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Abstract
We develop a combinatorial rule to compute the real geometry of type B Schubert
curves S(λ•) in the orthogonal Grassmannian OG(n,C2n+1), which are one-
dimensional Schubert problems defined with respect to orthogonal flags osculating
the rational normal curve. Our results are natural analogs of results previously known
only in type A [J. Algebraic Combin. 45(1), 191–243 (2017)]. First, using the type B
Wroński map studied in [Adv. Math. 224(3), 827–862 (2010)], we show that the real
locus of the Schubert curve has a natural covering map to RP

1, with monodromy
operator ω defined as the commutator of jeu de taquin rectification and promotion
on skew shifted semistandard tableaux. We then introduce two different algorithms
to compute ω without rectifying the skew tableau. The first uses the crystal oper-
ators introduced in [Algebr. Comb. 3(3), 693–725 (2020)], while the second uses
local switches much like jeu de taquin. The switching algorithm further computes the
K-theory coefficient of the Schubert curve: its nonadjacent switches precisely enu-
merate Pechenik and Yong’s shifted genomic tableaux. The connection to K-theory
also gives rise to a partial understanding of the complex geometry of these curves.
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1 Introduction

A Schubert curve is a certain one-dimensional intersection of Schubert varieties whose
flags are maximally tangent to the rational normal curve. Concretely, the rational
normal curve is the image of the Veronese embedding P1 ↪→ P

n−1 = P(Cn), defined
by

t �→ [1 : t : t2 : . . . : tn−1].
The osculating or maximally tangent flag to this curve at t ∈ P

1, is the complete flag
Ft in Cn formed by the iterated derivatives of this map; hence the i-th part of the flag
is spanned by the top i rows of the matrix

[(
d

dt

)i−1

(t j−1)

]
=

⎡
⎢⎢⎢⎣

1 t t2 · · · tn−1

0 1 2t · · · (n − 1)tn−2

0 0 2 · · · (n − 1)(n − 2)tn−3

.

.

.
.
.
.

.

.

.
. . .

.

.

.

0 0 0 · · · (n − 1)!

⎤
⎥⎥⎥⎦ .

Associated to the osculating flag Ft and a partition λ, we have a Schubert variety
Xλ(Ft ) inside the Grassmannian Gr(k,Cn). Schubert varieties with respect to oscu-
lating flags have been studied extensively in the context of degenerations of curves
[1, 2, 9], Schubert calculus and the Shapiro–Shapiro Conjecture [8, 14, 17], and the
geometry of the moduli space M0,r (R) [18]. They satisfy unusually strong transver-
sality properties, particularly under the hypothesis that the osculation points t are real;
Mukhin et al. [8] showed that every zero-dimensional intersection of the form

Xλ(1) (Ft1) ∩ · · · ∩ Xλ(r) (Ftr ), (1)

with t1 < . . . < tr real, is a transverse intersection. The points in such an intersection
are enumerated by certain chains of Littlewood–Richardson tableaux. Moreover, the
behaviour of such intersections under monodromy and degeneration (as the osculating
points collide) has a remarkable description in terms of combinatorial operations on
these tableaux [1, 7, 12, 18]. As such, zero-dimensional intersections of the form (1)
exhibit much deeper connections with tableau combinatorics and the Littlewood–
Richardson rule than one finds using general flags.

Schubert curves are one-dimensional intersections of the form (1). More precisely,
a Schubert curve in Gr(k,Cn) is defined to be the intersection

S = S(λ(1), . . . , λ(r)) = Xλ(1) (Ft1) ∩ · · · ∩ Xλ(r) (Ftr ),

where the osculation points ti are real numbers with 0 = t1 < t2 < . . . < tr = ∞, and
λ(1), . . . , λ(r) are partitions for which

∑ |λ(i)| = k(n−k)−1. Every such intersection
is one-dimensional (if nonempty) and reduced [7], but not necessarily irreducible.
Moreover, the real connected components of S can be described by combinatorial
operations, related to jeu de taquin and Schützenberger’s promotion and evacuation,
on chains of skew Young tableaux.

In [4], a fast, local algorithm called evacuation-shuffling was introduced to com-
pute the real topology of S. Moreover, the particular (local) combinatorial structure
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of evacuation-shuffling resulted in new bijective connections to the structure coef-
ficients arising in computing the K-class of the Schubert curve in the K-theory of
the Grassmannian. In this sense, these connections serve as a higher dimensional
analog of the Littlewood–Richardson rule, enabling a combinatorial understanding of
one-dimensional (rather than zero-dimensional) intersections of Schubert varieties via
tableaux.

The purpose of this paper is to extend this story of Schubert curves to the type B
setting, specifically to the orthogonal Grassmannian OG(n,C2n+1), the variety of
n-dimensional isotropic subspaces of C2n+1 with respect to a fixed nondegenerate
symmetric bilinear form. For both geometric and combinatorial reasons, this is a nat-
ural place to extend the results of [4, 7]. Like the Grassmannian, OG(n,C2n+1) is
a minuscule flag variety; in fact, apart from the simple family of even-dimensional
quadrics, this is essentially the only1 other infinite minuscule family. For all minuscule
flag varieties, there is a combinatorial Schubert calculus, based on Young tableaux,
which computes cohomology and K-theory [21]. In the case of OG(n,C2n+1), Schu-
bert varieties are indexed by shifted partitions μ = (μ1 > μ2 > μ3 > . . .), with
μ1 ≤ n, whose diagram is obtained by shifting the i th row i units to the right. For
instance, the diagram for the shifted partition (6, 4, 2, 1) is shown below. There is a

well-established theory of shifted tableaux and Littlewood–Richardson tableaux for
these shapes, analogous to the theory in type A.

Schubert varieties�μ(F ) inOG(n,C2n+1) are only definedwith respect to orthog-
onal flags, i.e., flags forwhich the i-th part of the flag is orthogonal to the (2n+1−i)-th
part for all i . Fortunately, there is a choice of symmetric bilinear form on C2n+1 such
that the flags Ft are in fact orthogonal flags. We may therefore consider Schubert
varieties with respect to osculating flags in OG(n,C2n+1). As in type A, intersections
of such Schubert varieties have strong transversality properties: any zero-dimensional
intersection of the form

�μ(1) (Ft1) ∩ · · · ∩ �μ(r) (Ftr ),

with t1 < . . . < tr , is a transverse intersection [11], and there are again connections
between the geometric properties of intersection points and the tableaux that enumerate
them [13]. It is therefore natural to wonder whether the geometric and combinatorial

1 Strictly speaking, the classification of minuscule flag varieties includes two other infinite families: P2n−1

in type C, and OG(n + 1,C2n+2) in type D. As varieties, however, these are already accounted for: P2n−1

is a Grassmannian, and OG(n + 1,C2n+2) is isomorphic to OG(n,C2n+1). The difference in Lie type is
important in some contexts, but largely irrelevant to the work in this paper.
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properties of one-dimensional intersections also extend to OG(n,C2n+1). Accord-
ingly, we define type B Schubert curves

S = S(μ(1), . . . , μ(r)) = �μ(1) (Ft1) ∩ · · · ∩ �μ(r) (Ftr ),

where the osculation points ti are real numbers with 0 = t1 < t2 < . . . < tr = ∞.
Here μ(1), . . . , μ(r) are shifted partitions for which

∑ |μ(i)| = n(n − 1)/2 − 1. In
this paper, we study the geometry and associated combinatorics of these curves.

1.1 Main Results

We describe the basic geometric properties of type B Schubert curves in Sect. 3. As
expected, the results we obtain here are precisely analogous the those in type A, and
many of the results are proved either similarly, or deduced from the type A results. We
show that a type B Schubert curve S is one-dimensional (if non-empty) and reduced.
A key step is the construction of a natural branched covering map S → P

1, whose
fibers are in bijectionwith chains of skew, shiftedLittlewood–Richardson tableaux.We
write LR(μ(1), . . . , μ(r)) to denote the set of sequences (T1, . . . , Tr ) of skew shifted
Littlewood–Richardson tableaux, filling the n × n triangle, such that the shape of Ti
extends that of Ti−1 and Ti has content μ(i) for all i . (The tableaux T1 and Tr are
uniquely determined and may be omitted.)

For simplicity, we mainly consider Schubert curves S = S(α, β, γ ), which are
intersections of only three Schubert varieties, though the results of this paper extend
to the general case without difficulty.

Our main geometric result, which we prove in Sect. 3, describes the topology of
S(α, β, γ )(R) in terms of shifted Littlewood–Richardson tableaux. Below, we write
for the single box partition (1). We also write ω to denote the monodromy operator

given by starting at a point in the zero fiber of the map and tracing out the real locus
around one loop to obtain another point in the zero fiber.

Theorem 1.1 There is a map S → P
1 that makes the real locus S(R) a smooth

covering of the circle RP1. The fibers over 0 and ∞ are in canonical bijection with,
respectively, LR(α, , β, γ ) and LR(α, β, , γ ). Under this identification, the arcs of
S(R) covering R− induce the jeu de taquin bijection

sh : LR(α, β, , γ ) → LR(α, , β, γ ),

given by performing a shifted jeu de taquin slide of the β tableau into the outer corner
given by (see Sect. 2.2 and Remark 2.9). The arcs covering R+ induce a different
bijection

esh : LR(α, β, , γ ) → LR(α, , β, γ ),

called (shifted) evacuation-shuffling (defined in Sect. 3.3 below). The monodromy
operator ω is, therefore, given by ω = sh ◦ esh.

See Fig. 1 for an illustration. This theorem is the type B analog of [7, Cor. 4.9]
in type A. In particular, the (real) topology of S(R) is implicitly described by the
combinatorial operations sh and esh.

123



Discrete & Computational Geometry (2023) 69:981–1039 985

2

1 1 2

× 1

2

1 1 2

× 1

2

× 1 2

1 1

2

1 2 ×
1 1

×
1 2 2

1 1

2

1 2 ×
1 1

0
1

∞

S(R)

RP
1

α

γ

Fig. 1 The covering map S(R) → RP
1, along with the canonical labeling of the fibers over 0 and ∞

Remark 1.2 The work in [7] also describes stable degenerations of S(α, β, γ ), but
since we are primarily concerned with the Schubert curve itself, we take a simpler
approach using the third author’s work [12] on the geometry of the type B Wroński
map Wr : OG(n,C2n+1) → P

n(n−1)/2, restricted to S ⊂ OG. Analogous results to
[18, Thm. 1.1–1.6] and [7, Thm. 4.7] do hold for stable degenerations in type B,
yielding fiber spaces of orthogonal Schubert problems over M0,r . In the interest of
brevity (and since the techniques are essentially unchanged), we omit these further
constructions.

While shifted jeu de taquin is very well studied, the operation esh is less well
understood, particularly in type B. The basic definition is the same as in type A: esh
is (informally) the conjugate of sh by the operation of rectification, and behaves very
differently from sh. The rectification stepmakes esh computationally and conceptually
difficult to study, so our next objective is to give a “local” algorithm for esh, which
instead moves the box directly through the tableau via certain local moves. Here the
details diverge from the type A story, as we delve into the peculiarities of shifted
tableaux.

A key property of esh, manifest for both geometric and combinatorial reasons, is
that it commutes with all sequences of jeu de taquin slides. This property is called
coplacticity, and in type A many coplactic operators are known, notably Kashiwara’s
crystal operators. For type B, such operators are less well known, and we rely heavily
on results in [5], which establishes a crystal-like structure on shifted tableaux with
operators that are coplactic for shifted jeu de taquin. (In fact, those operators were
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discovered as a result of the preliminary investigations of this paper.) We review these
more fundamental coplactic operators in Sect. 2.5, and we initiate our study of esh by
expressing it in terms of them (Theorem 4.2). We then unravel the description further
to obtain the desired direct combinatorial algorithm for computing esh, and hence ω,
based on local moves (Theorem 5.5).

In certain respects, our local algorithm resembles the algorithm given in [4] for
type A evacuation-shuffling, such as having a natural division into two “phases” that
follow different rules. However, there are important structural differences, which we
discuss in Sect. 4.2, including a negative result (Proposition 4.7) that prevents an
analysis similar to that in [4].

Finally, we study the K-theory class [OS] ∈ K(OG(n,C2n+1)), which encodes
much of the topological information about the curve S = S(α, β, γ ), in particular its
degree and holomorphic Euler characteristic. It can be computed combinatorially in
terms of shifted genomic tableaux, defined by Pechenik and Yong [10]. For Schubert
curves in Gr(k,Cn), there is a strong connection between the combinatorial algorithm
for ω and the K-theory class [OS]: the individual steps of the algorithm correspond
to the genomic tableaux that compute this class [4]. Although the combinatorics of
shifted genomic tableaux and shifted evacuation-shuffling are considerably different,
we find, surprisingly, that a similar result holds for type B Schubert curves.

Theorem 1.3 There is a two-to-one correspondence between non-adjacent steps of the
algorithm in Theorem 5.5 for computing ω on S(α, β, γ ), and the set of all shifted
ballot genomic tableaux K(γ c/α;β).

Informally, each genomic tableau is obtained once by a move in reading order and
once in reverse reading order. We state this result more precisely, and discuss some
of its geometric consequences, as well as other connections to K-theory in Sect. 6.
For example, it follows that the map f : S(R) → RP

1 cannot be topologically trivial
unless the map S → P

1 is algebraically trivial, that is, S ∼=⊔deg f P
1. This property

is known in type A.

1.2 Outline

In Sect. 2, we review combinatorial backgroundmaterial on shifted tableaux necessary
for the rest of the paper. This includes the shifted jeu de taquin, dual equivalence and
the shifted Littlewood–Richardson rule, coplactic structure on shifted tableaux. We
provide background on the orthogonal Grassmannian OG(n,C2n+1), including facts
about Schubert varieties with respect to the osculating flags Ft in Sect. 3. We also
prove our foundational geometric results about type B Schubert curves, including
Theorem 1.1. The combinatorial algorithm for computing the monodromy map ω is
developed in Sects. 4 and 5. Section 4 provides an version of the algorithm in terms
of the coplactic operators discussed in Sect. 2.5, and Sect. 5 then reformulates this,
without the use of these operators. Since there are steps that are not immediately clear
how to invert, we also discuss the inverse of these algorithms. Finally, in Sect. 6, we

123



Discrete & Computational Geometry (2023) 69:981–1039 987

Fig. 2 A strict partition σ = (6, 4, 2, 1) shown above the diagonal. Its associated symmetric partition
σ̃ = (7, 6, 5, 5, 2, 1) is the union of the two shaded regions shown

apply these results toward understanding topological properties of complex type B
Schubert curves, and discuss the connections to K-theory of OG(n,C2n+1)2.

2 Combinatorial Notation and Background

A partition is a weakly decreasing sequence λ of nonnegative integers λ1 ≥ . . . ≥
λk ≥ 0. Likewise, a strict partition σ is a strictly decreasing sequence of nonnegative
integers. The Young diagram of a partition λ is the left-aligned partial grid of squares
with λi squares in the i-th row, while the shifted Young diagram of a strict partition
σ is defined similarly but aligned along a staircase as shown in Fig. 2. We say that
|λ| =∑ λi is the size of λ, and the entries λi are its parts; likewise for σ .

We assume throughout that our partitions λ fit in an n× (n+1) rectangle, that is, λ
has at most n parts and λi ≤ n + 1 for each i . We write λ ⊆ . We similarly assume
that strict partitions σ fit in a height-n staircase, that is, σi ≤ n + 1 − i for all i . We
write σ ⊆ .

Given a strict partition σ , we define an ordinary partition σ̃ by σ̃i = σi + # { j :
j ≤ i < j + σ j } (Fig. 2), obtained by “unfolding” σ past the main diagonal. Note
that |σ̃ | = 2|σ |. If λ = σ̃ for some strict partition, we say λ is symmetric. If not, we
define the symmetrization of λ as the smallest symmetric partition containing λ.

A standard Young tableau of partition shape λ or shifted shape σ is a filling of the
boxes of its diagram with the numbers 1, . . . , n, where n is the size of the partition,
such that the entries are increasing across rows and down columns. We write SYT(λ)

or SYT(σ ) to denote the set of all standard Young tableaux of shape λ (resp. σ ).

2.1 Canonical form and Representatives

Let w = w1w2. . .wn be a string in symbols {1′, 1, 2′, 2, 3′, 3, . . .}.
Definition 2.1 Let w be a string in symbols {1′, 1, 2′, 2, 3′, 3, . . .}. The first i or
i ′ of w is the leftmost entry which is either equal to i or i ′. We denote this entry
by first(i, w) or first(i ′, w), whichever is more convenient; we emphasize that both

2 SageMath, the Sage Mathematics Software System (v.7.6), The Sage Developers (2017), http://www.
sagemath.org.
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3

1 1 2
1 2

1 1

Fig. 3 A skew shifted semistandard Young tableau in canonical form

refer to the same entry. When w is clear from context we suppress it and write first(i)
or first(i ′). The canonical form of w is the string formed by replacing first(i, w) (if
it exists) with i for all i ∈ {1, 2, 3, . . .}. We say two strings w and v are equivalent if
they have the same canonical form; note that this is an equivalence relation.

Definition 2.2 A word is an equivalence class ŵ of the strings v equivalent to w. If
w is in canonical form, we say that w is the canonical representative of the word ŵ.
We often call the other words in ŵ representatives of ŵ or of w. The weight of w is
the vector wt(w) = (n1, n2, . . .), where ni is the total number of (i)s and (i ′)s in w.

Example 2.3 The canonical form of the word 1′1′2′112′ is 11′2112′. The set of all
representatives of 11′2112′ is {1′1′2′112′, 11′2′112′, 1′1′2112′, 11′2112′}.

All the enumerative results in this setting count (canonical forms of) words and
tableaux. In later sections, however, we will find that some of the algorithms require
using different representatives.

2.2 Skew Shapes, Semistandard Tableaux, and Jeu De Taquin

A (shifted) skew shape is a difference σ/ρ of two partition diagrams, formed by
removing the squares of ρ from the diagram of σ , if ρ is contained in σ (written
ρ ⊆ σ ). For instance, in Fig. 3 the shape shown is (6, 4, 2, 1)/(3, 2). If ρ = ∅, we
may refer to the shape as a (shifted) straight shape for emphasis.

A shifted semistandard Young tableau (shifted SSYT) is a filling of the boxes with
entries from the alphabet {1′ < 1 < 2′ < 2 < 3′ < 3 < . . .} such that the entries are
weakly increasing down columns and across rows, and such that primed entries can
only repeat in columns, and unprimed only in rows. The (row) reading word of such
a tableau is the word formed by concatenating the rows from bottom to top (in Fig. 3,
the reading word is 3111′21′12′). The weight of T is the vector wt(T ) = (n1, n2, . . .),
where ni is the total number of (i)s and (i ′)s in T .

