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Abstract

In this paper, we consider products of ¥ and w classes on Mo, n+3. For each product, we con-
struct a flat family of subschemes of M ,,+ 3 whose general fiber is a complete intersection
representing the product, and whose special fiber is a generically reduced union of boundary
strata. Our construction is built up inductively as a sequence of one-parameter degenerations,
using an explicit parametrized collection of hyperplane sections. Combinatorially, our con-
struction expresses each product as a positive, multiplicity-free sum of classes of boundary
strata. These are given by a combinatorial algorithm on trees we call slide labeling. As a
corollary, we obtain a positive combinatorial formula for the « classes in terms of boundary
strata. For degree-n products of w classes, the special fiber is a finite reduced union of (bound-
ary) points, and its cardinality is one of the multidegrees of the corresponding embedding
Q MO,,,% — P! x ... x P". In the case of the product g - - - wy, these points exhibit a
connection to permutation pattern avoidance. Finally, we show that in certain cases, a prior
interpretation of the multidegrees via tournaments can also be obtained by degenerations.
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1 Introduction

Let Mo’n+3 be the Deligne-Mumford moduli space [5] of complex genus O stable curves
C with n + 3 marked points labeled by the set {a,b,c, 1,...,n}. Write y; for the i-
th psi class, the first Chern class of the line bundle IL; whose fiber over a marked curve

(C; Pas Pbs Pcs Pls---s Pn) € Mo,ng is the cotangent space to C at the i-th marked point
pi. We also define w; to be the i-th omega class, the pullback of ¥; under the forgetting map
7Tt Mont3 — Mo,i+3 obtained by forgetting the marked points pjt1, ..., px.
In this paper, we consider products in the Chow ring A®*(M ,+3) of the form
k k
Wk =y r/l(n’ Wk :=a)1‘~'wf,", (1.1)
where k = (ki,...,k,) is a weak composition, i.e. a tuple of nonnegative integers, and

> ki < n. We introduce a family of subschemes of My 3, whose general member is
a complete intersection representing ¥ or w¥, and whose special fiber degenerates to a
generically reduced union of boundary strata. We furthermore give a combinatorial algorithm
that produces the resulting strata, in terms of the dual trees corresponding to these strata.

Our construction is by giving explicit parametrized hyperplane sections coming from the
associated line bundles. The v and w classes give rise to two natural projective maps from
Mo pi3:

Wy = (Y] X - X Wl Moy — P x P" x oo x PT, (1.2)
Q= |w1] X -+ X |on| : Moz = P' x P? x -+« x P, (1.3)

The first map is the combined or fotal Kapranov map given by the psi classes, while
the second map, sometimes called the iferated Kapranov map (see [3, 8, 14, 16]), is an
embedding and is given by the omega classes. Hyperplane sections of these maps represent
the intersection products (1.1) in A.(M()JH{‘,) above.

When > k; = n, it is well-known that the product of psi classes ¥ is the multinomial

n

.....

asymmetric multinomial coefficient < Ky k ) times the class of a point [3, 8].
n

When Y k; < n, the products /¥ and @ represent positive-dimensional cycle classes,
and by standard formulas they can be expressed as products of sums of boundary strata of
M()y n+3- In particular, using the notation D(A | A€) for the boundary divisor in which marked
points A are separated by A¢ by a node, two standard formulas for psi classes and boundary
strata are

Vi =Y D(i,*|j k), (1.4)

D(A | A% = —D(A | AC)<ZD(a],a2, | %, A) + D DA, x|+, by, b2)>, (1.5)

where in each summation, the two specified marked points (j, k in the first sum, a;, a> € A
in the second, by, by € A€ in the last) are arbitrary and fixed, and » ranges over all nonempty
subsets of the unspecified marked points. One can repeatedly use these formulas to expand
any product of ¥ classes in terms of boundary divisors, but the resulting possible expressions
are not unique, and it is unclear if any such expressions are actually achievable as fundamental
classes of complete intersections of My , 3 by hyperplanes. Moreover, many such expansions
result in alternating sums or terms with multiplicity (see Example 1.9), despite the fact that
these products are necessarily effective and, as we will show, can be represented by generically
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reduced unions of boundary strata. Related work on products of psi classes includes [1, 9,
15, 18].

Our approach is as follows. For each k, we introduce a parametrized hyperplane intersec-
tion V¥ (k; 7) for wk (respectlvely, V“’(k 7) for o¥) on M 0.n+31na tuple of parameters 7. We
show that under a specific limit f — 0, the resulting vanishing locus on My , 13 degenerates
into a generically reduced union of boundary strata (Theorem 1.5). In fact, these strata may
be obtained by two closely-related combinatorial rules we call (/- and w-) slide labelings
of trees (Theorem 3.14). As a corollary, we obtain combinatorial formulas in A'(Mo’ n+3)
for the products ¥* and ¥ as positive, multiplicity-free sums of boundary strata, which
moreover arise as limits of complete intersections. A complete example of our construction,
for the product ¥1 v, is given in Example 1.8.

1.1 Degenerations and slide rules

B)r each i = 1,...,n, let [ : Mo,,,g — P be the i-th Kapranov map. Let |w;| :
Mo n+3 — P be the i-th reduced Kapranov map, that is,

| : Monts —> Mo,i43 W

We give P" projective coordinates [zj : z¢ : 21 -+ :Z; : -+ - : 2n] (Where Z; indicates that z;
is omitted) and P the coordinates [wp : we : wy @ -+ w;i—1]. Here, the hyperplane z; = 0
pulls back to the union of divisors | J D(i* | ajx), and w; = 0 is the pullback of such a
hyperplane under the forgetting map 7. (See Sect.2 for background on the Kapranov map
and these conventions.)

Let ¢ be a parameter. We consider the following moving hyperplane equations for ; and
w;j.

