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Abstract

The potential energy landscape (PEL) formalism is a tool within statistical mechanics that has

been used in the past to calculate the equation of states (EOS) of classical rigid model liquids at

low temperatures, where computer simulations may be challenging. In this work, we use classical

molecular dynamics (MD) simulations and the PEL formalism to calculate the EOS of the flexible q-

TIP4P/F water model. This model exhibits a liquid-liquid critical point (LLCP) in the supercooled

regime, at (Pc = 150 MPa, Tc = 190 K, ρc = 1.04 g/cm3) [using the reaction field technique].

The PEL-EOS of q-TIP4P/F water, and the corresponding location of the LLCP, are in very good

agreement with the MD simulations. We show that the PEL of q-TIP4P/F water is Gaussian which

allows us to calculate the configurational entropy of the system, Sconf . The Sconf of q-TIP4P/F

water is surprisingly similar to that reported previously for rigid water models, suggesting that

intramolecular flexibility does not necessarily add roughness to the PEL. We also show that the

Adam-Gibbs relation, which relates the diffusion coefficient D with Sconf , holds for the flexible

q-TIP4P/F water model. Overall, our results indicate that the PEL formalism can be used to

study molecular systems that include molecular flexibility, the common case in standard force

fields. This is not trivial since the introduction of large bending/stretching mode frequencies is

problematic in classical statistical mechanics. For example, as shown previously, we find that such

high-frequencies lead to an unphysical (negative) entropy for q-TIP4P/F water when using classical

statistical mechanics (yet the PEL formalism can be applied successfully).
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I. INTRODUCTION

The potential energy landscape (PEL) formalism [1–3] in classical statistical mechanics

was introduced as a tool for understanding the structure, kinetics, and phase behavior in

condensed matter [1–4]. Briefly, for a system with n generalized coordinates {q1, q2, ..., qn},

the PEL is the hypersurface in (n + 1)-dimensional space defined by the potential energy

of the system as a function of the generalized coordinates, V (q1, q2, ..., qn). The PEL for-

malism has been applied extensively in the past to study very diverse systems, includ-

ing low-temperature liquids [5–8] and glasses [9–11], granular materials [12], clusters of

atoms [13, 14], proteins [15], and quantum liquids [16]. In the case of low-temperature liq-

uids and glasses, the PEL formalism provides a simple interpretation: a glass is a system

that, due to its low kinetic energy, is trapped within a basin of V (q1, q2, ..., qn) while a

system in the liquid state has sufficient kinetic energy to move among different basins of the

PEL. It follows that the topography of the PEL plays a fundamental role in describing the

properties of low temperature liquids and glassy systems.

Perhaps one of the most important applications of the PEL formalism has been to provide

the P (V ) equation of state (EOS) of liquids at low temperature using computer simulations,

at conditions where thermalization may be challenging [5, 17–20]. Such calculations are not

straightforward and have been performed for only a few substances, specifically, silica [6, 21],

orthoterphenyl [20], and water [18, 19, 22]. The PEL formalism applied to the case of water

has been particularly relevant in locating the liquid-liquid critical point (LLCP) of SPC/E

and TIP4P/2005 water using computer simulations [19, 22]. Within the PEL formalism, one

can calculate the Helmholtz free energy of the system, F (N, V, T ), based solely on a handful

of topographic properties of the PEL. Specifically, F (N, V, T ) can be expressed in terms of

(i) the average energy (depth) of the PEL local minima (inherent structures, IS) sampled

by the system at the working conditions (N, V, T ), EIS(T ), (ii) the curvature of the PEL

about the sampled IS (Hessian matrix eigenvalues), and (iii) the distribution of IS energies

eIS available in the PEL, ΩIS(eIS) (these properties are accessible in computer simulations

studies). The PEL-EOS is then calculated via P (V ) = (∂F/∂V )N,V .

Most, if not all, applications of the PEL formalism to study liquids and glasses have

been based on atomistic or molecular liquids composed of rigid molecules. The two com-

putational studies where the PEL-EOS of water have been reported are based on the rigid
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SPC/E and TIP4P/2005 water models [19, 22]. It remains unclear whether the PEL for-

malism and in particular, the PEL-EOS, can be extended to the case of flexible molecules.

Adding molecular flexibility may lead to anharmonicities in the PEL which are difficult to

deal with or, it may just lead to a poor agreement between the PEL-EOS and true EOS of

the liquid under study. From a fundamental point of view, classical statistical mechanics

fails in predicting some of the thermodynamic properties of systems with very large vibra-

tional frequencies [23]. For example, it is well-known that the entropy predicted by classical

statistical mechanics for an harmonic oscillator with natural frequency ω0 becomes negative

for large ω0 [24]. As shown below, the vibrational density of states of a rigid water model ex-

tends up to ωc ≈ 1100 cm−1 while ωc ≈ 4000 cm−1 for flexible water models (and real water).

Within the PEL formalism, one may question how the distribution of IS (or, equivalently,

the configurational entropy), and the energy and curvature of the IS sampled by the system

differ among rigid and flexible molecular models. In particular, one may wonder whether

the PEL formalism is of any practical use to describe liquids composed of flexible molecules

(which is the case of most, if not all, molecular force fields used in computer simulations).

In this work, we perform extensive classical molecular dynamics (MD) simulations of wa-

ter using the q-TIP4P/F model [25] and explore the corresponding PEL. The q-TIP4P/F

model is a flexible water model, where a fourth-order polynomial expansion of a Morse

potential is used to model the OH covalent-bond potential energy, and a harmonic poten-

tial is used to model the HOH angle potential energy. This model exhibits a first-order

liquid-liquid phase transition (LLPT) at low temperatures that ends at an LLCP at positive

pressures [26, 27]. The presence of an LLCP in supercooled water has become a common

feature of computer simulations studies based on realistic water models [28–33]. In partic-

ular, the existence of a LLCP in water has received remarkable strong support from recent

experiments [34–39].

The main goals of this work are (i) to test the PEL formalism for the case of the flexible

q-TIP4P/F water model, (ii) to provide the PEL-EOS for this model, and (iii) to compare

these results with the previous PEL studies based on the rigid SPC/E and TIP4P/2005

water models [19, 22]. In particular, we test whether the Gaussian and Harmonic ap-

proximations of the PEL can be applied to liquids with high (intramolecular) vibrational

frequencies. Previous studies of water and other molecular/atomistic systems show that

the configurational entropy is related to the liquid diffusion coefficient via the Adam-Gibbs
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(AG) relationship [40–44]. The AG relation implies that the topography of the PEL con-

trols the dynamics of the liquid. Accordingly, another goal of this work, is to test whether

the AG relationship holds for q-TIP4P/F water. Our results indicate that the EOS pre-

dicted by the PEL formalism for q-TIP4P/F water is in good agreement with the results

from MD simulations. In particular, it provides a very good estimation of the LLCP loca-

tion in the P-T plane. Interestingly, the high vibrational frequencies in the model, due to

the intramolecular interactions, lead to negative (unphysical) vibrational and total entropy

when using classical statistical mechanics. Nonetheless, the configurational entropy and the

thermodynamic properties of the system are all physically sound. Indeed, our results with

the flexible q-TIP4/F model are remarkably consistent with the previous PEL studies of

SPC/E and TIP4P/2005 water by Sciortino and collaborators. The AG relationship, which

has been validated for SPC/E and TIP4P/2005 water, is in good agreement with our MD

results for q-TIP4P/F water.

