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Abstract

Calibration of automotive engines to ensure compli-
ance with emission regulations is a critical phase in 
product development. Control of engine-out partic-

ulate emissions, which directly impact the environment and 
public health, is particularly important. Detailed physics-
based models are typically used to gain a rich understanding 
of the complex physical phenomena that drive the soot 
particle formation in an engine cylinder. However, such 
models o!en fail to correctly represent the highly dynamic 
nature of the underlying mechanisms under transient 
combustion conditions. Moreover, most physics-based 
models were initially developed for diesel engine applications 
and their applicability to gasoline engines remains question-
able due to di"erences in #ame structure and fuel-wall inter-
actions. Black-box models have been previously proposed to 
predict engine-out soot emissions, but their lack of physical 
interpretability is an unsolved drawback. To address these 
limitations, we present a physics-aware twin-model machine 

learning framework to predict and analyze engine-out soot 
mass from a gasoline direct injection (GDI) engine. %e 
framework combines a physics-based model with a bagging-
type ensemble learning model that both maintains high 
accuracy and allows physical interpretation of results 
without using computationally intensive high-fidelity 
models. %is work shows why a one-model-&ts-all approach 
fails in the case of predicting soot emissions due to clustered 
co-occurrences of operating conditions that cause non-
compliant behavior. We compare the performance of the 
proposed framework with that of the standalone baseline 
model and a feed-forward deep neural network. Using WLTP 
data from a 2.0L naturally aspirated GDI engine, the 
proposed framework predicts engine-out soot mass with an 
improvement of 29% in the R2 value and 21% in the root 
mean squared error from the baseline physics-based model, 
without compromising physical interpretability. These 
improvements are signi&cant enough to warrant further 
framework development with additional engine datasets.

Introduction

Air pollution caused by conventional IC-engine-
powered vehicles is a major concern globally, with 
general scienti&c consensus con&rming its impact on 

the environment and public health. In 2019, an estimated 86% 
of urban inhabitants lived in conditions that exceeded WHO’s 
2005 guideline annual average PM2·5 concentration (10 μg/
m3), resulting in an excess of 1.8 million deaths [1]. In the 
same study, the average population-weighted PM2.5 concentra-
tion across all urban areas globally was 35 μg/m3 – equivalent 
to seven times the revised 2021 WHO guideline for annual 
average PM2·5 concentration (5 μg/m3). %e Joint Research 
Centre (JRC) of the European Commission quanti&ed road 
transportation’s average contribution to PM2·5 emissions in 
150 urban areas at 14%, rising to 39% in the larger urban cities 
[2]. A 2017 study [3] expanded known toxicological mecha-
nisms in humans caused by soot that lead to cancer, respira-
tory diseases, and cardiovascular dysfunctions. A 2012 WHO 
report [4] concluded that a reduction in exposure to PM2·5 and 

other combustion products leads to a reduction in the health 
e"ects associated with PM. Compared to port fuel-injected 
(PFI) engines, GDI engines have been reported to emit exhaust 
gases with higher concentrations of PM [5] due to incomplete 
fuel vaporization and gas-phase mixing [6]. Furthermore, GDI 
engines without &ltration produce even higher concentrations 
of ultra&ne particles compared to diesel engines &tted with 
diesel particle &lters (DPF) [7].

It is known that direct gasoline fuel injection can result 
in incomplete fuel evaporation and subsequent piston and 
wall wetting. %is creates fuel-rich hotspots that undergo 
nucleation, growth, and oxidation under high-temperature 
conditions, ultimately forming particulate matter. Although 
the chemical kinetics of soot generation are highly complex 
and not fully understood, it is generally agreed upon by 
researchers that gaseous polycyclic aromatic hydrocarbons 
(PAHs) are highly in#uential in soot formation. In the absence 
of signi&cant concentrations of aromatics in the fuel, the 
synthesis and growth of PAHs, and subsequently the 
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production of soot, would be constrained by the aromatic ring 
growth that results from reactions involving aliphatic 
chemicals [8].

Strict particulate matter regulations for gasoline engines 
have accelerated the development of portable emission 
measuring instrumentation and the integration of gasoline 
particulate &lters (GPFs) into the vehicle’s exhaust system. 
GPFs are used in modern gasoline engines to control the 
release of ultra&ne particles from the tailpipe. %ey are typi-
cally made of synthetic ceramic, have a honeycomb structure, 
and may either be a separate unit or integrated with the vehi-
cle’s three-way-catalyst [9]. To complement these control and 
measurement devices, modeling and predicting particulate 
emissions is of keen interest to researchers and manufacturers 
alike. Accurately modeling soot emissions provides insights 
into the underlying mechanisms and helps develop design 
strategies to reduce particulate emissions.

Soot models from the current literature can be classi&ed 
into three categories: empirical, semi-empirical, and detailed 
theoretical [10]. Empirical soot models ([11, 12]) generally 
consider the competing reactions of soot formation and soot 
oxidation. %eir implementations are computationally inten-
sive and are typically accomplished within high-&delity CFD 
so!ware codes. Semi-empirical soot models ([13, 14, 15]) aim 
to reduce the computational cost by simplifying the kinetic 
equations of soot formation and oxidation using valid approx-
imations. However, empirical and semi-empirical models have 
multiple drawbacks which include the fact that they do not 
consider the e"ects of particle growth and the physical inter-
actions of soot particles. De-tailed theoretical models ([16]) 
combine gas-phase kinetic equations with phenomenological 
soot models to form high-dimensional frameworks for 
modeling soot emissions. The high dimensionality and 
computational costs of such models make them poor candi-
dates for modeling spatiotemporal emissions at engine-
relevant timescales.