We use the notions of inner and outer jeu de taquin (JDT) slides defined by Sagan
andWorley [15, 22]. Inner and outer slides are defined as usual (see e.g. [5] for a more
detailed description) but with two exceptions to the sliding rules: if an outer slide
moves an i down into the diagonal and then another i to the right on top of it, that i
becomes primed (and vice versa for the corresponding inner slide), as shown below.

123



Discrete & Computational Geometry (2023) 69:981–1039 989

Similarly, if an outer slide moves an i down into the diagonal, then moves an i ′ to
the right on top of it, the i becomes primed.

Note that a tableau in canonical form remains in canonical form after applying any
JDT slide. We write rect(T ) or rect(w) to denote the jeu de taquin rectification of any
shifted semistandard tableau T with reading word w. We say that T is Littlewood–
Richardson, and w is ballot, if for every i , the i-th row of rect(T ) consists entirely of
(i)s.

Definition 2.4 The standardization of a word w (or tableau T ) is the word std(w) (or
tableau std(T )) formed by replacing the letters in order with 1, 2, . . . , n from least to
greatest, breaking ties by reading order for unprimed entries and by reverse reading
order for primed entries. The resulting total order on the boxes is called standardization
order. We use the symbols ≺ and � to compare letters in this ordering.

Example 2.5 The standardization of the word 1121′22′1′11 is the word 348297156.

The following is well known (see [5] for a proof).

Proposition 2.6 Afilling T of a shifted skew shape is semistandard (andnot necessarily
canonical) if and only if std(T ) is a standard shifted tableau.

2.3 Dual Equivalence and Littlewood–Richardson Tableaux

Two standard skew shifted tableaux of the same shape are said to be (shifted) dual
equivalent if their shapes transform the same way under any sequence of jeu de
taquin slides. We extend this notion to semistandard (shifted) tableaux by defining
two tableaux to be dual equivalent if and only if their standardizations are, as in
[16]. The word “dual” refers to the recording tableau under the shifted Schensted
correspondence [15, 22]. See [6] for more in-depth discussions of dual equivalence.
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A dual equivalence class is an equivalence class of Young tableaux under dual
equivalence. Given two dual equivalence classes D, D′ of skew shapes λ/μ and ρ/λ

that extend one another (note λ is in common to the shapes’ constructions), we can
perform tableau switching as follows. Choose any standard representatives T , T ′ of D
and D′, and perform successive inner jeu de taquin slides on T ′ in the order specified
by the labels on the squares of T from largest to smallest (recall that T and T ′ are both
standard Young tableaux, determining a total ordering on their squares). Let T̃ ′ be the
resulting tableau and let T̃ be the tableau formed by the empty squares after these
slides, labeled in reverse order. Then the dual equivalence classes D̃′ and D̃ of T̃ ′ and
T̃ are independent of the choices of representatives T and T ′, and we say (D̃′, D̃) is
the switch of (D, D′).

Remark 2.7 The tableau switching above can equivalently be defined by performing
successive outer jeu de taquin slides on T ′ according to the ordering on the squares
of T (see [6]).

By the above facts, we may speak of the rectification shape of a dual equivalence
class rsh(D). This is the shape of any rectification of any representative of the class D.
It is well known (see [6] or [4]) that the dual equivalence classes of a given skew shape
and rectification shape (in both the shifted and unshifted settings) are counted by a
Littlewood–Richardson coefficient.

Lemma/Definition 2.1 Let λ/μ be a (shifted or unshifted) skew shape and let

DEλ
μ(β) = {dual equivalence classes D with sh(D) = λ/μ and rsh(D) = β}.

Then in the unshifted setting, |DEλ
μ(β)|=cλ

μβ , and in the shifted one, |DEλ
μ(β)|= f λ

μβ .

Recall (see, e.g., [3]) that theLittlewood–Richardson coefficient cλ
μβ is also the coef-

ficient of the Schur function sλ in the Schur expansion of the product sμsβ , and is the
structure coefficient of the Schubert class [Xλ] in the product [Xμ] · [Xβ ] in the coho-
mology ring H∗(Gr(k,Cn)). In the shifted setting, the Littlewood–Richardson coeffi-
cient f λ

μβ is the coefficient of the Schur P-function Pλ in the product PμPβ , or equiva-
lently the coefficient of the Schur Q-function Qβ in the skew Schur Q-function Qλ/μ.
(Formore details on Schur P and Q-functions, see [20] or [5].) Finally, theLittlewood–
Richardson coefficients f λ

μβ are also the structure constants in the cohomology ring

of the orthogonal Grassmannian, H∗(OG(n,C2n+1)). It is also convenient to define
the generalized Littlewood–Richardson coefficient cλ

μ• (resp. f λ
μ• ) as the coefficient

of [Xλ] in [Xμ(1) ] · · · [Xμ(r) ] (resp., the coefficient of [�λ] in [�μ(1)] · · · [�μ(r) ]).

2.3.1 Connection to Littlewood–Richardson Tableaux

For a straight shape β, the highest-weight tableau of shape β is the tableau having its
i-th row filled entirely with the letter i (in both the shifted and unshifted setting). For
skew shapes, a dual equivalence class D of rectification shape β has a unique highest-
weight representative, that is, the unique tableau T dual equivalent to D that rectifies
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to the highest-weight tableau of shape β. Note also that if S, T are highest-weight skew
tableaux with T extending S, then the tableaux formed by switching them, (T ′, S′),
are also highest-weight, since switching does not change their rectification.

We can therefore work entirely with Littlewood–Richardson tableaux in place of
their dual equivalence classes for the purposes of tableaux switching and enumeration
of Littlewood–Richardson coefficients.

Definition 2.8 For a (shifted or unshifted) skew shape λ/μ we define

LRλ
μ(β) = {Littlewood-Richardson tableaux T with sh(T ) = λ/μ and rsh(T ) = β}.

Note that we have a natural bijection

DEλ
μ(β) ↔ LRλ

μ(β).

A tableau is Littlewood–Richardson if and only if its reading word is ballot, a local
condition defined in [20] in the shifted case. Here we define a reading word to be ballot
if its tableau is Littlewood–Richardson, and we discuss various ballotness criterion in
Sect. 2.5 below.

Remark 2.9 Under the identification with dual equivalence classes, the operator

sh : LR(α, β, , γ ) → LR(α, , β, γ )

described in Theorem 1.1 is equivalent to the operation of tableau switching between
β and .

2.4 Chains of Tableaux

A chain of (shifted) skew shapes is a sequence of shapes of the form

λ(2)/λ(1), λ(3)/λ(2), . . . , λ(r+1)/λ(r),

for some nested sequence of (shifted) partitions

λ(1) ⊆ λ(2) ⊆ . . . ⊆ λ(r+1).

We say that each skew shape λ(i+1)/λ(i) extends the previous shape λ(i)/λ(i−1) in
the chain. We define a chain of dual equivalence classes or chain of Littlewood–
Richardson tableaux to be an assignment of a class or tableau to each shape in a chain
of shapes. We write

DE(α(1), α(2), . . . , α(n)) and LR(α(1), α(2), . . . , α(n)),
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respectively, to denote the set of all chains of dual equivalence classes (respectively,
Littlewood–Richardson tableaux) whose rectification shapes (respectively, weights)
are given by the tuples α(1), . . . , α(n) in order. Note that the weights α(i) generally do
not uniquely determine the shapes λ(i).

2.5 Coplactic Operators on Shifted Tableaux

We now briefly review the combinatorial notation introduced in detail in [5], regarding
the weight raising and lowering operators E ′

i , Ei , F ′
i , Fi on shifted SSYT’s. These

operators have the property of being compatible with jeu de taquin:

Definition 2.10 An operation on canonical shifted tableaux (or on their readingwords)
is coplactic if it commutes with all shifted jeu de taquin slides.

When we study the geometry of the Schubert curve S(α, β, γ ), we will encounter
certain coplactic operations on tableaux. In Sect. 4, we characterize those operations
in terms of the natural operators E ′

i , Ei , F ′
i , Fi .

Throughout this section, we consider words consisting only of the letters
{1′, 1, 2′, 2}, and define only the operators E ′

1, E1, F ′
1, F1. For general words w, E ′

i
and F ′

i are defined on the subword containing the letters {i ′, i, i + 1′, i + 1}, treating
i as 1 and i + 1 as 2. To further simplify our notation in this subsection we use the
following shorthands.

Definition 2.11 Define E ′ = E ′
1, F

′ = F ′
1, E = E1, F = F1.

2.5.1 Primed Operators

Definition 2.12 We define E ′(w) to be the unique word such that

std(E ′(w)) = std(w) and wt(E ′(w)) = wt(w) + (1,−1).

if such a word exists; otherwise, E ′(w) = ∅. We define F ′(w) analogously using
−(1,−1).

Proposition 2.13 [5] The maps E ′ and F ′ have the following properties.

(i) They are partial inverses of eachother, that is, E ′(w) = v if andonly ifw = F ′(v).
(ii) The maps E ′ and F ′ are well defined on skew shifted semistandard tableaux.
(iii) The operations are coplactic, that is, they commute with all jeu de taquin slides.
(iv) To compute F ′(w), consider all representatives of w. If all representatives have

the property that the last 1 is left of the last 2′ then F ′(w) = ∅. If there exists a
representative such that the last 1 is right of the last 2′ then F ′(w) is obtained,
using this representative, by changing the last 1 to a 2′. The word E ′(w) is defined
similarlywith the roles of1and2′ reversed: if the last2′ is right of the last1 in some
representative, change it to a 1 (in that representative). Otherwise E ′(w) = ∅.
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xi yi = 0
1 1

2 2

xi yi = 0
1

1
2

2

Fig. 4 The directions assigned to each of the letters wi = 1′, 1, 2′, or 2 according to whether the location
of the walk just before wi starts on the axes (xi yi = 0) or not

2.5.2 Lattice Walks

The first step in defining the more involved operators F(w) and E(w) is to associate,
to each wordw, a lattice walk in the first quadrant of the plane. This walk is a sequence
of points in N × N, starting with (0, 0). We specify the walk by assigning a step to
each wi , i = 1, . . . , n. This step will be one of the four principal direction vectors:

−→= (1, 0) ←−= (−1, 0)
�⏐ = (0, 1)

⏐� = (0,−1).

The i th point (xi , yi ) is the sum of the steps assigned to w1, . . . , wi . We define the
walk inductively: suppose i > 0, and we have assigned steps to w1, . . . , wi−1. We
assign the step to wi according to Fig. 4, with two cases based on whether or not the
step from (xi−1, yi−1) starts on one of the x or y axes. We will generally write the
label each step of the walk by the letter wi , so as to represent both the word and its
walk on the same diagram.

Example 2.14 Here is the walk for w = 1221′1′111′1′2′2222′2′11′1.

2.5.3 Critical Substrings and Definition of E and F

Definition 2.15 If w is a word and u = wkwk+1. . .wl is a substring of some represen-
tative of w, we say u is a substring of the word w. We say (x, y) = (xk−1, yk−1) is
the location of u in the walk of w.
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Type
Conditions

Transformation
Substring Steps Location

1F u = 1(1 ) 2
1 1

2 y = 0
u 2 (1 ) 2

1
1

2 y = 1, x 1

2F u = 1(2) 1
1

2
1

x = 0
u 2 (2) 1

1 2
1

x = 1, y 1

3F u = 1
1

y = 0 u 2

4F u = 1
1

x = 0 u 2

5F
u = 1 1

x = 1, y 1 undefined
u = 2

2

Type
Conditions

Transformation
Substring Steps Location

1E u = 2 (2) 1
2 2

1
x = 0

u 1(2) 1
2

2
1

x = 1, y 1

2E u = 2 (1 ) 2
2

1
2 y = 0

u 1(1 ) 2
2 1

2 y = 1, x 1

3E u = 2 2 x = 0 u 1

4E u = 2 2 y = 0 u 1

5E
u = 1 1

y = 1, x 1 undefined
u = 2

2

Fig. 5 Above, the table of F-critical substrings and their transformations. Below, the table of E-critical
substrings and their transformations. Here a(b)∗c means any string of the form abb. . .bc, including ac,
abc, abbc, etc.

Definition 2.16 We say that u is an F-critical substring if certain conditions on u and
its location are met. There are five types of F-critical substring. Each row of the first
table in Fig. 5 describes one type, and a transformation that can be performed on that
type.

We define the final F-critical substring u of w to be the F-critical substring with
the highest (rightmost) possible ending index.
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Definition 2.17 We define the word F(w) as follows. We fix a representative v con-
taining the final critical substring u, and transform u (in v) according to its type (and
then canonicalize the result if necessary). If the type is 5F, or if w has no F-critical
substrings, then F(w) is undefined and we write F(w) = ∅. We define E similarly
using the corresponding notion of E-critical substrings, and transformation rules for
each, given by the second table in Fig. 5.

The relevant properties of E, F are as follows.

Proposition 2.18 The operators E and F satisfy the following properties.

(i) They are partial inverses of each other, that is, E(w) = v if and only ifw = F(v).
(ii) They are well defined on skew shifted semistandard tableaux (by applying the

maps to the reading word).
(iii) The maps E and F are coplactic, that is, they commute with all jeu de taquin

slides.
(iv) For any fixed i , the operators Fi , F ′

i , Ei , E ′
i commute with each other when

defined.

See [5] for examples and further discussion regarding these operators.

2.5.4 Ballotness Criteria

The lattice walks and coplactic operators give rise to criteria for a tableau to be
Littlewood–Richardson, or equivalently for its word to be ballot.

Theorem 2.19 A word w is ballot if and only if either of the following equivalent
criteria hold.

(i) For all i , the lattice walk of the subwordwi consisting of the letters i, i ′, i+1, i+1′
has yn = 0, that is, ends on the x-axis.

(ii) Ei (w) = E ′
i (w) = ∅ for all i .

We will also need Stembridge’s original definition ballotness [20], which we recall
here as a lemma.

Lemma 2.20 (Stembridge) Let w = w1. . .wn be a word. For each i and for 1 ≤ j ≤
2n, define

mi ( j) =
{
#{k ≥ n − j + 1 : wk = i} if j ≤ n,

mi (n) + # {k ≤ j − n : wk = i ′} if j ≥ n + 1.

Then w is ballot if and only if the following two conditions hold for all i :

S1. If j < n and mi ( j) = mi+1( j), then wn− j is not equal to i + 1 or (i + 1)′.
S2. If j ≥ n and mi ( j) = mi+1( j), then w j−n+1 is not equal to i or (i + 1)′.
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Note that the quantity mi ( j) can be computed by reading through the word once
backwards and then once forwards.We incrementmi ( j) if the j-th letterwe read in this
way is i on the first pass, or i ′ on the second pass. It is also evident from the definition
that mi ( j) ≥ mi+1( j) for all i and j in a ballot word. An immediate consequence of
this is the following sufficient condition, which we will use more often.

Corollary 2.21 Let w be a ballot word in letters 1′, 1, 2′, 2. Any word obtained from
w by moving any 1′ to a position earlier in the word is ballot. The word obtained by
moving any 1 to the end of w is also ballot.

3 Geometry of Type B Schubert Curves

Wenowdevelop themaingeometric results, using theWrońskimap studied extensively
in [12, 13].

3.1 Ordinary and Orthogonal Grassmannians

If W is a vector space, we write Gr(k,W ) for the Grassmannian of k-dimensional
subspaces ofW . Given a partition λ and a flagF , wewrite the corresponding Schubert
variety as

Xλ(F ) := {U ∈ Gr(k,W ) : dimU ∩ Fn−k+i−λi ≥ i for all i},

which has codimension |λ|.
IfW has dimension 2n+1 and is equippedwith a nondegenerate symmetric bilinear

form 〈−,−〉, a subspace U ⊂ W is isotropic if 〈u, u′〉 = 0 for all u, u′ ∈ W . We
write OG(n,W ) ⊂ Gr(n,W ) for the orthogonal Grassmannian of maximal isotropic
subspaces. A flagF is orthogonal if 〈u, u′〉 = 0 whenever u ∈ Fi and u′ ∈ F2n+1−i

for some i . (The lower half of such a flag consists of isotropic subspaces, while the
upper half consists of their duals under 〈−,−〉.) Given a strict partition σ and an
orthogonal flag F , we define the orthogonal Schubert variety:

�σ (F ) := X σ̃ (F ) ∩ OG(n,W )

= {U ∈ OG(n,W ) : dimU ∩ Fn+1+i−σ̃i ≥ i for all i}.

This has codimension |σ | in OG(n,W ).
In what follows, we let V ∼= C

2 be a two-dimensional vector space. We will
describe several GL2-equivariant constructions on P1 = P(V ) and related spaces. We
note that these constructions are coordinate-free on P

1 and can be extended to M0,r
(see Remark 1.2).
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3.1.1 A Coordinate-Free Bilinear Form on Symd(C2)

There is a unique (up to scaling) GL(V )-equivariant bilinear form

〈−,−〉: Symd(V ) ⊗ Symd(V ) → det(V )⊗d ,

〈v1. . .vd , w1. . .wd〉 = 1

d!
∑
π∈Sd

(v1 ∧ wπ(1)) ⊗ · · · ⊗ (vd ∧ wπ(d)).
(2)

This form is symmetric if d is even and alternating if d is odd. It follows from GL(V )-
equivariance that the form is nondegenerate for d > 1. Uniqueness follows from
the Pieri rule in GL-representation theory; the GL(V ) representation det(V )⊗d =∧2

(V )⊗d is the irreducible representation associated to the partition (d, d), and each
copy of Symd(V ) is an irreducible representation with partition (d). There is therefore
only one copy of det(V )⊗d in Symd(V ) ⊗ Symd(V ). (See, for instance, [3, Chap. 8]
for details on the Pieri rule.)

In coordinates, we may think of Symd(C2) as the vector space C[z]≤d of degree-
at-most-d polynomials. Then the form is given by

〈za, zb〉 =

⎧⎪⎨
⎪⎩
0 if a + b �= d,

(−1)b(d
b

) if a + b = d.

Note that this is a scalar multiple (by a factor of 1/d!) of the form described in [13].

Remark 3.1 We write Gr := Gr(k,Symd(C2)) and OG := OG(n,Sym2n(C2)) from
now on.

3.1.2 Osculating Flags and Schubert Varieties

We now define the osculating flag F (p) ⊂ Symd(C2) for p ∈ P
1. In terms of

representations, p gives a line 〈v〉 ⊂ C
2, and the codimension-i part of F (p) is

F (p)i = {u ∈ Symd(C2) : u = viw for some w ∈ Symd−i (C2)}.

