
POSTER: Game of Trojans: Adaptive Adversaries Against
Output-based Trojaned-Model Detectors

Dinuka Sahabandu∗
University of Washington

Seattle, USA
sdinuka@uw.edu

Xiaojun Xu∗
University of Illinois

Urbana-Champaign, USA
xiaojun3@illinois.edu

Arezoo Rajabi
University of Washington

Seattle, USA
rajabia@uw.edu

Luyao Niu
University of Washington

Seattle, USA
luyaoniu@uw.edu

Bhaskar Ramasubramanian
Western Washington University

Bellingham, USA
ramasub@wwu.edu

Bo Li
University of Illinois

Urbana-Champaign, USA
lbo@illinois.edu

Radha Poovendran
University of Washington

Seattle, USA
rp3@uw.edu

ABSTRACT
Deep Neural Network (DNN) models are vulnerable to Trojan at-
tacks, wherein a Trojaned DNN will mispredict trigger-embedded
inputs as malicious targets, while outputs for clean inputs remain
una�ected. Output-based Trojaned model detectors, which analyze
outputs of DNNs to perturbed inputs have emerged as a promising
approach for identifying Trojaned DNN models. At present, these
SOTA detectors assume that the adversary is (i) static and (ii) does
not have prior knowledge about deployed detection mechanisms.

In this work in progress, we present an adaptive adversary that
can retrain a Trojaned DNN and is also aware of output-based
Trojaned model detectors. Such an adversary can ensure (1) high
accuracy on both trigger-embedded and clean samples and (2) by-
pass detection. Our approach uses an observation that the high
dimensionality of DNN parameters provides su�cient degrees of
freedom to achieve these objectives. We also enable SOTA detectors
to be adaptive by allowing retraining to recalibrate their parameters,
thus modeling a co-evolution of parameters of a Trojaned model
and detectors. We then show that this co-evolution can be modeled
as an iterative game, and prove that the solution of this interactive
game leads to the adversary successfully achieving the above ob-
jectives. We also show that for cross-entropy or log-likelihood loss
functions used by the DNNs, a greedy algorithm provides provable
guarantees on the needed number of trigger-embedded samples.

KEYWORDS
Trojan attack, adversary-detector co-evolution

∗Equal contribution

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
ASIA CCS ’24, July 1–5, 2024, Singapore, Singapore
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0482-6/24/07.
https://doi.org/10.1145/3634737.3659430

ACM Reference Format:
Dinuka Sahabandu, Xiaojun Xu, Arezoo Rajabi, Luyao Niu, Bhaskar Ra-
masubramanian, Bo Li, and Radha Poovendran. 2024. POSTER: Game of
Trojans: Adaptive Adversaries Against Output-based Trojaned-Model De-
tectors. In Proceedings of ACM ASIA Conference on Computer and Com-
munications Security (ASIA CCS ’24). ACM, New York, NY, USA, 3 pages.
https://doi.org/10.1145/3634737.3659430

1 INTRODUCTION
When the end-user of deep neural network (DNN) models ‘in the
wild’ is di�erent from the owner, such models are susceptible to
adversarial retraining and manipulation, e.g., via a Trojan attack
[7]. An adversary carrying out a Trojan attack embeds a prede-
�ned trigger pattern into a subset of input samples and trains the
DNN (i.e., Trojaned model) such that a trigger-embedded input will
lead to an adversary-desired output label that is di�erent from the
correct output label [3, 7] while output labels corresponding to
‘clean’ inputs remain una�ected. Recent Trojan trigger-embedding
strategies have evolved to focus on developing advanced mixing
techniques so that it is di�cult to isolate trigger-embedded samples
from clean input samples [11, 12].

E�ective techniques to detect Trojaned models have also been
evolving along with attacks [8, 16]. Input-based �ltering techniques
aim to identify and eliminate Trojan trigger-embedded input sam-
ples before they are input to the DNN [4, 10]. On the other hand,
output-based detectors seek to determine if a candidate model is
Trojaned only by comparing outputs of a clean model and the
model under inspection [2, 5, 13, 15]. Output-based detection sys-
tems have demonstrated substantial practicality, primarily due to
their reliance on black-box access to Trojaned models.

