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Abstract

alibration of automotive engines to ensure compli-

ance with emission regulations is a critical phase in

product development. Control of engine-out partic-
ulate emissions, which directly impact the environment and
public health, is particularly important. Detailed physics-
based models are typically used to gain a rich understanding
of the complex physical phenomena that drive the soot
particle formation in an engine cylinder. However, such
models often fail to correctly represent the highly dynamic
nature of the underlying mechanisms under transient
combustion conditions. Moreover, most physics-based
models were initially developed for diesel engine applications
and their applicability to gasoline engines remains question-
able due to differences in flame structure and fuel-wall inter-
actions. Black-box models have been previously proposed to
predict engine-out soot emissions, but their lack of physical
interpretability is an unsolved drawback. To address these
limitations, we present a physics-aware twin-model machine

Introduction

ir pollution caused by conventional IC-engine-

powered vehicles is a major concern globally, with

general scientific consensus confirming its impact on
the environment and public health. In 2019, an estimated 86%
of urban inhabitants lived in conditions that exceeded WHO’s
2005 guideline annual average PM, ; concentration (10 ug/
m3), resulting in an excess of 1.8 million deaths [1]. In the
same study, the average population-weighted PM, ; concentra-
tion across all urban areas globally was 35 pug/m3 - equivalent
to seven times the revised 2021 WHO guideline for annual
average PM, s concentration (5 yg/m3). The Joint Research
Centre (JRC) of the European Commission quantified road
transportation’s average contribution to PM,; emissions in
150 urban areas at 14%, rising to 39% in the larger urban cities
[2]. A 2017 study [3] expanded known toxicological mecha-
nisms in humans caused by soot that lead to cancer, respira-
tory diseases, and cardiovascular dysfunctions. A 2012 WHO
report [4] concluded that a reduction in exposure to PM, ; and
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learning framework to predict and analyze engine-out soot
mass from a gasoline direct injection (GDI) engine. The
framework combines a physics-based model with a bagging-
type ensemble learning model that both maintains high
accuracy and allows physical interpretation of results
without using computationally intensive high-fidelity
models. This work shows why a one-model-fits-all approach
fails in the case of predicting soot emissions due to clustered
co-occurrences of operating conditions that cause non-
compliant behavior. We compare the performance of the
proposed framework with that of the standalone baseline
model and a feed-forward deep neural network. Using WLTP
data from a 2.0L naturally aspirated GDI engine, the
proposed framework predicts engine-out soot mass with an
improvement of 29% in the R? value and 21% in the root
mean squared error from the baseline physics-based model,
without compromising physical interpretability. These
improvements are significant enough to warrant further
framework development with additional engine datasets.

other combustion products leads to a reduction in the health
effects associated with PM. Compared to port fuel-injected
(PFI) engines, GDI engines have been reported to emit exhaust
gases with higher concentrations of PM [5] due to incomplete
fuel vaporization and gas-phase mixing [6]. Furthermore, GDI
engines without filtration produce even higher concentrations
of ultrafine particles compared to diesel engines fitted with
diesel particle filters (DPF) [7].

It is known that direct gasoline fuel injection can result
in incomplete fuel evaporation and subsequent piston and
wall wetting. This creates fuel-rich hotspots that undergo
nucleation, growth, and oxidation under high-temperature
conditions, ultimately forming particulate matter. Although
the chemical kinetics of soot generation are highly complex
and not fully understood, it is generally agreed upon by
researchers that gaseous polycyclic aromatic hydrocarbons
(PAHs) are highly influential in soot formation. In the absence
of significant concentrations of aromatics in the fuel, the
synthesis and growth of PAHs, and subsequently the
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production of soot, would be constrained by the aromatic ring
growth that results from reactions involving aliphatic
chemicals [8].

Strict particulate matter regulations for gasoline engines
have accelerated the development of portable emission
measuring instrumentation and the integration of gasoline
particulate filters (GPFs) into the vehicle’s exhaust system.
GPFs are used in modern gasoline engines to control the
release of ultrafine particles from the tailpipe. They are typi-
cally made of synthetic ceramic, have a honeycomb structure,
and may either be a separate unit or integrated with the vehi-
cle’s three-way-catalyst [9]. To complement these control and
measurement devices, modeling and predicting particulate
emissions is of keen interest to researchers and manufacturers
alike. Accurately modeling soot emissions provides insights
into the underlying mechanisms and helps develop design
strategies to reduce particulate emissions.

Soot models from the current literature can be classified
into three categories: empirical, semi-empirical, and detailed
theoretical [10]. Empirical soot models ([11, 12]) generally
consider the competing reactions of soot formation and soot
oxidation. Their implementations are computationally inten-
sive and are typically accomplished within high-fidelity CFD
software codes. Semi-empirical soot models ([13, 14, 15]) aim
to reduce the computational cost by simplifying the kinetic
equations of soot formation and oxidation using valid approx-
imations. However, empirical and semi-empirical models have
multiple drawbacks which include the fact that they do not
consider the effects of particle growth and the physical inter-
actions of soot particles. De-tailed theoretical models ([16])
combine gas-phase kinetic equations with phenomenological
soot models to form high-dimensional frameworks for
modeling soot emissions. The high dimensionality and
computational costs of such models make them poor candi-
dates for modeling spatiotemporal emissions at engine-
relevant timescales.