The structure of this work is as follows. In Sec. II, we present a brief overview of the PEL

formalism, including important approximations (Gaussian and Harmonic approximations)

that make the PEL formalism of practical use. Also included in Sec. II is the formal expres-

sion for the PEL-EOS of a flexible water model. The computational details are provided

in Sec. III. The results from our classical MD simulations and PEL analysis of q-TIP4P/F

water are presented in Sec. IV. A summary and discussions are included in Sec. V.

II. POTENTIAL ENERGY LANDSCAPE FORMALISM FOR A FLEXIBLE WA-

TER MODEL

We consider a flexible water model where the intermolecular interactions depend only on

the position of the water molecules O and two H atoms. This is the case of the q-TIP4P/F

water model (the position of the virtual site for a given water molecule is a function of

the corresponding O and H atoms coordinates) [25]. In such cases, the canonical partition

function for a system of N molecules at temperature T and volume V can be written as [45]

Q(N, V, T ) =
1

h3nN !

∫︂
V

dr3n
∫︂ ∞

−∞
dp3ne−βH (1)

where n = 3N is the total number of atoms; H = H(r1⃗, r2⃗, ..., rn⃗; p1⃗, p2⃗, ..., pn⃗) is the Hamilto-

nian of the system, H =
∑︁n

i=1
pi⃗

2

2mi
+V (r1⃗, r2⃗, ..., rn⃗), and V (r1⃗, r2⃗, ..., rn⃗) is the corresponding
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potential energy. Here, mi is the mass of atom i and β = 1/kBT (kB is the Boltzmann’s

constant). The position and momentum of atom i are given by ri⃗ and pi⃗, respectively

(i = 1, 2, .., n). It follows that the configurational space of the system is a 9N -dimensional

space and that the PEL is the hypersurface in (9N + 1)-dimensional space defined by the

potential energy function V (r1⃗, r2⃗, ..., rn⃗).

The main idea of the PEL formalism is to partition the PEL into basins [4]. Each basin

of V (r1⃗, r2⃗, ..., rn⃗) is characterized by a local potential energy minimum (inherent structures,

IS) and the corresponding basin is defined as the set of points in V (r1⃗, r2⃗, ..., rn⃗) that converge

by steepest descent (i.e., upon potential energy minimization) to the given IS. It follows that

each basin of the PEL can be associated with a unique IS characterized by an energy eIS.

It can be shown that Eq. 1 can be re-written as [4, 5, 46]

Q(N, V, T ) =
∑︂
eIS

e−β[eIS−TSconf (N,V,eIS)+Fvib(N,V,T,eIS)] (2)

where the sum runs over all values of IS energies available in the PEL (if the distribution

of IS energies in the PEL is continuous then
∑︁

eIS
→
∫︁
eIS

deIS). Sconf (N, V, eIS) is the

configurational entropy of the system and quantifies the number of IS available in the PEL

with energy eIS at the given N and V . Specifically, in Eq. 2,

Sconf (N, V, eIS) ≡ kB lnΩ(N, V, eIS) (3)

where Ω(N, V, eIS) is the number of distinct IS available in the PEL with energy eIS [4, 5,

10, 47]. Fvib(N, V, T, eIS) is the contribution to the Helmholtz free energy arising from the

vibrational motion of the system within the basins with IS energy eIS [4, 5]. Specifically,

Fvib(N, V, T, eIS) ≡ −kBT ln
(︁
< Ql(N, V, T ) >l(eIS)

)︁
(4)

where Ql(N, V, T ) is the canonical partition function of the system when it is trapped in the

basin of the PEL labeled by l, and < ... >l(eIS) indicates averaging over all basins l with IS

energy eIS (see, e.g., Refs. [5]).

Gaussian and Harmonic Approximations of the PEL. Eq. 2 is formally exact, equiva-

lent to Eq. 1. However, it is of no practical use. In order to proceed further within the

PEL formalism, one needs to model the statistical properties of the PEL. The two most

commonly used hypothesis in the study of liquids and glasses using the PEL formalism are

(i) the Gaussian approximation of the PEL, which assumes that Ω(N, V, eIS) is a Gaussian
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distribution; and (ii) the harmonic approximation (HA), which assumes that the basins of

the PEL have a parabolic shape about the corresponding IS [4, 5, 46, 47].

(i) In the Gaussian approximation of the PEL, one assumes that

Ω(N, V, eIS) =
eαN√
2πσ2

e−
(eIS−E0)

2

2σ2 (5)

where α, σ2, and E0 are parameters that depend only on (N, V ). The total number of IS

in the PEL is given by eαN ; the average IS energy and variance of Ω(N, V, eIS) are given by

E0 and σ2, respectively. Using this expression in Eq. 3, one finds that

Sconf (N, V, eIS) ≈ kB

[︃
αN − (eIS − E0)

2

2σ2

]︃
(6)

(ii) In the HA, the vibrational free energy Fvib can be calculated analytically (using

Eq. 4) [5]. Specifically, one finds that

Fvib → Fharm ≈ dkBT ln(βA0) + kBTS(N, V, eIS) (7)

where d is the number of degrees of freedom in the system (d = 6N for rigid water models;

d = 9N for q-TIP4P/F water), and S(N, V, eIS) is the basin shape function [5]

S(N, V, eIS) =

⟨︄
d−3∑︂
i=1

ln

(︃
h̄ωi(N, V, eIS)

A0

)︃⟩︄
eIS

(8)

and A0 ≡ 1 kJ/mol is a constant that ensures that the argument of the ln(...) has no

units. As previously found in several investigated models [19, 48, 49], we find that the shape

function of the q-TIP4P/F water model is linear with eIS (see below),

S(N, V, eIS) = a(N, V ) + b(N, V )eIS (9)

where a and b are coefficients that depend only on (N, V ).

Equilibrium. The key approximation in the PEL formalism is that, at a given (N, V, T ),

the system in equilibrium only samples a narrow range of eIS-values [4, 5, 46]. This is

consistent with numerous computational studies [7], as long as the system remains in a

one-phase state [50, 51]. Using a saddle-point approximations [4, 5] in Eq. 2, one obtains

that

Q(N, V, T ) ≈ e−β[EIS−TSconf (N,V,EIS)+Fvib(N,V,T,EIS)] (10)
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where the state variable EIS = EIS(N, V, T ) is the value of eIS that maximizes the argument

in the exponential of Eq. 2 (at the working conditions (N, V, T )). Specifically, EIS is the

solution of the following equation,

1− T

(︃
∂Sconf (N, V, eIS)

∂eIS

)︃
N,V

+

(︃
∂Fvib(N, V, T, eIS)

∂eIS

)︃
N,V,T

= 0 (11)

In computer simulation studies, EIS(N, V, T ) is identified with the average IS energy that

the system samples at the given working conditions (N, V, T ). Under the Gaussian and

harmonic approximations of the PEL (Eqs. 5 and 7), and using Eq. 9, one can solve Eq. 11,

resulting in the following simple expression,

EIS(N, V, T ) = E0 − bσ2 − σ2

kBT
(12)

where, again, E0, b, and σ2 all depend on N and V .