Definition 1.1 (Moving hyperplanes for ¥; and w;) We define the hyperplane loci

HY () =V(zp+tze+ 2204+t + 1 5+ +172,) CP", (1.6)
HE (1) = V(wp + twe + 2wy + -+ t'w;_y) S P (1.7)

Our constructionrelies on the key fact that, for¢ # 0, the hyperplane Hiw (t) inP" is transverse
to every boundary stratum X7 C Mo, n+3 of every dimension. Moreover, as t — 0, the limit
of every such intersection is a reduced union of boundary strata. Below, we write X7 for the
stratum indexed by the stable tree 7' and slide; (T) for a set of trees defined combinatorially
in Definition 3.3 via slide rules.

Lemma 1.2 Let T be a stable tree. Let V;(t) = ||~ (Hiw (1)) in Mo’n+3. Then the limiting
fiber is given by

lim V(1) N X7 = X
limvionxr= ) xr
T'eslide; (T)

and is reduced.

For any fixed tree T, the right hand side above can instead be obtained by intersecting X7
with a hyperplane of the form z; = 0, though the particular z; depends on T'. Intersections
of the form X7 N {z; = 0} are well-known and may be derived from (1.4). The novelty here
is the use of a single moving hyperplane for all strata X7, which moreover has the following
useful property.
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Lemma 1.3 (Injectivity) If T # T', the sets of trees slide; (T') and slide; (T") are disjoint.

This lemma leads directly to the generic reducedness statement in Theorem 1.5 below.
We now define vanishing loci V¥ (k; 1) and V®(k; 7) as intersections with, for each i, k;
hyperplanes Hl.‘/' (¢) or H”(¢) (Definition 1.1), with independent parameters.

Definition 1.4 Letk = (ky, ..., k,) be a weak composition. Let i= (ti,j)for1 <i <nand
1 < j < k; be a tuple of complex parameters. We denote the subschemes cut out in M 43
by the hyperplanes Hiw (ti,j) and H?(t; ;) as

n ki
Vi) = () v @), (1.8)

i=1j=1
n ki
vem: D) =) 2 H . )). (1.9)
i=1j=1
where W, is the total Kapranov map and €2, is the iterated Kapranov embedding.
Our main result is as follows. There are combinatorially-defined sets of boundary strata,

denoted by Slide? (k) and Slide® (k) (see Definitions 3.8-3.9) that give a rule for the limiting
intersections of hyperplanes in Definition 1.4, with respect to a specific limit.

Theorem 1.5 Let k be a weak composition, and let i= ) forl <i<nandl < j <k
be complex parameters. Let lim-__5 denote the iterated limit

t—0
lim (=) := lim --- lim ----- lim .-+ lim lim .- lim (-).
=0 Iy ky—0 th.1—0 t2,k2—>0 t1—0 t1,k1—>0 t1,1—>0

(The i-thblockis empty ifk;i = 0, andlim denotes the flat limit.) Then we have set theoretically

imvVk:n= |J Xr and limvekn= J Xr. (110
=0 T eSlideV (k) =0 T eSlide® (k)

Moreover, each boundary stratum Xt appearing in the union is an irreducible component
and is generically reduced in the limit.

As a consequence, we obtain:

Corollary 1.6 Let k be a weak composition. Then in A.(M()JH»}) we have

v = Y X7l o= ) (X7l (1.11)

T eSlide? (k) T Slide® (k)

Remark 1.7 (Products of pullbacks of psi classes) Our construction generalizes readily to
products of classes of the form

Wi j =T, 0 M, oo, (Yi),

that is, pullbacks of arbitrary psi classes along the sequence of forgetful maps ;. (We have
w; = w;; and ¥; = w; ,.) See Sect.4.3.
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[1:0:0]
a 1
b C 2
D(ab2|cl) a 1
D(abc|12) b 5 IS
[0:1:0]  D(able12) [0:1:1] [0:0:1]

Fig. 1 At left, the equation y, + syc + s2y1 = 0 shown as a dashed line in P? for a small parameter s ~ 0.
It intersects the 1 boundary strata, shown in boldface blue, at two points. As s — 0 the two red points of
intersection approach the boundary points with y-coordinates [0 : 1 : 1] and [0 : O : 1], drawn at right (color
figure online)

ExarrEIe 1.8 (A degeneration for v;y;) Consider the product ¥{ v, on MO,{a,b,c, 1,2)- Recall
that Mg {4,p,¢,1,2) €mbeds into P? x P2 via [¢1| and Y2 |; we coordinatize P? x P2 as

[xp = xe s x2] X [yp 2 ye 2 ¥l

The two hyperplane families in P? x P that we will introduce, corresponding to v and ¥»
in the product, are

xp+ixe+12x=0 and yp + syc + 52y =0

for parameters 7, s € C.

We first take + — 0, which gives the equation x;, = 0. Geometrically, the set of curves
in Mo,{a, b,c,1,2) that have coordinate x;, = 0 are precisely those for which the marked point
1 is separated from a and b by a node, which is the union of the three boundary strata
D(ab | c12), D(abc | 12), and D(ab2 | 1c¢). (This is a special case of the formula for i
given by Eq. (1.4).)

In the second copy of P? in P? x P2, these three boundary strata are precisely the set
of curves whose coordinates satisfy either y, = 0 or y. = y;, which we may visualize
via Fig.1 as the two boldface blue lines in P2. Then the equation y, + sy. + s%y; = 0,
drawn as a dashed line in Fig. 1, intersects these strata at two points and approaches the
horizontal blue line y, = 0 as s — 0. Note that, on the stratum where y, = 0, the equation
yp + 5ye + 52y = 0 yields the condition y. = 0 as s — 0, since y, is effectively the leading
term.