Using data-driven methods for predicting emissions
has become increasingly popular due to the availability of
high-quality data, advancements in machine learning
models, and accessibility of more powerful computational
resources. Laboratory engine testing and instrumented
vehicles driven under real-world conditions are extremely
reliable sources of high-quality data. Deep feed-forward
neural networks and support vector machines (SVMs) are
black-box data-driven models prominently used for emis-
sions prediction. Such models have sufficient capability to
numerically imitate underlying mechanisms from the
training data. However, they are incapable of accurately
responding to changes in the underlying mechanisms, have
unreliable extrapolation capacity for operating conditions
outside of the training data, and completely lack physical
interpretability. Grey-box models combine interpretable
physics-based theoretical structures and opaque data-driven
methods. Such models have been used for predicting NO,,
CO and HC emissions ([17, 18]). Implementation of grey-box
models for modeling soot emissions has thus far been
limited to compression ignition engines [19]. Differences in
flame structure and fuel-wall interactions between compres-
sion ignition engines and spark ignition engines limit the
applicability of such models.

This study aims to address the limitations of current
grey-box models with the development of a physics-aware
twin-model machine-learning framework to predict and
analyze engine-out soot mass from a GDI engine. The frame-
work comprises a physics-based model and a random forest
regression model. This combination maintains high predic-
tion accuracy and allows physical interpretation of results.
The study highlights the inadequacy of one-model-fits-all
approaches in predicting soot emissions due to the occurrence
of clustered non-compliant behavior caused by various oper-
ating conditions. The proposed framework’s performance is
compared with a standalone baseline model, a feed-forward
deep neural network, and a recurrent neural network.

Methodology

Laboratory Dataset and Test
Setup

The dataset used in this study contains 1 Hz time resolution
data from a BMW N32B20 naturally aspirated 2.0 L in-line
four-cylinder gasoline direct injection (GDI) engine. Some of
the data were used in a previous study by Bock et al. [20]. The
engine is equipped with a National Instruments Powertrain
Controls engine controller to allow full control of the engine.
Basic engine specifications are shown in Table 1.

The engine was coupled to an engine dynamometer and
used a virtual drivetrain model to simulate the drivetrain
components found in a production vehicle and forces experi-
ence by a vehicle on road. This model has been thoroughly
described in previous work [20]. The virtual drivetrain model
uses driveline force, drag, rolling resistance, and braking force
to determine the net force on the modeled vehicle and the
corresponding acceleration. Acceleration at each time interval
was used to update modeled vehicle road speed and control
engine conditions to match on-road behavior. Bock et al.
performed WLTP drive cycle testing using this engine coupled
with the virtual drivetrain model, specifically looking at the
first 200 seconds when the PM emissions are higher due to
cold start conditions. The influence of fuel properties was
examined by testing six different fuels with varying ethanol
concentrations, aromatics concentrations, and volatility [20].
Three replicate drive cycles with each fuel were conducted to

TABLE 1 Parameters of Engine Used to Generate Dataset

Engine Model Number  N32B20
Displacement 1995 cc
Bore 84 mm

Stroke 90 mm

Compression Ratio 12:1

Rated Power
Rated Torque
Induction
Injection

Max Rail Pressure

125 kW (6700 rpm)

210 Nm (4250 rpm)

Naturally Aspirated

Central Spray Guided Piezo Injectors
200 bar
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generate this dataset with a total of 3618 data vectors.
Engine-out soot mass was measured with an AVL photo-
acoustic Microsoot Sensor (MSS).

Physics-based Soot Mass
Model

A widely used empirical engine-out soot mass model appli-
cable for engine simulations was proposed by Hiroyasu et al.
[11]. The model employs two equations, one for the rate of
formation of soot and the other for the rate of oxidation
of soot.

dm, _dmf dm,
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where, m;is the mass of net soot, mis the mass of formed
soot, my is the mass of oxidized soot, my, is the mass of vapor-
ized fuel, p is the cylinder pressure, X, is the mole fraction
of oxygen during combustion, T is the cylinder temperature,
E;and E,, are the activation energies of soot formation and
soot oxidation, Af and A, are constants.

Inspired by the model proposed by Hiroyasu et al., a
simplified physics-based soot mass model that can be used
for high-frequency discrete-time data is presented. The model
equation to calculate the instantaneous engine-out soot mass

is given by Equation 4.
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where my_is the instantaneous engine-out soot mass at
time k, my, is the mass of injected fuel, p is the cylinder
pressure, 1, is the mass of oxygen available during combus-
tion, T, is the adiabatic flame temperature during combus-
tion, and a, b, ¢, d, and q are tunable coefficients.