Using data-driven methods for predicting emissions 
has become increasingly popular due to the availability of 
high-quality data, advancements in machine learning 
models, and accessibility of more powerful computational 
resources. Laboratory engine testing and instrumented 
vehicles driven under real-world conditions are extremely 
reliable sources of high-quality data. Deep feed-forward 
neural networks and support vector machines (SVMs) are 
black-box data-driven models prominently used for emis-
sions prediction. Such models have su'cient capability to 
numerically imitate underlying mechanisms from the 
training data. However, they are incapable of accurately 
responding to changes in the underlying mechanisms, have 
unreliable extrapolation capacity for operating conditions 
outside of the training data, and completely lack physical 
interpretability. Grey-box models combine interpretable 
physics-based theoretical structures and opaque data-driven 
methods. Such models have been used for predicting NOx, 
CO and HC emissions ([17, 18]). Implementation of grey-box 
models for modeling soot emissions has thus far been 
limited to compression ignition engines [19]. Di"erences in 
#ame structure and fuel-wall interactions between compres-
sion ignition engines and spark ignition engines limit the 
applicability of such models.

%is study aims to address the limitations of current 
grey-box models with the development of a physics-aware 
twin-model machine-learning framework to predict and 
analyze engine-out soot mass from a GDI engine. %e frame-
work comprises a physics-based model and a random forest 
regression model. %is combination maintains high predic-
tion accuracy and allows physical interpretation of results. 
%e study highlights the inadequacy of one-model-&ts-all 
approaches in predicting soot emissions due to the occurrence 
of clustered non-compliant behavior caused by various oper-
ating conditions. %e proposed framework’s performance is 
compared with a standalone baseline model, a feed-forward 
deep neural network, and a recurrent neural network.

Methodology

Laboratory Dataset and Test 
Setup
%e dataset used in this study contains 1 Hz time resolution 
data from a BMW N32B20 naturally aspirated 2.0 L in-line 
four-cylinder gasoline direct injection (GDI) engine. Some of 
the data were used in a previous study by Bock et al. [20]. %e 
engine is equipped with a National Instruments Powertrain 
Controls engine controller to allow full control of the engine. 
Basic engine speci&cations are shown in Table 1.

%e engine was coupled to an engine dynamometer and 
used a virtual drivetrain model to simulate the drivetrain 
components found in a production vehicle and forces experi-
ence by a vehicle on road. %is model has been thoroughly 
described in previous work [20]. %e virtual drivetrain model 
uses driveline force, drag, rolling resistance, and braking force 
to determine the net force on the modeled vehicle and the 
corresponding acceleration. Acceleration at each time interval 
was used to update modeled vehicle road speed and control 
engine conditions to match on-road behavior. Bock et al. 
performed WLTP drive cycle testing using this engine coupled 
with the virtual drivetrain model, speci&cally looking at the 
&rst 200 seconds when the PM emissions are higher due to 
cold start conditions. %e in#uence of fuel properties was 
examined by testing six di"erent fuels with varying ethanol 
concentrations, aromatics concentrations, and volatility [20]. 
%ree replicate drive cycles with each fuel were conducted to 

TABLE 1 Parameters of Engine Used to Generate Dataset

Engine Model Number N32B20
Displacement 1995 cc
Bore 84 mm
Stroke 90 mm
Compression Ratio 12:1
Rated Power 125 kW (6700 rpm)
Rated Torque 210 Nm (4250 rpm)
Induction Naturally Aspirated
Injection Central Spray Guided Piezo Injectors
Max Rail Pressure 200 bar
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generate this dataset with a total of 3618 data vectors. 
Engine-out soot mass was measured with an AVL photo-
acoustic Microsoot Sensor (MSS).

Physics-based Soot Mass 
Model
A widely used empirical engine-out soot mass model appli-
cable for engine simulations was proposed by Hiroyasu et al. 
[11]. %e model employs two equations, one for the rate of 
formation of soot and the other for the rate of oxidation 
of soot.
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where, ms is the mass of net soot, msf is the mass of formed 
soot, msc is the mass of oxidized soot, mfg is the mass of vapor-
ized fuel, p is the cylinder pressure, XO2 is the mole fraction 
of oxygen during combustion, T is the cylinder temperature, 
Ef and Esc are the activation energies of soot formation and 
soot oxidation, Af and Ac are constants.

Inspired by the model proposed by Hiroyasu et al., a 
simpli&ed physics-based soot mass model that can be used 
for high-frequency discrete-time data is presented. %e model 
equation to calculate the instantaneous engine-out soot mass 
is given by Equation 4.
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where msk is the instantaneous engine-out soot mass at 
time k, mfg is the mass of injected fuel, p is the cylinder 
pressure, mO2 is the mass of oxygen available during combus-
tion, Tadiab is the adiabatic #ame temperature during combus-
tion, and a, b, c, d, and q are tunable coe'cients.