The free energy of the system follows directly from Eq. 10,

F (N, V, T ) = EIS − TSconf (N, V,EIS) + Fvib(N, V, T, EIS) (13)

It is clear from this expression that Fvib is, indeed, the free energy contribution arising

from the exploration of the basins about the IS. Similarly, FIS(N, V, T ) ≡ EIS − TSconf is

the free energy contribution to the Helmholtz free energy arising from the distribution of

IS accessible to the system at the given (N, V, T ) [4]. Note that, under the Gaussian and

harmonic approximations, EIS and Sconf are given by Eqs. 12 and 6, respectively; Fvib is

obtained from Eq. 7 with eIS → EIS. Accordingly, F (N, V, T ) can be expressed in terms of

topographic properties of the PEL, {α, E0, σ2, ωi}, and T .

In the PEL formalism, the energy and entropy of the system are expressed as E(N, V, T ) ≡

EIS(N, V, T ) + Evib(N, V, T ) and S(N, V, T ) ≡ Sconf (N, V,EIS) + Svib(N, V, T ), where Evib

and Svib are the corresponding vibrational contributions, analogous to the role played by

Fvib for F (N, V, T ). Indeed, it can be shown that Fvib = Evib − TSvib. Moreover, under the

Gaussian and harmonic approximations of the PEL (Eqs. 5 and 7), one can show that [4, 5,

46, 47]

Evib(N, V, T ) → Eharm(N, V, T ) = dkbT (14)

and

Svib(N, V, T ) → Sharm(N, V, T ) = dkB [1− ln (βA0)]− kbS. (15)
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Anharmonic Contributions. The PEL studies of SPC/E and TIP4/2005 water in Refs. [19,

22] show that the HA, including Eq. 14, do not hold for these rigid water models. In such

cases, one needs to introduce anharmonicity corrections to the HA of the PEL [5]. The

treatment of anharmonicities in the PEL formalism is explained in Refs. [5, 22]. Briefly, one

includes explicitly anharmonic contributions in Fvib,

Fvib = Fharm + Fanharm (16)

where the first term Fharm is given by Eq. 7; the anharmonic free energy term Fanharm

is calculated numerically. Similarly, Evib = Eharm + Eanharm and Svib = Sharm + Sanharm,

where Eanharm and Sanharm are the anharmonic contribution to the energy/entropy due to

explorations of the basins in the PEL about the corresponding IS.

In this work, we will only need the anharmonic contribution to the entropy, Sanharm(N, V, T ).

To calculate Sanharm(N, V, T ), we follow Refs. [5, 22, 52] and assume that Fanharm is inde-

pendent of eIS and depends only on (N, V, T ). It can be shown [5, 22] that the potential

energy of the system can then be expressed as U = Uharm +Uanharm where Uharm = 9
2
NkBT

is the potential energy of the system in a quadratic basin, and Uanharm is the corresponding

contribution due to basins anharmonicities. Following Refs. [5, 22, 52], Uanharm can be

expressed as a polynomial in T starting from the quadratic term,

Uanharm(N, V, T ) = c2(V )T 2 + c3(V )T 3 (17)

where c2(V ) and c3(V ) are coefficients (assuming N is constant). Combining Eq. 17, with

the relation dSanharm/dUanharm = 1/T (for constant N , V ), the anharmonic entropy Sanharm

can be written as

Sanharm(N, V, T ) = 2c2(V )T +
3

2
c3(V )T 2. (18)

and Fanharm is given by

Fanharm(N, V, T ) = −c2(V )T 2 − 1

2
c3(V )T 3. (19)

Potential Energy Landscape Equation-of-State. An analytical equation-of-state (EOS)

can now be derived in the PEL formalism by using the thermodynamic relation P =

−(∂F/∂V )N,T , where the Helmholtz free energy F (under the Gaussian and harmonic ap-

proximation, including anharmonicities) is given by

F (N, V, T ) = EIS(N, V, T )− TSconf (N, V,EIS) + Fharm(N, V, T ) + Fanharm(N, V, T ). (20)
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It follows that

P (N, V, T ) = −
(︃
∂EIS(N, V, T )

∂V

)︃
N,T

+ T

(︃
∂Sconf (N, V,EIS)

∂V

)︃
N,T

−
(︃
∂Fharm(N, V, T )

∂V

)︃
N,T

−
(︃
∂Fanharm(N, V, T )

∂V

)︃
N,T

(21)

Following Refs. [5, 19, 20, 22, 52] (using Eqs. 12, 6, 7, and 19), the PEL-EOS can then

be written as (in the following, we omit the dependence of the variables on N)

P (V, T ) =
3∑︂

i=−1

Pi(V )T i (22)

where Pi(V ) is defined as

P−1(V ) =
1

2kB

dσ2(V )

dV
(23)

P0(V ) = − d

dV

[︁
E0(V )− b(V )σ2(V )

]︁
(24)

P1(V ) = kB
d

dV

[︃
Nα(V )− a(V )− b(V )E0(V ) +

b2(V )σ2(V )

2

]︃
(25)

P2(V ) =
dc2(V )

dV
(26)

P3(V ) =
1

2

dc3(V )

dV
(27)

These expressions indicate that, to calculate the PEL-EOS for P (V ), one only needs the PEL

variables {α, σ2, E0; a, b; c2, c3}. These quantities are accessible in computer simulations.

III. COMPUTER SIMULATION DETAILS

We perform molecular dynamics (MD) simulations of a system composed of N = 512

water molecules in a cubic box with periodic boundary conditions. Water molecules are

represented using the q-TIP4P/F model [25]. The q-TIP4P/F water model is based on the

rigid TIP4P/2005 [53] model, which has been used extensively to study liquid, ice, and glassy

water [22, 54–56]. While the q-TIP4P/F flexible model may produce similar results to the

TIP4P/2005 rigid model, it is important to recognize that the introduction of flexibility to

a water model, can have a significant impact on the corresponding phase diagram of water;
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see Ref. [23, 57]. The q-TIP4P/F water model incorporates intramolecular flexibility by

modeling the O-H covalent bond potential with a fourth-order polynomial expansion of a

Morse potential and a harmonic potential to model the potential energy of the HOH angle.

The q-TIP4P/F water model has been optimized to be used in path-integral molecular

dynamics (PIMD) simulations and it reproduces remarkably well the properties of liquid

water [25–27], ice Ih, and LDA at P = 0.1 MPa [57–59]. Hence, one may wonder whether

it is appropriate to use this model in MD simulations, as we do in this study. At low

pressures and approximately T > 150 K, many of the thermodynamic, structural, and

dynamic properties of liquid water obtained from PIMD and classical MD simulations are

minor, if any [26, 27], which is due to the cancellation of competing quantum effects in q-

TIP4P/F water [25]. Differences between classical MD and PIMD simulations are noticeable

in q-TIP4P/F liquid water at intermediate pressures and very low temperatures (P = 100−

200 MPa and T < 230 K) [26]. However, even under such conditions the properties of q-

TIP4P/F water reported from classical MD and PIMD simulations are qualitatively similar

to one another, and consistent with experiments [25, 27, 60].

In this study we perform MD simulations at constant N , V , and T over a wide range of

temperatures and densities, 180 ≤ T ≤ 400 K and 0.80 ≤ ρ ≤ 1.40 g/cm3; see Fig. S1 of the

Supplementary Material (SM). All of our MD simulations are performed using the OpenMM

software package (version 7.4.0) [61]. The temperature is controlled using the stochastic (lo-

cal) path-integral Langevin equation (PILE) thermostat [62], where the thermostat collision

frequency parameter is set to γ = 0.1 ps−1. In our MD simulations, the time step dt is

set to 0.50 fs. Short-range (Lennard-Jones pair potential) interactions are calculated using

a cutoff rc = 1.0 nm and the long-range electrostatic interactions are computed using the

reaction-field technique [63] with the same cutoff rc. In the reaction field technique, the di-

electric constant (relative permittivity) of the continuum medium beyond the cutoff radius

rc is set to 78.3.