In terms of polynomials, F (p)i ⊂ C[z]≤d consists of the polynomials vanishing at
p to order at least i , that is, (z − p)i divides f (z). (If p = ∞, we interpret this as
meaning deg f ≤ d − i .)

Proposition 3.2 The flags F (p) are orthogonal with respect to the form 〈−,−〉.
Proof Let u ∈ F (p)a and ũ ∈ F (p)b. If p corresponds to 〈v〉 ⊂ C

2, we have
factorizations u = vaw and u′ = vbw̃, where w, w̃ have degrees d − a and d − b.
Then, if a + b > d, we see directly (regardless of what w, w̃ are) that in the sum
for 〈u, ũ〉, every choice of π ∈ Sd gives at least one factor (v ∧ v) = 0. Therefore
〈u, ũ〉 = 0. ��
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We will only consider Schubert conditions in Gr and OG using osculating flags.
Thus, for p ∈ P

1, we put

Xλ(p) := Xλ(F (p)), �σ (p) := �σ (F (p)),

for any partition λ or strict partition σ .
These Schubert varieties have unusually strong transversality properties. The key

facts about them are as follows. Let λ(1), . . . , λ(r) be partitions and
∑ |λ(i)| = dimGr.

Let p1, . . . , pr ∈ P
1 be distinct points. Consider the intersection

X = Xλ(1) (p1) ∩ · · · ∩ Xλ(r) (pr ).

Theorem 3.3 [2, 11] The intersection X is dimensionally transverse; that is, dim X
= 0 and themultiplicity of X is given by the corresponding product of Schubert classes,
cλ• . The analogous statement holds in OG, replacing partitions λ by strict partitions

σ such that
∑ |σ (i)| = dimOG, and replacing Schubert varieties Xλ(p) by �σ (p)

and cλ• by fσ• .

When all the osculation points are real, the statement is even stronger:

Theorem 3.4 [8, 11] Suppose pi ∈ RP
1 for all i . Then X is reduced and consists

entirely of real points. The same statement holds in OG, with modifications as above.

3.2 TheWroński Map

The Wroński map

Wr : Gr(k,Symn−1(C2)) → P
k(n−k) = P(Symk(n−k)

C
2),

is defined as follows. Thinking of elements f1, . . . , fk ∈ Symn−1(C2) as polynomials
in z, we consider the determinant

Wr( f1, . . . , fk; z) := det

⎡
⎢⎢⎢⎣

f1 · · · fk
f ′
1 · · · f ′

k
...

...

f (k−1)
1 · · · f (k−1)

k

⎤
⎥⎥⎥⎦ ∈ Symk(n−k)(C2).

This determinant dependsonlyon the subspaceU =〈 f1, . . . , fk〉∈Gr(k,Symn−1(C2)),
sowe putWr(U ; z) := Wr( f1, . . . , fk).We often factor theWrońskian as

∏
(z− pi )di

and think of it as a multiset of points m = {(p•, d•)}.
Remark 3.5 Note that technically the points pi are on P

1 and the Wrońskian factor-
ization

∏
(z − pi )di should be written as a two-variable homogeneous polynomial∏

(pi1 z1 − pi2 z2)
di where the points involved have homogeneous coordinates

(pi1 : pi2). In terms of the local coordinate z, then, if one of the points pi is at
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∞ = (0 : 1), then instead of having a factor of (z − pi )di , we simply lower the degree
of the Wrońskian polynomial by di and only multiply together the remaining factors.

We note that Wr has a coordinate-free description similar to (2), induced by the
unique GL2-equivariant linear map

k∧
(Symn−1(C2)) → Symk(n−k)(C2) ⊗ det(C2)⊗(k2),

projectivized and restricted to Gr in the Plücker embedding. We will not need this; for
us, the key fact is that Wr is flat and finite, of degree |SYT( )|, and its fibers have
the following property.

Lemma 3.6 [12, Thm. 2.5] Let U ∈ Gr(k,Symn−1(C2)) and p ∈ P
1. ThenWr(U ; z)

is divisible by (z − p)d if and only if there is some partition λ � d such that U ∈
Xλ(F (p)).

Consequently, the fiber of the Wroński map at a point, say Wr(U ; z) =∏ (z − pi )di ,
is a union of intersections of Schubert varieties:

Wr−1

(∏
i

(z − pi )
di

)
=
⊔

λ(i)�di

⋂
i

Xλ(i) (pi ). (3)

Here, the union is over tuples λ(1), . . . , λ(r) with λ(i) � di for each i .
In type B, the statements are analogous. The restriction of Wr to OG is again flat

and finite, of degree |SYT( )|, and the fibers can be described based on square factors
of Wr(U ; z).
Lemma 3.7 [11, Thm. 5] Let U ∈ OG(n,Sym2n(C2)) and p ∈ P

1. Then Wr(U ; z)
is a perfect square. Moreover, it is divisible by (z − p)2d if and only if there is some
strict partition σ � d such that U ∈ �σ (F (p)).

Thus, the fibers of the Wroński map on OG have an analogous description in terms
of intersections of orthogonal Schubert varieties:

Wr−1

(∏
i

(z − pi )
2di

)
∩ OG =

⊔
σ (i)�di

⋂
i

�σ(i) (pi ). (4)

3.2.1 Tableau Labels, Type A

By Theorems 3.3 and 3.4, if the points pi are all real, the set

Xλ(1) (p1) ∩ · · · ∩ Xλ(r) (pr ),

consists of reduced real points, enumerated by the appropriate Littlewood–Richardson
coefficient. In fact, more is true: it was shown in [12] that one may label these points
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individually by Young tableaux, viewing them as points in a fiber of theWroński map,
as in (3).

Let d = (d1, . . . , dr ) be nonnegative integers with
∑

di = k(n − k). Let Pd ⊂
P
k(n−k) be the locuswhere theWrońskian factors as a product

∏
(z−pi )di for some pi .

Let Pd be the closure of Pd. By the theorems above, the restriction of the Wroński
map to the real points of Pd is a covering map. The approach in [12] is then to vary
the points pi and label them based on asymptotic behavior. The result is as follows,
in slightly different language:

Theorem 3.8 (tableau labels, type A [12]) Suppose p1 < p2 < . . . < pr < ∞. Let
m = {(pi , di )} be the corresponding multiset of points on RP

1. There is a bijection
between points ofWr−1(m) lying in Xλ(1) (p1)∩· · ·∩ Xλ(r) (pr ) and sequences of dual
equivalence classes (D1, . . . , Dr ) of type (λ(1), . . . , λ(r)). Moreover, this bijection
changes only when a point pi crosses ∞.

We briefly describe these labels in the case where all the multiplicities are 1, that is,
the Wrońskian factors as Wr(z) = ∏ (z − pi ). In this case, Wr−1(m) is in bijection
with the set of standard tableaux of rectangular shape, SYT( ). For complete details,
see [12, Sect. 4]. By translating all points upwards along R, we assume 0 < p1 <

. . . < pr < ∞.
Let x ∈ Wr−1(m) be a point in the fiber. Viewing x as the row span of a k×nmatrix,

we write pλ(x) for the Plücker coordinate corresponding to the tuple of columns

λ + (k, k − 1, . . . , 1) = (λ1 + k, . . . , λk + 1).

We consider the degeneration where we send pi → 0 for all i , with pi ≈ zk(n−k)+1−i .
This gives a path in Pk(n−k), staying in the locus P1,...,1, where Wr is a covering map.
We lift this path to x and examine the rates of convergence of the Plücker coordinates
pλ(x) as z → 0.

It turns out that these rates are determined by a uniquely defined standard tableau
T = T (x), as follows: for each λ, let val(T |λ) be the sum of the entries of T in the
squares λ. Then

pλ(x; z) ≈ zval(T |λ) as z → 0.

Example 3.9 In Gr(2, 4), consider the intersection of four divisorial Schubert classes.
The path described above lifts to the Schubert cell complementary to X�(∞), with
coordinates

[
0 1 p p
1 0 p p

]
.

Note that, up to sign, p is the determinant of the last two columns and p∅ = 1, the

determinant of the first two columns. Then, as z → 0, the two points in Wr−1(m) are
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of the form

1 2
3 4

:
[
0 1 O(z) O(z3)
1 0 O(z4) O(z6)

]
,

1 3
2 4

:
[
0 1 O(z) O(z4)
1 0 O(z3) O(z6)

]
,

and some cancellation gives p = O(z10) in both cases.

The assignment x �→ T is bijective. By construction, it changes only when the
lowest or highest point pi crosses to∞. Specifically, suppose p1 decreases and crosses
−∞. Then the normalization described above (translating all points upwards to R+)
changes, as does the tableau label. It turns out that the new tableau T ′ is obtained from
T using Schützenberger’s tableau promotion (see [19]).

In the case where the multiplicities m = {(pi , di )} are arbitrary, a point x ∈
Wr−1(m) lies in some intersection of Schubert varieties Xλ(1) (p1) ∩ · · · ∩ Xλ(r) (pr ),
for some partitions λ(i) � di . To label x , we first perturb the base pointm slightly, sep-
arating pi into di separate points. We lift this perturbation to x , then obtain a standard
tableau T by the construction above. Different choices of lift will give different stan-
dard tableaux, but the data of the sequence of dual equivalence classes (D1, . . . , Dr )

remains well-defined [12, Thm. 6.4], and the statement about Schützenberger pro-
motion generalizes to Theorem 3.11 below. Concretely, if T ∈ SYT( ) is such a
tableau, then Di is the dual equivalence class of the subtableau containing the entries
ri + 1, . . . , ri + |λi |, where ri =∑ j<i |λ j |. The class Di will have type λ(i).

3.2.2 Collisions andMonodromy

When a marked point crosses ∞, the normalization step (moving all points to R+)
changes, so the tableau label changes. It turns out that the new tableau label is obtained
by tableau switching.

Theorem 3.10 [12, Thm. 3.5] Consider a path γ : [0, 1] → P
k(n−k) in which p1

crosses −∞ and the others remain constant. Let x ∈ Wr−1(γ (0)) and let x ′ ∈
Wr−1(γ (1)) be the result of lifting γ to x. If x corresponds to the chain of dual equiv-
alence classes (D1, . . . , Dr ), then x ′ corresponds to (D′

2, D
′
3, . . . , D

′
r , D

′
1), obtained

by successively tableau-switching D1 past D2, D3, . . . , Dr .

Finally, we give a partial description of how the tableau labels change when the
points pi collide. In general, the map becomes a branched cover.

Theorem 3.11 Let γ : [0, 1] → P
k(n−k) be the path in which pi collides with pi+1 and

the other points stay constant. Let x ∈ Wr−1(γ (0)) and let x ′ ∈ Wr−1(γ (1)) be the
result of lifting γ to x. Suppose x corresponds to the chain of dual equivalence classes
(D1, . . . , Dr ). Let D̄ = Di ∪ Di+1, the class obtained by concatenating tableaux.
Then x ′ is labeled by (D1, . . . , Di−1, D̄, Di+2, . . . , Dr ).

This statement follows directly from the limiting procedure in Theorem 3.8 for
constructing the tableau labels. Note that, in general, the same class D̄ may arise from
different pairs (Di , Di+1), even if the shapes λ(i), λ(i+1) are fixed.
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3.2.3 Tableau Labels, Type B

In type B, the story is analogous. Let p1 < . . . < pr < ∞, and let m = {(pi , di )} be
a multiset, where

∑
di = dimOG. For each i , let σ (i) � di be a strict partition.

Theorem 3.12 (tableau labels, type B [13]) There is a bijection between points of
Wr−1(m) lying in �σ(1) (p1)∩ · · · ∩�σ(r) (pr ) and chains of shifted dual equivalence
classes (D1, . . . , Dr ) of type (σ (1), . . . , σ (r)). This bijection changes only when a
point pi crosses ∞ or collides with another point:

• If p1 crosses−∞, the label (D1, . . . , Dr ) changes to (D′
2, . . . , D

′
r , D

′
1), obtained

by shifted-tableau-switching D1 past D2, . . . , Dr in order.
• If pi collideswith p j , the label (D1, . . . , Dr ) changes to (D1, . . . , Di−1, D̄, Di+2,

. . . , Dr ), where D̄ = Di ∪ Di+1 is the class obtained by concatenation.

The approach and method are identical; the main connection is the labels in type B
are compatible with those in type A in the following sense. In the case where the
multiplicities are all 1, the Wrońskian factors as Wr(z) =∏ (z − pi )2, so a point x ∈
Wr−1(m) lies in some intersection of codimension-2 Schubert varieties in Gr(n,W ),

X
or

(p1) ∩ · · · ∩ X
or

(pN ).

Thus x is labeled by a chain of dual equivalence classes (D1, . . . , DN ) of type

( or , . . . , or ). Note that each Di is uniquely determined by the data of the
skew shape it occupies and, if the two boxes are non-adjacent, by whether the filling
should be “horizontal-type” ( 2

1 ) or “vertical-type” ( 1
2 ). By [13, Thm. 1], it turns out

that x ∈ OG if and only if:

(i) all the Schubert conditions are type , and
(ii) the tableau T is symmetric, that is, each successive pair of boxes occupies the

locations (i, j) and ( j, i + 1) for some i, j .

Note that condition (i) is necessary since X ∩ OG = � , whereas X ∩ OG =
X ∩ OG = � since is the symmetrization of . Thus, by dimension-

counting, the intersection in OG will be empty (by Theorem 3.3) unless condition (i)
holds.

Given condition (ii), it is natural to record only the “upper half” of the entries,
thereby obtaining a shifted standard tableau:

1 2 4
3 5 6

� 2 4
6

= 1 2
3

.

When the multiplicities are larger, the approach is analogous to that used in type A:
we perturb a multiple point into a collection of distinct points, corresponding to square
factors (z − pi )2 of the Wrońskian, and we lift to OG. We thereby obtain a standard
tableau, which is symmetric if and only if x ∈ OG. As in type A, the resulting tableaux
are well defined only up to shifted dual equivalence.
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Theorem 3.13 [13] Let x ∈ Wr−1(m) ∩OG. The symmetrical and shifted labels of x,
according to Theorems 3.8 and 3.12, agree under the above bijection.

3.2.4 Schubert Curves and Evacuation Shuffling

Supposeσ (1),. . ., σ (r) are partitions with
∑|σ (i)|=dimOG−1, p1, . . . , pr ∈ P

1 are
distinct points. We define the Schubert curve

S(σ •) =
r⋂

i=1

�σ(i) (F (pi )).

Given x ∈ S, we see by Lemma 3.7 and degree-counting that Wr(x; z) must have the
form

Wr(x; z) =
r∏

i=1

(z − pi )
2|σ (i)| · (z − t)2,

where the t factor varies depending on x . The set of polynomials of this form, for
all t , is naturally identified with P

1, yielding a map Wr : S(σ •) → P
1. We describe

the geometry of this map. Note that the analogous statements in type A are already
known [7, Cor. 2.9] via the M0,n construction.

Lemma 3.14 The Schubert curve S(σ •) is reduced, has smooth real points, and
Wr : S(σ •) → P

1 is flat. Over RP1, the map is smooth, and moreover Wr−1(RP1)

consists entirely of real points. In particular, S(R) → RP
1 is a smooth covering map

of degree f
σ•,�.

Proof First note that the fibers for p ∈ P
1 − {p1, . . . , pr } are of the form S(σ •)

∩��(F (p)). For the other fibers, if p = pi for some i , the fiber is the disjoint union

Wr−1(pi ) =
⊔

σ∈σ
(i)
+

�σ (F (pi )) ∩
⋂
j �=i

�σ( j) (F (p j )),

where σ
(i)
+ is the set of strict partitions obtained by adding a box to σ (i).

By Theorem 3.3, all the fibers are dimensionally transverse intersections, so each
fiber’s multiplicity is given by the corresponding product of Schubert classes. By
Theorem 3.4, all the fibers over RP1 \ {pi } are reduced and real. By the Pieri rule, the
set-theoretic multiplicity does not change at the fibers p = pi , and these fibers are
also reduced and real, by Theorem 3.4. We deduce that S → P

1 is flat, S is generically
reduced and its real points are all smooth. By flatness, it follows that S is reduced. ��

Notably, the real points of S are smooth even in the case where t = pi for some i .
The tableau label will change at this collision; we describe the resulting monodromy
using the evacuation shuffle operator esh defined below.
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Theorem 3.15 Consider the path γ : [0, 1] → [pi − ε, pi + ε] ⊂ RP
1. Let x ∈

Wr−1(γ (0)) and let x ′ ∈ Wr−1(γ (1)) be obtained by lifting γ to x. Let x be labeled
by (D1, . . . ,�, Di , . . . Dr ). Then, for x ′, the pair (�, Di ) is replaced by (D′

i ,�) =
esh(�, Di ), and the other classes are unchanged.

The evacuation shuffle operation esh : (D, E) �→ (E ′, D′) is uniquely determined
by two properties:

(i) if D is a straight shape, esh(D, E) is the same as tableau-switching (D, E)

∼ (Ẽ, D̃), and
(i) the operation esh is coplactic, that is, if (D, E, F) ∼ (F̃, D̃, Ẽ) is obtained by

successively switching D and E past F , then (esh(D, E), F) ∼ (F̃, esh(D̃, Ẽ)).

In particular, esh(�, Di ) may be computed by first rectifying (�, Di ) to a straight
shape, then tableau-switching � past Di , then un-rectifying. We show that this proce-
dure must compute the monodromy of the path γ .

Proof of Theorem 3.15 First, the collisions statement in Theorem 3.12 shows that the
labels D1, . . . , Di−1, Di+1, . . . , Dr do not change from x to x ′. Next, consider the
path γ ′, where we first rotate all the pi through R−,

(p1, . . . , pi−1, t, pi , . . . , pr )
rotate−−−→ (t, pi , . . . , pr , p1, . . . , pi−1),

then switch t and pi , then rotate back. On P
N , there is a homotopy from γ to γ ′. By

Lemma 3.14, the fibers of the Wroński map do not collide when t collides with pi , so
we may lift the homotopy to OG and replace γ by γ ′.

Combinatorially, γ ′ changes the tableau label by first switching the pair (�, Di )

inwards to a rectified shape, then allowing the collision, then tableau-switching back.
It therefore suffices to show that, for rectified shapes, the collision step is the same as
tableau-switching (�, Di ). Thus we reduce to the case i = 1, and we show (�, D1)

∼ (D′
1,�).