Calculating Adiabatic Flame 
Temperature
%e adiabatic #ame temperature is de&ned as the temperature 
of the combustion products in the combustion chamber under 
the assumption that the inter-species reactions are adiabatic 
in nature, i.e. all the heat produced during the reactions is 
completely used to increase the temperature of the product 
species. Although the adiabatic #ame temperature is not the 
exact temperature at which soot forms during combustion, 
the relative change in adiabatic #ame temperature between 
engine conditions is a signi&cant factor in soot formation and 
oxidation. %e underlying assumption for using the adiabatic 

#ame temperature in Equation 4 is that the tunable coe'cients 
a, b, c and d collectively act as appropriate correction factors. 
%e energy balance equation used to calculate the adiabatic 
#ame temperature is:
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where LHV is the lower heating value of gasoline fuel, 
MWfuel is the molecular weight of gasoline in kg/mol, ni is the 
number of moles of species i per engine cycle where i ∈ {CO2, 
H2O,N2,O2}, cpi is the temperature-dependent speci&c heat 
values of species i in J/K/mol, Tc is the combustion chamber 
temperature at the end of the compression stroke, and Tadiab 
is the adiabatic #ame temperature in K. %e temperature-
dependent equations for cp,i are obtained from the lookup 
tables in [21].

Calculating Remaining 
Variables
%e mass of injected fuel, mfg, was measured by a Coriolis #ow 
meter which measured the total fuel #ow rate delivered to the 
engine. %e cylinder pressure, p, is approximated to be equal 
to the brake mean e"ective pressure (BMEP bar). It is impor-
tant to note that the BMEP is not an exact estimate of the 
instantaneous cylinder pressure during soot formation, but 
does provide a measure of changing engine load. %e mass of 
oxygen available during combustion, mO2, is determined from 
the total #ow rate of intake air which is measured by a laminar 
#ow element. %e ground truth values of measured engine-out 
soot (Soot) are obtained from the laboratory dataset.

Soot Mass Prediction Using 
Baseline Model
An e"ective way to determine the appropriate values of the 
coe'cients in Equation 4 to obtain an accurate &t is to use 
non-linear regression. %e SciPy python package [22] provides 
a non-linear regression function (curve_"t) that uses the 
Levenberg-Marquardt algorithm, also known as the damped 
least-squares (DLS) method to determine the regression coef-
&cients. Without enforcing boundary conditions, and setting 
the maximum number of function evaluations to 500,000, the 
values of the obtained regression coe'cients and the perfor-
mance metrics are shown in Table 2. %e performance metrics 
used for assessing the predictions are the root mean squared 
error (RMSE), the mean absolute error (MAE), and the coef-
&cient of determination (R2). %e predicted soot mass using 
the regressed model is plotted against the ground truth in 
Figure 1. Additionally, the predicted and measured cumulative 
engine-out soot mass are plotted in Figure 2.

Considering an error range of ±5mg/m3, the proposed 
physics-based model occasionally produces inaccurate predic-
tions. %e model is more likely to underestimate the value of 
the target variable than to overestimate it, and the errors in 
the underestimations are typically larger than those in the 
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overestimations. %e observation of prediction outliers called 
for a deeper investigation into their nature and the engine 
operating conditions that led to them.

Divergent Window  
Co-occurrence Patterns
Predicted data points are classi&ed as outliers in Figure 1 
based on their position relative to the ±5mg/m3 error lines. To 
investigate whether the outliers are a result of anomalous 
patterns, a Divergent Window Co-occurrence (DWC) Pattern 
Detection algorithm is deployed. %is algorithm applies the 
methods developed by Ali et al. [23] to the engine-out emis-
sions domain. It takes in a set of features and constraints as 
inputs and outputs all statistically signi&cant DWC patterns. 
A divergent window of soot emissions refers to a period of L 
seconds in a time series of input features within which the 
mean of the prediction errors (absolute di"erence between 
predicted and observed soot mass value) of the baseline 
approach exceed an input divergence threshold (mean#resh-
old). A co-occurrence pattern in a time series of input features 
is similar to a sequential association pattern except for the use 
of a spatial statistical interest measure, i.e., Ripley’s Cross-K 
function (Kr) specialized for time series data. In essence, the 
DWC pattern represents a set of input attributes and their 
respective value ranges that tend to occur concurrently across 
multiple divergent time windows and have Cross-K function 
values above a given threshold (Kr,lower) and support (i.e., the 
number of divergent windows in a pattern divided by the total 
number of time windows) greater than a pre-de&ned value 
(support#reshold). %e DWC pattern detection algorithm 
was deployed on 3 parameter sets as shown in Table 3.

Set 1 contained 6 parameters taken directly from the 
laboratory test dataset that can characterize di"erent driving 
patterns and could potentially in#uence the production of 
soot. Set 2 contained 4 parameters that are the approximate 
time derivatives of the parameters contained in Set 1. %is set 
was constructed with the aim of getting a better under-
standing of the e"ect of transient operating conditions on 
emitted soot. Set 3 contained the 4 parameters that were used 
in the physics-based model. %e aim of this set was to check 
whether the patterns obtained from Set 1 and Set 2 could 
be translated into patterns in the input features of the physics-
based model. %e Cross-K function lower bound threshold 
Kr,lower was set to 2, the support#reshold value to 0.004, the 
mean#reshold to 5mg/m3, the window length L to 3 seconds, 
and the lag to 2 seconds.