Calculating Adiabatic Flame
Temperature

The adiabatic flame temperature is defined as the temperature
of the combustion products in the combustion chamber under
the assumption that the inter-species reactions are adiabatic
in nature, i.e. all the heat produced during the reactions is
completely used to increase the temperature of the product
species. Although the adiabatic flame temperature is not the
exact temperature at which soot forms during combustion,
the relative change in adiabatic flame temperature between
engine conditions is a significant factor in soot formation and
oxidation. The underlying assumption for using the adiabatic

flame temperature in Equation 4 is that the tunable coefficients
a, b, cand d collectively act as appropriate correction factors.
The energy balance equation used to calculate the adiabatic
flame temperature is:

Tadiab

LHV * MW, = Z ", * j ¢, dT )

i=C0O,,H,0,N,,0, T,

where LHV is the lower heating value of gasoline fuel,
MWy, is the molecular weight of gasoline in kg/mol, n; is the
number of moles of species i per engine cycle where i € {CO,,
H,0,N,,0,}, c,; is the temperature-dependent specific heat
values of species i in J/K/mol, T, is the combustion chamber
temperature at the end of the compression stroke, and T, 4,
is the adiabatic flame temperature in K. The temperature-
dependent equations for c,,; are obtained from the lookup
tables in [21].

Calculating Remaining
Variables

The mass of injected fuel, m, was measured by a Coriolis flow
meter which measured the total fuel flow rate delivered to the
engine. The cylinder pressure, p, is approximated to be equal
to the brake mean effective pressure (BMEP bar). It is impor-
tant to note that the BMEP is not an exact estimate of the
instantaneous cylinder pressure during soot formation, but
does provide a measure of changing engine load. The mass of
oxygen available during combustion, m,,, is determined from
the total flow rate of intake air which is measured by a laminar
flow element. The ground truth values of measured engine-out
soot (Soot) are obtained from the laboratory dataset.

Soot Mass Prediction Using
Baseline Model

An effective way to determine the appropriate values of the
coefficients in Equation 4 to obtain an accurate fit is to use
non-linear regression. The SciPy python package [22] provides
a non-linear regression function (curve_fit) that uses the
Levenberg-Marquardt algorithm, also known as the damped
least-squares (DLS) method to determine the regression coef-
ficients. Without enforcing boundary conditions, and setting
the maximum number of function evaluations to 500,000, the
values of the obtained regression coefficients and the perfor-
mance metrics are shown in Table 2. The performance metrics
used for assessing the predictions are the root mean squared
error (RMSE), the mean absolute error (MAE), and the coef-
ficient of determination (R?). The predicted soot mass using
the regressed model is plotted against the ground truth in
Figure 1. Additionally, the predicted and measured cumulative
engine-out soot mass are plotted in Figure 2.

Considering an error range of +5mg/m?, the proposed
physics-based model occasionally produces inaccurate predic-
tions. The model is more likely to underestimate the value of
the target variable than to overestimate it, and the errors in
the underestimations are typically larger than those in the



TABLE 2 Regression Coefficients and Performance Metrics of
Baseline model

Metric/Parameter Value

a 0.164

b -4.938e+03
c 2.452e-06
d -1154e+04
q 6.955e-01
RMSE 2.691

MAE 1.287

R? 0.594

m Engine-out soot mass prediction using the
proposed physics-based model
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overestimations. The observation of prediction outliers called
for a deeper investigation into their nature and the engine
operating conditions that led to them.

Divergent Window
Co-occurrence Patterns

Predicted data points are classified as outliers in Figure 1
based on their position relative to the +5mg/m? error lines. To
investigate whether the outliers are a result of anomalous
patterns, a Divergent Window Co-occurrence (DWC) Pattern
Detection algorithm is deployed. This algorithm applies the
methods developed by Ali et al. [23] to the engine-out emis-
sions domain. It takes in a set of features and constraints as
inputs and outputs all statistically significant DWC patterns.
A divergent window of soot emissions refers to a period of L
seconds in a time series of input features within which the
mean of the prediction errors (absolute difference between
predicted and observed soot mass value) of the baseline
approach exceed an input divergence threshold (meanThresh-
old). A co-occurrence pattern in a time series of input features
is similar to a sequential association pattern except for the use
of a spatial statistical interest measure, i.e., Ripley’s Cross-K
function (K,) specialized for time series data. In essence, the
DWC pattern represents a set of input attributes and their
respective value ranges that tend to occur concurrently across
multiple divergent time windows and have Cross-K function
values above a given threshold (K,,,.,) and support (i.e., the
number of divergent windows in a pattern divided by the total
number of time windows) greater than a pre-defined value
(supportThreshold). The DWC pattern detection algorithm
was deployed on 3 parameter sets as shown in Table 3.

Set 1 contained 6 parameters taken directly from the
laboratory test dataset that can characterize different driving
patterns and could potentially influence the production of
soot. Set 2 contained 4 parameters that are the approximate
time derivatives of the parameters contained in Set 1. This set
was constructed with the aim of getting a better under-
standing of the effect of transient operating conditions on
emitted soot. Set 3 contained the 4 parameters that were used
in the physics-based model. The aim of this set was to check
whether the patterns obtained from Set 1 and Set 2 could
be translated into patterns in the input features of the physics-
based model. The Cross-K function lower bound threshold
Ko jower Was set to 2, the supportThreshold value to 0.004, the
meanThreshold to 5mg/m?, the window length L to 3 seconds,
and the lag to 2 seconds.