The two intersection points approach the two boundary points with coordinates [0 : 1 :
0] x[0:1:1]and[0:0: 1] x [0: 0 : 1], shown at right in Fig. 1. These boundary points
may also be represented by their dual trees:

a 1 a c

1< 1<
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Our choice of hyperplanes and the associated combinatorial algorithm always lead to a
set of distinct trees for any product of ¥ or w classes, which is not readily achieved by other
known methods for calculating such products, as illustrated by the following example.

Example 1.9 We may calculate vy, directly (but without an explicit realization via hyper-
planes) as follows. By Eq. (1.4), we have

YYo= (D(ab | c12) + D(abc | 12) + D(ab2 | cl)) - yr.

Expanding out the product on the right hand side, we may think of the first term as intersecting
the stratum D (ab | c12) with the 1y, class restricted to the component containing the marked
point 2. Choosing j = 1 and k = c in Eq. (1.4), we see that this intersection gives the
boundary point corresponding to the second tree in Example 1.8 above. The middle term
vanishes, and for the third term, if we separate 2 from j = a and k = b, we again obtain the
same tree as before. Thus we find again that ¥r1y, is twice the class of a point, but the same
tree occurs with multiplicity two in this calculation.

Of course, all points on My 3 are rationally equivalent. However, the same issue arises
for calculating products in positive dimension (even y/1 ¥, on Mo,(,), where boundary strata
are not all equivalent.

For further examples, see Examples 3.10 and 3.12 for the products v ¢32 and a)lw_%,
respectively.

1.2 Application to kappa classes

Our results and approach also yield positive boundary class formulas for the kappa classes
k; and generalized kappa classes, answering a question of Cavalieri [2, p. 38]. We recall that
k; is defined by pushforward:

ki = ()« (1)) fori >0, (1.12)

where 7,41 is the forgetting map that forgets the marked point n + 1. The kappa classes are
of particular interest in higher genus, where they are used in defining the tautological ring of
Mg, [20].

Below, we write v; to denote the internal vertex of a tree to which leaf edge i is attached.
We write deg(v;) for the degree of the vertex v;.

Definition 1.10 Let K (n:i) < Slide¥ (0",i + 1) be the subset of trees 7 in which
deg(vs1) = 3.

Theorem 1.11 On Mo a.b.c.1,....n), We have

Ki = Z [XT[)H—I(T)]’

TeK (n;i)

The generalized kappa classes are defined similarly as iterated pushforwards: for n > 3

and a weak compositionr = (rq, ..., ry), we define
Ry = (1, ..., n+m)*(wnrl|_1 ,Z'lm), (1.13)
where 7,41, n+m 18 the iterated forgetting map.

Definition 1.12 Let R(n; r) < Slide¥ (0", r1, ..., r,) be the subset of trees T’ such that, for
eachj=n+1,...,n+m,thetree ;1. ntm(T) hasdeg(v;) =3.

ey
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Theorem 1.13 On Mo a.b.c.1,....n}, We have

Rn;r = Z [X”n+l ,,,,, n+m(T)]'
TeR(n;r)

Note that this sum is not, and likely cannot be, multiplicity-free (see Corollary 4.16 and
Problem 6.11).

1.3 Multidegrees and application to tournaments

When Y k; = n, the integers deg(t/fk) and deg(a)k) are also called the multidegrees of the
maps V¥, and 2, written degy (V,) and degy (£2,). They are the numbers of intersection
points of the image of M .3 with n general hyperplanes from the products of projective
spaces (1.2) and (1.3), taking k; hyperplanes from the i-th factor, for each i. Thus, a key
special case of Corollary 1.6 is the following enumerative statement.

Corollary 1.14 Ifky + - - - + ky, = n, we have

degk(\lln)zfi ¥* = |Slide? (k)| (1.14)

M0.71+3

deg, (Qn) = /f o* = |Slide® (K)|. (1.15)
Mon+3

.....

so (1.14) shows that this is the number of trivalent trees in Slide¥ (k). The integers

n
<k1, L kn> = degk(Qn)
are called the asymmetric multinomial coefficients. A recursive formula for them was previ-
ously given in [3], as well as a combinatorial interpretation via parking functions. In [8], it
was also shown that a different set of boundary points called Tour(k) also enumerates the
multidegrees deg, (£2,,). These points are defined combinatorially via an algorithm called a
lazy tournament, and we will recall the definition in Sect.5 below.

The recursions underlying these prior enumerative results—the string equation for y*
and the asymmetric string equation for w*—relate them via forgetting maps to multidegrees
with one fewer marked point. The slide rule introduced in this paper, by contrast, builds up
Yk and w¥ from products with one fewer factor (i.e. positive-dimensional cycle classes), but
the same number of marked points. These recursions seem to be entirely different, and we
do not know a combinatorial analog of the (ordinary or asymmetric) string equation for the
sets Slide¥ (k) or Slide® (Kk); it would be interesting to find one.

Along these lines, we ask whether the tournament points Tour (k) may similarly be realized
as limiting intersections with hyperplanes. Our main result in this direction is that it is possible
for the following families of tuples k.

Theorem 1.15 Suppose the tuple k = (ky, ..., ky) is of one of the following forms:

0,0,...,0,0,n),
©0,0,...,0,1,n—1),
0,0,...,0,n—1,1), or
0,0,2,2).
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Then there exists an explicitly constructed set of hyperplanes in P! x X P", with k; of
them from P' for each i, such that their intersection locus V" (K, 1) in Mo 13, pulled back
under 2, satisfies

lim V'*" (k; 1) = Tour(k). (1.16)

t—0

Moreover, given any set of hyperplanes satisfying (1.16) for k = (ki, ..., k), there exists
such a set for (ky, ..., kn—1,0, k, + 1).