At present, SOTA output-based Trojaned model detectors [2, 5,
13, 15] operate under an assumption that adversaries are static and
lack prior knowledge of implemented detection mechanisms. In
reality, adversaries learn about and try to adapt their approaches
to outmaneuver detectors. The e�ectiveness of the SOTA detectors
against adaptive adversaries remains an open problem.

1940

https://doi.org/10.1145/3634737.3659430
https://doi.org/10.1145/3634737.3659430
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3634737.3659430&domain=pdf&date_stamp=2024-07-01

ASIA CCS ’24, July 1–5, 2024, Singapore, Singapore D. Sahabandu et al.

We aim to develop an adaptive backdoor attack strategy and
study the e�ect of SOTA detectors against adaptive adver-
saries that have prior knowledge of detection mechanisms.
Such adaptive adversaries can integrate knowledge of the detection
process and all detector parameters into o�ine training of Trojaned
DNNs. The adaptive adversary’s Trojan training procedure consists
of two steps: Step 1: the adversary uses the trigger to be embedded
alongwith detector parameters to train an enhanced Trojaned DNN;
Step 2: the adversary uses the enhanced Trojaned DNN to com-
pute the new detector parameters that would maximize detection.
Updated detector parameters from Step 2 are then used along with
the trigger to improve DNN Trojaning in Step 1. The adversary
repeats Step 1 and Step 2 until there is no further improvement
in detector parameters or Trojaned DNN model performance. A
schematic is illustrated in Figure 1.

Random
Input Data

Detector TrainingTrojan Training

Clean and Trigger-
Embedded Input Data

……

Detector Parameters Trojaned
Model

Clean
Model

…

Updated Detector
Parameters

Decision

Trojaned
Model

Clean
Model

Detector Parameters
Detector Decision

Step 1 Step 2

Figure 1: Two-step o�line training of Trojaned DNNs. Step
1: adversary uses the trigger to be embedded along with de-
tector parameters to train an enhanced Trojaned DNN; Step
2: adversary uses enhanced Trojaned DNN to compute new
detector parameters that would maximize detection. Steps 1
and 2 are repeated until there is no further improvement in
detector parameters or Trojaned DNN model performance.

2 DETECTOR MODEL AND THREAT MODEL
Detector Model:We denote the set of Trojan-trigger embedded
(clean) samples by ⇤̃ = {(G) ,~))} (⇤ = {G,~}). Let the detector
with parameters \⇡ be de�ned as ⌘\⇡ . We use \) (\⇠) to denote
parameters of the Trojaned (clean) model 5\) (5\⇠). The detector
employs a log-likelihood-based loss function to assess quality of
detection [15]. For an input G , we de�ne outputs of the Trojaned
(clean) DNN models by I) := 5\) (G) (I⇠ := 5\⇠ (G)) and probability
distributions of Trojaned (clean) outputs by @) (@⇠). The objective
of the training procedure of the detector can be expressed as:

max
\⇡
EI) ⇠@) [log(1 � ⌘\⇡ (I)))] + EI⇠⇠@⇠ [log(⌘\⇡ (I⇠))] . (1)

Adversary Goals: The adversary has three objectives: (i) achieve
high classi�cation accuracy on clean input samples; (ii) ensure high
accuracy on Trojan-trigger embedded input samples, leading them
to be misclassi�ed into a class desired by the adversary; and (iii)
evade detection by output-based Trojan model detectors.
Adversary Knowledge: The adversary is assumed to be fully
aware of the deployment of an output-based Trojan detector.
Adversary Capabilities: The adversary can download and retrain
a DNN using publicly available datasets and e�ectively embed trig-
gers into any subset of data. Additionally, the adversary is equipped

to train a proxy detector model by solving the optimization prob-
lem in Eqn.(1). The adversary can then use decisions made by the
trained proxy detector to update parameters of the Trojaned model.
Adversary Actions: The adversary selects a subset of clean sam-
ples into which to embed Trojan triggers and constructs a loss
function comprising three components, each tailored to measure
attack performance with respect to adversary goals (i), (ii), and (iii).
The adversary then trains to update parameters of the Trojaned
model to minimize the sum of these three terms as:

min
\)
EI) ⇠@) [log(1 � ⌘\⇡ (I)))]