At the collision, the label on x changes from (�, Di ) to � � Di , and the label on
x ′ changes from (D′

i ,�) to D′
i � �, and these classes agree:

� � Di = D′
i � � = D

σ
(i)
+

,

the unique dual equivalence class of straight shapeσ
(i)
+ , for some strict partition extend-

ing σ (i) by a box. By the Pieri rule, there is only one factorization of D
σ

(i)
+

into pairs

of the given forms. Tableau switching (�, Di ) gives such a pair, so it must yield
(D′

i ,�). ��

3.3 TheMonodromy Operator!

We now describe the monodromy operator ω, that is, the permutation on any fiber of
the Wroński map, say Wr−1(0) (assuming without loss of generality that pi �= 0 for
all i), induced by the smooth covering Wr : S(R) → RP

1.
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By repeatedly applying Theorem 3.15 to move a point x past each point pi to make
a full loop above RP1, we see that can canonically label the points of this fiber by the
chains of dual equivalence classes in the set

DE(λ(1), , λ(2), . . . , λ(r)),

such that the monodromy operator ω is given by the composition of shuffles and
evacu-shuffles

ω = sh(2) ◦ · · · ◦ sh(r−1) ◦ esh(r−1) ◦ · · · ◦ esh(2),

where esh(i) and sh(i) act on the i-th and (i + 1)-th tableaux in the chain. In the
sections that follow, our local description of esh will apply to each of the above esh(i)

operations. Therefore, our main results, in the case of three marked points p1, p2, p3,
generalize without difficulty to the general case. Thus, for simplicity, we restrict for
the remainder of the paper to the case of three partitions α, β, γ , i.e., we study the
operator

ω = sh(2) ◦ esh(2),

on the sets DE(α, , β, γ ) and DE(α, β, , γ ), or equivalently

LR(α, , β, γ ) and LR(α, β, , γ ).

For the remainder of the paper we will primarily work with LR(α, , β, γ ) and
LR(α, β, , γ ) rather than the corresponding dual equivalence chains. Furthermore,
since we mostly work only with sh(2) and esh(2), we often simply abbreviate them as
sh and esh.

Since the straight shapeα and anti straight shape γ c each have only one Littlewood–
Richardson tableau, an element of LR(α, , β, γ ) can be thought of as a pair (�, T ),
with T a Littlewood–Richardson tableau of rectification shape (and content) β, and �
an inner co-corner of T , such that the shape of � � T is γ c/α. We represent elements
of LR(α, β, , γ ) similarly, with � as an outer co-corner. We will occasionally refer
to the element as T if the position of the � is understood.

Combinatorially, ω can be thought of as a commutator of well-known operations
on shifted Young tableaux. Computing esh(�, T ) is equivalent to the following steps:

Rectification. Treat the � as having value 0 and being part of a semistandard tableau
T̃ = ��T . Rectify, i.e., shuffle (S, T̃ ) to (T̃ ′, S′), where S is an arbitrary straight-
shape tableau.

Promotion (see [19]). Delete the 0 of T̃ ′ and rectify the remaining tableau. Label the
resulting empty outer corner with the number 
(β) + 1.

Un-rectification.Un-rectify the new tableau by shuffling once more with S′. Replace
the 
(β) + 1 by �.

Note that the promotion step corresponds to shuffling the� past the rest of the rectified
tableau.
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4
2 3 3

1 2 2 2
× 1 1 1 1 1

4
2 3 3

1 2 2 2
1 × 1 1 1 1

4
2 3 3

× 2 2 2
1 1 1 1 1 1

4
2 3 3

2 × 2 2
1 1 1 1 1 1

4
× 3 3

2 2 2 2
1 1 1 1 1 1

4
3 3 ×

2 2 2 2
1 1 1 1 1 1

Fig. 6 Shuffling the � past a highest weight tableau; the path of the � is shaded

For computational purposes, this description is inefficient and opaque—it is difficult
to predict esh(�, T ) even though (it turns out) very few entries are changed! Thus,
our next goal is to describe this algorithm “locally”, in a way that does not involve
rectifying the tableau.

4 Shifted Evacuation-Shuffling via Coplactic Operators

We now give a first local algorithm to compute evacuation-shuffling on skew shifted
tableaux,

esh : (�, T ) �→ (T ′,�).

as a certain composition of the coplactic operators (see Sect. 2.5) Ei , E ′
i , Fi , F

′
i for

various i (Theorem 4.2). We begin with an observation about the “promotion” step of
the rectify-unrectify process described above.

Lemma 4.1 Suppose��T is a straight shape tableauwith T aLittlewood–Richardson
tableau and � in the (unique) inner corner of T . Then shuffling � past T consists of
two phases:

Phase 1: If the entry y east of � is a primed letter, slide � past y and then south
past the entry below it. Repeat until there is not a primed entry east of �,
and then go to Phase 2.

Phase 2: Slide the � horizontally to the end of its row.

Proof Since T is highest weight, it can be formed by a single outer slide applied to a
highest weight straight shape tableau. It is clear by inspection that such an outer slide
is the reverse of the two-phase process described above. (See Fig. 6.) ��

4.1 The Coplactic Algorithm

By expressing each phase described in Lemma 4.1 in terms of the operators
Ei , E ′

i , Fi , F
′
i , we obtain a local algorithm for esh.
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Theorem 4.2 (coplactic algorithm for esh) Assume that (�, T ) ∈ LR(α, , β, γ ).
Then esh(�, T ) can be computed as follows. Start with step i = 1 and in Phase 1,
and replace � by 0.

Phase 1: If E ′
i−1(T ) �= Ei−1(T ), apply E ′

i−1 ◦ Ewt(T )i−2
i−1 . Increment i and repeat

Phase 1. Otherwise, replace the (unique) i−1 by �, add 1 to all values
less than i − 1, and go to Phase 2.

Phase 2: Set � = i ′ and apply the composition of operators Fr ◦ · · · ◦ Fi+1 ◦ Fi to
the resulting tableau, where r = 
(β). Replace the only r + 1 by �.

Proof It suffices to show that this local algorithm is correct in the rectified setting (i.e.,
it agrees with Lemma 4.1), and all operations are coplactic.

In the rectified setting, it is straightforward to check that when we are in Phase 1,
E ′
i−1 ◦ Ewt(T )i−2

i−1 has the same effect (up to relabelling entries) as sliding � through
the i-entries of T . The transition from Phase 1 to Phase 2 can be detected by whether
or not E ′

i and Ei agree, a coplactic condition; and in Phase 2, Fr ◦ · · · ◦ Fi+1 ◦ Fi has
the same effect as sliding the � horizontally to the end of the row. Thus the algorithm
is correct on rectified tableaux.

The operations Ei , Fi , E ′
i , F

′
i are all coplactic, so it remains to check that all “rela-

belling” steps (adding 1 to entries, replacing � with a numerical value, etc.) are also
coplactic. We claim that all of these replacements preserve the standardization of the
tableau. This clear everywhere except for the replacement� = i ′ at the start of Phase 2.
For this step, we need to show that at the end of Phase 1, before we do any of the rela-
belling, we can replace the unique i − 1 with an i ′ and this preserves standardization.
By definition, this is equivalent to saying that F ′

i−1 is defined at this stage. But since
F ′
i−1 is coplactic, it is sufficient to verify that this is true in the rectified case, and this

is again straightforward. ��
Similarly we can express esh−1 in terms of coplactic operators. The main detail

requiring explanation here is how to detect and perform the Phase 1/Phase 2 transition
while running the algorithm in reverse.

Theorem 4.3 Let (T ,�) ∈ LR(α, β, , γ ). Then esh−1(T ,�) can be computed as
follows. Replace � with r + 1 where r is the largest entry appearing in T , and let T ′
be the union of T with this entry r + 1.

Reverse Phase 2: Apply Er , Er−1, Er−2, and so on to T ′ until reaching an index i
for which Ei−1 is not defined (or i = 1). Replace the first i or i ′ in standardization
order by �, and call the resulting tableau T ′′. Proceed to Reverse Phase 1.

Reverse Phase 1: Subtract 1 from all entries less than i in T ′′. Replace � with i − 1
and apply the composition

Fwt(T )0−2
0 ◦ F ′

0 ◦ Fwt(T )1−2
1 ◦ F ′

1 ◦ · · · ◦ Fwt(T )i−2−2
i−2 ◦ F ′

i−2,

to the resulting tableau. Replace the only 0 by �.

The proof uses essentially the same idea as the proof of Theorem 4.2, and we omit it.
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4.2 Phase 1 vs. Phase 2 in Types A and B

The fact that the algorithm in Theorem 4.2 has two phases with two completely dif-
ferent descriptions is, at first glance, a bit surprising—in contrast to sh(�, T ), which
does not require a two-phase algorithm. Lemma 4.1 provides some motivation for
this fact, but doesn’t really address the question of why this division exists. Here, we
discuss some facts about evacuation-shuffling that help explain this structure.

A similar phenomenon occurs in type A: evacuation-shuffling divides into two
phases with seemingly different rules. In establishing the algorithm via local moves,
however, a key simplifying step is to understand Phase 2 as a “dualized” Phase 1
[4, Lem. 4.14–15]. In type B, we show below that no comparable duality exists, i.e.,
Phase 2 is not simply a disguised version of Phase 1.

Suppose T is a shifted or unshifted tableau, and let� be an inner corner of T . Write
T = T<s � T≥s , where T<s and T≥s consist of all (primed or unprimed) entries of T
less than s and greater than or equal to s, respectively. A key property of the jeu de
taquin bijection is that we can compute sh(T ,�) in stages, by sliding � past T≥s , and
then past T<s . In general evacuation shuffling does not have this property, but there is
a special case in which it does.

Let μ, ν, and λ denote the rectification shapes of T<s , T≥s , and � � T , treating �
as 0. Let cλ

,μ,ν or f λ
,μ,ν denote the appropriate generalized Littlewood–Richardson

coefficient. We call T = T<s � T≥s a simple decomposition if cλ
,μ,ν or f λ

,μ,ν = 1.
Note that this definition depends not only on T , but also on the choice of inner corner
�. The decomposition is non-trivial if T<s and T≥s are both nonempty.

Theorem 4.4 If T = T<s � T≥s is a simple decomposition, then

esh(�, T ) = (T ′
<s � T ′≥s,�),

where (T ′
<s, T

′≥s,�) = esh(2) ◦ esh(1)(�, T<s, T≥s).

Proof Write esh(�, T ) = (T̂ ′,�). We must show that T̂ ′
<s = T ′

<s and T̂ ′≥s = T ′≥s .
Since evacuation shuffling is coplactic, and well defined on dual equivalence classes,
it suffices to prove this in the case where � � T is rectified, and T<s and T≥s are both
Littlewood–Richardson tableaux. (Technically, here we mean T≥s is a Littlewood–
Richardson tableau after decrementing all its entries by s−1.) Note that (T ′

<s, T
′≥s,�)

and (T̂ ′
<s, T̂

′≥s,�) are both chains of Littlewood–Richardson tableaux contributing to
the coefficient f λ

μ,ν, (cλ
μ,ν, for unshifted tableaux). But since f λ

μ,ν, = 1, we must

have (T ′
<s, T

′≥s,�) = (T̂ ′
<s, T̂

′≥s,�), as required. ��
Remark 4.5 Theorem 4.4 provides a sufficient, but not a necessary condition to con-
clude that esh(�, T ) = (T ′

<s � T ′≥s,�). In the case where � � T is rectified,
the conclusion can be reformulated as esh(�, T≥s) = sh(�, T≥s), or equivalently
ω(�, T≥s) = (�, T≥s). Examples of tableaux with this property are discussed in
[4, Prop. 7.5].

For our purposes, the main example is the Phase 1/Phase 2 decomposition in com-
puting esh(�, T ). If the transition from Phase 1 to Phase 2 occurs when i = s,
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then T = T<s � T≥s is a simple decomposition. This can be seen directly using
the Littlewood–Richardson rule: (�, T<s, T≥s) is the unique chain of Littlewood–
Richardson tableaux contributing to f λ

,μ,ν . This explains why the Phase 1/Phase 2
decomposition, suggested intuitively by Fig. 6 and Lemma 4.1 in the rectified case,
actually leads to a natural division of T into two parts for computing esh(�, T ) in
general.

To address the question of why the algorithm is so different on each part, first note
that this is not the only simple decomposition of T . In fact, by the same argument as
above, T = T<i �T≥i is a simple decomposition for all i < s. This tells us that Phase 1
can be computed by evacu-shuffling � past the 1- and 1′-entries in T , then past the 2-
and 2′-entries, and so forth, up until the transition point. Thus, Phase 1 is completely
determined by the Pieri case, i.e., by how esh behaves on tableaux in which all entries
are equal to 1 or 1′. We record this fact for future reference.

Lemma 4.6 Phase 1 of esh can be computed by applying esh to move the � past just
the 1′/1-ribbon, then separately past the 2′/2-ribbon, and so on.

Note that this fact is also made clear by the coplactic algorithm in Theorem 4.2:
step i of Phase 1 only involves the entries i ′/i and a single i−1, a placeholder for �.
In Phase 2, however, the Fi step involves the i ′/i and i+1′/i+1 strips, both of which
may be large.

However, for r ≥ i ≥ s, T = T<i � T≥i is not a simple decomposition, and thus
Phase 2 cannot be further decomposed in the same way. However, this analysis is
specifically about Littlewood–Richarson tableaux. It is reasonable to wonder whether
we could somehow decompose Phase 2, if we replace T by some other tableau in its
dual equivalence class. For unshifted tableaux, this is precisely what happens. The
s-decomposition defined in [4] is equivalent to choosing a different representative for
the dual equivalence class, yielding a simple decomposition. From this point of view,
Phase 2 in the unshifted algorithm behaves like a dual version of Phase 1. However, the
following theorem shows that Phase 2 for shifted tableaux is not simply decomposable,
in general. Thus for shifted tableaux, Phase 2 seems to be fundamentally different from
Phase 1.

Proposition 4.7 Let T be a Littlewood–Richardson tableau of weight β, and let �
be an inner corner of T . Suppose esh(�, T ) is computed entirely in Phase 2, and
β1 = β2 + 1. Then there is no tableau in the dual equivalence class of T with a
non-trivial simple decomposition.

Proof Suppose to the contrary that such a tableau, say T ∗, exists. Then T ∗ is in the
dual equivalence class of T , for for some t , T ∗

<t , T
∗≥t , T

∗, and��T ∗ have rectification
shape μ, ν, β, and λ respectively, and f λ

μ,ν, = 1. Let (T1, T2,�′) be the unique chain
of Littlewood–Richardson tableaux such such that T1 has weight μ, T2 has weight ν,
contributing to f λ

μ,ν, .
We first claim that �′ must be in the first row of λ. Since T ∗

<t and T ∗
>t are obtained

from a decomposition of T ∗, we necessarily have f β
μ,ν ≥ 1. Moreover, since

f λ
μ,ν =

∑
α

f λ
α, f α

μν,
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we see that α = β is the only term contributing to this sum, and f β
μν = 1. It follows

that (T1, T2)must be the unique chain of Littlewood–Richardson tableaux contributing
to f β

μν , and hence �′ = λ/β. Since T ∗ is in the dual equivalence class of T , λ is also
the rectification shape of T ′ � �. By Lemma 4.1, �′ = λ/β ends up in row s if the
transition from Phase 1 to Phase 2 occurs at i = s. Since we assumed esh(�, T ) is
computed entirely in Phase 2, the transition here is at s = 1, which proves the claim.

Let b denote the first 1 in T2 in reading order. We next claim that b cannot be in the
first row of λ. Recall that the entries in row i of T2 are primed or unprimed numbers
which are at most i . Thus, we have the following inequalities:

ν1 ≥ β1 − μ1, ν2 + ν1 ≥ β1 + β2 − μ1 − μ2.

If b is in the first rowofλ, then the first of these is an equality. Togetherwithβ1 = β2+1
andμ1 ≥ μ2+1,wededuce that ν1 ≤ ν2. This is impossible, since ν is a strict partition,
which proves our second claim.

We produce a new chain of Littlewood–Richardson tableaux (T1, T ′
2,�′′) as fol-

lows. Beginning with T2 � �′, replace �′ with a 1, and replace b with �′′; then slide
�′′ out. The effect of these replacements on the word of T2 is to move the first 1 to
the end of the word, which maintains ballotness (by Corollary 2.21), as does sliding.
Therefore the resulting tableau T ′

2 is also a Littlewood–Richardson tableau ofweight ν.
Thus (T1, T ′

2,�′′) is a chain of Littlewood–Richardson tableaux contributing to the
coefficient f λ

μ,ν, . Finally, note that �′ is in the first row of λ, but �′′ cannot be in the
first row of λ, so (T1, T2,�′) �= (T1, T ′

2,�′′). Thus f λ
μ,ν, ≥ 2, for a contradiction. ��

5 Shifted Evacuation Shuffling via Switches

In this section, we reinterpret the algorithm of Theorem 4.2 as a sequence of switches
which move the � across the tableau. This formulation describes esh as a process that
more closely resembles jeu de taquin, and we show that the algorithm has a number of
the sameproperties as jeu de taquin. These propertieswill allowus tomake connections
with K-theory in Sect. 6. Sections 5.1–5.4 introduce the concepts and state the main
theorems that are needed for these applications. The proofs are given in Sect. 5.5. The
reader who is not interested in the technical details of the proofs may wish to proceed
directly from Sect. 5.4 to Sect. 6, with some assurance from the authors that these
results have also been extensively verified by computer calculations.

5.1 Switches, Hops, and Inverse Hops

We introduce some terminology that will be useful for stating, analyzing and applying
the algorithm.Throughout,wewill implicitly assume thatwe are operating on a tableau
containing a single �, whose reading word (not including �) is ballot. In examples,
we will only display the reading word of the tableau under consideration.

Definition 5.1 A switch means that we interchange the positions of � and another
entry t , subject to the condition that between � and t in reading order, there are no
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other occurrences of the symbol t . (The entry t switching with�withmay come either
before or after � in reading order.)

Notice that this definitionmaydependon the choice of representative for the tableau.
For example, 11� � �11 is not a switch, but 1′1� � �11′ is a switch. For a variety
of reasons, we are forced to work with representatives when talking about switches,
and the question of which representative to use will be a recurring issue. To help
keep things straight, we adopt the convention that a switch never implicitly changes
whether an entry is primed: if the entry is an i ′ before the switch, it will be an i ′ after
the switch. When we need to change representatives, this will be done explicitly and
separately from switching.

Definition 5.2 We say � can switch with an entry t in a tableau, or the switch is
valid, if, after switching � with t , the reading word of the resulting tableau (not inclu-
ding �) is ballot.

Definition 5.3 A valid switch is called a hop, if � moves backward in standardization
order (≺). That is, if t is unprimed, then � moves forward in reading order, and if t is
primed then � moves backward in reading order. If a valid switch is not a hop, then
its inverse is a hop, and we refer to such switches as inverse hops. We also say that �
hops across a t or inverse hops across a t respectively.