The top five most significant patterns mined using 
Parameter Set 1 and Set 2 are listed in Table 4. It contains the 
parameters that co-occur in each pattern and are listed in the 

 FIGURE 1  Engine-out soot mass prediction using the 
proposed physics-based model

 FIGURE 2  Engine-out cumulative soot mass using the 
proposed physics-based model

TABLE 3 Parameter Sets for DWC Pattern Detection

Parameter Set Parameters Present
Set 1 engSpd, fuelRate, intakeT, intakeP, brake-

Torque, airRate
Set 2 engSpdDelta, fuelRateDelta, brake-

TorqueDelta, airRateDelta
Set 3 mO2, p, Tadiab, mfg

TABLE 2 Regression Coe#cients and Performance Metrics of 
Baseline model

Metric/Parameter Value
a 0.164
b -4.938e+03
c 2.452e-06
d -1.154e+04
q 6.955e-01
RMSE 2.691
MAE 1.287
R2 0.594



 5INITIAL DEVELOPMENT OF A PHYSICS-AWARE MACHINE LEARNING FRAMEWORK FOR SOOT MASS PREDICTION

decreasing order of their statistical signi&cance (represented 
by the Cross-K values). %e con&dence measure is used to 
assess the statistical nature of the co-occurrence pattern. It 
determines the fraction of pattern instances in the dataset 
that co-occurs with a divergent window instance. A con&-
dence value of 1.0 for pattern ’A’ indicates that all instances 
of pattern ’A’ co-occur with a divergent window instance. Each 
of the parameters is uniformly discretized into 10 bins. %e 
letter representations S, P, Sd, etc. along with the subscripts 
indicate the magnitude of the attributes in a DWC pattern. 
For e.g., in the dataset, engSpd spans from around 800 rpm 
to around 2500 rpm. Considering the 10-bin discretization, 
S2, as seen in Pattern1 of Table 4, points to the second bin of 
the discretized parameter engSpd, which covers the range of 
970 rpm to 1140 rpm. It can be observed that the signi&cant 
patterns mentioned in the table belong to di"erent representa-
tions of the transient operating conditions of the engine. 
Transient parameters that lead to divergent patterns include 
changing engine speed, torque, and air #ow rate.

%e signi&cant patterns mined using Parameter Set 3 are 
listed in Table 5. It can be observed that these patterns have 
lower Cross-K and con&dence values relative to the patterns 
mined using the earlier parameter sets. However, the existence 
of these patterns supports the assumption that the detected 
outliers can be represented using a &nite set of co-occurring 
feature patterns. %is con&rms that a ’one-model-&ts-all’ 
approach fails in the case of predicting soot emissions.

Outlier Classification Tree
%e DWC pattern detection algorithm was successful in 
mining the statistically signi&cant co-occurrence patterns 
from the input features of the physics-based model. However, 
the relatively lower con&dence measure values of the mined 
patterns called for the implementation of an alternative meth-
odology for detecting outliers. A decision-tree-based Outlier 
Classi&cation Tree (OCT) is presented as an alternative. 
Decision trees are binary trees (each parent node splits into 
two children nodes) which help predict a target value or class 
using feature variables. A decision tree classi&er model is 
chosen for multiple reasons. First, decision trees predict target 
variables by learning simple decision rules inferred from the 
input data. Such models can be trained to learn the decisions 
based on the input feature patterns in the outliers. Second, 
decision trees are white box models. %e inference for a clas-
si&cation instance can be easily explained by Boolean Logic. 
%ird, deep-enough decision trees have high accuracy in 
supervised classi&cation tasks.

%e Outlier Classi&cation Problem is de&ned as:
 • Input: Set of input engine features S at time t
 • Output: Binary classi&cation label (0: Inlier, 1: Outlier) 

for input instance S and outlier classi&cation criterion Co

 • Objective: Classi&cation accuracy on new instance Snew

 • Constraints: Maximum tree depth, the minimum 
sample size for splitting nodes

%e outlier classi&cation criterion Co is the condition used 
for ground-truth classification of an instance S, and is 
represented by:
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where y(S) is the observed engine-out soot mass for input 
instance S and ( )ŷ S  is the predicted engine-out soot mass for 
input instance S using the physics-based model.

The first version of the OCT was trained using an 
extended set of input features from the physics-based model, 
which included certain attributes that contributed to statisti-
cally signi&cant DWC patterns. %e complete list of input 
features is given in Table 6. %e &rst task for designing the 

TABLE 4 Description of the top four most statistically 
significant DWC patterns using parameter Set1 and Set2

Pattern Co-occurrence Cross-K Confidence
Pattern1 engSpd: {S2 S2 S3}

intakeP: { P5 P6 P5}
airRate: {A3 A3 A3}

67.65 1.0

Pattern2 engSpd: {S2 S2 S2}
fuelRate: {F1 F2 F4}
intakeT: {T3 T3 T3}

60.71 1.0

Pattern3 engSpdDelta: {Sd5 Sd5 Sd5 }
brakeT orqueDelta: {Bd5 Bd6 Bd5}
airRateDelta: {Ad5 Ad5 Ad4}

52.04 0.86

Pattern4 engSpdDelta: {Sd5 Sd5 Sd5}
fuelRateDelta: {Fd4 Fd5 Fd6}

49.67 0.82

Pattern5 brakeTorque: {B6 B6 B7}
airRate: {A3 A3 A4}

37.60 0.78

TABLE 5 Description of the top four most statistically 
significant DWC patterns using parameter Set3