+ E(G) ,~))2⇤̃✓\) (G) ,~)) + E(G,~)2⇤✓\) (G,~) . (2)

3 ADVERSARY-DETECTOR CO-EVOLUTION
Each time the adversary updates parameters of the Trojaned model
using Eqn. (2), the defender can similarly update parameters of its bi-
nary classi�er using Eqn. (1) to counter the adversary’s adjustments.
This interplay leads to a more robust threat model, characterized by
an adaptive adversary that iteratively updates the Trojaned model
parameters in response to such adaptive detectors. This alternating
interaction described in Step 1 [Eqn. (2)] and Step 2 [Eqn. (1)] can
be expressed in a combined min-max form as shown below:

min
\)

max
\⇡
EI) ⇠@) [log(1 � ⌘\⇡ (I)))] + EI⇠⇠@⇠ [log(⌘\⇡ (I⇠))]

+ E(G) ,~))2⇤̃✓\) (G) ,~)) + E(G,~)2⇤✓\) (G,~). (3)

We use an insight that DNNs possess ample degrees of freedom
in values of their model parameter, allowing them to be e�ectively
trained with Trojan trigger-embedded input samples [9, 14, 17]
without losing classi�cation accuracy. Our main observation is
that an adaptive adversary can exploit this degree of freedom in the
DNN to ensure that the two-step iterative procedure achieves high
accuracy on both Trojaned and clean inputs while fully bypassing
output-based Trojaned model detectors. We will use this observa-
tion to formally show that solving the iterated game in Eqn. (3)
results in the adversary successfully evading detection- i.e., outputs
of the Trojaned DNN will be indistinguishable from outputs of a
clean model. Proposition 1 below characterizes the solution of the
min-max optimization problem presented in Eqn. (3).

P���������� 1. For a random input data sample G , at the optimal
solution of the game in Eqn. (3), the output distributions coming from
clean models and Trojaned models will be identical- i.e., @) = @⇠ ,
thus allowing the adversary to successfully evade detection.

4 PRELIMINARY RESULTS
Greedy algorithm for Trojan embedding: The selection of in-
put samples for embedding Trojan triggers is a�ected by: (a) attack
cost- embedding triggers into a large number of inputs signi�cantly
increases the adversary’s operational costs; (b) model integrity- a
large number of trigger-embedded samples can degrade classi�-
cation accuracy of clean samples; and (c) stealth- a high number
of trigger-embedded samples makes a Trojaned DNN easier to de-
tect by detection mechanisms. Thus, the adversary’s objective is to
select the smallest possible subset of training data for embedding
Trojan triggers. However, determining this subset is in general, a
combinatorial problem, which could make computing an optimal

1941

Game of Trojans ASIA CCS ’24, July 1–5, 2024, Singapore, Singapore

solution intractable. Our key observation is that cross-entropy or
log-likelihood loss functions used by DNNs satisfy a diminishing re-
turns, or supermodularity property [1]. This property enables using
a Greedy Algorithm that provides a provable bound on the minimal
number of samples that need to be selected for trigger-embedding.
Evaluation: We evaluate our adaptive adversary against 4 SOTA
output-based Trojanedmodel detectors:MNTD [15], NeuralCleanse [13],
STRIP [2], and TABOR [5]. We use the following metrics:

Benign (Clean Sample) Accuracy (�22): is the fraction of clean
samples classi�ed correctly by the model at test-time.

�22 :=
of samples in ⇤C4BC classi�ed correctly

of samples in ⇤C4BC
, (4)

where ⇤C4BC is a test set containing only clean samples.
Attack Success Rate (�('): is the fraction of trigger-embedded

samples classi�ed by the model to the target class.