In all of the MD simulations, the system is equilibrated for a time interval teq followed

by a production run of time length tprod. The values of teq and tprod depend on the state

point simulated. Total MD simulation times range from 10 ns to 2.5 − 4.0 µs, depending

on T and V . To confirm that the system reaches equilibrium, we calculate the mean-square

displacement (MSD) of the water molecules in the system as a function of time and confirm

that the MD simulations satisfy the requirement that teq, tprod > τ , where τ is the time it
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takes for the MSD of the water molecules to reach 1 nm2.

Inherent Structure Analysis. During the MD simulations, we saved a total of 25 equally-

spaced configurations for each state point simulated. We find that increasing the number of

configurations to 50 does not appreciably change any of the PEL properties of q-TIP4P/F

water studied. For each of these configurations, we calculate the corresponding PEL mini-

mum (IS) using the L-BFGS-B algorithm [64]. The IS energy EIS is obtained directly from

the minimization algorithm. In order to calculate the curvature of the PEL basins about the

corresponding IS, we obtain an analytical expression for the elements of the Hessian matrix

(based on the q-TIP4P/F pair potential [25]) and evaluate it using the atoms coordinates

at the IS. The Hessian matrix is composed of 9N × 9N (N = 512) elements corresponding

to the second derivatives of the potential energy with respect of the coordinates of all of

the atoms in the system. The eigenvalues of the Hessian matrix, {ω2
i }i=1,2,...,9N−3, are then

obtained by numerically diagonalizing the Hessian matrix, which are then used to calculate

the shape function defined in Eq. 8.

PEL-EOS. The PEL-EOS (Eq. 22) depends on the PEL variables {α, σ2, E0; a, b; c2, c3}.

These quantities are calculated as follows (see Refs. [5, 19, 22, 52]). For a given volume V

(N is constant), (i) E0 and σ2 are obtained by fitting the average IS energy as function of

temperature, EIS(T ), using Eq. 12; see Sec. IVC. (ii) a and b, are obtained by fitting the

basin shape function as a function of EIS, S(EIS), using Eq. 9; see Sec. IVE. (iii) c2 and c3

are calculated by using Eq. 17; see Sec. IVD. (iv) To obtain α, we first calculate Sconf (EIS)

and then get α using Eq. 6; see Sec. IVF. Since Sconf = S − Sharm − Sanharm, we calculate

S by thermodynamic integration (see SM); Sharm and Sanharm are given by Eqs. 15 and 18.

IV. RESULTS

The results are presented as follows. In Secs. IVA and IVB, we discuss basic properties of

q-TIP4P/F water obtained from MD simulations. Specifically, we study (A) the vibrational

density of states calculated at the IS, and (B) the phase diagram of this water model, which

exhibits a LLPT and LLCP at low temperatures. In Sec. IVC we show that the Gaussian

approximation successfully applies to the PEL of q-TIP4P/F water (Sec. II). Secs. IVD and

IVE focus on the harmonic approximation of the PEL of q-TIP4P/F water, including the

calculation of the basin shape function and corrections due to the basins anharmonicities.
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The calculations of S(T ) and Sconf (T ) are discussed in Sec. IVF. The EOS of q-TIP4P/F

water derived from the parameters of the PEL is presented in Sec. IVG. Lastly, in Sec. IVH,

we confirm the validity of the Adam-Gibbs for q-TIP4P/F water.

A. Vibrational Spectra of q-TIP4P/F water from the IS

Fig. 1 shows the vibrational density of states (VDOS) of q-TIP4P/F water obtained by

diagonalization of the Hessian matrix at the IS. The effect of density at a fix temperature

(T = 220 K) is shown in Figs. 1(a) and 1(b); the effect of temperature at a fix density

(ρ = 1.00 g/cm3) is shown in Figs. 1(c) and 1(d). For clarity, the VDOS in Fig. 1 are split

into low (ω < 1400 cm−1) and high frequency (ω > 1400 cm−1) ranges, highlighting the (i)

translational (ω < 400 cm−1), (ii) librational (400 < ω < 1200 cm−1), (iii) HOH bending

(ω ≈ 1600 cm−1), and (iv) O-H stretching bands (ω ≈ 3400 − 3600 cm−1). The effects of

increasing the temperature (at constant density), and the density (at constant temperature)

are qualitatively similar. Specifically, increasing the temperature/density tends to reduce

the magnitude of the VDOS at the peaks corresponding to all vibrational modes (i)-(iv). The

only exception to this are the translational modes centered at ω ≈ 50 cm−1, which remains

unchanged upon heating [Fig. 1(c)]. A slight shift in the VDOS peaks corresponding to

vibrational modes (i), (ii) and (iv) are also found upon increasing temperature/density.

For comparison, also included in Figs. 1(b) and 1(d) are the vibrational modes of a single

water molecule (black dashed-lines). For a single water molecule there are three distinct

frequencies, corresponding to the bending (ω ≈ 1600 cm−1), and symmetric/asymmetric

O-H stretching modes (ω ≈ 3950 cm−1 and ω ≈ 4050 cm−1). The bending and stretching

bands in q-TIP4P/F water are slightly shifted relative to the corresponding frequencies for

an isolated water molecule

We stress that the VDOS of rigid water models extend up to ω ≈ 1200 cm−1. Such VDOS

are similar to the VDOS shown in Fig. 1(a) and 1(c). Relevant to this work, the changes

in the VDOS of q-TIP4P/F water due to temperature and density, shown in Figs. 1(a) and

1(c), are fully consistent with the corresponding effects observed in the VDOS of TIP4P/2005

water reported in Ref. [22].
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FIG. 1. Vibrational density of states of q-TIP4P/F water obtained by diagonalizing the Hessian

matrix at the IS sampled by the system. (a) VDOS as a function of density at T = 220 K for fre-

quencies ω < 1400 cm−1, covering the librational mode frequencies at approximately ω > 400 cm−1

and the translational mode frequencies at approximately ω < 400 cm−1. The VDOS maxima cor-

responding to both the librational and translational vibrational modes of the system decrease with

increasing density. (b) Same as (a) for frequencies 1400 ≤ ω ≤ 4000 cm−1, corresponding to the

bending (ω < 1600 cm−1) and stretching vibrational modes (ω < 3500 cm−1). Increasing the den-

sity of the system also reduce the VDOS maxima associated to the bending and stretching modes.

(c)(d) Same as (a)(b) for the VDOS as a function of temperature, at density ρ = 1.00 g/cm3. In-

creasing the temperature has a similar effect on the VDOS as increasing the density (see arrows).

