakai H, Jackson D (2006). Atrehalose metabolic enzyme controls inflorescence architecture in maize. *Nature* 441:227–230

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Wahl V, Ponnu J, Schlereth A, Arrivault S, Langenecker T, Franke A, Feil R, Lunn JE, Stitt M, Schmid M (2013). Regulation of flowering by trehalose-6-phosphate signaling in *Arabidopsis thaliana*. *Science* 339:704–707.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