�(' =
of samples in ⇤̃Test classi�ed to ~)

of samples in ⇤̃Test
, (5)

where ⇤̃Test is got by inserting a trigger into samples in ⇤C4BC .
Detection rates (�*⇠0,�*⇠C�1,�*⇠C): Area Under the Curve

(AUC) in the context of a Receiver Operating Characteristic (ROC)
curve is ameasure of the ability of a classi�er to distinguish between
classes. The ROC curve is a graphical representation of true positive
rate (TPR) against false positive rate (FPR) at various threshold
settings. An AUC of 1.0 represents a perfect detector An AUC of 0.5
represents a detector that performs no better than random chance.

Given benign models {5\8) }

8=1 and Trojaned models {5\8) }

8=1

generated in the 8-th iteration, we evaluate detection AUC of di�er-
ent detector models. In particular, we will evaluate the AUC of (1)
the vanilla detector model, denoted �*⇠0; (2) the detector model
trained in the (C � 1)-th iteration, denoted �*⇠C�1; (3) the detector
model trained in the C-th iteration, denoted �*⇠C . The quantity
�*⇠C�1 indicates attack performance when the adversary takes
the last step, while �*⇠C indicates attack performance when the
defender takes the last step. A smaller �*⇠ value indicates bet-
ter attack performance. For the Baseline Trojan without multiple
iterations, �*⇠C = �*⇠0 and there is no value for �*⇠C�1.

Our preliminary results indicate that our adaptive adversary can
bypass four SOTA output-based Trojaned model detectors to obtain
�*⇠ = 0 on tasks using the MNIST, CIFAR-10, and CIFAR-100
datasets, and close-to-zero �*⇠ on tasks using the SpeechCom-
mand dataset. The adaptive adversary also achieves a very small
�*⇠C�1 value; further, even when the defender takes the last step,
we still observe a signi�cant reduction in values of �*⇠C .
Training overhead: The number of hours of training required to
generate shadowmodels and train meta models for C = 20 iterations
are: "#�() : 67.2; ⇠���' : 78.1; (?442⌘⇠><<0=3 : 46.4. Batch
processing can be one way to reduce training overhead [6].

5 CONCLUSION
This work in progress investigated detection performance of SOTA
output-based Trojaned model detectors against an adaptive ad-
versary who has knowledge of deployment of such detectors and
evolves its strategies to bypass detection. The adversary incorpo-
rates detector parameter information to retrain the Trojaned DNN

to (1) achieve high accuracy on both trigger-embedded and clean in-
put samples and (2) bypass detection. By allowing detectors to also
be adaptive, we showed that co-evolution of adversary and detector
parameters could be modeled by an iterative game. We proved that
solving this game resulted in the adversary accomplishing (1) and
(2). Our preliminary results discussed use of a greedy algorithm
to allow the adversary to select inputs to embed a Trojan trigger
with provable lower bounds on the number of trigger-embedded
samples for certain classes of loss functions used by the DNN.

ACKNOWLEDGMENTS
This work is supported by the AFOSR via grant FA9550-23-1-0208.
The work is also supported in part by the NSF via grants IIS 2229876
and CNS 2153136, by the ONR via grant N00014-23-1-2386, and
by funds provided by the DHS, and IBM. Any opinions, �ndings,
and conclusions or recommendations expressed in this material are
those of the author(s) and do not necessarily re�ect views of the
NSF or its federal agency and industry partners.

REFERENCES
[1] Satoru Fujishige. 2005. Submodular functions and optimization. Elsevier.
[2] Yansong Gao, Change Xu, Derui Wang, Shiping Chen, Damith C Ranasinghe,

and Surya Nepal. 2019. Strip: A defence against trojan attacks on deep neural
networks. In Proc. Annual Computer Security Applications Conference. 113–125.

[3] Tianyu Gu, Kang Liu, Brendan Dolan-Gavitt, and Siddharth Garg. 2019. BadNets:
Evaluating backdooring attacks on deep neural networks. IEEE Access 7 (2019),
47230–47244.

