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ABSTRACT
Deep Neural Network (DNN) models are vulnerable to Trojan at-
tacks, wherein a Trojaned DNN will mispredict trigger-embedded
inputs as malicious targets, while outputs for clean inputs remain
una�ected. Output-based Trojaned model detectors, which analyze
outputs of DNNs to perturbed inputs have emerged as a promising
approach for identifying Trojaned DNN models. At present, these
SOTA detectors assume that the adversary is (i) static and (ii) does
not have prior knowledge about deployed detection mechanisms.

In this work in progress, we present an adaptive adversary that
can retrain a Trojaned DNN and is also aware of output-based
Trojaned model detectors. Such an adversary can ensure (1) high
accuracy on both trigger-embedded and clean samples and (2) by-
pass detection. Our approach uses an observation that the high
dimensionality of DNN parameters provides su�cient degrees of
freedom to achieve these objectives. We also enable SOTA detectors
to be adaptive by allowing retraining to recalibrate their parameters,
thus modeling a co-evolution of parameters of a Trojaned model
and detectors. We then show that this co-evolution can be modeled
as an iterative game, and prove that the solution of this interactive
game leads to the adversary successfully achieving the above ob-
jectives. We also show that for cross-entropy or log-likelihood loss
functions used by the DNNs, a greedy algorithm provides provable
guarantees on the needed number of trigger-embedded samples.
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1 INTRODUCTION
When the end-user of deep neural network (DNN) models ‘in the
wild’ is di�erent from the owner, such models are susceptible to
adversarial retraining and manipulation, e.g., via a Trojan attack
[7]. An adversary carrying out a Trojan attack embeds a prede-
�ned trigger pattern into a subset of input samples and trains the
DNN (i.e., Trojaned model) such that a trigger-embedded input will
lead to an adversary-desired output label that is di�erent from the
correct output label [3, 7] while output labels corresponding to
‘clean’ inputs remain una�ected. Recent Trojan trigger-embedding
strategies have evolved to focus on developing advanced mixing
techniques so that it is di�cult to isolate trigger-embedded samples
from clean input samples [11, 12].

E�ective techniques to detect Trojaned models have also been
evolving along with attacks [8, 16]. Input-based �ltering techniques
aim to identify and eliminate Trojan trigger-embedded input sam-
ples before they are input to the DNN [4, 10]. On the other hand,
output-based detectors seek to determine if a candidate model is
Trojaned only by comparing outputs of a clean model and the
model under inspection [2, 5, 13, 15]. Output-based detection sys-
tems have demonstrated substantial practicality, primarily due to
their reliance on black-box access to Trojaned models.

At present, SOTA output-based Trojaned model detectors [2, 5,
13, 15] operate under an assumption that adversaries are static and
lack prior knowledge of implemented detection mechanisms. In
reality, adversaries learn about and try to adapt their approaches
to outmaneuver detectors. The e�ectiveness of the SOTA detectors
against adaptive adversaries remains an open problem.
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We aim to develop an adaptive backdoor attack strategy and
study the e�ect of SOTA detectors against adaptive adver-
saries that have prior knowledge of detection mechanisms.
Such adaptive adversaries can integrate knowledge of the detection
process and all detector parameters into o�ine training of Trojaned
DNNs. The adaptive adversary’s Trojan training procedure consists
of two steps: Step 1: the adversary uses the trigger to be embedded
alongwith detector parameters to train an enhanced Trojaned DNN;
Step 2: the adversary uses the enhanced Trojaned DNN to com-
pute the new detector parameters that would maximize detection.
Updated detector parameters from Step 2 are then used along with
the trigger to improve DNN Trojaning in Step 1. The adversary
repeats Step 1 and Step 2 until there is no further improvement
in detector parameters or Trojaned DNN model performance. A
schematic is illustrated in Figure 1.
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Figure 1: Two-step o�line training of Trojaned DNNs. Step
1: adversary uses the trigger to be embedded along with de-
tector parameters to train an enhanced Trojaned DNN; Step
2: adversary uses enhanced Trojaned DNN to compute new
detector parameters that would maximize detection. Steps 1
and 2 are repeated until there is no further improvement in
detector parameters or Trojaned DNN model performance.