The top five most significant patterns mined using
Parameter Set 1 and Set 2 are listed in Table 4. It contains the
parameters that co-occur in each pattern and are listed in the

TABLE 3 Parameter Sets for DWC Pattern Detection

Parameter Set  Parameters Present

Set ] engSpd, fuelRate, intakeT, intakeP, brake-
Torque, airRate

Set 2 engSpdDelta, fuelRateDelta, brake-
TorqueDelta, airRateDelta
Set 3 Moz Py Tadias Mg
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TABLE 4 Description of the top four most statistically
significant DWC patterns using parameter Setl and Set2

Pattern Co-occurrence Cross-K Confidence

Patternl engSpd: {S, S, Sz} 67.65 1.0
intakeP: { Ps Pg Ps}
airRate: {A; Az As}

Pattern2 engSpd: {S, S, S,} 60.71 1.0
fuelRate: {F; F, F4}
intakeT: {T3 T3 T3}

Pattern3 engSpdDelta: {Sds Sds Sds } 52.04  0.86
brakeT orqueDelta: {Bds Bds Bds}
airRateDelta: {Ads Ads Ad,}

Pattern4 engSpdDelta: {Sds Sds Sds} 49.67 0.82
fuelRateDelta: {Fd, Fds Fdg}

Pattern5 brakeTorque: {Bg B B;} 37.60 0.78

airRate: {Az Az ALt

decreasing order of their statistical significance (represented
by the Cross-K values). The confidence measure is used to
assess the statistical nature of the co-occurrence pattern. It
determines the fraction of pattern instances in the dataset
that co-occurs with a divergent window instance. A confi-
dence value of 1.0 for pattern ’A’ indicates that all instances
of pattern’A’ co-occur with a divergent window instance. Each
of the parameters is uniformly discretized into 10 bins. The
letter representations S, P, Sd, etc. along with the subscripts
indicate the magnitude of the attributes in a DWC pattern.
For e.g., in the dataset, engSpd spans from around 800 rpm
to around 2500 rpm. Considering the 10-bin discretization,
S,, as seen in Patternl of Table 4, points to the second bin of
the discretized parameter engSpd, which covers the range of
970 rpm to 1140 rpm. It can be observed that the significant
patterns mentioned in the table belong to different representa-
tions of the transient operating conditions of the engine.
Transient parameters that lead to divergent patterns include
changing engine speed, torque, and air flow rate.

The significant patterns mined using Parameter Set 3 are
listed in Table 5. It can be observed that these patterns have
lower Cross-K and confidence values relative to the patterns
mined using the earlier parameter sets. However, the existence
of these patterns supports the assumption that the detected
outliers can be represented using a finite set of co-occurring
feature patterns. This confirms that a ‘one-model-fits-all’
approach fails in the case of predicting soot emissions.

TABLE 5 Description of the top four most statistically
significant DWC patterns using parameter Set3

Pattern Co-occurrence Cross-K Confidence
Patternl Mo, : {0 0o O1} 42.51 0.72

p:{P, P, Ps}

Todiab: {Th Th T2}

My {Fo F F}
Pattern2 Mo, :{0,0,00} 40.15 0.78
Pattern3 My {F F F3} 30.70 0.67
Pattern4 Mo, :{0,0,0:} 29.10 0.73

p:{Ps Ps P}

Outlier Classification Tree

The DWC pattern detection algorithm was successful in
mining the statistically significant co-occurrence patterns
from the input features of the physics-based model. However,
the relatively lower confidence measure values of the mined
patterns called for the implementation of an alternative meth-
odology for detecting outliers. A decision-tree-based Outlier
Classification Tree (OCT) is presented as an alternative.
Decision trees are binary trees (each parent node splits into
two children nodes) which help predict a target value or class
using feature variables. A decision tree classifier model is
chosen for multiple reasons. First, decision trees predict target
variables by learning simple decision rules inferred from the
input data. Such models can be trained to learn the decisions
based on the input feature patterns in the outliers. Second,
decision trees are white box models. The inference for a clas-
sification instance can be easily explained by Boolean Logic.
Third, deep-enough decision trees have high accuracy in
supervised classification tasks.
The Outlier Classification Problem is defined as:

e Input: Set of input engine features S at time ¢

* Output: Binary classification label (0: Inlier, 1: Outlier)
for input instance S and outlier classification criterion C,

® Objective: Classification accuracy on new instance S,,,,,

* Constraints: Maximum tree depth, the minimum
sample size for splitting nodes

The outlier classification criterion C, is the condition used
for ground-truth classification of an instance S, and is
represented by:

C - 1, if‘y(S)—j/(S)‘>Smg/m3 ©

0, else

where y(S) is the observed engine-out soot mass for input
instance S and y(S ) is the predicted engine-out soot mass for
input instance S using the physics-based model.

The first version of the OCT was trained using an
extended set of input features from the physics-based model,
which included certain attributes that contributed to statisti-
cally significant DWC patterns. The complete list of input
features is given in Table 6. The first task for designing the

TABLE 6 Initial input features for Outlier Classification Tree

Feature Feature Symbol

Mo, X1
p X2
Tadiab X3
My X4
ms, . X5
engSpd X6
brakeT orque X7
engSpdDelta X8
brakeT orqueDelta X9
fuelRateDelta X10
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OCT was to determine the appropriate set of input features
from the exhaustive list in Table 6. Feature elimination was
done by comparing the feature importance (FI) measures of
each input feature. The tree was trained on the original
dataset with an 80%-20% train-test split for 20 iterations.
The maximum tree depth was set to 6. The FI values and
classification accuracy were recorded for each iteration.
Figure 3 illustrates the mean FI values with their respective
error bars. Feature X5 (engine-out soot mass with a 1-time-
step lag) had the highest FI values and features X2, X7, and
X8 had the lowest FI values. Based on the relative FI values,
the extended list of input features was narrowed down to the
6 features that had the highest FI values. They are listed in
Table 7.