1.4 Outline of paper

The paper is organized as follows. We provide necessary background and notation in Sect. 2.
In Sect.3 we define the slide rules and give some combinatorial properties of the resulting
trees. In Sect. 4 we prove the main theorems on degenerations, namely Theorems 1.2 and 1.5
and Corollary 1.6, and we also prove Theorem 1.11. In Sect. 5 we prove Theorem 1.15, and we
conclude with some further combinatorial and geometric observations in Sect. 6, including
an interesting pattern avoidance condition that arises in the trees Slide®(1, 1, 1, ..., 1).

2 Background

We now provide some geometric and combinatorial background needed to state and prove
our results.

2.1 Structure of II_/lo, s and trivalent trees

Throughout, we let S = {a, b, c, 1,2, ..., n}. A point of MO,S consists of an (isomorphism
class of a) genus O curve C with at most nodal singularities and marked points labeled by the
elements of S, such that each irreducible component has at least three special points, defined
as marked points or nodes. In this paper, we draw the irreducible P' components as circles, as
in Fig. 2. The dual tree of a pointin M g is the leaf-labeled tree formed by drawing a vertex
in the center of each P! circle and then connecting this vertex to each marked point on its
circle and each vertex on an adjacent circle connected by a node. The dual tree is guaranteed
to be a tree since the curve has genus 0.

A tree is trivalent if every vertex has degree 1 or 3 and at least one vertex of degree 3,
and it is at least trivalent or stable if it has no vertices of degree 2 and at least one vertex
of degree > 3. The dual tree of any stable genus O curve is a stable tree. We define the extra
valency of a stable tree T with set of internal vertices V tobe ), (deg(v) — 3).

1 4 1 4 1 4
3 5 3 5 3 5

Fig. 2 At left, a stable curve in Ho, 5, in which each circle represents a copy of PL. At center, we form the
dual tree of the curve shown at right. The tree also represents the dimension-1 boundary stratum consisting of
the closure of the set of all stable curves in which 1, 2, 3 are on one component and 4, 5 are on another
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The interior of Mo, s is the open set My s C Mo, s consisting of all the curves that have
a single P! with all distinct marked points. The points of the interior correspond to those
whose dual tree consists of a central node with | S| leaves attached.

The boundary of Mo,g is the complement of the interior, consisting of the points corre-
sponding to stable curves with more than one irreducible component. Given a set partition
S = A U B with |A], |B| > 2, the boundary divisor D(A | B) is the closure of the set
of stable curves C with two components, such that the marked points in A C § are on one
component and the marked points in B C S are on another. The boundary of Mg is the
union of the divisors D(A | B) for all choices of A and B. Sometimes we abuse notation and
write D(A | B) for the associated class in the Chow ring.

Let T be an at-least-trivalent tree whose leaves are labeled by S. Then the boundary
stratum X7 corresponding to T is the closure of the set of all stable curves whose dual tree
is T. Let V be the set of non-leaf vertices of T, and for each v € V, let N(v) be the set
of vertices adjacent to v. The dimension of X7 is the extra valency of 7. More specifically,
there is a canonical isomorphism

X7 = 1_[ Monw) = ]_[ Mo des(v)» 2.1
veV veV

called the clutching or gluing map. The boundary strata X7 form a quasi-affine stratifi-
cation (as defined in [6]) of Ho, n» and the zero-dimensional boundary strata, or boundary
points, correspond bijectively to the trivalent trees on leaf set S. Indeed, since the points are
isomorphism classes of stable curves and an automorphism of P! is determined by where it
sends three points, a stable curve whose dual tree is trivalent represents the only element of
its isomorphism class.

Keel has given a presentation of the Chow ring A'(M0,,1+3) that shows that the classes
[X7] generate it as a Z-algebra [13]. The relations among the [X7]’s are all obtained from
the basic WDVV relations by pullback and pushforward along forgetting maps and clutching
maps.

Remark 2.1 If two sums of boundary classes [ X 7] are rationally equivalent, then both sums
consist of the same total number of strata (counting multiplicities). This follows from Keel’s
presentation (and the easy fact that it holds for the WDVYV relations).

2.2 Kapranov morphisms

For all facts stated throughout the next two subsections (Sects. 2.2 and 2.3), we refer the
reader to Kapranov’s paper [12], in which the Kapranov morphism below was originally
defined.

The ith cotangent line bundle IL; on Ho,g is the line bundle whose fiber over a curve
C € My is the cotangent space of C at the marked point i. The i-th ¥ class is the first
Chern class of this line bundle, written v; = c1(IL;). The corresponding map to projective
space

Wil : Mo,s — P",

is called the Kapranov morphism.
We coordinatize this map as follows. It is known that |1/;| contracts each of the n + 2
divisors D({i, j} | {i, j}), for j # i, to a point B; € P". These points are, moreover,

A

in general linear position. We choose coordinates so that Sy, B¢, B1,---> Bir---» Bn € P"
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are the standard coordinate points [1 : --- : O],...,[0 : --- : 1] and B, is the barycenter
[1:1:---:1]. We name the projective coordinates [zp : z¢ : 21 : =** 2 Zj &+ : Znl-
(The notation Z; means we omit that term from the sequence.) The hyperplane z; = 0 pulls
back to the union of divisors | J D(ix | aj*x), where » ranges over the nonempty subsets of
S\{a, i, j}

Given a point C in the interior My g, by abuse of notation we also write p4, pp, Pc, P1s - - - »
pn for the coordinates of the n+3 marked points on the unique component of C, after choosing
an isomorphism C = P!. With these coordinates, the restriction of |:] to the interior Mo s
is given by

(2.2)

|%MC):[pa_pb'Pa_Pc'Pa_Pl'”.'pa_pn]

pi—pPb Pi—PpPe Pi—Pl Pi—Da
where we omit the (undefined) term %. It is convenient to choose coordinates on C in

which p, = 0 and p; = oo, in which case the map simplifies to

Wil (C) =[pp:pc:pri---:pit-:pal (2.3)

We now describe how to use the above formulas to compute |/;| on boundary strata, i.e.
reducible stable curves C. Essentially, |;| reduces to a smaller Kapranov morphism using
the irreducible component of C containing p; (followed by a linear map into P").