Pattern Co-occurrence Cross-K Confidence
Pattern1 mO2

 : {O0$O0$O1}
p: {P1 P2 P3}
Tadiab: {T1 T1 T2}
mfg: {F0 F1 F2}

42.51 0.72

Pattern2 mO2
 : {O1$O2$O0} 40.15 0.78

Pattern3 mfg: {F1 F1 F3} 30.70 0.67
Pattern4 mO2

 : {O1$O1$O1}
p: {P3 P3 P4}

29.10 0.73

TABLE 6 Initial input features for Outlier Classification Tree

Feature Feature Symbol
mO2

X1
p X2
Tadiab X3
mfg X4
msk − 1

X5

engSpd X6
brakeT orque X7
engSpdDelta X8
brakeT orqueDelta X9
fuelRateDelta X10
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OCT was to determine the appropriate set of input features 
from the exhaustive list in Table 6. Feature elimination was 
done by comparing the feature importance (FI) measures of 
each input feature. %e tree was trained on the original 
dataset with an 80%-20% train-test split for 20 iterations. 
%e maximum tree depth was set to 6. %e FI values and 
classi&cation accuracy were recorded for each iteration. 
Figure 3 illustrates the mean FI values with their respective 
error bars. Feature X5 (engine-out soot mass with a 1-time-
step lag) had the highest FI values and features X2, X7, and 
X8 had the lowest FI values. Based on the relative FI values, 
the extended list of input features was narrowed down to the 
6 features that had the highest FI values. %ey are listed in 
Table 7.

%e OCT was then further trained on di"erent values 
of the maximum tree depth constraint. %e mean accuracy 
values were recorded for each value of tree depth and the 
trend is shown in Figure 4. %e scatter plots in Figure 5 
illustrate the outlier classi&cation performance of the OCT. 
%e input features of the points plotted in Figure 5a are fed 
into the OCT as input and the outlier points plotted in Figure 
5b is the produced as output. A sample model of the OCT 
with a tree depth of 4 is illustrated in Figure  15  in the 
Appendix section.

Physics-based Ensemble 
Learning Model
%e physics-based model cannot accurately predict engine-out 
soot mass from the input data points classi&ed as outliers by 
the OCT. A physics-based random forest regressor model is 
presented to predict soot mass for the outlier points only. A 
Random forest regressor (RFR) [24] is a type of ensemble 
learning model that consists of a set of decision trees (also 
known as regression trees). Ensemble learning models like 
the RFR involve using an ensemble of low-strength machine 
learning models in place of a single, high-strength model to 
obtain accurate predictions in highly heterogenous datasets. 
RFR models have previously shown better predictive accura-
cies than other ensemble models such as XGBoost and 
Gradient Boost for predicting vehicle emissions using real-
world driving datasets [18]. While the combination of decision 
tree models makes the interpretation of the overall ensemble 
more complex than each of its compounding tree learners, 
RFR model inferences can be explained to a certain extent by 
using post-hoc explainability techniques like feature relevance 
analysis [25].

%e initial feature set used for the RFR model is the same 
as that used for the OCT as shown in Table 6. It includes the 
parameters from the physics-based model and some measur-
able engine parameters from the laboratory test dataset. 
Parameters that can be  tuned for the RFR model are the 
number of decision trees (nEstimators), the threshold for the 
maximum depth of individual trees (maxDepth), and the 
minimum number of samples in a node that cannot 
be further divided (minSampleSplit). A default set of values 
for the tunable parameters (nEstimators = 20, maxDepth = 
10, minSampleSplit = 3) was chosen for the initial training 
run. %e ground truth values of the engine-out soot mass 
were taken directly from the laboratory test dataset. %e tree 

 FIGURE 3  Error Box plot of feature importance for OCT

TABLE 7 Final input features for the OCT

Feature Feature Symbol
mO2

X1
mfg X4
msk − 1

X5

engSpd X6
brakeT orqueDelta X9
fuelRateDelta X10

 FIGURE 4  Classification accuracy trend on test dataset 
with varying tree depth
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was trained on the original dataset with an 80%-20% train-
test split for 20 iterations and the FI measures for each input 
feature were recorded. Figure 7 illustrates the mean FI values 
with their respective error bars. Feature X5 (engine-out soot 
mass with a 1-timestep lag) had the highest FI values and 
features X2, X7, and X9 had the lowest FI values. Based on 
the relative FI values, the extended list of input features was 
narrowed down to the 7 features that had the highest FI 
values. %ey are listed in Table 8.

The RFR model was trained on different values of the 
maxDepth constraint. The mean RMSE values were 

recorded for each value of tree depth and the trend is shown 
in Figure 8. The RFR model was then further trained on 
different values of the nEstimators constraint. The mean 
RMSE values were recorded for each value of the number 
of decision tree estimators and the trend is shown in 
Figure 9.

%e scatter plots in Figure 6 illustrate the prediction 
performance of the RFR model. %e input features of the 
OCT-classi&ed-outliers plotted in Figure 6a are fed into the 
RFR as input and the predictions plotted in Figure 6b are the 
produced output.