The OCT was then further trained on different values
of the maximum tree depth constraint. The mean accuracy
values were recorded for each value of tree depth and the
trend is shown in Figure 4. The scatter plots in Figure 5
illustrate the outlier classification performance of the OCT.
The input features of the points plotted in Figure 5a are fed
into the OCT as input and the outlier points plotted in Figure
5b is the produced as output. A sample model of the OCT
with a tree depth of 4 is illustrated in Figure 15 in the
Appendix section.

m Error Box plot of feature importance for OCT
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TABLE 7 Final input features for the OCT

Feature Feature Symbol

Mo, X1

My X4
ms, . X5
engSpd X6
brakeT orqueDelta X9
fuelRateDelta X10

m Classification accuracy trend on test dataset
with varying tree depth
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Physics-based Ensemble
Learning Model

The physics-based model cannot accurately predict engine-out
soot mass from the input data points classified as outliers by
the OCT. A physics-based random forest regressor model is
presented to predict soot mass for the outlier points only. A
Random forest regressor (RFR) [24] is a type of ensemble
learning model that consists of a set of decision trees (also
known as regression trees). Ensemble learning models like
the RFR involve using an ensemble of low-strength machine
learning models in place of a single, high-strength model to
obtain accurate predictions in highly heterogenous datasets.
RFR models have previously shown better predictive accura-
cies than other ensemble models such as XGBoost and
Gradient Boost for predicting vehicle emissions using real-
world driving datasets [18]. While the combination of decision
tree models makes the interpretation of the overall ensemble
more complex than each of its compounding tree learners,
RFR model inferences can be explained to a certain extent by
using post-hoc explainability techniques like feature relevance
analysis [25].

The initial feature set used for the RFR model is the same
as that used for the OCT as shown in Table 6. It includes the
parameters from the physics-based model and some measur-
able engine parameters from the laboratory test dataset.
Parameters that can be tuned for the RFR model are the
number of decision trees (nEstimators), the threshold for the
maximum depth of individual trees (maxDepth), and the
minimum number of samples in a node that cannot
be further divided (minSampleSplit). A default set of values
for the tunable parameters (nEstimators = 20, maxDepth =
10, minSampleSplit = 3) was chosen for the initial training
run. The ground truth values of the engine-out soot mass
were taken directly from the laboratory test dataset. The tree
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m Comparison of outlier and inlier points of the
baseline model with those classified by the OCT

m Scatter plots of input and output points of the
RFR model
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was trained on the original dataset with an 80%-20% train-
test split for 20 iterations and the FI measures for each input
feature were recorded. Figure 7 illustrates the mean FI values
with their respective error bars. Feature X5 (engine-out soot
mass with a 1-timestep lag) had the highest FI values and
features X2, X7, and X9 had the lowest FI values. Based on
the relative FI values, the extended list of input features was
narrowed down to the 7 features that had the highest FI
values. They are listed in Table 8.

The RFR model was trained on different values of the
maxDepth constraint. The mean RMSE values were
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(b) RFR model predictions

recorded for each value of tree depth and the trend is shown
in Figure 8. The RFR model was then further trained on
different values of the nEstimators constraint. The mean
RMSE values were recorded for each value of the number
of decision tree estimators and the trend is shown in
Figure 9.

The scatter plots in Figure 6 illustrate the prediction
performance of the RFR model. The input features of the
OCT-classified-outliers plotted in Figure 6a are fed into the
RFR as input and the predictions plotted in Figure 6b are the
produced output.
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m Error Box plot of feature importance for Physics-
based Random Forest Regressor

m RMSE trend with varying number of estimators
for the RFR model
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TABLE 8 Final input features for Physics-based Random
Forest Regressor

Feature Feature Symbol

Mo, X1

Tadiab X3
My, X4
ms, _, X5
engSpd X6
engSpdDelta X8
fuelRateDelta X10

m RMSE trend with varying individual maximum
tree depth for the RFR model
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Number of Estimators

Complete Framework for Soot
Mass Prediction and Analysis

To address the inability of the physics-based model to represent
the soot-formation dynamics under transient engine operating
conditions, a twin-model Physics-aware Classifier-Regressor
(PaCR) Framework is proposed and summarized in Figure 10.
The input to this framework is a set of engine features S at time
t. The input is fed into the OCT that classifies the instance S as
an outlier or an inlier. All inlier points are then fed into the
Physics-based Regression Model. All outlier points are fed into
the Random Forest Regression Model. The predictions from
the respective regression models are then inferred and analyzed.