[4] Junfeng Guo, Yiming Li, Xun Chen, Hanqing Guo, Lichao Sun, and Cong Liu. 2023.
Scale-up: An e�cient black-box input-level backdoor detection via analyzing
scaled prediction consistency. arXiv preprint arXiv:2302.03251 (2023).

[5] Wenbo Guo, Lun Wang, Xinyu Xing, Min Du, and Dawn Song. 2019. TABOR:
A highly accurate approach to inspecting and restoring Trojan backdoors in AI
systems. arXiv preprint arXiv:1908.01763 (2019).

[6] Nitish Shirish Keskar, Dheevatsa Mudigere, Jorge Nocedal, Mikhail Smelyan-
skiy, and Ping Tak Peter Tang. 2017. On large-batch training for deep learning:
Generalization gap and sharp minima. ICLR (2017).

[7] Yiming Li, Yong Jiang, Zhifeng Li, and Shu-Tao Xia. 2022. Backdoor learning: A
survey. IEEE Transactions on Neural Networks and Learning Systems (2022).

[8] Yige Li, Xixiang Lyu, Nodens Koren, Lingjuan Lyu, Bo Li, and Xingjun Ma.
2021. Neural attention distillation: Erasing backdoor triggers from deep neural
networks. International Conference on Learning Representations (2021).

[9] Yiran Li, XiaohaoWang, JingWang, and Ke Gong. 2022. Trigger-Poisoning Attack:
Towards Stealthy and E�cient Trigger Embedding into Text Classi�cationModels.
In ACM SIGKDD Conf. on Knowledge Discovery and Data Mining. 2563–2573.

[10] Xiaogeng Liu, Minghui Li, Haoyu Wang, Shengshan Hu, Dengpan Ye, Hai Jin,
Libing Wu, and Chaowei Xiao. 2023. Detecting Backdoors During the Inference
Stage Based on Corruption Robustness Consistency. In Proc. IEEE/CVF Conference
on Computer Vision and Pattern Recognition. 16363–16372.

[11] Xiangyu Qi, Tinghao Xie, Yiming Li, Saeed Mahloujifar, and Prateek Mittal. 2022.
Revisiting the assumption of latent separability for backdoor defenses. In The
eleventh international conference on learning representations.

[12] Hossein Souri, Liam Fowl, Rama Chellappa, Micah Goldblum, and Tom Goldstein.
2022. Sleeper agent: Scalable hidden trigger backdoors for neural networks
trained from scratch. Neural Information Processing Systems (2022).

[13] Bolun Wang, Yuanshun Yao, Shawn Shan, Huiying Li, Bimal Viswanath, Haitao
Zheng, and Ben Y Zhao. 2019. Neural cleanse: Identifying andmitigating backdoor
attacks in neural networks. In IEEE Symp. on Security and Privacy (SP). 707–723.

[14] Tianyu Wang, Xiaoming Zhao, Yinlong Gu, Dongqing Wei, Xiaolin Sun, and
Baoyue Wang. 2020. Stealthy Model Poisoning Attack: Embedding Triggers
Without A�ecting Clean Samples. In Proc. ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining. 1826–1836.

[15] Xiaojun Xu, Qi Wang, Huichen Li, Nikita Borisov, Carl A Gunter, and Bo Li. 2021.
Detecting AI Trojans using meta neural analysis. In IEEE Symposium on Security
and Privacy (SP). 103–120.

[16] Kota Yoshida and Takeshi Fujino. 2020. Disabling backdoor and identifying
poison data by using knowledge distillation in backdoor attacks on deep neural
networks. In ACM Workshop on Arti�cial Intelligence and Security. 117–127.

[17] Xiaojing Zhang, Xinyu Zhu, Yukun Zhou, Yingqi Long, Xinyun Wu, and Zhekai
Qiao. 2020. Stealthy Backdoor Attacks on Deep Learning Models. In ACM SIGSAC
Conference on Computer and Communications Security. 2647–2664.

1942

	Abstract
	1 Introduction
	2 Detector Model and Threat Model
	3 Adversary-Detector Co-Evolution
	4 Preliminary Results
	5 Conclusion
	Acknowledgments
	References