2 DETECTOR MODEL AND THREAT MODEL
Detector Model:We denote the set of Trojan-trigger embedded
(clean) samples by ⇤̃ = {(G) ,~) )} (⇤ = {G,~}). Let the detector
with parameters \⇡ be de�ned as ⌘\⇡ . We use \) (\⇠ ) to denote
parameters of the Trojaned (clean) model 5\) (5\⇠ ). The detector
employs a log-likelihood-based loss function to assess quality of
detection [15]. For an input G , we de�ne outputs of the Trojaned
(clean) DNN models by I) := 5\) (G) (I⇠ := 5\⇠ (G)) and probability
distributions of Trojaned (clean) outputs by @) (@⇠ ). The objective
of the training procedure of the detector can be expressed as:

max
\⇡
EI) ⇠@) [log(1 � ⌘\⇡ (I) ))] + EI⇠⇠@⇠ [log(⌘\⇡ (I⇠ ))] . (1)

Adversary Goals: The adversary has three objectives: (i) achieve
high classi�cation accuracy on clean input samples; (ii) ensure high
accuracy on Trojan-trigger embedded input samples, leading them
to be misclassi�ed into a class desired by the adversary; and (iii)
evade detection by output-based Trojan model detectors.
Adversary Knowledge: The adversary is assumed to be fully
aware of the deployment of an output-based Trojan detector.
Adversary Capabilities: The adversary can download and retrain
a DNN using publicly available datasets and e�ectively embed trig-
gers into any subset of data. Additionally, the adversary is equipped

to train a proxy detector model by solving the optimization prob-
lem in Eqn.(1). The adversary can then use decisions made by the
trained proxy detector to update parameters of the Trojaned model.
Adversary Actions: The adversary selects a subset of clean sam-
ples into which to embed Trojan triggers and constructs a loss
function comprising three components, each tailored to measure
attack performance with respect to adversary goals (i), (ii), and (iii).
The adversary then trains to update parameters of the Trojaned
model to minimize the sum of these three terms as:

min
\)
EI) ⇠@) [log(1 � ⌘\⇡ (I) ))]

+ E(G) ,~) )2⇤̃✓\) (G) ,~) ) + E(G,~)2⇤✓\) (G,~) . (2)

3 ADVERSARY-DETECTOR CO-EVOLUTION
Each time the adversary updates parameters of the Trojaned model
using Eqn. (2), the defender can similarly update parameters of its bi-
nary classi�er using Eqn. (1) to counter the adversary’s adjustments.
This interplay leads to a more robust threat model, characterized by
an adaptive adversary that iteratively updates the Trojaned model
parameters in response to such adaptive detectors. This alternating
interaction described in Step 1 [Eqn. (2)] and Step 2 [Eqn. (1)] can
be expressed in a combined min-max form as shown below:

min
\)

max
\⇡
EI) ⇠@) [log(1 � ⌘\⇡ (I) ))] + EI⇠⇠@⇠ [log(⌘\⇡ (I⇠ ))]

+ E(G) ,~) )2⇤̃✓\) (G) ,~) ) + E(G,~)2⇤✓\) (G,~). (3)

We use an insight that DNNs possess ample degrees of freedom
in values of their model parameter, allowing them to be e�ectively
trained with Trojan trigger-embedded input samples [9, 14, 17]
without losing classi�cation accuracy. Our main observation is
that an adaptive adversary can exploit this degree of freedom in the
DNN to ensure that the two-step iterative procedure achieves high
accuracy on both Trojaned and clean inputs while fully bypassing
output-based Trojaned model detectors. We will use this observa-
tion to formally show that solving the iterated game in Eqn. (3)
results in the adversary successfully evading detection- i.e., outputs
of the Trojaned DNN will be indistinguishable from outputs of a
clean model. Proposition 1 below characterizes the solution of the
min-max optimization problem presented in Eqn. (3).

P���������� 1. For a random input data sample G , at the optimal
solution of the game in Eqn. (3), the output distributions coming from
clean models and Trojaned models will be identical- i.e., @) = @⇠ ,
thus allowing the adversary to successfully evade detection.