IGEEERT Physics-aware Classifier-Regressor (PaCR)

Model Framework

Input

Outlier Classification Tree
14,
I
I |

[ Physics-based Regression ] { Random Forest Regression ]

Model Model

| !
I

[ Inference of predicted soot }
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m Scatter plots of engine-out soot mass
Results el phys

prediction using the baseline physics-based non-linear
regression, a physics-based DNN of size (256, 256, 256) and

Performance of the Twin- the PaCR framework
Model Framework —

------- Zero prediction error y
,,,,,,, + 5mg/m? prediction error

N
o

The values of the tunable parameters of the PaCR framework are
set based on the analyses of the individual components of the
framework and are listed in Table 9. The scatter plot illustrating

w

v
N
(&

the performance of the PaCR framework is shown in Figure 11. mg 30 E
The performance metrics of the framework on the laboratory g 035
test dataset, along with other models are given in Table 10. =25 £
3 159

: 5 5

Comparison of the Proposed 8 &
- = =15 s
Framework with Non-Linear 3 02
Regression T 10,
-4 5

The proposed framework leverages the advantages of a random 57 o
forest regressor to better predict engine-out soot mass in
highly transient engine operating conditions when compared 0 EQ) 40
to using the baseline physics-based regression model as a Measured Soot [mg/m?]
standalone. Comparing the scatter plOt of the baseline model (a) Baseline Physics-based regression model
(Figure 11a) with that of the PaCR framework (Figure 11¢), | . dict 25
conspicuous movement of initial outliers towards the zero- 40 ero preciction error ’

L N T T S R + 5mg/m? prediction error
prediction-error line can be observed. Consequently, both the gmep L

number of outlier points and the magnitude of the errors
decrease with the PaCR framework.

Since in certain applications, the cumulative engine-out
soot mass holds significance, the prediction error in the total
soot mass can be observed and compared in Figure 12¢. The
cumulative soot mass plots generated using the baseline
physics-based model (Figure 12a) and the PaCR framework
(Figure 12¢) can be assessed by comparing the d, values. The
d, value is the absolute difference in the final values of the
measured and predicted plots at the end of a fixed time period.
The decrease in d, from 746.13 for the baseline model to 452.52
for the PaCR framework indicates that the proposed frame-
work performs better. These changes are validated by the o = - o
improved performance metrics (decreased RMSE and MAE, Measured Soot [mg/m3]
increased R?) shown in Table 10.

w
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(b) Physics-based Deep Neural Network
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Comparison of the Proposed * - = Sma/m? prediction error
Framework with a Deep
Neural Network
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The proposed framework was similarly compared to a fully g p %s
connected deep neural network. The various architectures of gzs " %
TABLE 9 Tuning parameters of the individual components of © ]
the twin-model framework B° 10.2
o
Component Parameter Value 10
oCT maxDepth 8 5
minSampleSplit 8
Random Forest Regressor maxDepth 8 T 5 o o
nEstimators 20 Measured Soot [mg/m?3]

minSampleSplit g (c) PaCR Framework



- INITIAL DEVELOPMENT OF A PHYSICS-AWARE MACHINE LEARNING FRAMEWORK FOR SOOT MASS PREDICTION

m Engine-out cumulative soot mass prediction
plots using the baseline physics-based non-linear regression, a

physics-based DNN of size (256, 256, 256) and the
PaCR framework
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(b) Physics-based Deep Neural Network
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TABLE 10 Performance Metrics of various models

Model RMSE MAE R?
Baseline Physics-based model  2.691 1.287 0.594
Physics-based DNN 2183 1.284 0.701
Proposed Twin-Model 1.882 1.048 0.801
Framework

IGEETRE] Baseline model and RFR model predictions for
input X,
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. Physics-based model prediction
5 .
Random Forest Regressor prediction
A Zero prediction error
------- + 5mg/m? prediction error
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Measured Soot [mg/m?3]

m Explanation using SHAP values for input Xs

€ Negative SHAP values
D  Positive SHAP values

R(X) Base Value
9.87 10.87 11.95 12.87 13.87 14.87 15.87 16.87
C I T 1 I 1 T ]
» - ¢ 4.9
¢ b 9,

TABLE 11 Feature values and model predictions for sample X,

Class Parameter Value

Input Feature X1 8.51
X3 1772.81
X4 0.74
X5 242
X6 1311.68
X8 10.53
X10 0.26

Model Prediction Physics-based model 4.61
RFR model 1.95



INITIAL DEVELOPMENT OF A PHYSICS-AWARE MACHINE LEARNING FRAMEWORK FOR SOOT MASS PREDICTION n

TABLE 12 SHAP values for input X;

SHAP measure Value

N 0199
by -0.106
ba -0.160
bs -3.342
be -0.332
be 0.612

b0 0.217

DNNs that were trained on the dataset along with their
respective performance metrics are shown in Table 13 in the
Appendix. The notation of the DNN size is of the format (n,,
f,, ..., N,,) where n; represents the number of nodes in the it
hidden layer and m represents the number of hidden layers.
The DNN was designed to have either 2, 3, or 4 hidden layers,
each containing either 64, 128, 256, or 512 nodes. Each hidden
node was followed by a ReLU activation block and a normal-
ization layer. The set of input features listed in Table 6 (same
as the input feature set for the twin-model framework) was
used for the DNN. The DNN was trained on 70% of the dataset
using the Adam solver for a maximum of 200 iterations. The
batch size for training was set to 200 samples. A termination
criterion was set in place that ended the training process if
the training loss fails to improve by 0.0001 over 10 iterations.