 FIGURE 5  Comparison of outlier and inlier points of the 
baseline model with those classified by the OCT

 FIGURE 6  Scatter plots of input and output points of the 
RFR model
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Complete Framework for Soot 
Mass Prediction and Analysis
To address the inability of the physics-based model to represent 
the soot-formation dynamics under transient engine operating 
conditions, a twin-model Physics-aware Classi&er-Regressor 
(PaCR) Framework is proposed and summarized in Figure 10. 
%e input to this framework is a set of engine features S at time 
t. %e input is fed into the OCT that classi&es the instance S as 
an outlier or an inlier. All inlier points are then fed into the 
Physics-based Regression Model. All outlier points are fed into 
the Random Forest Regression Model. %e predictions from 
the respective regression models are then inferred and analyzed. FIGURE 8  RMSE trend with varying individual maximum 

tree depth for the RFR model

 FIGURE 9  RMSE trend with varying number of estimators 
for the RFR model

 FIGURE 7  Error Box plot of feature importance for Physics-
based Random Forest Regressor

TABLE 8 Final input features for Physics-based Random 
Forest Regressor

Feature Feature Symbol
mO2

X1
Tadiab X3
mfg X4
msk − 1

X5

engSpd X6
engSpdDelta X8
fuelRateDelta X10

 FIGURE 10  Physics-aware Classifier-Regressor (PaCR) 
Model Framework
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Results

Performance of the Twin-
Model Framework
%e values of the tunable parameters of the PaCR framework are 
set based on the analyses of the individual components of the 
framework and are listed in Table 9. %e scatter plot illustrating 
the performance of the PaCR framework is shown in Figure 11. 
%e performance metrics of the framework on the laboratory 
test dataset, along with other models are given in Table 10.

Comparison of the Proposed 
Framework with Non-Linear 
Regression
%e proposed framework leverages the advantages of a random 
forest regressor to better predict engine-out soot mass in 
highly transient engine operating conditions when compared 
to using the baseline physics-based regression model as a 
standalone. Comparing the scatter plot of the baseline model 
(Figure 11a) with that of the PaCR framework (Figure 11c), 
conspicuous movement of initial outliers towards the zero-
prediction-error line can be observed. Consequently, both the 
number of outlier points and the magnitude of the errors 
decrease with the PaCR framework.

Since in certain applications, the cumulative engine-out 
soot mass holds signi&cance, the prediction error in the total 
soot mass can be observed and compared in Figure 12c. %e 
cumulative soot mass plots generated using the baseline 
physics-based model (Figure 12a) and the PaCR framework 
(Figure 12c) can be assessed by comparing the d1 values. %e 
d1 value is the absolute di"erence in the &nal values of the 
measured and predicted plots at the end of a &xed time period. 
%e decrease in d1 from 746.13 for the baseline model to 452.52 
for the PaCR framework indicates that the proposed frame-
work performs better. %ese changes are validated by the 
improved performance metrics (decreased RMSE and MAE, 
increased R2) shown in Table 10.

Comparison of the Proposed 
Framework with a Deep 
Neural Network
%e proposed framework was similarly compared to a fully 
connected deep neural network. %e various architectures of 

 FIGURE 11  Scatter plots of engine-out soot mass 
prediction using the baseline physics-based non-linear 
regression, a physics-based DNN of size (256, 256, 256) and 
the PaCR framework

TABLE 9 Tuning parameters of the individual components of 
the twin-model framework

Component Parameter Value
OCT maxDepth 8

minSampleSplit 8
Random Forest Regressor maxDepth 8

nEstimators 20
minSampleSplit 3
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 FIGURE 12  Engine-out cumulative soot mass prediction 
plots using the baseline physics-based non-linear regression, a 
physics-based DNN of size (256, 256, 256) and the 
PaCR framework

 FIGURE 13  Baseline model and RFR model predictions for 
input Xs

 FIGURE 14  Explanation using SHAP values for input Xs

TABLE 10 Performance Metrics of various models

Model RMSE MAE R2

Baseline Physics-based model 2.691 1.287 0.594
Physics-based DNN 2.183 1.284 0.701
Proposed Twin-Model 
Framework

1.882 1.048 0.801

TABLE 11 Feature values and model predictions for sample Xs

Class Parameter Value
Input Feature X1 8.51

X3 1772.81
X4 0.74
X5 2.42
X6 1311.68
X8 10.53
X10 0.26

Model Prediction Physics-based model 4.61
RFR model 11.95
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DNNs that were trained on the dataset along with their 
respective performance metrics are shown in Table 13 in the 
Appendix. %e notation of the DNN size is of the format (n1, 
n2, …, nm) where ni represents the number of nodes in the ith 
hidden layer and m represents the number of hidden layers. 
%e DNN was designed to have either 2, 3, or 4 hidden layers, 
each containing either 64, 128, 256, or 512 nodes. Each hidden 
node was followed by a ReLU activation block and a normal-
ization layer. %e set of input features listed in Table 6 (same 
as the input feature set for the twin-model framework) was 
used for the DNN. %e DNN was trained on 70% of the dataset 
using the Adam solver for a maximum of 200 iterations. %e 
batch size for training was set to 200 samples. A termination 
criterion was set in place that ended the training process if 
the training loss fails to improve by 0.0001 over 10 iterations.