Remark 5.4 In the case where t is the first i or i ′, this definition depends on the choice
of representative. For example both 1�1 � �11 and 1′�1 � �1′1 are valid switches,
but the former is a hop and the latter is an inverse hop. Even though, in this case, the
result of switching is well defined on equivalence classes, these should be regarded as
two different valid switches.

5.2 The Switching Algorithm

We now describe esh as a sequence of switches.

Theorem 5.5 (switching algorithm for esh) Let (�, T ) ∈ LR(α, , β, γ ). Then
esh(�, T ) can be computed as follows, starting at i = 1, and stopping when we
reach i = 
(β) + 1.

Phase 1: Begin with T in canonical form. If there is an i ′ after � in reading order,
hop � across an i ′, then hop across an i . Increment i by 1 and repeat. If no
such i ′ exists, go to Phase 2.

Phase 2: If � most recently switched with an entry earlier in reading order, or � has
not yet moved, enter Phase 2(a) below; otherwise, skip to Phase 2(b).

Phase 2(a): If � precedes all i and i ′ entries in reading order, skip to Phase 2(b).
Change first(i) to i ′, then perform as many valid inverse hops across
i ′ as possible. If the � now precedes all i and i ′ entries in reading
order, go to Phase 2(b). Otherwise, if the i, i+1-reading word has the
form . . . i(i + 1)∗� . . ., hop � across the i . Increment i by 1 and repeat
Phase 2.
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Phase 2(b): Perform as many valid inverse hops across i as possible. If the i, i+1-
reading word has the form . . . �(i ′)∗(i +1′) . . ., hop � across the i +1′.
Increment i by 1 and repeat Phase 2.

We refer to a switch occurring in the algorithm above as a step of the algorithm.

Example 5.6 Let (�, T ) have reading word

3233′42′232′2′121�1′12111111.

Then the algorithm runs as follows.

Step i Word Choice of representative

Start 1 3233′42′232′2′121�1′12111111 Begin with canonical form.
Phase 1 1 3233′42′232′2′1211′�12111111
Phase 1 1 3233′42′232′2′12�1′112111111
Phase 2(a) 2 32′33′42′232′�122′1′112111111 First 2 changes to 2′.
Phase 2(a) 2 32′33′42′23�2′122′1′112111111
2(a) (hop) 2 32′33′42′�322′122′1′112111111
Phase 2(a) 3 3′2′3�42′3′322′1′22′1′112111111 First 3 changes to 3′.
Phase 2(a) 3 �2′33′42′3′322′122′1′112111111
Phase 2(b) 3 32′�3′42′3′322′122′1′112111111
Phase 2(b) 4 32′43′�2′3′322′122′1′112111111

We will show that every step in the switching algorithm is a valid switch. This is
not obvious, and is asserted by part (i) of the following theorem.

Theorem 5.7 Let T , including the �, be a tableau that appears after some step of the
computation of esh(�, T1) for some pair (�, T1) ∈ LR(α, , β, γ ). Then:

(i) Omitting the �, the reading word of T is ballot.
(ii) Omitting the �, the tableau is semistandard.

Note that the same properties hold for the tableaux arising as intermediate steps dur-
ing ordinary jeu de taquin. In the next section, we will discuss two more properties of
the switching algorithm that are analogues of jeu de taquin properties (Theorem 5.14).
Unfortunately, the individual steps of the switching algorithm are not coplactic opera-
tions in any meaningful sense. This will make the proofs considerably more technical
than the proof of Theorem 4.2. We will prove Theorems 5.5 and 5.7 in Sect. 5.5 below.

For now, here is a brief outline of what we prove, to relate Theorem 5.5 to The-
orem 4.2. In Phase 1, the operator E ′

i−1 ◦ Ewt(T )i−2
i−1 decrements all but three of the

entries in the i − 1′, i − 1, i ′, i-subtableau; at the end of Phase 1, we increment all
these entries, and the net result is that they are unchanged. The other three entries
correspond to the �, i, i ′ identified in the switching description of Phase 1, and the
operator changes these to i ′, i,� respectively.We show that the transition fromPhase 1
to Phase 2 occurs for the same i in both algorithms. Call this transition point i = s, and
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let T ′ denote the tableau at the start of Phase 2 in the coplactic algorithm (after setting
� = s′). At each Phase 2 step of the switching algorithm, the tableau is essentially just
Fi−1 ◦ · · · ◦ Fs(T ′), but with� replacing one of the entries (either an i or an i ′). The�
moves as follows: it first switches through the i/i ′ subword in standardization order,
until it reaches the final Fi -critical substring. Then, the four possible ways Phase 2
can loop (either in Phase 2(a) or Phase 2(b) and with or without a hop) correspond to
the four possible types for this critical substring, and in each case the movement of �
and incrementing of i corresponds to applying the operator Fi .

Remark 5.8 The best practical way to compute esh(�, T ) is to use a hybrid of the
two algorithms. The switching algorithm is easier and more efficient for Phase 1, and
the coplactic algorithm is better for Phase 2. For K-theoretic purposes, however, the
switching algorithm connects to genomic tableaux (see Sect. 6).

5.3 Index Decomposition

In the switching algorithm, � first switches with 1′ entries, then 1 entries, then 2′,
then 2, and so on. We therefore wish to define the index of a switch as the letter the
� switches with, with one exceptional case for the situation described in Remark 5.4.
We first make the following definition in anticipation of this boundary case.

Definition 5.9 A valid switch is exceptional if� switches with i ′ = first(i ′),�moves
backward in reading order, and there are no entries equal to i between i ′ and � in
reading order.

For example, the switch 1′�1 → �1′1 is exceptional, but 1�1 � �11 and 1′1� �
�11′ are valid switches that are not exceptional. Note in particular that exceptional
switches are inverse hops, and inverses of exceptional switches are hops.

Definition 5.10 The index of a switch between� and t is defined to be t , unless t = i ′
and the switch is exceptional or the inverse of an exceptional switch, in which case
the index is defined to be i .

We emphasize that although the exceptional switch has index i instead of i ′, it is
still considered a switch with an i ′ and the i ′ involved in the switch remains an i ′ after
the switches. This leads to the following definition, which plays a significant role in
analyzing orbits of ω, and thereby real connected components of Schubert curves (see
Sect. 6).

Definition 5.11 For t = 1, 1′, 2, 2′, . . . , we define esht to be the operation of perform-
ing all steps of index t in the switching algorithm. This gives the index decomposition,

esh = esh
(β) ◦ esh
(β)′ ◦ · · · ◦ esh2 ◦ esh2′ ◦ esh1 ◦ esh1′ .

Note that an exceptional switch of � with i ′ must be the last switch involving i ′,
and is defined to have index i (Definition 5.10). Grouping exceptional switches with
eshi rather than eshi ′ turns out to be necessary for the index decomposition to consist
of well-defined bijections.

We observe that for all symbols t , esht does one of three things:
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• performs a single hop,
• performs an exceptional switch followed by a sequence of zero or more inverse
hops, or

• performs a sequence of zero or more inverse hops, with no exceptional switches.

The most important property of the index decomposition is that it identifies points
at which we can “pause and resume” the algorithm. Here, pause means that we stop
partway through the algorithm, forget what phase of the algorithm we were in, and
forget what representative we are currently working with (e.g. by putting the tableau
back into canonical form). In general we cannot pause the algorithm at an arbitrary
point, and be able to resume, as the following example shows.

Example 5.12 Let w = 22′1′12′�11 and v = 22′1′1′2′�11, differing only in the
fourth letter. For both words, esh begins in Phase 2(a), so we have shown the repre-
sentative in which the first 1 is primed. If, for both words, we stop the algorithm when
we reach the end of Phase 2(a), we find that w and v have transformed into equivalent
words.

w � 22′�12′1′11, v � 22′�1′2′1′11.

Thus esh cannot be paused and resumed from this point. Note, however, that the last
switch performed on v is exceptional, so we have gone one step beyond computing
esh1′(v). If instead we pause the algorithm after performing all steps of index 1′ on v

and w, the words we obtain are not equivalent.

To state this pause and resume property more precisely, we make the following
definition.

Definition 5.13 Define Zi = Zi (α, β, γ ) to be the set of all ballot semistandard
tableaux of shape γ c/α and content β, with � being an outer co-corner of the letters
1′, 1, . . . , i and an inner co-corner of the remaining letters. Let Zi ′ denote the corre-
sponding set in which the � is an outer co-corner of the letters 1′, 1, . . . , i − 1, i ′, and
an inner co-corner of the remaining letters, in canonical form (the first i or i ′ treated
as unprimed).

In particular, Z0 = LR(α,�, β, γ ) and Z
(β) = LR(α, β,�, γ ).

Theorem 5.14 Let t ∈ {1′, 1, 2′, 2, . . . }.
(iii) For T ∈ LR(α,�, β, γ ), we have

esht ◦ · · · ◦ esh1 ◦ esh1′(T ) ∈ Zt (α, β, γ ).

(iv) The map esht ◦ · · · ◦ esh1 ◦ esh1′ : Z0 → Zt is a bijection.

Informally, statement (iii) says that Zt is the set of all possible tableaux we could
reach if we pause after performing all steps of index t . Statement (iv) says that the
algorithm is uniquely reversible, and hence resumable, after pausing at this point. In
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particular, this means we can regard eshi ′ and eshi as well-defined bijections from one
paused state to the next:

eshi ′ : Zi−1 → Zi ′ , eshi : Zi ′ → Zi .

Wewill prove (iii) for Phase 1 and Phase 2 separately, along with (i) and (ii) from The-
orem 5.7. Statement (iv) follows from the following theorem, which tells us explicitly
how to compute these bijections starting from the paused state.

Theorem 5.15 For t = 1′, 1, 2′, 2, . . . , let T ∈ Zi−1 if t = i ′ and T ∈ Zi ′ if t = i .
The following recipe computes esht (T ), reproducing the sequence of switches of index
t in the switching algorithm.

Case 1: Set first(t, T ) to be primed. If it is possible to perform an exceptional switch
of index t, first perform this switch; then perform as many inverse hops of
index t as possible, and stop. (Note that this case can only occur if t is
unprimed.)

Case 2: Otherwise, set first(t, T ) to be unprimed. If it is possible to perform a hop
of index t, do so and stop.

Case 3: Otherwise, set first(t, T ) = t . Perform as many inverse hops of index t as
possible.

The properties described in Theorem 5.14 are also properties of ordinary jeu
de taquin. We can decompose the jeu de taquin map sh : LR(α, β, , γ ) →
LR(α, , β, γ ) similarly. Let shi : Zi → Zi ′ and shi ′ : Zi ′ → Zi−1 be the partial
jeu de taquin bijections, defined by sliding the box through the i-entries and i ′-entries
respectively. Then we have the decomposition

sh = sh1′ ◦ sh1 ◦ sh2′ ◦ sh2 ◦ · · · ◦ sh
(β)′ ◦ sh
(β).

Combining this decomposition with the index decomposition of esh, we have the
following diagram in which each map is a bijection:

Z0

esh1′

Z1′

esh1

sh1′

Z1

esh2′

sh1

Z2′

esh2

sh2′

· · ·
esh
(β)

sh2

Z
(β).

sh
(β)

(5)

This diagramwill play an important role in analyzing the orbit structure ofω, in Sect. 6.

5.4 Reversing the Algorithm

Since there are a few of subtle details in reversing the switching algorithm, we provide
a complete statement (without proof) of the algorithm for esh−1 in terms of switches.
The main issue here is identifying the choice of representative to use at each reverse
step, which does not always match the description in the forward algorithm.
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Theorem 5.16 Let (�, T ) ∈ LR(α, , β, γ ). Then esh−1(�, T ) can be computed as
follows, starting with i = 
(β), and stopping when we reach i = 0. Begin with T in
canonical form. If the word formed by replacing� by 
(β)+1 is ballot, go to Reverse
Phase 1, and otherwise start in Reverse Phase 2(b) below.

Reverse Phase 2: If � precedes all i and i ′ entries in reading order, change first(i)
to i ′. If � most recently switched with an entry earlier in reading order, or � has
not yet moved, enter Reverse Phase 2(b) below; otherwise, skip to Reverse Phase
2(a).

Reverse Phase 2(b): Perform as many valid hops across i as possible. If � now
precedes all i and i ′ entries in reading order, go to Reverse Phase 2(a). Then,
if replacing � by i results in a ballot i − 1, i -subword, decrease i by 1 and
go to Reverse Phase 1. Otherwise, if the i − 1, i -reading word has the form
. . . (i ′)(i − 1′)∗� . . ., inverse hop � across the i ′. Decrease i by 1 and repeat
Reverse Phase 2.

Reverse Phase 2(a): Perform as many valid hops across i ′ as possible. Then, if
replacing � by i ′ results in a ballot i − 1, i -subword, decrease i by 1 and
go to Reverse Phase 1. Otherwise, if the i − 1, i -reading word has the form
. . . �(i)∗i − 1 . . ., inverse hop � across the i − 1. Decrease i by 1 and repeat
Reverse Phase 2.

Reverse Phase 1: Change first(i) to i ′. Inverse hop � across an i , then inverse hop
across an i ′. Decrease i by 1 and repeat until i = 0.

We also state the inverse algorithm for the operations esh−1
i : Zi → Zi ′ and

esh−1
i ′ : Zi ′ → Zi−1.

Theorem 5.17 For t = 1′, 1, 2′, 2, . . . and T ∈ Zt , the following recipe computes
esh−1

t (T ), reproducing the inverse of the steps in Theorem 5.15.

Case A: Set first(t, T ) to be primed. If it possible to perform an inverse hop of index t,
then do so, giving priority to the non-exceptional switch if there is a choice;
then stop.

Case B: Otherwise, keep first(t, T ) primed. If it is possible to perform an inverse
exceptional switch of index t, then do so and stop.

Case C: Otherwise, set first(t, T ) to be unprimed. Perform as many hops of index t
as possible, and stop. (If t is unprimed, the last step here could be an inverse
exceptional switch.)

Note that the three cases here do not quite correspond to the three cases of Theo-
rem 5.15, and the order of precedence is different. Case A of Theorem 5.17 (a single
inverse hop) inverts Case 2 of Theorem 5.15 (a single hop). The sequence of hops of
Case C inverts the sequence of inverse hops of Case 3 and also of Case 1, when when
the latter produces more than just the exceptional step. Case B also inverts Case 1,
when the latter produces only the exceptional step.

Remark 5.18 It is also possible to compute esh−1(T ,�) by replacing T by the unique
lowest-weight (anti-ballot) tableau in its dual equivalence class, then performing a
“reflected” form of the algorithms given in this paper. Since we work entirely with
highest-weight tableaux, we omit the precise statements.
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Fig. 7 From left to right, the walks of T+, Ek−1
1 (T+), and E ′

1 ◦ Ek−1
1 (T+), where T is a tableau with

reading word 111′�11′1′1′1. The special entries, t and u, are red and in boldface

5.5 Proof of the Switching Algorithm and Its Properties

This section is devoted to proving Theorems 5.5, 5.7, 5.14, and 5.15.

5.5.1 Phase 1 Proofs

We now show that Phase 1 can be described as in Theorem 5.5.

Theorem 5.19 Let (�, T ) ∈ LR(α, , β, γ ). Then Phase 1 of the algorithm of Theo-
rem 4.2 for computing esh(�, T ) agrees with Phase 1 of the algorithm of Theorem 5.5.

Proof As noted in Lemma 4.6, it suffices to analyze Phase 1 in the “Pieri case”, where
all entries of T are 1 or 1′. Assume that T has this form. Let m denote the number
of entries in T , and let k denote the number of these entries equal to 1′, with T in
canonical form. Let T+ be the tableau obtained by replacing each 1/1′ in T by a
corresponding 2/2′, and replacing � by a 1′.

We first show that the two algorithms agree on when to enter Phase 2. For this,
we need to show that there exists a 1′ after � in T in reading order if and only if
E1(T+) �= E ′

1(T
+). We use [5, Cor. 5.40], which states that E1(T+) = E ′

1(T
+) if

and only if the rectification shape of T ∗ has only one row, and [5, Thm. 4.3], which
tells us that T+ has only one row if and only if all steps in the walk point up or right.
Since T+ has no 1s, its walk cannot have a down step, and the only way to have a left
step is to have a 2′ after the 1′, which corresponds to a 1′ in T after the �. Thus the
two conditions for when to enter Phase 2 agree.

Now, assume that we do not immediately switch to Phase 2. Then Theorem 4.2
says that esh(�, T ) is obtained by computing E ′

1 ◦ Em−2
1 (T+), and replacing the only

2 by �. We must show that this has the same effect as switching � with the next 1′
in T , and then switching with the preceding 1 in T . Denote the corresponding entries
of T+ by t and u: t is the first 2′ after the unique 1′ in T+ and u is the first 2 before t .
(See Fig. 7.)
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Suppose there are a entries equal to 2′ after t = 2′. Then the last such is the final
E-critical substring by rule 3E. So this changes to a 1′ upon applying E1. By the same
reasoning, applying E1 again a − 1 more times changes the remaining 2′ entries after
t to 1′, and the result is Ea

1 (T+).
Note that the tail of the walk after t remains weakly above t in Ea

1 (T+) (and hence
above the x-axis), since all 1′ entries point east and all 2 entries north. Since the only
type of critical substring starting at a 2 rather than a 2′ is type 4E and must start at
the x-axis, if there are any 2′ entries remaining on the y-axis then the final critical
substring is not type 4E, and starts at a 2′.

There are now b = k − a − 1 entries equal to 2′ before t . If b > 0, then since
the first 2/2′ is unprimed, there are at least two upward arrows before t . So t starts
at y ≥ 2 and therefore cannot be the start of an E1-critical substring (since its only
possible type is 2E). Therefore, the final E-critical substring is begins at the highest
2′ on the y-axis; it is either of type 3E, or 1E (ending at first(1), which in our chosen
representative is 1′). In either case, the transformation rule changes this 2′ to a 1′.
Repeating this argument, we find that Ek−1

1 (T+) simply changes each 2′ other than t
to 1′. (See the second diagram in Fig. 7.)

Since E ′
1 commutes with E1, we may apply E ′

1 at this point in the process rather
than after all applications of E1. Note that applying E ′

1 to Ek−1
1 (T+) changes t into

a 1, and there are then no 2′ entries remaining in E ′
1(E

k−1
1 (T+)).