The training process for the DNNs shown in Table 13
stopped when the termination criterion was met. The loss
convergence plots for the training and testing dataset for the
different architectures are shown in Figure 17. It was observed
that the loss values evaluated from the training set and the
testing set converged for all the DNN models. Additionally,
the loss plots for both sets exhibited similar trends and showed
a high degree of alignment with each other.

For comparison, the DNN of size (256, 256, 256) was
chosen because it had the highest R? error and the lowest
RMSE among the tested models. Comparing the scatter plot
of the chosen DNN (Figure 11b) with that of the PaCR frame-
work (Figure 11¢), it can be observed that the outlier points
moved closer to the zero-prediction-error line. Similarly
comparing the cumulative soot mass plot from the DNN
model (Figure 12b) with that of the proposed framework
(Figure 12a), the d, value decreases from 1024.41 (in the case
of the DNN) to 452.52 (in the case of the twin-model frame-
work). The decreased RMSE, decreased MAE, and the
increased R? values (Table 10) as a result of using the PaCR
framework instead of the physics-based DNN confirms the
better prediction accuracy of the proposed framework.

Discussion

Prediction Inferences

The performance assessment of the PaCR framework along
with the comparative analyses with the baseline physics-based
model and a more complex, fully connected, deep neural

network clearly show that the proposed framework is highly
effective at predicting engine-out soot mass. The input feature
variables for each component of the framework were carefully
selected to emulate the highly complex kinetics of soot forma-
tion in GDI engines. The proposed framework presents a
grey-box alternative to the DNN because the OCT and the
Physics-based Regression Model are considered interpretable
by design. They satisfy all three levels of transparency: simu-
latability (the ability of a model to be simulated or thought
about strictly by a human), decomposability (the ability to
explain each part of a model, i.e. inputs, parameters, and
calculations), and algorithmic transparency (the ability of the
user to understand the steps employed by the model in gener-
ating a specific output based on a specific input). However,
random forest models are not interpretable by design [25].
They are often classified as black-box models but the predic-
tions of such models can be partially explained using post-hoc
explainability techniques like explanation by simplification
and feature relevance techniques [25].

Discussion of the physical interpretation of the twin-
model approach is also warranted. The results of this work
show that the physics-based model is not sufficient to predict
soot mass emissions during transient conditions. It is well
known that transient conditions in GDI engines lead to fuel-
surface interactions with the cylinder liner and piston, which
are known to create soot-generating diffusion flames that have
different soot formation mechanisms than normal premixed
flame propagation. In a prior study with the same engine used
in this work, it was shown that soot formation from pool fires
was common with late fuel injection where fuel spray is more
targeted at the cylinder top [26]. Other work illustrates that
transient operation can lead to wall wetting with subsequent
soot formation [27]. Therefore, using the outlier detection
protocol developed in this framework to identify points where
a different soot prediction model is implemented is considered
a reasonable and explainable approach.

To explain the prediction instances of the Physics-based
Random Forest Regressor in the proposed framework,
we adapt the concept of SHAP (Shapley Additive Explanation)
values [28] to the problem of soot mass prediction. SHAP
values are a type of feature relevance measure that represents
the change in the expected model prediction when the model
is conditioned on a particular feature [28]. Explaining a
prediction instance using SHAP values requires an explainer
instance and the explanation consists of the following steps:

1. The explainer begins with a base value that represents
the model prediction assuming no knowledge of any
of the input features. This value is typically the
expected value of the model predictions E[R(X)],
where R(X) denotes the prediction by the random
forest regressor for an input feature set X.

2. The SHAP values for each feature are calculated in a
random sequence. If the SHAP value ¢, for the first
featureX, is calculated first, then ¢, is the difference
between E[R(X)|X; = ;] and E[R(X)]. Similarly, ¢, for
the feature X, is the difference between E[R(X)|X; =
a,X, = a,] and E[R(X)|X, = a,]. Consequently, the
SHAP values move the prediction from the base value
to the actual output of the model R(X).
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3. Since with complex models, the order of the features for
which the SHAP values are calculated directly affects
the final explanation and consequently, the explanation
of the prediction, the above process is repeated for all
possible combinations of the input features.

As an example to illustrate the prediction explanations of
the Random Forest Regressor in the PaCR framework, a sample
point X, is taken from the laboratory test dataset. The relevant
information about the sample point X, for the explanation
process is given in Table 11. The two prediction values, one
from the baseline model and one from the RFR model, using
X, are plotted in Figure 13. The chosen sample X is an outlier
as the distance between the physics-based model’s prediction
when given the input X and the zero-prediction-error line in
Figure 13 satisfies the outlier classification criterion C, in
Equation 6. The shap python module introduced in [28] was
used for illustrating the explanation of a prediction instance.

The relative magnitudes of the SHAP values of the indi-
vidual input features are illustrated in Figure 14. The explainer
begins with a base value of 14.87. This is equal to the mean
value of the predictions of the RFR model. From the base
value, the explainer shifts the prediction by each of the SHAP
values ¢, to ¢, to finally reach the actual output of the RFR
model R(X) = 11.95. The SHAP values of each feature indicate
the magnitude and direction of the influence that the feature
had in moving the prediction from the base value to the actual
prediction. The sign of the SHAP values only determines the
direction in which the prediction moves from the base value.
The SHAP values for the sample X are given in Table 12.