4 PRELIMINARY RESULTS
Greedy algorithm for Trojan embedding: The selection of in-
put samples for embedding Trojan triggers is a�ected by: (a) attack
cost- embedding triggers into a large number of inputs signi�cantly
increases the adversary’s operational costs; (b) model integrity- a
large number of trigger-embedded samples can degrade classi�-
cation accuracy of clean samples; and (c) stealth- a high number
of trigger-embedded samples makes a Trojaned DNN easier to de-
tect by detection mechanisms. Thus, the adversary’s objective is to
select the smallest possible subset of training data for embedding
Trojan triggers. However, determining this subset is in general, a
combinatorial problem, which could make computing an optimal
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solution intractable. Our key observation is that cross-entropy or
log-likelihood loss functions used by DNNs satisfy a diminishing re-
turns, or supermodularity property [1]. This property enables using
a Greedy Algorithm that provides a provable bound on the minimal
number of samples that need to be selected for trigger-embedding.
Evaluation: We evaluate our adaptive adversary against 4 SOTA
output-based Trojanedmodel detectors:MNTD [15], NeuralCleanse [13],
STRIP [2], and TABOR [5]. We use the following metrics:

Benign (Clean Sample) Accuracy (�22): is the fraction of clean
samples classi�ed correctly by the model at test-time.

�22 :=
# of samples in ⇤C4BC classi�ed correctly

# of samples in ⇤C4BC
, (4)

where ⇤C4BC is a test set containing only clean samples.
Attack Success Rate (�('): is the fraction of trigger-embedded

samples classi�ed by the model to the target class.

�(' =
# of samples in ⇤̃Test classi�ed to ~)

# of samples in ⇤̃Test
, (5)

where ⇤̃Test is got by inserting a trigger into samples in ⇤C4BC .
Detection rates (�*⇠0,�*⇠C�1,�*⇠C ): Area Under the Curve

(AUC) in the context of a Receiver Operating Characteristic (ROC)
curve is ameasure of the ability of a classi�er to distinguish between
classes. The ROC curve is a graphical representation of true positive
rate (TPR) against false positive rate (FPR) at various threshold
settings. An AUC of 1.0 represents a perfect detector An AUC of 0.5
represents a detector that performs no better than random chance.

Given benign models {5\8) }
 
8=1 and Trojaned models {5\8) }

 
8=1

generated in the 8-th iteration, we evaluate detection AUC of di�er-
ent detector models. In particular, we will evaluate the AUC of (1)
the vanilla detector model, denoted �*⇠0; (2) the detector model
trained in the (C � 1)-th iteration, denoted �*⇠C�1; (3) the detector
model trained in the C-th iteration, denoted �*⇠C . The quantity
�*⇠C�1 indicates attack performance when the adversary takes
the last step, while �*⇠C indicates attack performance when the
defender takes the last step. A smaller �*⇠ value indicates bet-
ter attack performance. For the Baseline Trojan without multiple
iterations, �*⇠C = �*⇠0 and there is no value for �*⇠C�1.

Our preliminary results indicate that our adaptive adversary can
bypass four SOTA output-based Trojaned model detectors to obtain
�*⇠ = 0 on tasks using the MNIST, CIFAR-10, and CIFAR-100
datasets, and close-to-zero �*⇠ on tasks using the SpeechCom-
mand dataset. The adaptive adversary also achieves a very small
�*⇠C�1 value; further, even when the defender takes the last step,
we still observe a signi�cant reduction in values of �*⇠C .
Training overhead: The number of hours of training required to
generate shadowmodels and train meta models for C = 20 iterations
are: "#�() : 67.2; ⇠���' : 78.1; (?442⌘⇠><<0=3 : 46.4. Batch
processing can be one way to reduce training overhead [6].

5 CONCLUSION
This work in progress investigated detection performance of SOTA
output-based Trojaned model detectors against an adaptive ad-
versary who has knowledge of deployment of such detectors and
evolves its strategies to bypass detection. The adversary incorpo-
rates detector parameter information to retrain the Trojaned DNN

to (1) achieve high accuracy on both trigger-embedded and clean in-
put samples and (2) bypass detection. By allowing detectors to also
be adaptive, we showed that co-evolution of adversary and detector
parameters could be modeled by an iterative game. We proved that
solving this game resulted in the adversary accomplishing (1) and
(2). Our preliminary results discussed use of a greedy algorithm
to allow the adversary to select inputs to embed a Trojan trigger
with provable lower bounds on the number of trigger-embedded
samples for certain classes of loss functions used by the DNN.
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