For comparison, included in (b) and (d) are the frequencies of an isolated water molecule associated

to the HOH bending (ω ≈ 1600 cm−1) and OH stretching modes (ω ≈ 3950 cm−1 for the symmetric

mode, and ω ≈ 4050 cm−1 for the asymmetric mode). The changes in the VDOS with temperature

and density at ω < 1400 cm−1 in (a) and (c) are fully consistent with the corresponding results

obtained in MD simulations using rigid water models [22].
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B. Liquid-liquid phase transition

Fig. 2(a) shows the P − T -phase diagram of q-TIP4P/F water obtained from our MD

simulations (using the reaction-field technique to treat the electrostatic interactions). In-

cluded in Fig. 2(a) are the LLCP, line of isothermal compressibility maxima (κmax
T -line),

line of density maxima (ρmax-line), and the line of diffusivity maxima (Dmax-line) (see, e.g.,

Refs. [26, 65–67]). Also included is the liquid-vapor spinodal line. The black circles/lines

in Fig. 2(a) are selected isochores. Consistent with thermodynamics [68], the isochores

for volumes close to the LLCP volume intersect at the LLCP (red star). We note that

the LLCP in Fig. 2(a) is determined from the inflection point in the P (V )-isotherms; see

Fig. 2(b). Indeed, the P (V ) isotherms shown in Fig. 2(b) exhibit a region of instability

where (∂P/∂V )N,V > 0 at T < 190 K indicating that the system is separating into two

distinct liquid phases, low-density and high-density liquid (LDL and HDL). Unfortunately,

below T < 200 K and for approximately 1.05 < V < 1.15 cm3/g, we could not perform

MD simulations due to the very slow relaxation of the system (> 10 µs). Crystallization

is not observed in most of the state points explored, except in a few runs performed at

T = 190− 200 K, below the LLCP, and at ρ = 1.00 g/cm3; see SM.

The potential energy of the system U(V ) along the isotherms shown in Fig. 2(b) are

shown in Fig. 2(c). U(V ) exhibits a concave region (i.e., (∂2U/∂V 2)N,T < 0) at V =

0.85 − 1.00 cm3/g, particularly at low temperatures. Since the Helmholtz free energy of

the system is F = E − TS, a concavity in U(V ) can lead to a concavity in F (V ) at low

temperatures, which is a signature of a first-order phase transition. Therefore, the concavity

in U(V ) is fully consistent with the existence of a LLPT/LLCP in q-TIP4P/F water [69]. The

liquid-vapor spinodal line (orange line) shown in Fig. 2(a) is determined from the minimum

in the P (V )-isotherms at V > 1.1 g/cm3 in Fig. 2(b).

Overall, the phase diagram in Fig. 2(a) and the P (V )- and U(V )-isotherms shown in

Fig. 2(b) and 2(c) are fully consistent with previous computational studies using different

water models, including ST2 [28, 66, 70–72], TIP4P/2005 and TIP4P/ice [73–75]. We also

note that the results presented here, based on the q-TIP4P/F model using the reaction field

technique, are very similar to the results obtained in Ref. [26] using the same water model

but with the Particle Mesh Ewald (PME) technique. Using the reaction field technique shifts

the LLCP location from (Pc = 203 MPa, Tc = 175 K, ρc = 1.03 g/cm3) [PME, estimated in
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Ref. [26])] to (Pc = 150 MPa, Tc = 190 K, ρc = 1.04 g/cm3) [reaction field, this work].
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FIG. 2. (a) P−T -phase diagram of q-TIP4P/F water obtained from classical MD simulations. MD

simulations are performed down to T = 180 K, just below the LLCP temperature (red star). Black

lines/circles are the isochores for (top-to-bottom) ρ = 0.80 to 1.40 g/cm3 in steps of 0.04 g/cm3 –

isochores for ρ ≈ 1.00−1.04 g/cm3 intersect one another at the LLCP. The liquid-vapor spinodal line

is indicated by the orange down-triangles. The green left-triangles and blue up-triangles represent,

respectively, the lines of maxima in the isothermal compressibility and density; magenta right-

triangles indicate the line of maxima in the diffusion coefficient. (b) P (V )-isotherms of q-TIP4P/F

water for selected temperatures. Solid and empty circles correspond to liquid and vapor states,

respectively. Equilibration was not reached at V ≈ 1.04− 1.14 cm3/g (ρ ≈ 0.88− 0.96 g/cm3) due

to slow relaxation times (dashed lines). Isotherms are shifted for clarity by (top-to-bottom) ∆P =

300, 200, 100, 0, −100, −200 MPa. At low temperatures, the P (V )-isotherms develop an inflection

point consistent with the existence of a LLPT in q-TIP4P/F water at (Pc = 150 MPa, Tc = 190 K,

ρc = 1.04 g/cm3). (c) Potential energy (U(V )) as a function of volume for q-TIP4P/F water along

the isotherms shown in (b). Consistent with the existence of a LLCP, the U(V )-isotherms exhibit

a concavity region at intermediate volumes.
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C. Gaussian Approximation

In this section, we show that the Gaussian approximation of the PEL is consistent with the

MD simulations results of q-TIP4P/F water. To do this, we include in Fig. 3(a) the average

IS energy EIS(T ) as a function of the inverse temperature 1/T for isochores above and below

the critical isochore for q-TIP4P/F (ρc ≈ 1.04 g/cm3). The main point of Fig. 3(a) is that,

at all densities considered, EIS(T ) ∝ 1/T for T < 280 K, consistent with the prediction of

the Gaussian approximation (Eq. 12). We note that at very high temperature (T > 400 K),

EIS(T ) reaches a constant value, in the so-called PEL-independent regime [9, 76]; see Fig. S3

of the SM. In this regime, the properties of the system are not sensitive to the topography of

the PEL because the system has a large kinetic energy and hence, it can freely explore the

PEL. Instead, at low temperature, the thermodynamic properties of the system are strongly

correlated with the topography of the PEL, in the so-called PEL-influenced regime [9], where

EIS(T ) varies non-linearly with respect to T . The crossover temperature between the PEL-

independent and PEL-influenced regime occurs at the so-called onset temperature T0 [16].

For the case of q-TIP4P/F the onset temperature is T0 ≈ 280− 330 K, which is larger than

the melting temperature for this water model TM ≈ 260 K (using the Ewald summation

technique [25]).

The parameters E0(V ) and σ2(V ) for q-TIP4P/F water are evaluated from Fig. 3(a)

by interpolating the MD simulations data (circles) at low temperatures using a straight line

(Eq. 12). E0(V ) and σ2(V ) are shown in Fig. 3(b) and 3(c) (red circles). For comparison, we

also include the values of E0(V ) and σ2(V ) for TIP4P/2005 (blue circles) and SPC/E (green

circles) water reported in Refs. [19, 22]. The values and volume-dependence of E0(V ) and

σ2(V ) for the q-TIP4P/F water are qualitatively similar to the corresponding values obtained

for the rigid water SPC/E and TIP4P/2005 models. Accordingly, irrespective of whether the

model is rigid (SPC/E and TIP4P/2005) or flexible (q-TIP4P/F), a Gaussian description

is a good approximation for the PEL of water at low temperatures. Interestingly, for all of

these three water models, a minimum in E0(V ) and σ2(V ) occurs at V ≈ 0.85−0.90 cm3/g.

The minimum in σ2(V ) is particularly important. It has been shown that for liquids with

a PEL that is Gaussian and harmonic, a minimum in σ2(V ) implies that the liquid has a

density anomaly (at densities where dσ2/dV > 0) [19, 22]. In addition, the minimum in

σ2(V ) also implies that, for a Gaussian and harmonic PEL, the corresponding liquid exhibits
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a LLCP [19]. Hence, our results are fully consistent with the previous studies of Sciortino

and collaborators based on the rigid SPC/E and TIP4P/2005 water models [19, 22] and

with Ref. [20].
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FIG. 3. (a) Inherent structure energy EIS of q-TIP4P/F water as a function of the inverse temper-

ature for selected isochores. Below T ≤ 280 K (vertical dashed-line), EIS(T ) is a linear function

of 1/T (solid lines), consistent with the Gaussian approximation of the PEL, Eq. 12. (b)(c) PEL

parameters E0 and σ2 as function of volume obtained from the linear fits in (a) using Eq. 12. For

comparison, also included in (b) and (c) are the E0(V ) and σ2(V ) values reported for TIP4P/2005

(blue circles) and SPC/E (green circles) in Refs. [19, 22]. The values of E0(V ) and σ2(V ) for

q-TIP4P/F, TIP4P/2005, and SPC/E water are very similar to one another and show the same

qualitative dependence on V . Solid and empty circles correspond to liquid and vapor states.
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D. Harmonic Approximation

In this section, we test whether the HA of the PEL applies to the q-TIP4P/F water

model. Briefly, we find that the HA of the PEL does not hold for q-TIP4P/F water at all

temperatures and volumes studied, similar to the case of rigid water models [19, 22, 76].