Definition 2.2 (Branches at i) Let C be a stable curve with dual tree T. Let v; € T be the
internal vertex adjacent to leaf edge i. We refer to the connected components of 7 \ {v;}
(defined by vertex deletion) as the branches of 7 at i. The root of a branch is the vertex
attached to v; by an edge. We write o;(C) to denote the set partition of S \ i given by the
equivalence relation of being on the same branch.

Example 2.3 The stable curve C below at left has the dual tree shown at center, with its
disconnected branches at i = 4 shown at right.

4 4 4

2 20— 2

[
(Yo by 3 by 3
a a a

By examining the branches, we find the set partition fori = 4is04(C) = {{a, b, ¢}, {2}, {1, 3}}.

Definition 2.4 Let o be a partition of S\ i.
Define Py C PP to be the set of points such that:

e 7, = zy if and only if r, s are in the same part of o, and
e 7z, = 0if and only if r, a are in the same part of o.

Let P, = PT;’ be its closure. It is convenient to parametrize P, as follows: we choose an
ordering oy, . .., ox of the parts of o with a € op, and for r € S\ i we define o (r) to be the
index j such thatr € o;. We then have the linear map

o PKl > PP,
i vkl Do) 1 Yoo I Yoy i+ 2 Vo) 1+ & Yol
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where yy is defined to be O (that is, if r € oq then z,, = 0).

Example2.5 Leto = {{a, b, c}, {1, 3}, {4}}, a set partition of S\2 for n = 4. Then a point of
Py C IP* has the form

[0:0:y1:y1:y2]
for y; and y; not both zero.

Proposition2.6 Ler C € Mo,g be a stable curve with dual tree T, and let 0 = 0;(C) be
the set partition given by the branches of T at i. Let C' C C be the irreducible component
containing p;, with special points Y. We may think of C' as an interior point of the smaller
moduli space M.y, and compute |;|(C") accordingly by (2.2). Then we have

[¥i[(C) =t o |91 (C).

In other words, the coordinates of (2.2) are copied into the coordinates P" according to the
set partition o.

Example 2.7 Let C be the curve in Example 2.3, and let C’ be the component containing
marked point 4. If we parameterize C' = P! such that branch {4} is at oo, branch {a, b, c} is
at 0, and {2} and {1, 3} are at t and s respectively, then |v/4|(C’") = [s : t], the map ¢, sends
[yi : y2]to[0:0:y;:y2:y1], and by Proposition 2.6 we have

[Ya](C) =[0:0:5:¢:5].

2.3 The total and iterated Kapranov maps

We can now define the maps W, and €2,,.

Definition 2.8 We define ¥, : M s — P" x P" x --- x P to be the product || X || x
-+« X |y|. That is,

W (C) = (WO, [¥21(C), ..., [ [(C)).

The map ¥, is not an embedding, since it only records the coordinates of special points on
components C’ € C containing at least one marked point i > 1. However, ¥, is birational
onto its image (indeed even a single |1/;| map is birational onto its image).

Example 2.9 1f C is the curve in Example 2.3, we have
v, (C)=(0:0:0:1:0,[0:0:5:5:5—1¢],[0:0:1:0:0[,[0:0:5:¢:5])

where the second coordinate |y;|(C) is obtained by combining Lemma 2.6 and Eq. (2.2),
using the same parameterization of the red component C’ for both |v;| and |4|. Note that
the coordinates in the second copy of P* match the format shown in Example 2.5.

To define €2,, we can combine the ¥ and forgetting maps as follows. The Kapranov
morphism is a projective embedding of the universal curve over M g\y:

HO,S (M) P" x MO,S\n

- 7

MO,S\n'
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We may repeat this construction using the map [/,—1| on Mg s\,, and so on, obtaining a
sequence of embeddings. This gives the iterated Kapranov morphism

Q,: Mos— P! xP? x-.. x P".

Keel and Tevelev [14] first observed that €2, is in fact a closed embedding. The i-th factor of
this embedding is given by forgetting the points p;+1, ..., pn, then applying the Kapranov
morphism |1;| on the smaller moduli space. Since the w classes are defined as the pullbacks
of ¥ classes under the forgetting maps, we may alternatively define

Qp = o] X -+ X |wgl.
Example 2.10 If C is the curve in Example 2.3, we have
2, C)y=(0:1,[0:0:1],[0:0:1:0],[0:0:5:7:5]).

Remark 2.11 Example 2.9 demonstrates that W, is not an embedding. Indeed, if we replace
the {a, b, ¢} branch of the curve with any other arrangement of a, b, ¢ with respect to each
other, the resulting curve will have the same coordinates under W,,. On the other hand, since
2,,’s coordinates are computed after applying forgetting maps at each step, there will exist a
step where a numbered marked point will “see” the structure of such an ambiguous branch.
Hence 2, is injective.

3 Slide rules

In this section, we define the slide rules for ¥ and w. We first state each rule as a generative
procedure for generating a list of trees. We also describe the resulting sets of trees directly
in terms of edge labelings. We prove in Sect.4 that the trees (strata) given by these rules
compute the products w¥ and y¥.

Let T be a stable (at-least trivalent) tree with leaves labeleda <b <c <1 <--- <n.

Definition 3.1 Fix | < i < n and let v; € T be the internal vertex adjacent to i. Let Br,
denote the branch at i containing a. We write ¢, for the edge connecting Br, to v;.

Definition 3.2 With i as above, let m be the minimal leaf label of T\ (Br, U {i}); we call m
the i-minimal marked point. We write Br,, to denote the branch at i containing m.