Future Work

Future improvements to the work presented in this paper include
two avenues for exploration. First, the dataset used for the devel-
opment of the proposed framework and its analyses is small and
limited to laboratory experiments on one type of engine. In a
continuation of this work, data collection from a different GDI
engine is proposed and the PaCR framework will be validated
on the new dataset with the aim of increasing its generalizability.
Second, further refinement of the individual components of the
PaCR framework will be pursued, with possible extension to the
implementation of other data-driven models that are either inter-
pretable by design or can be explained using post-hoc
explainability techniques.

Conclusion

In this work, a novel, physics-aware twin-model machine
learning framework is presented to accurately predict engine-
out soot mass from measurable engine data. The input features
for each of the components of the twin-model framework were
carefully selected by a combination of DWC pattern detection
and feature importance analyses repeated over randomly
sampled batches of data. The proposed framework was
observed to provide high predictive accuracies with the ability
to be robust to outlier data points. Physical reasoning for the
twin-model framework is that two separate soot formation

mechanisms are at play in GDI engines precluding the use of
asingle physics-based approach. Prediction using the proposed
framework provided, on average, 29% lower RMSE, 18% lower
MAE, and 34% higher R? score, when compared to the baseline
physics-based model. It also provided around 13% lower
RMSE, 16% lower MAE, and 14% higher R? score, when
compared to a physics-based deep neural network.

To fulfill the constraint of developing an interpretable
emissions prediction framework, a post-hoc explainability tech-
nique involving SHAP values of the feature set was used to
explain prediction instances of the Random Forest Regressor,
since the RFR was the only component that was not interpre-
table by design. The high effectiveness of the proposed frame-
work further strengthens the assumption that the underlying
mechanism of soot formation in a GDI engine is a complex set
of processes that varies with vehicle operating conditions.
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Definitions, Acronyms,
Abbreviations

Acronyms

CO - Carbon Monoxide

DLS - Damped least-squares

DWC - Divergent Window Co-occurrence
FI - Feature Importance

GDI - Gasoline Direct Injection

GPF - Gasoline Particulate Filters

HC - Hydrocarbon

MAE - Mean absolute error

NO, - Oxides of Nitrogen

OCT - Outlier Classification Tree

PaCR - Physics-aware Classifier-Regressor
PM - Particulate matter

R? - Coefficient of determination

REFR - Random forest regressor

RMSE - Root mean squared error

WLTP - Worldwide Harmonised Light Vehicles Test Procedure

Definitions
a, b, ¢, d, and q - Coefficients of physics-based model


wnorthro@umn.edu
https://merl.umn.edu

- INITIAL DEVELOPMENT OF A PHYSICS-AWARE MACHINE LEARNING FRAMEWORK FOR SOOT MASS PREDICTION

Ap A, - constants
¢,; - temperature-dependent specific heat of species i

E; E, - the activation energies of soot formation and
soot oxidation

LHYV - Lower heating value of gasoline

m, - mass of net soot

Mg
m,. - mass of oxidized soot

- mass of vaporized fuel

m,;- mass of formed soot

MW, - Molecular weight of gasoline
p - cylinder pressure

T - cylinder temperature

T, 400 - Adiabatic flame temperature

Appendix A

T, - chamber temperature at the end of compression stroke
Xo, - mole fraction of oxygen during combustion
airRateDelta - Rate of change of air mass flow rate
airRate - air mass flow rate

brakeTorqueDelta - Rate of change of brake torque
brakeTorque - Brake Torque

engSpdDelta - Rate of change of engine speed
engSpd - Engine Speed
fuelRateDelta - Rate of change of fuel flow rate
fuelRate - Fuel flow rate

intakeP - Intake manifold pressure

intakeT - Intake manifold temperature

m A sample OCT with tree depth = 4

class = Inlier
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m A sample decision tree from the Physics-based Random Forest Regressor with tree depth =10

X10.<= 0231
poisson = 1.391
samples = 10
valuo = 8123

X8<= 19428
poisson = 0447
‘Samplos = 20
valuo = 15,745
Xi0<= 0508
Polsson = 0475
samples = 12
value = 17.61

X1 <=6.143
=019

v 2
[mm.n.o;s] Sesee [pdm-u?) 0 isson = 0. -o_o] [M'”z"]
sampies = samplos = = = ‘samples =
- samples =5 samples =8 samples =3 - 2 =
Yae=11964 ) | vaue= 13535 | \VAMO=2L13) | vaue= 15843 value = 14471 | (2= 2 ke 21565

TABLE 13 Performance Metrics of deep neural networks with varying sizes. The notation of
the DNN size is of the format (n, n,, ..., n,,) where n, represents the number of nodes in the

hidden layer.

DNN size RMSE MAE R?
(128, 128) 3.578 2.892 0.221
(256, 256) 2.981 2132 0.41
(512, 512) 2.547 1.524 0.633
(64, 64, 64) 2.808 1.812 0.512
(128, 128, 128) 2.289 1188 0.667
(256, 256, 256) 2183 1.284 0.701
(512, 512, 512) 2.588 1.325 0.647
(64, 64, 64, 64) 2.498 1.248 0.620
(128, 128, 128, 128) 2.330 1.233 0.644

(256, 256, 256, 256) 2.258 1M 0.646
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m Loss Convergence for deep neural network of varying sizes
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