This implies that the PEL basins of q-TIP4P/F water contain significant anharmonicities

that need to be taken into account when applying the PEL formalism (see Sec. II).

To test whether the HA holds for q-TIP4P/F water, we focus on the potential energy of

the system, U(N, V, T ). Within the HA of the PEL, at given N and V , U(T ) = EIS(T ) +

Uharm(T ) with Uharm = 9
2
NkBT (see, e.g., Refs. [5, 22, 76]). As shown in Fig. 4(a), this

expression does not hold for q-TIP4P/F water for any of the isochores studied.

The contribution to the potential energy due to the anharmonicities in the basins of the

PEL is given by

Uanharm(T ) = U(T )− EIS(T )−
9

2
NkBT (28)

Fig. 4(b) shows Uanharm(T ) obtained from Fig. 4(a) (circles) as well as the corresponding

fitting curves based on Eq. 17. The excellent agreement between the MD simulation data and

Eq. 17 indicates that one can treat the anharmonic corrections to the PEL using Eqs. 17-19.

c2(V ) and c3(V ) are shown in Figs. 4(c) and 4(d), respectively.
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FIG. 4. (a) Potential energy of q-TIP4P/F water U(T ) minus the IS energy EIS along different

isochores (∆U(T ) = U(T ) − EIS(T ); circles). The prediction from the HA approximation of the

PEL is indicated by the dashed-line (∆U(T ) = Uharm = 9
2NkBT ). For all the isochores studied,

the HA approximation does not hold for q-TIP4P/F water. (b) Contribution to the potential

energy of the system due to the basin anharmonicities, Uanharm(T ). The lines are the fits to the

MD data obtained using Eq. 17. (c)(d) Fitting parameters c2(V ) and c3(V ) defined in Eq. 17 and

obtained from the fittings in (b).
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E. Shape Function

Next, we show that the basin shape function S(N, V, T ) obeys Eq. 9 for the case of q-

TIP4P/F water. We obtain S(N, V, T ) by diagonalizing the Hessian matrix of the system

evaluated at the IS sampled during the MD simulations, and using Eq. 8. Fig. 5(a) shows

the S(T ) of q-TIP4P/F water along selective isochores. It follows that, for approximately

T ≤ 280 K, S(T ) is a linear function of EIS, consistent with Eq. 9. We note that the

temperature range T ≤ 280 K, at which Eq. 9 holds, is also the range of temperatures

where EIS ∝ 1/T [Fig. 3(a)], i.e., where the Gaussian approximation of the PEL holds for

q-TIP4P/F water.

From the linear fittings in Fig. 5(a), we extract the fitting parameters a(V ) and b(V ) de-

fined in Eq. 9. The parameters a(V ) and b(V ) for q-TIP4P/F water are shown in Fig. 5(b)

and 5(c) (red circles) together with the corresponding values for the TIP4P/2005 (blue cir-

cles) and SPC/E (green circles) water models reported in Refs. [19, 22]. As for the cases of

E0(V ) and σ2(V ), we also find that the V -dependence of a(V ) and b(V ) are similar for all

of three water models. While the values of b(V ) are quantitatively very similar in all these

models, the values of a(V ) in q-TIP4P/F water are much larger than those reported for

SPC/E and TIP4P/2005 water models. This is because the frequencies {ωi} of q-TIP4P/F

water include the OH stretching and HOH angle bending bands, which contribute signifi-

cantly to the shape function (see Eq. 8.). Nonetheless, the slopes of a(V ) and b(V ) do not

appreciably change among the q-TIP4P/F, TIP4P/2005, and SPC/E models.
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FIG. 5. (a) Basin shape function S as a function of the IS energy EIS for q-TIP4P/F water along

selected isochores. Circles are results from MD simulations; lines are the linear fit of the MD data

for T ≤ 280 K (the dashed line corresponds to the S − EIS data points at T = 280 K). In this

temperature-range, S ∝ EIS consistent with Eq. 9. (b)(c) The PEL parameters a(V ) and b(V )

defined in Eq. 9 and resulting from the linear fittings in (a). For comparison, we also include

the values of a(V ) and b(V ) for TIP4P/2005 (blue circles) and SPC/E (green circles) reported in

Refs. [19, 22]. a(V ) and b(V ) exhibit qualitatively similar V -dependence, irrespective of whether

the water model is flexible (q-TIP4P/F) or rigid (TIP4P/2005 and SPC/E); the value of a(V ) are

larger in the case of q-TIP4P/F water.
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F. Entropy and Configurational Entropy

In this section we calculate the (i) S and (ii) Sconf of q-TIP4P/F water. By doing so,

we also obtain the PEL variable α(V ) which is needed to calculate the PEL-EOS. Our

calculations follow the same procedure employed in Ref. [22].

(i) The entropy of q-TIP4P/F water along an isochore (for constant N), S(T ), is cal-

culated via thermodynamic integration; details of the calculations are given in the SM.

Fig. 6(a) shows the S(T ) along selected isochores. While the entropy of the liquid should

be positive, we find that S(T ) < 0 for all volumes considered and at T < 250 − 280 K.

This is contrary to the results obtained previously for SPC/E and TIP4P/2005 water, but

are consistent with the results of Habershon et al. [23] using the q-TIP4P/F water model.

The fact that our S(T ) < 0, when using classical statistical mechanics is due to the bending

and stretching OH bands of q-TIP4P/F water at ω > 1400 cm−1 (Fig. 1). To show this, we

note that S = Sconf + Svib where Svib = Sharm(T ) + Sanharm(T ). As shown in Figs. 6(b) and

6(c), Sharm(T ) < 0 while Sanharm(T ) > 0. The dominant contribution to S is Sharm, which

depends on the vibrational mode frequencies of the system (see Eqs. 8 and 15) and becomes

increasingly more negative as the VDOS frequencies increase.

(ii) The configurational entropy is given by Sconf = S − Svib or, equivalently, by Sconf =

S − Sharm(T ) − Sanharm(T ). The Sconf (T ) for q-TIP4P/F water is shown in Fig. 6(d) for

selected isochores. Interestingly, despite S and Sharm being negative, we find that Sconf > 0

(as expected, based on Eq. 3). It follows that the unphysical (< 0) values of S(T ) and

Sharm(T ), somehow, cancel out leading to a positive Sconf .