To apply the remaining E1 operators, we see a similar process on the 2s. Since
there are no more 2′s, the final E1-critical substring begins with a 2 starting on the
x-axis, and is either of type 4E, or is of type 1E/2E, beginning with first(2). In either
case, the transformation changes the first 2 to a 1, excluding u, which can never be
the final critical substring since it is followed by (1′)∗1. Thus, applying Em−k−2

1 now
changes all remaining 2s, except for u, to 1s. Therefore, the total effect of the operator
E ′
1 ◦ Em−2

1 = Em−k−1
1 ◦ E ′

1 ◦ Ek−1
1 on T+ is to change every 2′ to 1′ except for t ,

which changes to 1, and to change every 2 to 1 except for u, as desired. ��
We now establish Theorem 5.7 on ballotness and semistandardness of tableaux

arising during Phase 1, as well as property (iii) of Theorem 5.14 on the relative position
of � with respect to the other entries at a step in the algorithm. The argument relies
on the following lemma.

Lemma 5.20 Let T be a skew shifted semistandard tableaux in entries 1, 1′, 2, 2′, and
a single �, which are ordered as either 1′ < 1 < � < 2′ < 2 or 1′ < 1 < 2′ <

� < 2. Let μ be the rectification shape T (defined to be the rectification shape of
its standardization). If μ1 = wt(T )1, then the reading word of T , omitting the �, is
ballot.

Proof Since ballotness depends only on the word of T , we may assume that the entries
of T are in distinct rows and columns, so that deleting� from T results in a tableaux T ′.
Let ν denote the rectification shape of T ′. Since T ′ is obtained by deleting entries
from T , ν is contained in μ. (See [22, Lemma 6.3.9].) But since ν1 ≥ wt(T ′)1 =
wt(T )1 = μ1, we must have ν1 = wt(T ′)1. Since ν has only two rows, this means
ν = wt(T ′), i.e., T ′ is a Littlewood–Richardson tableau. ��
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Theorem 5.21 Properties (i)–(iii) stated in Theorems 5.7 and 5.14 hold after each
Phase 1 switch.

Proof Let T ′ and T ′′ denote the tableaux that occur in Phase 1 immediately before
� switches with i ′ and i , respectively. From the coplactic algorithm it is clear the T ′
satisfies (ii) and (iii). We show that T ′ satisfies (i). We need to show that for all j ,
the subword consisting of j − 1′, j − 1, j ′, j is ballot. For j �= i , this follows from
coplacticity, since this is true in the rectified case. For j = i , consider the subtableau
S of Ti ′ defined by entries i − 1′ < i − 1 < � < i ′ < i , replacing these by
1′ < 1 < � < 2′ < 2. Let μ be the rectification shape of S. In the case where � � T ,
we find that μ1 = wt1(S), and by coplacticity, this must be true in general. Therefore,
by Lemma 5.20, we deduce that the subword for j = i is ballot j − 1′, j − 1.

We now show that T ′′ satisfies(i). Again, we need to show ballotness of the j−1′,
j−1, j ′, j-subword for all j . For j < i and j > i +1 this subword is the same as that
of T ′, so this case is done. Note that the word of Ti is obtained from the word of T ′,
by moving a single i ′-entry earlier. By Corollary 2.21, the j = i + 1 case also follows
from the ballotness of T ′. Finally, for j = i , consider the subtableau R of Ti defined
by entries i − 1′ < i − 1 < i ′ < � < i , replacing these by 1′ < 1 < 2′ < � < 2.
Let ν be the rectification shape of R. Note that R is the tableau obtained by applying
a Phase 1 step to S. Let S+ be the tableau obtained by replacing each 2′/2 entry by
a corresponding 3′/3, and setting � = 2. The proof of Theorem 5.19 shows that if
k is the number of 2′ entries in S (in canonical form), then Ek−1

2 (S+) is the tableau
obtained from R by replacing each 2 by a 3, and setting � = 3′. This immediately
implies that T ′′ satisfies (ii) and (iii).Moreover Ek−1

2 (S+) has the same standardization
as R. Therefore ν is the rectification shape of Ek−1

2 (S+), which (since E2 is coplactic,
and S+ has the same standardization as S) is the rectification shape of S, i.e., ν = μ.
Therefore, by Lemma 5.20, we again conclude that subword for j = i is ballot. ��

5.5.2 Removability Lemmas

In order to prove Phase 2 of the switching algorithm, we first require several lemmas
about removability of entries as defined below. We first require a local notion of
ballotness.

Definition 5.22 A word w is i-ballot if Ei (w) = E ′
i (w) = 0, or equivalently, if its

i ′, i, (i + 1)′, i + 1-subword is ballot.

We now define removability of entries.

Definition 5.23 An entry of a wordw is removable if deleting this entry fromw results
in a ballot word. We also say an entry is i-removable if deleting the entry results in an
i-ballot word.

Example 5.24 If w = 211′11′2′22′11, then the last two 1 entries are not removable,
but the other 1 and 1′ entries are removable.
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The aim of this section is to study pairs of removable entries, consecutive in stan-
dardization order (≺). This allows us to consider certain switches of the algorithm as
a pair of removable entries in a tableau, rather than as a moving �. The main result
is that consecutive removable pairs always lie in a fixed interval in standardization
order. Furthermore, individual entries with value i ′ or i , and (i + 1)′ or i + 1, that are
i-removable almost form an interval, except for two cases in which there is an isolated
additional removable entry.

We begin with a technical lemma about ballot walks.We recall the following propo-
sition from [5].

Proposition 5.25 (Bounded Error) Let w be a word in {i ′, i, (i + 1)′, (i + 1)} and
consider the walk for w beginning at an arbitrary starting point (x0, y0), not neces-
sarily the origin. If we shift the start by either ←− or

�⏐ , then the endpoint also shifts
by either ←− or

�⏐ . Similarly, if we shift the start by −→ or
⏐� , the endpoint also shifts

by either −→ or
⏐� .

We will need the following variant of this proposition specifically for ballot words
in the letters i ′, i, (i + 1)′, i + 1.

Lemma 5.26 (Tail Errors) Suppose the final Fi -critical substring of a ballot word w

in {i ′, i, (i + 1)′, (i + 1)} ends at w j . Consider any tail of the walk starting after w j .
If the start point of this tail is shifted one step left, then the entire tail shifts one step
left. If no (i + 1)′ in the tail starts on the x-axis and the start point of the tail is shifted
one step up, then the entire tail shifts one step up.

Proof For simplicity, assume i = 1. In the walk, note that any 1 that occurs after w j

cannot start on the x-axis, for otherwise it would form a later type 3F critical substring.
Such a 1 also cannot start on the y-axis, since the walk eventually reaches the x-axis
again and therefore either a 2F or 5F critical substring would occur. Furthermore, a
1 or 2′ after w j cannot start on the line x = 1 since this would be a later 5F critical
substring.

If we shift the start point of the tail one step left, then every 1′ or 2 does not change
direction upon shifting their start point left, and by the above analysis any 2′ or 1 also
does not change direction. It follows that the entire tail shifts one step left.

Now, suppose we shift the start point of the tail one step up and no 2′ in this tail
starts on the x-axis. Then by the above reasoning the entire tail shifts one step up as
well. ��

We now establish the fact that i-removable entries i or i ′ in a ballot word, with
one exception, all lie on one side of a “break point” in standardization order. Recall
that we use ≺ to denote standardization order; we use this notation heavily in the next
several lemmas.

Lemma 5.27 (Lower Break Point) Let w be i-ballot. If Fi (w) is defined, let w j be the
first (resp. last) letter of the final Fi -critical substring if the substring is type 1F or 3F
(resp. 2F or 4F). If the substring is type 2F, also let wa = i be the first letter of the
critical substring. Then an i or i ′ entry wk is i-removable in w if and only if either:

• wk � w j , or
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• wk = wa in the 2F case and its arrow in the i, i+1-walk starts on the y-axis.

If Fi (w) is not defined, then no i or i ′ entry is i-removable.

Proof For simplicity we assume that i = 1 and that w only contains the letters
1′, 1, 2′, 2, and we refer to removability rather than 1-removability.

Case 1: Suppose the final F1-critical substring is type 1F or 3F, and let w j = 1 be
its first letter. Let wk be an arbitrary 1 or 1′ entry.

• First suppose w j ≺ wk . Then wk = 1 and j < k. Note that a 2′ occurring
after wk cannot start on the x-axis, since the start point of wk is above the
x-axis and so there is some 1 (possibly wk) that points down to the x-axis just
before this 2′, creating either a 1F or 3F critical substring later in the word.
By Lemma 5.26, upon removing wk = 1, the tail of the walk starting at wk+1
shifts up one step. Therefore it no longer ends on the x-axis, and wk is not
removable.

• Now suppose wk � w j . If wk = 1 then k ≤ j . Thus removing wk moves the
start point of the 1F or 3F critical substring at w j either one step up or one
step left by Lemma 5.25. A simple analysis of the possible locations for a 1F
critical substring shows that this moves the endpoint after this critical substring
one step left. It follows from Lemma 5.26 that the entire tail moves one step
left and the walk still ends on the x-axis. So wk is removable in this case. If
instead wk = 1′, removing it moves the tail of the walk after it one step left.
Therefore, again by Lemma 5.26, wk is removable in this case as well.

Case 2: Suppose the final F-critical substring is type 2F or 4F, and let w j = 1′ be
its last letter. In the 2F case also let wa = 1 be the first entry. Let wk be an
arbitrary 1 or 1′ entry.

• First suppose wk � w j . Then wk = 1′ and k ≥ j . Removing wk shifts the tail
of the walk after wk to the left one step, and again by Lemma 5.26 we find that
wk is removable in this case.

• Next suppose the critical substring is type 2F with wa starting on the y-axis,
and we remove wa . Then wa points right, so this also shifts the endpoint of
the critical substring one step left, and we are done as above.

• Now, suppose w j ≺ wk . If k < j and wk �= wa , then removing wk moves the
start point of the final critical substring either up or left one step. By analyzing
the possible locations for the 4F and 2F critical substrings, it follows that
the endpoint of this F1-critical substring moves one step up. Furthermore, if
wk = wa and wa starts off the y-axis then the endpoint shifts up as well, upon
removing wk . If the type 4F or 2F critical substring ends above the x-axis,
then there cannot be a 2′ after it that starts on the x-axis by the same argument
as above. In the unique case when it does end on the x-axis, namely a 2F
critical substring 11′ starting at (1, 1), then the only way a 2′ can start on the
x-axis afterwards is if 2′ appears after some number of 1′s following the 2F
critical substring. But then this creates a longer type 1F critical substring, a
contradiction. The tail therefore moves up by Lemma 5.26 and therefore the
word is no longer ballot. Finally, if k ≥ j , then since w j ≺ wk we have
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wk = 1, and removing wk moves the endpoint up by the same argument as in
the 1F/3F case. This completes the proof. ��

We can now define the lower i-break point of a ballot word for which Fi is defined.

Definition 5.28 Let w be an i-ballot word for which Fi (w) is defined, and define wa

and w j as in Lemma 5.27. The lower i-break point of w is defined to be wa if the
Fi -critical substring is type 2F and wa is adjacent to w j in standardization order, and
it is defined to be w j otherwise.

Note that the lower break point is wa only when wa is the first i or i ′ in reading
order, and is therefore removable since it starts on the y-axis in the i, i+1-walk.

We now similarly establish an upper break point for removability of i + 1 and
(i + 1)′ entries in an i ′, i, (i + 1)′, i + 1-subword that is “nearly ballot”, namely the
application of Fi to a ballot word.

Lemma 5.29 (Upper Break Point) Let w be an i-ballot word for which Fi (w) is
defined. Let w j be the last (resp. first) letter of the final Fi -critical substring if the
substring is type 1F or 3F (resp. 2F or 4F). If the substring is type 1F, also let wa = i
be the first letter of the critical substring. Let v = Fi (w) and let v j and va be the
transformed letters in v. Then an i + 1 or (i + 1)′ entry vk is i-removable in v if and
only if either:

• v j � vk , or
• vk = va in the 1F case and its arrow in the i, i+1-walk starts on the x-axis.

The proof is similar in nature to that of Lemma 5.27 (Lower Break Point) and we omit
it.

Definition 5.30 Let w be an i-ballot word for which v = Fi (w) is defined, and define
v j and va as in Lemma 5.29. Then the upper i-break point of v is defined to be va
if the final Fi -critical substring is type 1F and va is adjacent to v j in standardization
order, and it is defined to be v j otherwise.

Note that the upper break point is va only when va is the first i + 1 or (i + 1)′ in
reading order, and is therefore removable since it starts on the x-axis in the i, i+1-
walk.

We now establish the main lemmas on removable pairs.

Lemma 5.31 (Removable Pairs) Let w be a word that is both i-ballot and (i + 1)-
ballot. Suppose v = Fi (w) is defined and is j-ballot for all j �= i . Let vu be the upper
i-break point of v, and let w
 be the lower i + 1-break point of w. Then vu � v
.
Moreover, a pair of entries v j , vk with values i + 1 or (i + 1)′ that are consecutive in
standardization order are both removable in v iff

vu � v j � vk � v
.
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Remark 5.32 Ifw is ballot, thenw and v = Fi (w) satisfy the conditions of the Remov-
able Pairs lemma. To see this, rectify w and v (note that the conditions are coplactic).

Proof Since v is (i − 1)-ballot, an entry i + 1 is removable in v if and only if it is
both i-removable and (i + 1)-removable. Thus, for simplicity of notation we may
assume that i = 1, and we consider 1-removability and 2-removability of entries.
As a shorthand, we will also simply write “i, i+1-subword” to denote the subword
consisting of i ′, i, (i + 1)′, i + 1 entries, for i = 1, 2.

We next show that the upper 1-break point vu is removable in v. If the final F1-
critical substring inw is type 3F or 4F, thenwu is the critical substring, and so applying
F1 and removing vu has no effect on the 2, 3-subword. In the 1, 2-subword, the effect
is to remove a 1 on the x-axis (type 3F) or a 1′ on the y-axis (type 4F), which shifts
the tail of the 1, 2-walk left one step, and so it remains ballot by Lemma 5.26.

Now suppose the final F1-critical substring is type 1F, of the form 1(1′)∗2′, which
changes to 2′(1′)∗2. Then applying F1 and removing vu = 2 has the same net effect
as removing the first 1 in the final F1-critical substring and moving the next 2′ earlier
in the word past the sequence of 1′ letters. The 2, 3-subword is therefore ballot by
Corollary 2.21.

For the 1, 2-subword in the 1F case, note that if we remove the 1 at the start of
the F1-critical substring, then the 1′ entries after it do not start on the y-axis. Thus
moving a 2′ to the left past these 1′ entries does not change the endpoint of the walk
after this sequence. It follows that the effect on the endpoint of the walk is the same
as simply removing this 1 from w, which is a removable 1 by Lemma 5.27. Thus the
1, 2-subword is still ballot.

Finally suppose the final F1-critical substring is type 2F, of the form wu . . .wt =
1(2)∗1′, which transforms to 2′(2)∗1. Then after applying F1 to w to form v and
removing vu = 2′, the net effect on the word is to remove wu = 1 and changewt = 1′
to vt = 1. Note that the 2, 3-subword is unchanged by this process. For the 1, 2-
subword, removing the 1 from 1(2)∗1′ shifts the start point of the (2)∗ in the 1, 2-walk
either up or left by one, and when wt changes to 1 the endpoint after this sequence
shifts left by one. By Lemma 5.26 the word is still ballot.

We have shown that vu is removable, and hence by Lemma 5.27, either the lower
2-break point v
 occurs weakly after vu in standardization order, or vu is the first 2 of
a final type 2F critical substring for F2 starting on the y-axis. We will show that the
latter possibility cannot occur. Indeed, assume the latter; then vu = 2 is the result of
either a type 3F or type 1F change on the 1, 2-subword to form v = F1(w), and we
can consider each case separately.

If vu is the result of a type 3F change, then wu = 1, and since vu is the start of
a type 2F critical substring in the 2, 3-subword, the next 2 or 2′ to the right of wu is
a 2′. But this implies that there is a later type 1F critical substring in w among the
1, 2-subword, a contradiction.

If vu = 2 is the last entry of a transformed type 1F substring, say wt . . .wu =
1(1′)∗2′, then vt = 2′. Note that in the 2, 3-walk, we may assume vu starts at x = 0
and y > 1, since if it starts at (0, 0) then vt is adjacent to vu in standardization order
and so vu = v
. Thus vt ends above the x-axis. It follows that there cannot be a 3′
after vt starting on the x-axis in the 2, 3-walk, since we would necessarily need a 2
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arrow to get down to the x-axis, and this would form a later type 1F critical substring
with the 3′.

Now, consider the process of forming the 2, 3-subword of w from that of v. We
remove vt = 2′ and change vu from 2 to 2′. Removing vt = 2′ moves the start point of
the tail of the walk after it one step to the left, and so the start point of vu moves either
one step left or one step up by Proposition 5.25. Since it is on the y-axis, it moves one
step up, as does the rest of the 2F critical substring. By Lemma 5.26, since there is no
3′ starting on the x-axis after vu , the endpoint of the entire walk moves one step up.
Hence w is not ballot, a contradiction.

It follows that the lower 2-break point, v
, occurs weakly after vu in standardiza-
tion order. For the second part of the statement, let v j occur between vu and v
 in
standardization order. Then by Lemmas 5.27 and 5.29, v j is both 1-removable and
2-removable, so it is removable. No other 2 or 2′ is removable except possibly for the
first 2′ in the final E2-critical substring in the case that the final F2-critical substring
inw was type 1F, as in Lemma 5.29. Since this extra entry is not adjacent to the others
in standardization order (or it is itself already the upper 1-break point), the result now
follows. ��
While Lemma 5.31 is essential for understanding the intermediate steps after applying
the coplactic operators Fi in Phase 2 (as in Theorem 4.2), we also need to understand
the removable pairs before the first application of an Fi operator, that is, at the index
in which Phase 2 begins. We therefore require the following additional lemma.

Lemma 5.33 (Initial Removable Pairs) Let T be a tableau appearing just after
Phase 1 ends in the computation of esh(�, T0) for some T0. Let T ′ be the tableau
formed by replacing � by s′ in T where s is the first Phase 2 index. Then � = s′ is
the first s′ in standardization order. Moreover, if v and w are respectively the reading
words of T ′ and Es(T ′), then in T ′, a pair of entries v j , vk equal to s or s′ that are
consecutive in standardization order are both removable if and only if

v j � vk ≤ v
,

where 
 is the index for which w
 is the lower s-break point of T ′.

Proof Note that the desired entries are removable for the s, s+1-subword, and are
the only pairs of adjacent entries in standardization that are both removable, by the
definition of the lower s-break point. Thus it suffices to show that these entries are
removable for the the s−1, s-subword as well.

By Theorem 5.21, the entry � = s′ is removable in T ′. Switching the � with
the next s′ (which may be the first s) in standardization order, which is equivalent to
removing the next s′ instead, is also ballot by the argument in step (b) of Theorem 5.21.