%e training process for the DNNs shown in Table 13 
stopped when the termination criterion was met. %e loss 
convergence plots for the training and testing dataset for the 
di"erent architectures are shown in Figure 17. It was observed 
that the loss values evaluated from the training set and the 
testing set converged for all the DNN models. Additionally, 
the loss plots for both sets exhibited similar trends and showed 
a high degree of alignment with each other.

For comparison, the DNN of size (256, 256, 256) was 
chosen because it had the highest R2 error and the lowest 
RMSE among the tested models. Comparing the scatter plot 
of the chosen DNN (Figure 11b) with that of the PaCR frame-
work (Figure 11c), it can be observed that the outlier points 
moved closer to the zero-prediction-error line. Similarly 
comparing the cumulative soot mass plot from the DNN 
model (Figure 12b) with that of the proposed framework 
(Figure 12a), the d1 value decreases from 1024.41 (in the case 
of the DNN) to 452.52 (in the case of the twin-model frame-
work). The decreased RMSE, decreased MAE, and the 
increased R2 values (Table 10) as a result of using the PaCR 
framework instead of the physics-based DNN con&rms the 
better prediction accuracy of the proposed framework.

Discussion

Prediction Inferences
%e performance assessment of the PaCR framework along 
with the comparative analyses with the baseline physics-based 
model and a more complex, fully connected, deep neural 

network clearly show that the proposed framework is highly 
e"ective at predicting engine-out soot mass. %e input feature 
variables for each component of the framework were carefully 
selected to emulate the highly complex kinetics of soot forma-
tion in GDI engines. %e proposed framework presents a 
grey-box alternative to the DNN because the OCT and the 
Physics-based Regression Model are considered interpretable 
by design. %ey satisfy all three levels of transparency: simu-
latability (the ability of a model to be simulated or thought 
about strictly by a human), decomposability (the ability to 
explain each part of a model, i.e. inputs, parameters, and 
calculations), and algorithmic transparency (the ability of the 
user to understand the steps employed by the model in gener-
ating a speci&c output based on a speci&c input). However, 
random forest models are not interpretable by design [25]. 
%ey are o!en classi&ed as black-box models but the predic-
tions of such models can be partially explained using post-hoc 
explainability techniques like explanation by simpli&cation 
and feature relevance techniques [25].

Discussion of the physical interpretation of the twin-
model approach is also warranted. %e results of this work 
show that the physics-based model is not su'cient to predict 
soot mass emissions during transient conditions. It is well 
known that transient conditions in GDI engines lead to fuel-
surface interactions with the cylinder liner and piston, which 
are known to create soot-generating di"usion #ames that have 
di"erent soot formation mechanisms than normal premixed 
#ame propagation. In a prior study with the same engine used 
in this work, it was shown that soot formation from pool &res 
was common with late fuel injection where fuel spray is more 
targeted at the cylinder top [26]. Other work illustrates that 
transient operation can lead to wall wetting with subsequent 
soot formation [27]. %erefore, using the outlier detection 
protocol developed in this framework to identify points where 
a di"erent soot prediction model is implemented is considered 
a reasonable and explainable approach.

To explain the prediction instances of the Physics-based 
Random Forest Regressor in the proposed framework, 
we adapt the concept of SHAP (Shapley Additive Explanation) 
values [28] to the problem of soot mass prediction. SHAP 
values are a type of feature relevance measure that represents 
the change in the expected model prediction when the model 
is conditioned on a particular feature [28]. Explaining a 
prediction instance using SHAP values requires an explainer 
instance and the explanation consists of the following steps:

 1. %e explainer begins with a base value that represents 
the model prediction assuming no knowledge of any 
of the input features. %is value is typically the 
expected value of the model predictions E[R(X)], 
where R(X) denotes the prediction by the random 
forest regressor for an input feature set X.

 2. %e SHAP values for each feature are calculated in a 
random sequence. If the SHAP value ϕ1 for the &rst 
featureX1 is calculated &rst, then ϕ1 is the di"erence 
between E[R(X)|X1 = a1] and E[R(X)]. Similarly, ϕ2 for 
the feature X2 is the di"erence between E[R(X)|X1 = 
a1,X2 = a2] and E[R(X)|X1 = a1]. Consequently, the 
SHAP values move the prediction from the base value 
to the actual output of the model R(X).

TABLE 12 SHAP values for input Xs

SHAP measure Value
ϕ1 0.199
ϕ3 -0.106
ϕ4 -0.160
ϕ5 -3.342
ϕ6 -0.332
ϕ8 0.612
ϕ10 0.217
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 3. Since with complex models, the order of the features for 
which the SHAP values are calculated directly a"ects 
the &nal explanation and consequently, the explanation 
of the prediction, the above process is repeated for all 
possible combinations of the input features.

As an example to illustrate the prediction explanations of 
the Random Forest Regressor in the PaCR framework, a sample 
point Xs is taken from the laboratory test dataset. %e relevant 
information about the sample point Xs for the explanation 
process is given in Table 11. %e two prediction values, one 
from the baseline model and one from the RFR model, using 
Xs are plotted in Figure 13. %e chosen sample Xs is an outlier 
as the distance between the physics-based model’s prediction 
when given the input Xs and the zero-prediction-error line in 
Figure 13 satis&es the outlier classi&cation criterion Co in 
Equation 6. %e shap python module introduced in [28] was 
used for illustrating the explanation of a prediction instance.