The lines shown in Fig. 6(d) are the best fit to Sconf (T ) based on the Gaussian approxi-

mation of the PEL, Eq. 6. From these fitting curves, we extract the PEL variable α(V ); see

red circles in Fig. 7(a). The values of α(V ) obtained for q-TIP4P/F water are comparable to

the corresponding values for TIP4P/2005 (blue circles) and SPC/E (green circles) reported

in Refs. [19, 22]. In all three models, α(V ) increases with increasing volume, consistent

with the system having more IS to explore as the volume becomes larger – the total number

of IS in a Gaussian PEL is eαN . Surprisingly, at approximately V < 1.0 cm3/g, α(V ) is

slightly smaller for q-TIP4P/F water than for TIP4P/2005 and SPC/E water. This implies

that including flexibility into a water model can reduce, to some degree, the number of IS

available in the PEL, relative to the case of rigid water models. However, we also note that
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no PEL can be strictly Gaussian since the Gaussian approximation of the PEL cannot hold

at all temperatures. Hence, the interpretation of eαN as the total number of IS available in

the PEL should be taken with caution.

An important property of the PEL is the Kauzmann temperature TK(V ). For a given

volume, TK(V ) is the temperature at which Sconf (T ) = 0 [8]. Hence, at T ≤ TK , the

equilibrium liquid would have only one basin available in the PEL. It can be shown from

Eq. 6 that

kBTK =

(︄√︃
2αN

σ2
− b

)︄−1

(29)

The TK(V ) for q-TIP4P/F water is shown in Fig. 7(b) (see also Fig. 6(d)). At all volumes

studied, the TK(V ) values for q-TIP4P/F are intermediate to the TK(V ) values reported for

SPC/E and TIP4P/2005 water [19, 22]. For comparision, Fig. 7(c), shows the Sconf (T ) of

q-TIP4P/F, SPC/E, and TIP4P/2005 water at ρ = 1.00, 1.32 g/cm3. Consistent with our

discussions above[e.g., see Figs. 3, 5, and 7(a), ], the values of Sconf (T ) for all these models

are close to one another [19, 22].
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FIG. 6. (a) Entropy S(T ) of q-TIP4P/F water as a function of temperature obtained from the MD

simulations for selected isochores via thermodynamic integration (see SM). S(T ) is unphysically

negative at low temperatures, (see text) [23]. (b)(c) Contribution to the total entropy from the

harmonic and anharmonic part of the vibrational entropy, Sharm(T ) and Sanharm(T ). Sharm and

Sanharm are calculated using Eqs. 15 and 18, respectively. (d) Configurational entropy Sconf (T ) =

S(T ) − Sharm(T ) − Sanharm(T ) obtained from (a)-(c). Lines are the best fits predicted by the

Gaussian approximations of the PEL, Eq. 6 (using α as the only fitting parameter; E0 and σ2 are

taken from Fig. 3).
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FIG. 7. (a) PEL parameter α(V ) defined in Eq. 6 and obtained from the best fits shown in Fig. 6(d)

for q-TIP4P/F water. (b) Kauzmann temperature TK(V ) of q-TIP4P/F water [red circles; from

Eq. 29], TIP4P/2005 (blue circles), and SPC/E (green circles) water (from Refs. [19, 22]). Both

α(V ) and TK(V ) show a similar qualitative behavior irrespective of whether the water model is

flexible (q-TIP4P/F) or rigid (TIP4P/2005 and SPC/E). (c) Sconf (T ) for q-TIP4P/F water at

densities ρ = 1.00, 1.32 g/cm3 (the red solid and dashed lines, respectively). For comparison, the

Sconf (T ) of SPC/E (green solid and dashed lines) and TIP4P/2005 (blue solid and dashed lines)

are also included; reported in Refs. [19, 22].
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G. PEL-EOS of H2O

At this point, we calculated all the (volume-dependent) quantities of the PEL, {α, σ2, E0;

a, b; c2, c3}, that are needed to obtain the PEL-EOS. The PEL-EOS for P (V ) is given

by Eq. 22 and involves various derivatives of the PEL parameters, such as dα/dV . The

V -derivatives of the parameters are calculated using polynomial interpolations as explained

in Ref. [22]; see also Sec. V of the SM. The PEL-EOS for P (V ) given by Eq. 22 is shown

in Fig. 8(a) (lines) together with the corresponding results from our MD simulations (open

circles). For all isochores, the P (V ) PEL-EOS is in excellent agreement with the MD results,

particular at T ≤ 280 K. Deviations between the MD results and the PEL-EOS occur at

T > 350 K. We note, however, that the PEL-EOS is only applicable at conditions where

the Gaussian approximation of the PEL holds. For the case of q-TIP4P/F, the Gaussian

approximations is applicable at T ≤ 280 K [Fig. 3](a). Therefore, the good agreement

between the PEL-EOS and MD simulations at 280 < T < 350 K is rather surprising.

Figs. 8(b) and 8(c) show, respectively, the P −T and ρ−T phase diagrams of q-TIP4P/F

water obtained from the PEL-EOS. Included in these phase diagrams are the LLCP (red

square), coexistence line/boundary region (red dashed-lines), and spinodal lines (red solid-

lines), as well as the well-known anomalous maxima lines of liquid water [77], κmax
T -line

(orange line) and ρmax-line (magenta line), associated to the LLCP. For comparison, we

also include the LLCP, κmax
T -line, and ρmax-line obtained directly from our MD simulations.

The agreement between the PEL-EOS predictions and MD simulations is very good. For

example, deviations in the location of the LLCP are ∆Tc < 10 K, ∆Pc < 15 MPa, and

∆ρc < 0.01 g/cm3 (the PEL-EOS predicts that Tc = 197 K, Pc = 162 MPa, and ρc =

1.03 g/cm3).
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FIG. 8. (a) Isochores in the P−T plane for q-TIP4P/F water obtained from MD simulations (open

circles) and the PEL-EOS (solid lines) [Eq. 22]; ρ = 0.96 to 1.36 g/cm3 in steps of 0.08 g/cm3

(bottom-to-top). (b) P − T phase diagram obtained from the PEL-EOS. The black lines are

the selected isochores. The red square is the LLCP predicted by the PEL-EOS and the red

dashed and solid lines are the associated coexistence and spinodal lines, respectively. Emanating

from the LLCP is the associated isothermal compressibility maxima (orange line), κmax
T -line; the

magenta line is the density maxima line, ρmax-line. The LLCP location from MD simulations is

indicated by the red star, and the corresponding κmax
T -line and ρmax-line are indicated by orange

and magenta triangles. (c) ρ − T phase diagram obtained from the PEL-EOS. Black lines are

selected isobars; other lines and symbols are same as in (b). The solid and dashed green lines

in (b) and (c) are the Kauzmann temperature predicted by the PEL-EOS inside and outside

the instability region. The agreement between the PEL-EOS and MD simulations is very good,

particularly at low temperatures.
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H. Adam-Gibbs relation

In the discussions so far, we focused on the ability of the PEL formalism to predict

the thermodynamic properties of q-TIP4P/F water, particularly, the EOS. In this section,

we test whether there is any relationship between the dynamics of q-TIP4P/F water and

its PEL. Indeed, it was shown in Refs. [40, 49] that the diffusion coefficient D of SPC/E

and TIP4P/2005 water is intimately related to the systems’ configurational entropy via the

Adam-Gibbs (AG) relationship. The AG relationship states that

D = D0 exp[−A/TSconf ] (30)

where D0 and A are constants that depend on the particular system studied. The AG

relation is based on the vague concept of ’cooperatively rearranging regions’ (CRR) [44].

It follows from Eq. 30, that D decreases with decreasing Sconf , i.e., as the number of IS

available to the system decreases. Below we show that the AG relationship also holds for

q-TIP4P/F water.