Finally, we wish to show that if � = s is removable and we switch it with the next
s in standardization order, the resulting tableau is still ballot for the s−1, s-subword.
Indeed, this is equivalent to moving an s earlier in the word past some s−1 or (s−1)′
entries, which can only increase the differences ms−1( j) − ms( j) for j ≤ n, so
Stembridge’s condition S1 (in Lemma 2.20) is still satisfied. It also does not change
any of the values involved in condition S2, so the word is still ballot. ��
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5.5.3 Phase 2 Proofs

We now prove the validity of Phase 2 of the switching algorithm. We first require a
lemma about ballotness at intermediate steps of the coplactic algorithm.

Lemma 5.34 Let (�, T ) ∈ LR(α, , β, γ ). In the computation of esh(�, T ), let S be
the tableau formed by replacing � by s′ after Phase 1 ends, where s − 1 is the last
Phase 1 index. For s − 1 ≤ i ≤ 
(β), define Si = Fi ◦ · · · ◦ Fs+1 ◦ Fs(S). Then Si is
j -ballot for all j �= i .

Proof Since the conditionof being j-ballot is equivalent to beingkilledby theoperators
E j and E ′

j , it is a coplactic condition. It therefore suffices to check that this property
is satisfied in the case that α is the empty partition. This is straightforward to verify
in this case. ��
Theorem 5.35 Let (�, T ) ∈ LR(α, , β, γ ). Then Phase 2 of the algorithm in Theo-
rem 4.2 to compute esh(�, T ) agrees with Phase 2 of Theorem 5.5.

Proof Define S and Si as in Lemma 5.34. Notice that Lemma 5.34 shows that setting
w to be the reading word of Si−1 and v the reading word of Si = Fi (Si−1) satisfies the
conditions of the Removable Pairs lemma (Lemma 5.31). We use this fact implicitly
throughout, freely applying lemma 5.31 without reference to Lemma 5.34.

Define Ti to be the tableau formed by replacing the � with (i + 1)′ (resp. i + 1)
after the index i steps (resp. the index i +1′ steps) of the algorithm in Phase 2(a) (resp.
Phase 2(b)). We wish to show that Si = Ti for all i . We proceed by induction on‘ i ,
by simultaneously showing the following three statements:

• Si = Ti for all i ≥ s − 1.
• Let ti be the i + 1 or i + 1′ entry in Ti that replaced �. Then if i ≥ s, the entry ti
is the Fi -transformation of the last (resp. first) entry of the Fi -critical substring in
Si−1 if it is type 2F or 4F (resp. 1F or 3F).

• The entry ti is removable in Ti .

We first show the base cases, i = s − 1 and i = s. The case i = s − 1 simply refers
to the tableau S with no F operators applied, so the first two claims hold trivially, and
the third by Lemma 5.33 (Initial Removable Pairs).

Now consider the case i = s. Let wa . . .wb be the final Fs-critical substring of
the reading word w of Si−1. If it is type 4F, wa = wb is the last removable s′ in
standardization order in S and changes to (s+1)′, and by the definition of the switching
algorithm this entry is also ts . Thus the first two claims hold, and the third holds by
the definition of a valid switch.

If wa . . .wb = s(s + 1)∗s′ is type 2F, first suppose the lower s-break point is wb (as
opposed to the special case in which it can be wa). Then Fs changes the substring to
(s + 1)′(s + 1)∗s to form Ss . To form Ts , by Removable Pairs (Lemma 5.31) and the
definition of the switching algorithm, the � inverse hops past each s′ until switching
with wb, forming s(s + 1)∗�, and then switches with wa = s via the special Phase
2(a)-hop step to form the substring�(s+1)∗s. Replacing�with (s+1)′ forms Ts and
therefore matches with Ss . The first two claims therefore hold, and for the third, note
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that � was removable just before the Phase 2(a)-hop step. The effect of the hop step
on the reading word, ignoring �, is to move an s past some number of s + 1 entries
in reading order. By the Stembridge ballotness condition, the word is still s-ballot,
and since the hop did not affect the s+1, s+2-subword, the new position of � is
(s + 1)-removable as well. Finally, since Ts = Ss , we must have (s − 1)-ballotness at
this step. It follows that ts is removable.

If instead wa is the lower break point, then wa = s and wb = s′ are consecutive in
standardization order, and so these must be the first s and s′ entries in reading order.
It follows that, switching � with each s′ and then the first s, as dictated by Phase 2(a),
followed by interpreting � as (s + 1)′, is equivalent to applying Fs as well, and the
argument follows as above.

Finally, if wa . . .wb = s(s′)∗(s + 1)′ is type 1F or 3F, then by Removable Pairs,
the � completes Phase 2(a) and enters Phase 2(b), inverse hopping past each s until
switching with wa . In the 3F case we are done by a similar argument to 4F. In the
1F case, � then further hops past wb = (s + 1)′, and since Fs transforms the string
to (s + 1)′(s′)∗(s + 1), interpreting � as s + 1 yields the same tableau and we have
Ts = Ss as desired. The entry ts is as described in the second claim, and removability
follows from a similar argument as in the type 2F case.

For the induction step, let i ≥ s and assume the claims hold for Si−1 := Fi−1 ◦· · ·◦
Fs(S). Then since the position of � that forms Ti−1 is removable, by the Removable
Pairs lemma, the Fi -critical substring occurs later in standardization order.An identical
argument using the same cases as above now shows that the claims hold for Si , and
the induction is complete. ��

Note that, in the above proof, the switch from Phase 2(a) to Phase 2(b) coincides
with the first 1F or 3F critical substring. In particular, it follows that the coplactic
algorithm (Theorem 4.2) has a natural Phase 2(a)/2(b) dichotomy in Phase 2. In Phase
2(a) the computations of Fi involve only type 2F or 4F critical substrings, and in Phase
2(b) they involve only 1F or 3F critical substrings. We state this precisely below.

Corollary 5.36 Let S be a tableau appearing just after Phase 1 of the coplactic algo-
rithm for computing esh(�, T0) for some T0, and let s be the first Phase 2 index. Then
there exists k such that the type of the final Fi -critical substring of

Fi−1 ◦ · · · ◦ Fs+1 ◦ Fs(S)

is 2F or 4F iff i < k, and 1F or 3F iff i ≥ k.

We now prove Theorem 5.7 and 5.14 for Phase 2.

Theorem 5.37 Properties (i)–(iii) from Theorems 5.7 and 5.14 hold after each Phase 2
switch.

Proof For (i), by Lemma 5.31, any Phase 2 step in the i-ribbon where i > s (where s is
the transition point from Phase 1 to Phase 2) has the property that the � is removable,
so the reading word is ballot. By Lemma 5.33, the same is true for themoves in Phase 2
across the s-ribbon. Thus (i) holds.
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We now show (ii). If the � has just completed the moves past i ′ or i , and then the
possible hop, in Phase 2(a) or 2(b), then replacing � by (i + 1)′ or i + 1 respectively
gives the result of applying Fi to a tableau. This is semistandard, so removing the �
leaves a semistandard tableau as well, hence (ii) is satisfied. Then, any subsequent
switch with an i + 1′ or i + 1 in Phase 2 can also be thought of as the same tableau
where we replace the� by i+1 or (i+1)′ as appropriate. Finally, for the Phase 2 steps
just after Phase 1 ends, note that if we replace� by s′ after the last Phase 1 move, then
it is a semistandard tableau that we may apply Fs to, and the same argument holds.

We now show (iii). Suppose we are in Phase 2(a), the � has completed all inverse
hop steps of index i ′, and next step is not exceptional (or we are in Phase 2(b) and
the � has completed all inverse hop steps of index i). Then replacing � with i ′
(respectively i) gives the tableau before the application of Fi , which is semistandard.
Moreover, if there were an i ′ directly below (resp. i directly to the right of) the �,
then switching � with this entry would not change the column (resp. row) reading
word, and hence not affect ballotness, contradicting the definition of the Phase 2(a)
and Phase 2(b) stopping points. Hence � is an outer co-corner of the tableau formed
by the letters less than or equal to i ′ (resp. i) and an inner co-corner of the remaining
letters. A similar argument applies if the next step is exceptional.

Finally, we consider the tableaux after the special Phase 2 hop steps. Suppose the
� has just completed a Phase 2(a)-hop step of index i . If this step was null, that is, if
the box does not switch with any i , there cannot be an i directly left of or below �
(otherwise switching would not change the change the row or column reading word
and the hop would occur), so (iii) holds. So assume a switch occurred, from a substring
i(i + 1)∗� to �(i + 1)∗i . Then the application of Fi was type 2F where we interpret
� as i ′ in both settings. Moreover, prior to the hop, the � may be replaced with i ′ to
obtain the (semistandard) tableau before the Fi application; thus there is no i directly
to the right of the first i in this string. It follows that the new position of � is an inner
co-corner of the letters larger than i and an outer co-corner of the letters less than or
equal to i . If instead we have just completed a Phase 2(b)-hop step of index i +1′, then
the application of Fi was type 1F, and a similar analysis shows that the new position
of � satisfies (iii). ��

5.5.4 Proof of Theorem 5.15: Pausing and Resuming

We now prove Theorem 5.15. To do so, we first show that the hop steps in Phase 2 can
alternatively be computed by checking for valid switches rather than the existence of
particular substrings.

Proposition 5.38 For any index i , the Phase 2(a) hop of index i occurs in the switching
algorithm if and only if this switch is valid. Similarly, the Phase 2(b) hop of index i+1′
occurs if and only if this switch is valid.

Proof Phase 2(a): Let T be a tableau that arises in Phase 2(a) just after the inverse
hops past i ′, for which the next step is still in Phase 2(a). If the hop of � past an i then
occurs, this switch is valid by Theorem 5.37.

Conversely, suppose the hop switch of � with the previous i in reading order (call
this entry t) is valid. We will show that there are no i ′, i , or i + 1′ entries between t
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and � in T , so that the substring of the i, i+1-reading word from t to � has the form
i (i + 1)∗�, and therefore a hop does occur. By the definition of t , there is no i entry
between t and �.

Assume for contradiction that there is an i ′ between t and �, and let s = i ′ be the
rightmost i ′ preceding � (where first(i) is treated as i ′). Then s is between t and �,
and switching � with s violates ballotness since T is at the end of a Phase 2(a) move.
Thus one of the two Stembridge ballotness conditions (S1 or S2) stated in Lemma 2.20
is violated by this switch. Note that the effect of the switch on the i, i+1 reading word
is to move s = i ′ later in the word past some number of i + 1 or i + 1′ entries, which
cannot violate condition S1 since the total numbers of i and i + 1 entries after each
i + 1′ or i + 1 entry is unchanged. Thus it violates S2, and in particular there must
be an i + 1′ entry between s and �, so that when we switch s with � we would have
mi ( j) < mi+1( j) where j = n + k is the index for which there are k letters before �
in the reading word of T . But then we must havemi ( j) = mi+1( j) in T , so switching
� with t = i would also violate condition S2, a contradiction. It follows that there is
no i ′ between t and �.

If s does not exist, then in fact the next step of T would be an exceptional Phase
2(a) step rather than a hop, a contradiction. Thus s = i ′ is strictly left of t in reading
order. Now, if there were an (i + 1)′ between t and �, switching � with s makes the
word not ballot and so by an argument similar to that above, switching�with t ′ would
also make the word not ballot by violating condition S2 at the new position of t ′. Thus
there is no (i + 1)′ between t ′ and �, as desired.

Phase 2(b): Let T be a tableau that arises in Phase 2(b) just after the inverse hops
past i . If the hop of� past the next (i+1)′ occurs, this switch is valid by Theorem 5.37.

Conversely, suppose the hop past the next (i + 1)′ (call this entry t) is valid. We
wish to show that there is no i , i + 1′, or i + 1 between � and t in reading order, so
that the substring of the reading word is of the form �(i ′)∗(i + 1′). There is no i + 1′
between them by the definition of t .

Assume for contradiction that there is an i between � and t , and let s = i be the
leftmost i to the right of �. We know that switching � with s yields a tableau which
is not ballot for i, i + 1 since T is at the end of a Phase 2(b) move. This can violate
condition S1 of Lemma 2.20, if there is an i + 1 between � and s and the suffix
after the � has the same number of i + 1 letters as i , so that the switch would make
mi ( j) > mi+1( j) for some j . It can alternatively violate condition S1 if the new
position of s, say k, satisfiesmi ( j + k) = mi+1( j + k) after the switch. In either case,
switching � with t would make t violate the same condition (S1 or S2 respectively).
Thus there is no i between � and t .

If there is no i after � at all then there is no i + 1 after it either by ballotness, so we
may assume that s = i exists and occurs after t in reading order. If switching � with s
violates condition S2 at the index of s, it violates it at t too, so in fact switching with s
violates condition S1 instead. If it violates S1 by making some suffix have more i + 1
entries than i entries, then switching t with � would violate condition 1 at the new
position of t , a contradiction. Thus it violates S1 by having the suffix after either t or
after a later (i + 1)′ between t and s have the same number of i and i + 1 entries. But
then switching � with s makes the suffix after t have the same number of i entries as
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i + 1 entries, and since switching with t is ballot, there cannot be an i + 1 between �
and t , as desired. ��
Proof of Theorem 5.15 Let esh∗

t denote the sequence of switches defined by the state-
ment of the theorem. We must show that esh∗

t agrees with esht .
First, suppose t = i ′ for some i . Suppose T arises partway through the switching

algorithm, after completing all steps of index i −1. Then the steps performed by eshi ′ ,
could be either the i ′-step of Phase 1, the first part of Phase 2(a) (excluding any
exceptional steps at the end, and the hop), or a Phase 2(b)-hop. Since t = i ′ there
cannot be an exceptional step of index i , and we cannot be in Case 1 of esh∗

t .

• If the next step is in Phase 1, then esht performs a hop of index i ′. Since Case 2 of
esh∗

t is to do this if possible, esh∗
i ′ agrees with eshi ′ .• If the next step is Phase 2(a), note that by the Removable Pairs lemma (5.31) we

cannot switch � with the next i ′ in reading order, i.e., there is no hop of index i .
Thus esh∗

i ′ is in Case 3, which performs all steps of index i ′ in Phase 2(a).
• Finally, if the next step is Phase 2(b)-hop, if the hop switch occurs then esh∗

t makes
the same switch and gives the correct output. Otherwise, by Proposition 5.38, there
is no valid hop of index i ′, so esh∗

i ′ is in Case 3. We now only need to check that if
the hop does not occur, esh∗

i ′ does not perform any inverse hops. By the nature of
a null hop step in Phase 2(b), if we replace � with i − 1 in T then it is a type 3F
critical substring for the operator Fi−1. The i−1, i-walk is therefore on the x-axis
just before �, and replacing � with i gives a non-ballot total walk since it is the
result of Fi−1 applied to the tableau. Therefore replacing � with i ′ also gives a
non-ballot total walk, since i ′ and i are both upwards arrows when starting on the
x-axis. By the Upper Break Point lemma (5.29), the previous i ′ before � is not
removable in either case, and therefore � cannot switch with the previous i ′.

Now suppose t = i . In this case, the steps performed by eshi are could be either the
i-step of Phase 1, the first part of Phase 2(b) (excluding the hop), an exceptional Phase
2(a) step followed by the first part of Phase 2(b), or a Phase 2(a)-hop step.

• If the next step is in Phase 1, then the exceptional step does not occur because the
previous step was to switch � with a later i ′, so esh∗

i is not in Case 1. Therefore,
esh∗

i is in Case 2, and agrees with eshi .
• If the next step is Phase 2(b), � cannot make the exceptional move nor a hop of
index i by the Removable Pairs lemma (5.31) and so esh∗

i is in Case 3, and agrees
with the result of the index i steps in Phase 2(b). Similarly, if the next step is an
exceptional Phase 2(a) step, esh∗

i is in Case 1, and again agrees with eshi .
• Finally, suppose the next step is Phase 2(a)-hop. If the hop occurs, this switch is
valid and the algorithm agrees with esh∗

i (Case 2). If it does not occur, then by
Proposition 5.38, switching with the previous i is not valid, so esh∗

i is in Case 3.
We now only need to check that if the hop does not occur, esh∗

i does not perform
any inverse hops. Since T is the result of the last of the i ′ Phase 2(a) switches by
assumption, if we replace� by i ′ in T , we get a tableauwith ballot i, i+1-subword
whose final Fi -critical substring is type 4F at � = i ′. Then by the Lower Break
Point lemma (5.27), the next i after � = i ′ is not removable. Since the walk of
the reading word is on the y-axis at the critical substring, we may replace � with
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i instead and obtain the same walk, and so the next i after � is still not removable
in this case. Hence we cannot have switched � with the next i to obtain a ballot
word, and the conclusion follows. ��

6 Connection to K-Theory of the Orthogonal Grassmannian

The structure sheavesOλ of Schubert varieties in OG(n,C2n+1) form an additive basis
for the K-theory ring K(OG(n,C2n+1)), and they have a product formula

[Oμ] · [Oν] =
∑

|λ|≥|μ|+|ν|
(−1)|λ|−|μ|−|ν|kλ

μν[Oλ],

for certain nonnegative integer coefficients kλ
μν . These coefficients enumerate certain

shifted tableaux called (shifted) ballot genomic tableaux, defined by Pechenik and
Yong in [10]. We recall this definition here.

Definition 6.1 [10] For a skew shifted tableau with entries i j or i ′j for i ∈ {1, 2, . . .}
where j is any symbol, we call i the gene family of an entry i j or i ′j and j the gene.
Two such tableaux are equivalent if they are the same up to a relabeling of the genes j .
An equivalence class T of these tableaux is a semistandard genomic tableau if:

• The tableau Tss obtained by forgetting the gene subscripts is semistandard and in
canonical form.

• Each gene j consists only of letters i j and i ′j for some i , and its letters are consec-
utive in standardization order.

• For every primed entry i ′j , there is an unprimed letter ik preceding it in reading
order from the same family i but different gene k �= j .

• No two squares of the same gene are horizontally or vertically adjacent.

The K-theoretic content of T is (c1, . . . , cr ) where ci is the number of genes in the
i-th family. Finally, T is ballot if it is semistandard and has the following property:

(∗) Let T ′ be any genomic tableau obtained by deleting, within each gene family
of T , all but one of every gene. Let T ′

ss be the tableau obtained by deleting the
corresponding entries of Tss. Then the reading word of T ′

ss is ballot for all T ′
obtained in this way.

Write K(λ/μ; ν) for the set of ballot genomic tableaux of shape λ/μ and K-theoretic
content ν.

Theorem 6.2 [10] We have kλ
μν = |K(λ/μ; ν)|.