Definition 3.3 (Slide at i) An i-slide on T is performed as follows: with the notation above,
we add a vertex v in the middle of edge ¢,, move Br,, to attach its root to v, and attach each
remaining branch of T at i (other than Br, and the leaf labeled i) to either v; or v, such that
the resulting tree is stable.

We write slide; (T') for the set of stable trees obtained this way. Note that stability requires
at least one branch to remain at v;. In particular, slide; (T) is empty if deg(v;) = 3.

Remark 3.4 1t is straightforward to check that slide; (T') can alternatively be defined as the
set of all trees T’ for which:

e Contracting a single edge e in 7" results in T (in the above notation, the edge connecting
v and v;), and
e The leaves a and m are on the same branch with respect to i in T'.
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Example 3.5 As an example of a 3-slide, let T be the following tree, along with the new
vertex v to be added to edge e, as shown below. We also indicate the vertex v; = v3 with a
dot.

Then Bry,, is the subtree having leaves a, b, 5. The other branches at 3 (besides the leaf labeled
3) have sets of leaves {4}, {1, 6}, and {c, 2}, and since the latter has the smallest minimal
element (m = c) among these branches, Br,, is the branch containing ¢ and 2. Performing
the 3-slide, and keeping only the stable trees, gives us the following three trees:

S
ot
fopl
ot

2 c 2 c

Remark 3.6 In general, there are 29°€(")=3 _ | elements in slide; (7). Indeed, each branch
other than:

e branch Br,,
e the leaf i, and
e branch Bry,,

has the choice of either being attached to v; or v, with the exception that they cannot all be
attached to v.

The following lemma about i-slides, while straightforward, is essential to the generic
reducedness result.

Lemma 3.7 (Injectivity) Let T, T’ be distinct stable trees on leaf set S. Then the sets slide; (T')
and slide; (T") are disjoint.

Proof Suppose R € slide; (T) N slide; (T'). Let v; € R be the vertex where i is attached.
Let e4 € R be the edge adjacent to v; connecting to the branch of R at i containing a. Then
by the definition of an i-slide, both T" and T are the result of contracting the edge ¢4 of R.
Thus, T =T'. O

We now define the general slide rules for intersections of ¥ and w classes. In both of the
following we let k = (ky, ..., k,) be a weak composition. We write Y (resp. ) for the
unique tree with a single internal vertex and leaves a, b, ¢ (resp. a, b, c, 1, ..., n).

Definition 3.8 (Slide rules for ) We define Slide¥ (k) as the set of all stable trees obtained
as follows.

1. Start with 3 as stepi = 0.
2. Fori = 1,...,n, perform k; successive i-slides in all possible ways starting from the
trees obtained in step i — 1.
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Definition 3.9 (Slide rules for w) Define Slide® (k) as the set of all stable trees obtained as
follows.

1. Start with Y as stepi = 0.
2. Fori=1,...,n:

a. Consider all trees formed by inserting i at any existing non-leaf vertex on a tree
obtained in step i — 1.

b. Perform k; successive i-slides in all possible ways starting from the trees obtained
in the previous step.

More formally, if T is a set of S-labeled stable trees, we write

slide; (T) := U slide; (T).
TeT

By Lemma 3.7, this is a disjoint union. For k > 0, we write slidefk) (T) := slide; o --- 0
slide; (T) for the result of applying k successive slides to the elements of T (in all possible
ways). We also write 7, _:I(T) for the set of all trees T’ obtained by inserting n + 1 at an
internal node of T'. (This corresponds to the geometric computation of 7, _ +l 1 (X7))IfTisa
set of trees, we write 7, _ i 1 (T) for the corresponding (evidently disjoint) union.
With this notation, we may state Definitions 3.8 and 3.9 formally as:
Slide® (k) := slide®” o 7, 0 -+ o slide!™ o 7, o - - o slide (" o 77 (),
Slide (k) := slide® o - . o slide!” o - . - o slide!™" ().
We illustrate the slide rule for k = (1, 0, 2) for both ¥ and w in the next two examples.

Example 3.10 As an example, we compute Slide‘”(l, 0, 2). We first start with the unique
tree with a single internal vertex and six leaves labeled a, b, c, 1, 2, 3. We then perform one
1-slide to obtain the trees:

3 3
">k ”J&Q o<
b ‘ 1 b c 1 b 9 1

2
b . 3 1 b 9 ¢ 1 b 3 c 1 b . 1
and then apply two 3-slides to each of these. Notice that we can only perform a 3-slide when
the vertex that leaf 3 is attached to has degree greater than three. In particular, only the trees

in the top row shown above will generate nonempty sets after two 3-slides. Performing two
3-slides on these trees yields the three trivalent trees:

a 3 a 1 a 3
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Thus Slide¥ (1, 0, 2) = (T, T», T3}.

Remark 3.11 Notice that, at any given step in the slide algorithm, a tree T’ can be ignored
if, for any vertex v € T, the total number of remaining slides for all leaves i adjacent to v
is greater than deg(v) — 3. The slides starting from such a tree will eventually result in the
empty set. This can also be seen geometrically for dimension reasons, using the factorization
in Eq. (2.1).

Example 3.12 For comparison, we now compute Slide® (1, 0, 2). We start with 'Y and at step
1 insert the 1 at an internal vertex in all possible ways (which is only one possible way in
this case). We then perform a 1-slide:

a 1 a 1
e slidey >—<
C e
b b ¢

We then insert 2 in all possible ways (and do not perform any 2-slides), then insert 3 in all
possible ways afterwards. We reach the four trees below:

a 2 1 a 2 1 a 2 1 a 2 1
: A N : : , 7 : : , 7 : : A N :
b 3 ¢ b 3 ¢ b 3 ¢ b 3 ¢
We finally perform two 3-slides starting from each of these trees; the two on the right produce

the empty set, and the two on the left map to trees 73 and 77 from Example 3.10. Thus
Slide“(1, 0, 2) = {1y, T3}.