Fig. 9(a) shows D as function of volume for q-TIP4P/F water along isotherms. Consis-

tent with computational and experimental results [26, 78, 79], D(V ) exhibits a maximum

indicating that there is a range of volumes where the diffusion of water molecules is anoma-

lous, i.e., D decreases with increasing V . Fig. 9(b) shows the values of D [from Fig. 9(a)]

as function of 1/TSconf along isochores (circles) together with the corresponding predic-

tions of the AG relation, Eq. 30 (lines). The AG relation is fully consistent with our MD

simulations. Although our results are consistent with the previous studies of SPC/E and

TIP4P/2005 water [40, 43], it is not evident that this should be the case. Intuitively, one

may expect that adding vibrational degrees of freedom to the water molecule (q-TIP4P/F

model) should add roughness (and hence, more IS) to the PEL, relative to the PEL of rigid

water models (SPC/E and TIP4P/2005 models). If so, one may expect that the Sconf of

q-TIP4P/F water should be larger than the Sconf of SPC/E and TIP4P/2005 water (at a

given working conditions). However, the values of Sconf for all these models are of the same

order of magnitude [Fig. 7(c)]. Indeed, the Sconf of all three models is given by the same

equation [i.e., the Gaussian approximations of the PEL, Eq. 6], with very similar coefficients

{α(V ), E0(V ), σ2(V )}. It is probably the fact that all these models have very quantitatively

similar Sconf (V ), plus the fact that they all do a good job in reproducing the experimental

30



values of D for water, that the AG holds for the three water models considered.

0.7 0.8 0.9 1.0 1.1 1.2
V [cm3/g]

10 6

10 5

10 4

10 3

10 2

D 
[Å

2 /p
s]

(a)
T = 180 K
T = 190 K
T = 200 K

T = 210 K
T = 220 K
T = 240 K

0.2 0.3 0.4 0.5 0.6
1000 / TSconf [mol/kJ]

10 5

10 4

10 3

10 2

10 1

D
 [Å

2 /p
s]

(b)

 = 0.92 g/cm3

 = 1.00 g/cm3

 = 1.08 g/cm3

 = 1.16 g/cm3

 = 1.24 g/cm3

 = 1.32 g/cm3

 = 1.40 g/cm3

FIG. 9. (a) Diffusion coefficient D of q-TIP4P/F water as a function of volume obtained from

classical MD simulations at selected temperatures. An anomalous diffusivity maximum occurs

at V ≈ 0.9 cm3/g, consistent with experiments [78, 79]. (b) Semi-log plot of D as function of

1000/TSconf for selected isochores. Lines in (b) correspond to the best fittings obtained using

the Adam-Gibbs relationship, Eq. 30. At all volumes studied, the Adam-Gibbs relationship works

remarkably well.
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V. SUMMARY AND DISCUSSION

In this work, we performed extensive MD simulations of water using the q-TIP4P/F

model over a wide range of temperatures and volumes, and analyzed properties of the cor-

responding PEL by calculating the IS and the PEL curvature around the IS. Our computer

simulations show that the PEL of q-TIP4P/F water is Gaussian (e.g., EIS(T ) obeys Eq. 12)

at all the densities considered in this work (0.80 ≤ ρ ≤ 1.40 g/cm3) and for T ≤ 280 K

(Fig. 3(a)). In addition, we find that the harmonic approximation of the PEL does not hold

for q-TIP4P/F water, implying that the PEL basins contain significant anharmonicities.

Nonetheless, anharmonic corrections to the PEL can be easily included by using a simple

polynomial expansions (see Eq. 17 and Fig. 4).

We also calculate the configurational entropy of q-TIP4P/F water at all densities and

temperatures considered. Our results indicate that Sconf (T ) is surprisingly similar to the

Sconf (T ) reported for SPC/E and TIP4P/2005 water in Refs. [19, 22] [see Eq. 6, Fig. 6(d)

and Fig. 7(b)]. This suggests that adding flexibility to the water model does not increase the

number of IS available to the system (at a given N and V). We note that, even when the cal-

culated Sconf is physically sound and consistent with the previous results from SPC/E and

TIP4P/2005 water, adding flexibility to the water model does have important implications.

Indeed, consistent with Ref. [23], we find that the entropy of S(T ) of q-TIP4P/F water is

negative at low temperatures. Similarly, we also find that the harmonic entropy Sharm(T ) of

q-TIP4P/F water is negative. This unphysical behavior in the harmonic and total entropy

of q-TIP4P/F water is due to the fact that classical statistical mechanics can not accurately

describe some of the thermodynamic properties, such as the entropy, for systems with large

vibrational mode frequencies. What is remarkable is that, somehow, the negative contribu-

tions to S(T ) and Sharm(T ) cancel out leading to a Sconf (T ) = S(T )−Sharm(T )−Sanharm(T )

that is positive, and allowing for the application of the PEL formalism.

One of the main goals of this work is to show that the EOS predicted by the PEL for-

malism can be derived for a flexible molecular system. The obtained PEL-EOS for the case

of q-TIP4P/F water depends on only seven PEL variables {α, σ2, E0, a, b, c2, c3}. E0

and σ2 are related to the Gaussian approximation of the PEL and quantify the distribution

of IS energies available in the system; a and b are related to the harmonic approximation

of the PEL and quantify the curvature of the PEL about the IS; c2 and c3 quantify the
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anharmonic corrections to the PEL. The PEL-EOS calculated for q-TIP4P/F water repro-

duces remarkably well the corresponding EOS obtained directly from the MD simulations.

In particular, the PEL-EOS predicts the LLCP to be located at (Pc = 162 MPa, Tc = 197 K,

ρc = 1.03 g/cm3) which is in excellent agreement with the LLCP obtained from the MD

simulations, (Pc = 150 MPa, Tc = 190 K,ρc = 1.04 g/cm3). Interestingly, we also find that

the PEL-EOS can be applied at T > 280 K, outside the range of temperatures where the

Gaussian approximation holds. As shown in the SM (Table S3-S4), the PEL formalism is

robust regarding the range of T and V considered in the calculation of the PEL-EOS. For

comparison, we note that this is not the case of the two state equation of state (TSEOS)

which has been also used to predict the location of the LLCP in low temperature liq-

uids [26, 29, 30, 72, 80–82]. The location of the LLCP predicted by the TSEOS can be

somewhat sensitive to the range of T and P considered in the calculations [37, 83].

In the last section of this work, we investigated the relationship between the PEL for-

malism and the dynamics of the system by testing the Adam-Gibbs relation for q-TIP4P/F

water. The AG expression, Eq. 30, states that the diffusion coefficient depends on the to-

pography of the PEL, specifically Sconf . We find that the AG relation is fully consistent

with our MD simulations of q-TIP4P/F water. Hence, similarly to the case for SPC/E and

TIP4P/2005 water, the diffusion coefficient of q-TIP4P/F water decreases as the number of

IS available to the system decreases, upon cooling.

Overall, our results for q-TIP4P/F water are consistent with previous computer simu-

lations of water using rigid models such as SPC/E [19] and TIP4P/2005 [22]. The PEL

variables reported here for q-TIP4P/F are similar to the PEL variables for SPC/E and

TIP4P/2005 [19, 22], and show the same qualitative behavior for all densities and tem-

peratures explored in this work. It follows that the PEL formalism can be applied to

liquids/glasses composed of flexible molecules with high-frequency vibrational modes, such

as q-TIP4P/F water, in the same manner as it has been applied to systems composed of

rigid models.
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