We are most concerned with the case of partitions α, β, γ with |α| + |β| + |γ | =
k(n − k) − 1. In this case there will only be one repeated gene, in one gene family.
Let K(γ c/α;β)(i) be the set of increasing tableaux in which i is the repeated gene
family. For convenience, we state the following simpler characterization of this set:
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Lemma 6.3 Let T be a shifted semistandard tableau in canonical form of shape γ c/α

and content equal to β plus a single extra i or i ′. Let {�1,�2} be two squares of T ,
such that:

(i) The squares �1,�2 are non-adjacent, consecutive in standardization order, and
each contains i or i ′.

(ii) If �1 contains i ′ and �2 contains i (so that �2 is the first i in reading order) then
there is an i between �2 and �1 in reading order.

(iii) For k = 1, 2, the word obtained by deleting �k from the reading word of T and
canonicalizing is ballot.

There is a unique ballot genomic tableau T ′ ∈ K(γ c/α;β)(i) corresponding to the
data (T , {�1,�2}). Conversely, each T ′ corresponds to a unique (T , {�1,�2}).
Proof The gene families of T ′ are the entries of T . For m �= i , the m-th gene family
of T ′ has all distinct genes, one for each entrym in T . For the i-th gene family, the the
squares �1,�2 are in the same gene j and the others are in distinct genes. Conditions
(i) and (ii) are equivalent to T ′ being genomic; ballotness of T ′ is then equivalent
to (iii). ��

6.1 Generating Genomic Tableaux

We now establish connections between local evacuation-shuffling and genomic
tableaux. Consider a step of index t in the switching algorithm for esh(�, T ). Call the
position of � before and after the switch �1 and �2. By Theorem 5.7, the tableau’s
reading word is ballot both before and after the switch. If we replace both �1 and �2
by t’s, then they are consecutive in standardization order by the nature of the algo-
rithm. Putting the result in canonical form, we obtain a ballot genomic tableau, with
{�1,�2} as the unique repeated gene, as long as the two squares are non-adjacent.
If the step is a hop (including the possibility of an exceptional step) we will say that
� traversed this genomic tableau in reverse standardization order; otherwise, for an
inverse hop, we will say that � traversed the tableau in standardization order.

Theorem 6.4 The assignment above gives a two-to-one correspondence between
non-adjacent steps of the switching algorithm (starting from all possible tableau
in LR(α, , β, γ )) and the set K(γ c/α;β). Moreover, each genomic tableau is tra-
versed once in standardization order and once in reverse standardization order.

Example 6.5 Suppose α = (4, 2), γ c = (5, 3, 1), and β = (2). The six genomic
tableaux in K(γ c/α, β) are as follows, where the repeated gene is underlined: There
are six tableaux in LR(α, , β, γ ). Applying the switching algorithm beginning with
each produces the following steps:
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(a) 1
1

1

(b) 1
1

1

(c) 1′
1

1

(d) 1′
1

1

(e) 1
1′

1

(f) 1′
1′

1

1
1

×
Phase 2(b)−−−−−−→

1
×

1
Phase 2(b)−−−−−−→

×
1

1

traversing (b) and (a) in standardization order;

1′
1

× Phase 1−−−−→
×

1
1

Phase 1−−−−→
1

×
1

traversing (d) and (a) in reverse standardization order;

1
×

1′
Exceptional
Phase 2(a)−−−−−−−→

1
1′

×
Phase 2(b)−−−−−−→

×
1′

1

traversing (b) in reverse standardization order and
(e) in standardization order;

1′
×

1
Phase 1−−−−→

×
1′

1
Phase 1−−−−→

1
1

×
traversing (e) and (f) in reverse standardization order;

×
1

1′ Phase 2(a)−−−−−−→
1′

1
×

Phase 2(b)−−−−−−→
1′

×
1

traversing (d) and (c) in standardization order;

×
1′

1′ Phase 2(a)−−−−−−→
1′

×
1′

Exceptional
Phase 2(a)−−−−−−−→

1′
1′

×
traversing (f) in standardization order and
(c) in reverse standardization order.

Note that since the exceptional steps have index 1 instead of 1′, they traverse
genomic tableaux in which the repeated gene has two 1s. Also note that (d), which has
both a 1 and 1′ in the repeated gene, is always traversed by a step of index 1′. Here,
�1 and �2 are first both treated as 1′, and we obtain (d) when we put the result in
canonical form.

Proof Let (T , {�1,�2}) be a genomic tableau in K(γ c/α;β). First, suppose that
both entries of the repeated gene {�1,�2} are equal to i , with �1 preceding �2 in
standardization order. For j = 1, 2, let Tj be the tableau obtained by replacing � j by
� in Tss. Both T1 and T2 are semistandard and ballot, omitting �.

It is clear that T2 ∈ Zi ′(α, β, γ ), and T2 � T1 is a hop. Therefore, by Theorem 5.15,
the first step of eshi (T2) is either the hop T2 � T1 or an exceptional step (which occurs
in the case where�1 and�2 are the first two letters in the i, i ′-reading word). In either
case this first step of eshi (T2) traverses (T , {�1,�2}) in reverse standardization order,
and T2 is the only tableau in Zi ′ with this property. By Theorem 5.14, this implies that
there is a unique tableau in LR(α, , β, γ ) for which the switching algorithm traverses
(T , {�1,�2}) in standardization order.
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Let T ′
1 be the tableau obtained starting from T1 and performing as many inverse

hops of index i as possible. Note that this sequence of inverse hops must have length
at least one, since T1 � T2 is an inverse hop. We have T ′

1 ∈ Zi (α, β, γ ), since
otherwise there is an i immediately right of � in T ′

1; but then these are adjacent in
the reading word, so it possible to switch them, contradicting the maximality of the
sequence of inverse hops. Since it is not possible to perform an inverse hop or an
inverse exceptional switch starting at T ′

1, Theorem 5.17, tells us that the esh−1
i (T ′

1)

begins in Case C, by reversing this sequence of inverse hops. Therefore, some step of
esh−1

i (T ′
1) traverses (T , {�1,�2}) in standardization order, and T ′

2 is the only tableau
in Zi with this property. By Theorem 5.14, this implies that there is a unique tableau in
LR(α, , β, γ ) for which the switching algorithm traverses (T , {�1,�2}) in reverse
standardization order.

If the repeated gene has at least one i ′, then the argument is essentially identical,
with eshi ′ : Zi−1 → Zi ′ in place of eshi : Zi ′ → Zi , and using the column reading
word T ′

2 to prove that T
′
2 ∈ Zi ′ . ��

6.2 Geometric Consequences

Using the connection with genomic tableaux developed above, we can now deduce
several facts about complex geometry of Schubert curves.

Definition 6.6 Let η(S) be the number of real connected components of the Schubert
curve S (which is equal to the number of orbits of ω), let h0(S) = dimC H0(OS) be
the number of complex connected components, let ι(S) be the number of irreducible
components, and let χ(OS) be its holomorphic Euler characteristic.

We first prove two basic geometric results relating these quantities. The type A
versions of these facts were shown in [7], and the proofs are similar, but we include
sketches of the proofs here for the reader’s convenience.

Lemma 6.7 We have

χ(OS) = |LR(α, , β, γ )| − |K(γ c/α;β)|.

Proof Since χ is additive on the K-theory ring K(OG), we have

χ(OS) = χ([Oα] · [Oβ ] · [Oγ ]) = χ
(

− kαβγ [O ] + k /
αβγ [O

/
]
)

= −kαβγ + k /
αβγ

since the Schubert curve X
/

is a copy of P1 and so χ(O ) = χ(O
/

) = 1.

Furthermore, since |α| + |β| + |γ | = | / | the coefficient k /
αβγ is equal to the

corresponding ordinary Littlewood–Richardson coefficient and is enumerated by

|LR(α, , β, γ )|. Finally, the other coefficient, kαβγ , counts chains of ballot genomic
tableaux completely filling of contents α, β, γ , which is equivalently enumerated
by |K(γ c/α;β)|. ��
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Lemma 6.8 We have χ(OS) ≤ h0(S) ≤ ι(S) ≤ η(S).

Proof The first inequality follows from the fact that S is one-dimensional so χ(OS) =
h0(S) − h1(S). We clearly have h0(S) ≤ ι(S). Finally, since the map S → P

1 is flat
(Lemma 3.14), every irreducible component of S dominates the P1. Since the fibers
in S over RP1 ⊂ P

1 consist entirely of real points, it follows that every irreducible
component of S contains a real point. Thus we have ι(S) ≤ η(S). ��
6.2.1 Schubert Curves with Trivial Monodromy

We now use these connections along with the bijections above to analyze the case
when ω is the identity map.

Theorem 6.9 The monodromy operator ω acts on LR(α, , β, γ ) as the identity if
and only if |K(γ c/α;β)| = 0. Furthermore, if ω is the identity map then the complex
Schubert curve S is isomorphic to a disjoint union of copies ofP1, and themap S → P

1

is locally an isomorphism.

Proof Suppose ω acts as the identity map. Let T ∈ LR(α, , β, γ ). Then ω(T ) =
sh(esh(T )) = T , so the switching algorithm applied to T is reversed by JDT.

Assume for contradiction that there is a non-adjacent step in the switching algorithm
computation of esh(T ), that is, a step in which � switches with an entry in a square
that is not adjacent to it. Let t be the first such entry that it switches with; notice that
in any phase of the algorithm, any given i ′ strip or i strip has all its switches with
� in only one direction (reading order or reverse reading order). Thus some entry
in the i ′-strip or i-strip containing t is switched with � and not replaced by a letter
of the same type. Since JDT only involves adjacent move, it cannot move this entry
back to its original position, and T is not fixed by ω, a contradiction. It follows that
there are no non-adjacent steps in the computation and so, by Theorem 6.4, we have
|K(γ c/α;β)| = 0.

Conversely, if |K(γ c/α;β)| = 0, there are no non-adjacent steps in the computa-
tion, and so the JDT slides undo every step of the algorithm since the tableau at every
step of the algorithm is semistandard. Hence ω = id if and only if |K(γ c/α;β)| = 0.

Now, suppose ω is the identity map. Then we have χ(OS) = |LR(α, , β, γ )| −
0 = |LR(α, , β, γ )| by Lemma 6.7. Note that in this case there are also exactly
|LR(α, , β, γ )| real connected components of the Schubert curve S. By Lemma 6.8,
it follows that

χ(OS) = h0(S) = ι(S) = η(S),

and so there are exactly |LR(α, , β, γ )| complex connected components, each of
them irreducible. Furthermore, dimC H1(S) = h0(S) − χ(OS) = 0 and so S has
genus 0, implying that each component is isomorphic to P1. ��
6.2.2 Curves with Arbitrarily Many Complex Components

We can now give a family of Schubert curves having arbitrarily many complex con-
nected components.
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1
1

1
1
1

Fig. 8 A shape and content giving rise to a Schubert curve S with many complex components

Proposition 6.10 Let t ∈ Z+ and let α = (2t+1, 2t−1, . . . , 7, 5, 3), β = (t+2), and
γ c = (2t + 2, 2t, . . . , 6, 4, 2, 1). Then the Schubert curve S has exactly 2t connected
components.

Proof Note that any valid semistandard filling of shape γ c/α with content β has � as
the leftmost entry in the second row. The entries in the bottom two rows are determined,
and every other entry may be either 1 or 1′. (See Fig. 8.) Thus |LR(α, , β, γ )| = 2t ,
and it is easy to see that ω = id. The conclusion follows from Theorem 6.9. ��

6.2.3 Combinatorial Proof of a Geometric Inequality

Recall that η(S) is the number of real connected components of the Schubert curve S;
this is equal to |Orb(ω)| where ω is the corresponding monodromy operator and Orb
is the set of orbits of the operator ω. Lemma 6.7 allows us to rewrite Lemma 6.8 as
the following inequality:

|K(γ c/α;β)| ≥ |LR(α, , β, γ )| − |Orb(ωα,β,γ )|. (6)

In [4], we found a combinatorial proof of this inequality in type A using the bijections
between steps of the esh algorithm and genomic tableaux. It also relied heavily on a
decomposition similar to (5). We now provide a similar proof in the type B setting,
omitting some of the details since they closely follow the analysis in [4].

Definition 6.11 Using the notation of (5), define shi ′ = sh1′ ◦sh1◦sh2′ · · ·◦shi−1◦shi ′
and shi = shi ′ ◦ shi for all i . Then define ωi ′ : Z0 → Z0 by

ωi ′ = shi−1 ◦ (shi ′ ◦ eshi ′) ◦ sh−1
i−1 and ωi = shi ′ ◦ (shi ◦ eshi ) ◦ sh−1

i ′ ,

(where we take sh0 to be the identity map in the case i = 1).

Note that we have

ω = ωm+1′ ◦ ωm ◦ ωm′ ◦ · · · ◦ ω1 ◦ ω1′ , (7)

where m is as in (5). We also have that the set of all genomic tableaux arising in the
orbits of ω via the two bijections of Theorem 6.4 coincide with the set of all genomic
tableaux arising in each ωi ′ and ωi orbits, at the eshi ′ and eshi steps respectively.

We now analyze the orbits of the ωi ′ and ωi permutations. To do so it suffices to
understand the corresponding “loops” shi ′ ◦ eshi ′ and shi ◦ eshi .
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1 1
1

1
1
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1 2
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1
1

1
1

1
1 2

1 2
2
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1

1
1

1 2
1 2
2

Fig. 9 The elements, in order, of an ωi ′ = sh1′ ◦ esh1′ orbit

1 1
1 1 1

1
1

1 1 1
1 1

1
1

1 1 1
1 1 1

1

1 1
1 1 1

1
1

1 1 1
1 1

1
1

1 1 1
1 1 1

1

Fig. 10 An sh1 ◦ esh1-orbit involving an exceptional move. The exceptional move occurs on the step from
the last element to the first element shown above

Proposition 6.12 Let Oi ′ and Oi be orbits (cycles) of the permutations shi ′ ◦ eshi ′ and
shi ◦eshi respectively. Then the computation of Oi ′ , respectively Oi , generates exactly
|Oi ′ |−1, respectively |Oi |−1, genomic tableaux in each direction as in Theorem 6.4,
via the maps eshi ′ and eshi respectively.

Proof (sketch) It is not hard to verify, using the Removable Pairs lemma (5.31) and
the definition of eshi ′ , that the orbits Oi ′ always have the pattern of moving � up
one column of i ′ entries at a time before jumping back down to the starting column,
as illustrated in Fig. 9. Each non-adjacent step of � to the next column of i ′ entries
generates one genomic tableau in reverse standardization order, and only one step of
the orbit has no such step. Similarly the special step of the orbit generates |Oi ′ | − 1
genomic tableaux in standardization order.

The orbits Oi can either look similar to the loops Oi ′ (but on the horizontal i-strips
rather than the vertical i ′-strips), or if an exceptional move is involved in some eshi
step then they can have the form of the example in Fig. 10. In either case, the result is
again easily verified. ��

Write refl(π) for the reflection length of a permutation π , the minimum number of
transpositions required to generate the permutation. Then since the reflection length
of any orbit O of ω is equal to |O| − 1, by (7) we have

|LR(α, , β, γ )| − |Orb(ω)| = refl(ω) ≤
∑
i

refl(ωi ) + refl(ωi ′).

The right hand side of the above equation is equal to |K(γ c/α;β)| by Proposition 6.12,
and (6) now follows.
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7 Conjectures

We have seen that many of the geometric and combinatorial properties of type A
Schubert curves have a natural type B analog. Based on further results and conjectures
in type A [4], we also make the following conjectures in this setting.

7.1 Orbit-By-Orbit Inequality

In type A, we conjectured an “orbit-by-orbit” version of the inequality (6) as follows.
Note that the right hand side, |LR(α, , β, γ )| − |Orb(ωα,β,γ )|, can be written as the
summation

∑
O∈Orb(ω)

(|O| − 1).

We conjecture in particular that for each orbitO ofω, the number of genomic tableaux
that are traversed in standardization order, or in reverse standardization order, in this
orbit is at least |O| − 1. Computer calculations indicate that this refined inequality
may be true in type B as well. We state this precisely as follows.

Conjecture 7.1 LetO ∈ Orb(ω). There are at least |O|−1 genomic tableaux traversed
in standardization order and at least |O|−1 traversed in reverse standardization order
in the computation of O using the switching algorithm.

7.2 High-Genus Schubert Curves

In type A, the authors exhibit a family of Schubert curves in in Gr, determined by
three partitions α, β, γ , with arbitrarily high arithmetic genus as follows. Ifω has only
one orbit then there is only one real connected component and so S is connected and
integral (since it is reduced by Lemma 3.14). Then we have

χ(OS) = |LR(α, , β, γ )| − |K(γ c/α;β)|
= dimC H0(OS) − dimC H1(OS) = 1 − ga(S).

Thus ga(S) = |K(γ c/α;β)| − |LR(α, , β, γ )| + 1. It follows that, to find a family
of irreducible Schubert curves with arbitrarily high arithmetic genus, it suffices to
find a family of partitions α, β, γ such that ω has a single orbit and the difference
|K(γ c/α;β)| − |LR(α, , β, γ )| grows arbitrarily large. We found such a family in
type A using the combinatorial connection between orbits and genomic tableaux.
Since the above computations go through verbatim in type B, and we have a similar
bijection toK-theory tableaux in this setting, wemake the following conjecture, whose
resolution may be a simple matter of finding the right family of shapes.

Conjecture 7.2 The Schubert curves in OG attain arbitrarily high arithmetic genus
ga(S).
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7.3 Number of Steps in the Switching Algorithm

We concludewith a surprising combinatorial conjecture about the length of the switch-
ing algorithm:

Conjecture 7.3 Let (�, T ) ∈ LR(α, , β, γ ). The number of steps (switches) in the
switching algorithm for computing esh(�, T ) is equal to

2s + βs − 1

where s is the index of the first Phase 2 step. In particular, there are exactly as many
steps as in the promotion step of the rectification algorithm described in Sect. 3.3.

In typeA, the analogous statement is an easy consequence of the proof of the switch-
ing algorithm, due to a natural coplactic decomposition into switches past horizontal
and vertical strips [4]. No such decomposition exists for Phase 2 in type B (see Propo-
sition 4.7), yet this conjecture indicates, remarkably, that the length of the evacuation
shuffle path of the � is coplactic. Indeed, the conjecture suggests that the path itself
somehowcorresponds to the promotion path through the rectified tableau.Wehave ver-
ified computationally that the conjecture holds for all tableauxwith |α|+|β|+|γ | ≤ 10
(approximately 913000 words). It would be interesting to see a proof of this conjecture
and any accompanying tableau decompositions.
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