In addition to the generative procedure above, it is also convenient to have a criterion to
say directly when a given stable tree 7 is in Slide? (k) or Slide® (k).

Definition 3.13 The (w or V) k-slide labeling of T, if it exists, is formed by the following
process (and if the process terminates before completion, it does not exist). Set £ = n.

1. Contract labeled edges. Let 7’ be the tree formed by contracting all internal edges of T
that are already labeled.

2. Identify the next edge to label. In 7’, let vy be the internal vertex adjacent to leaf edge
£. Let e be the first edge on the path from vy to @, and let v be the other vertex of e. If
v = a, the process terminates; otherwise go to the next step.

3. If minimal values decrease, label the edge. Define m,, (resp. my) to be the smallest
label on any branch from v, (resp. v) not containing a or £. If £ > m,, > my in the @
case, or if simply m,, > my in the ¥ case, then label edge e by ¢ (in both 77 and T).
Otherwise, the process terminates.

4. Tterate. If there are less than k, internal edges of 7 labeled by ¢, repeat steps 1-4.
Otherwise, decrement £ by 1. If £ = 0 the labeling is complete, and if £ > O repeat steps
1-4.

Theorem 3.14 The sets Slide® (k) and Slide¥ (K) are, respectively, the sets of all trivalent
trees that admit an w or \r type K-slide labeling.
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1 3 3 3 3 1 3 3

Fig.3 The three points of Slide¥ (1,0, 2), along with their 1/-type slide labelings. In the third labeling above,
we think of the edges labeled 3 as contracted before trying to label the third edge by 1. The 1 then compares
the minima of ¢ vs b in the contracted tree, and hence can “slide” along its path towards a

By Remark 3.4, it is clear that the contraction and labeling steps simply reverse the slides
in each case, and we omit the proof.
The slide labeling interpretation allows us to easily show the following.

Proposition 3.15 For all compositions k, Slide® (k) C Slide? (k).

Proof Any w-type slide labeling is also a 1/-type slide labeling since the inequality / > m,, >
my is a stricter condition than simply m,, > my in step 3 of the slide labeling process. O

This containment can also be seen by ‘simulating’ the generative procedure for Slide® starting
from 3 rather than Y, excluding the leaves j > i when determining the i-minimal marked
point m, and requiring at least one branch containing a leaf j° < i (rather than an arbitrary
branch) to remain attached to v;. This expresses Slide® as a subset of the choices for Slide? .

Example 3.16 The points of Slide? (1,0, 2) are shown in Fig. 3, along with their slide label-
ings. Note that the middle tree does not admit an w-type slide labeling, because after
contracting the edges labeled 3, the 1 compares minima 2 vs ¢, and while 2 > ¢, it is
not the case that 1 > 2 > c. Therefore it only admits a 1/-type labeling for (1, 0, 2) and not
an w-type labeling.

3.1 Nonempty slide sets

Using the slide labeling rule, we can identify a particular tree that is in all of the (nonempty)
sets Slide® (ky, ..., k,) for k; + - -- + k, = n, and in many of the sets Slide¥ (ky, ..., k).
We require the following conditions to state these results.

Definition 3.17 Let k be a composition of n. We say k is Catalan if, for all 7,
kn+kp1 4+ +kyip1 > 1.
We say k is almost-Catalan for all 7,
kn +kn1 4+ +kpmiy1 =i — 1.
Proposition 3.18 Let Ty be the tree
a n

b c 123 n—2 n-—1

Then Ty € Slide® (k) if and only if K is Catalan, and Ty € Slide¥ (k) if and only if k is
almost-Catalan.

To =
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Proof Lete,,e1, e, ..., e,—1 be the internal edges in T above from left to right.

For w, the slide labeling is valid if and only if, just before an edge is labeled by i, the
i-minimal element (after contracting previously labeled edges) is less than i. This occurs if
and only if some larger label j > i labels the edge ¢; before we begin labeling edges by i.
In addition, all edges to the right of ¢; must have labels larger than i as well, since the edge
labelings occur along the paths towards a. Thus the total number of edges labeled before step
i, which is given by k,, + k,—1 + - -+ + kit1, is at least as large as the number of internal
edges to the right of vertex v;_1, namely, n — i. Thus we have

kn+kn—1+---+kiz1>n—i

for all i. Since k; + - - - + k,, = n, this is equivalent to the Catalan condition.

For i, the same argument as above holds except that ¢; does not have to be labeled by
something larger than i, and so we only need k,, + k,—1 + -+ kij+1 > n —i — 1, which is
equivalent to the almost-Catalan condition. O

Proposition 3.19 For a composition k with ki + ky + - -+ + k, = n, the set Slide®” (k) is
nonempty if and only if k is Catalan.

While this follows from Corollary 1.14 combined with the combinatorial results on mul-
tidegrees in [3], we give a direct combinatorial proof here.

Proof Note that the extra valency (see Sect.2.1) of all trees at a given step of the slide rule
algorithm is a fixed constant; indeed, inserting a new leaf increases the extra valency by 1,
and applying slide; decreases it by 1. In particular, after step i we have a set of trees having
extra valency i — (k1 + ka + - -+ + k;).

Now, suppose Slide® (k) is nonempty. Then since the extra valency at step i is i — (k1 +
ko+---+kij),wehavei > k; + ko + - - - +k; forall i, and a simple algebraic manipulation
(along with the fact that ky + kp + - - - 4+ k, = n) shows that this is equivalent to the Catalan
condition.

The converse follows from Proposition 3.18. O

Remark 3.20 The sets Slide? (k) are nonempty for all k with > k; < n, since the extra
valency at each step is n — (k1 + - - - + k;), and the valency can always be distributed in each
slide to guarantee that before the ith slide the vertex attached to i has degree at least k; + 3.