%e relative magnitudes of the SHAP values of the indi-
vidual input features are illustrated in Figure 14. %e explainer 
begins with a base value of 14.87. %is is equal to the mean 
value of the predictions of the RFR model. From the base 
value, the explainer shi!s the prediction by each of the SHAP 
values ϕ1 to ϕ10 to &nally reach the actual output of the RFR 
model R(X) = 11.95. %e SHAP values of each feature indicate 
the magnitude and direction of the in#uence that the feature 
had in moving the prediction from the base value to the actual 
prediction. %e sign of the SHAP values only determines the 
direction in which the prediction moves from the base value. 
%e SHAP values for the sample Xs are given in Table 12.

Future Work
Future improvements to the work presented in this paper include 
two avenues for exploration. First, the dataset used for the devel-
opment of the proposed framework and its analyses is small and 
limited to laboratory experiments on one type of engine. In a 
continuation of this work, data collection from a di"erent GDI 
engine is proposed and the PaCR framework will be validated 
on the new dataset with the aim of increasing its generalizability. 
Second, further re&nement of the individual components of the 
PaCR framework will be pursued, with possible extension to the 
implementation of other data-driven models that are either inter-
pretable by design or can be  explained using post-hoc 
explainability techniques.

Conclusion
In this work, a novel, physics-aware twin-model machine 
learning framework is presented to accurately predict engine-
out soot mass from measurable engine data. %e input features 
for each of the components of the twin-model framework were 
carefully selected by a combination of DWC pattern detection 
and feature importance analyses repeated over randomly 
sampled batches of data. The proposed framework was 
observed to provide high predictive accuracies with the ability 
to be robust to outlier data points. Physical reasoning for the 
twin-model framework is that two separate soot formation 

mechanisms are at play in GDI engines precluding the use of 
a single physics-based approach. Prediction using the proposed 
framework provided, on average, 29% lower RMSE, 18% lower 
MAE, and 34% higher R2 score, when compared to the baseline 
physics-based model. It also provided around 13% lower 
RMSE, 16% lower MAE, and 14% higher R2 score, when 
compared to a physics-based deep neural network.

To ful&ll the constraint of developing an interpretable 
emissions prediction framework, a post-hoc explainability tech-
nique involving SHAP values of the feature set was used to 
explain prediction instances of the Random Forest Regressor, 
since the RFR was the only component that was not interpre-
table by design. %e high e"ectiveness of the proposed frame-
work further strengthens the assumption that the underlying 
mechanism of soot formation in a GDI engine is a complex set 
of processes that varies with vehicle operating  conditions.
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Definitions, Acronyms, 
Abbreviations
Acronyms
CO - Carbon Monoxide
DLS - Damped least-squares
DWC - Divergent Window Co-occurrence
FI - Feature Importance
GDI - Gasoline Direct Injection
GPF - Gasoline Particulate Filters
HC - Hydrocarbon
MAE - Mean absolute error
NOx - Oxides of Nitrogen
OCT - Outlier Classi&cation Tree
PaCR - Physics-aware Classi&er-Regressor
PM - Particulate matter
R2 - Coe'cient of determination
RFR - Random forest regressor
RMSE - Root mean squared error
WLTP - Worldwide Harmonised Light Vehicles Test Procedure

Definitions
a, b, c, d, and q - Coe'cients of physics-based model

wnorthro@umn.edu
https://merl.umn.edu
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Af, Ac - constants
cpi - temperature-dependent speci&c heat of species i
Ef, Esc - the activation energies of soot formation and 
soot oxidation
LHV - Lower heating value of gasoline
ms - mass of net soot
mfg - mass of vaporized fuel
msc - mass of oxidized soot
msf - mass of formed soot
MWfuel - Molecular weight of gasoline
p - cylinder pressure
T - cylinder temperature
Tadiab - Adiabatic #ame temperature

Tc - chamber temperature at the end of compression stroke
XO2 - mole fraction of oxygen during combustion
airRateDelta - Rate of change of air mass #ow rate
airRate - air mass #ow rate
brakeTorqueDelta - Rate of change of brake torque
brakeTorque - Brake Torque
engSpdDelta - Rate of change of engine speed
engSpd - Engine Speed
fuelRateDelta - Rate of change of fuel #ow rate
fuelRate - Fuel #ow rate
intakeP - Intake manifold pressure
intakeT - Intake manifold temperature

Appendix A

 FIGURE 15  A sample OCT with tree depth = 4
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 FIGURE 16  A sample decision tree from the Physics-based Random Forest Regressor with tree depth = 10

TABLE 13 Performance Metrics of deep neural networks with varying sizes. The notation of 
the DNN size is of the format (n1, n2, ..., nm) where ni represents the number of nodes in the ith 
hidden layer.

DNN size RMSE MAE R2

(128, 128) 3.578 2.892 0.221
(256, 256) 2.981 2.132 0.411
(512, 512) 2.547 1.524 0.633
(64, 64, 64) 2.808 1.812 0.512
(128, 128, 128) 2.289 1.188 0.667
(256, 256, 256) 2.183 1.284 0.701
(512, 512, 512) 2.588 1.325 0.647
(64, 64, 64, 64) 2.498 1.248 0.620
(128, 128, 128, 128) 2.330 1.233 0.644
(256, 256, 256, 256) 2.258 1.111 0.646
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 FIGURE 17  Loss Convergence for deep neural network of varying sizes
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