4 Limiting hyperplanes on Mo,,, and yand ® product formulas
We now show that the trees in Slide® (k) and Slide? (k) describe boundary strata representing,
respectively, the cycle classes w¥ := a)]f‘ i and Yk = Wf‘ NP /e

We will do this by constructing an explicit flat limit of hyperplanes. We start with necessary
general preliminaries on flat limits.

4.1 Flat limits
Let M be a smooth projective variety, T a smooth curve (we will always use A! or an open

subset thereof), 0 € T a closed point, and ¢ € T the generic point. Let V € M x T be a
closed subscheme. We write V) for the fiber over 0 and V; for the generic fiber.
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The flat limit of V; as t — 0 is by definition the fiber of the scheme-theoretic closure,
lim V; :=(V |7—0)) lo -
t—0

Algebraically, the limit is given by saturating the ideal of V with respect to ¢, then setting
t = 0. In general we have

lim V;, C V,
t—0

but equality need not hold; in fact it holds (scheme-theoretically) if and only if V' is flat over
a neighborhood of 0 € T. See [10, Proposition II1.9.8].

Below, our approach will involve calculating the cycle class of a flat limit by finding an
“almost-transverse” V) that equals it generically. A scheme X is generically reduced if it is
reduced on some dense open subscheme; in this case, all the irreducible components of X
have multiplicity 1. We also say X has pure dimension d if all of its irreducible components
have the same dimension d.

We recall the following fact about transversality and intersection products:

Proposition 4.1 Let M be a smooth variety (not necessarily proper) and X, X' C M sub-
schemes of pure codimensions c, ¢’. Suppose X N X' is of pure codimension ¢ + ¢’ and is
generically reduced. Then [X N X'] = [X] - [X].

Proof By [7, Prop 8.2(a)], each irreducible component Z € X N X’ occurs in [X] - [X']
with coefficient between 1 and the scheme-theoretic multiplicity of Z in X N X’. Generic
reducedness says that this multiplicity is also 1. O

The next lemma is a “generically reduced” version of Lemma 37.24.6 in the Stacks project
[19, https://stacks.math.columbia.edu/tag/0574], which is the analogous result for reduced
fibers.

Lemma4.2 Let V — T be flat and proper over a neighborhood of O € T. Assume V is pure
of dimension d. If Vy is generically reduced, so is V;.

Proof Let Z C V; be an irreducible component and let Z be its closure in V. Since 7 is the
generic point of 7, Z — T is dominant and flat; by properness the image contains 0 € T,
so Z N Vp is nonempty. Hence by flatness Z N Vj is of pure dimension d — 1.

Let Z' € Z N Vj be an irreducible component. By assumption, Vj is reduced and smooth
along some dense open subset U C V. Let x € U N Z’ be a closed point (which must exist
since U is dense and Z’ is an irreducible component). Then the Zariski tangent space to V at
x has dimension exactly d — 1. Since V) is locally cut out in V' by the single equation t = 0,
the Zariski tangent space to V at x has dimension < (d — 1) + 1 = d. Since this matches
the Krull dimension of V/, it follows that x is a smooth, in particular reduced, point of V.
Therefore Z is actually smooth and reduced at x, hence is generically (smooth and) reduced.
Since Z was arbitrary, it follows that V; is generically reduced. O

We will need the following statement about “almost-transversality” for dynamic intersec-
tions, a criterion for the flat limit to be generically reduced.

Lemma 4.3 Let M be a smooth projective variety, T a smooth curve and 0 € T. Let V C
M x T be a subscheme, flat over T and pure of relative dimension d. Let  : M — P" be a
map and H C P"* a hypersurface.

Suppose yY(H) N Vy is generically reduced and of pure dimension d — 1. Then
lim;_.o(y ~V (H) N V,) is generically reduced and has the same underlying set as ' (H) N
Vo.
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Proof Write Fy = lim,_o(y~'(H) N V;) for the flat limit. We first check that Fy is pure of
dimension d — 1. By flatness, it is enough to show that ¥~ (H) N V; is pure of dimension
d — 1. Fiber dimension is upper semi-continuous for proper maps ([21, Theorem 11.4.2]),
o)

dim(y " (H) N V,) < dim@y " "(H) N Vo) =d — 1.

Conversely, since ¥ ~! (H) is a Cartier divisor, ¥ ~' (H) N V; is given by a principal ideal
on V;, so by Krull’s Principal Ideal Theorem [21, Theorem 11.3.2] and the purity of V;, every
component of ¥~ (H) N V; has dimension > dim(V;) — 1 =d — 1. Thus, v ~/(H) NV, is
pure of dimension d — 1 as required.

Next, since Fy C 1&‘1 (H)N Vyand w_l (H) NV is generically reduced and both are of
the same (pure) dimension, Fy is also generically reduced.

Finally, we show that Fp agrees set-theoretically with v HH)Y NV, ie. vy N H) NV
does not have extra components compared to Fp. It suffices to show that the fundamental
cycles [ Fp] and [w_l(H) N V] are the same. We have

[y~ (H) N Vol = [y~ (H)] - [Vol 4.1)

by Proposition 4.1 and our assumption on Y1 (H) N V. Also, by Lemma 4.2, since Fp is
generically reduced, so is ¥~ (H) N V;, so by Proposition 4.1 a second time,

v~ (H) NV =[y~ (D] [Vi]. (4.2)
Lastly, by [7, Corollary 11.1], the limit intersection class satisfies
lim (L~ (D1 - [Vi1) = [~ (D] - [Vol. 43)
t—0
Combining, we have
[Fol := lim [y~ (H) N Vil = lim (1w~ (H)] - [Vi1) by (4.2), (4.4)
= [y~ (H)]- Vo] by (4.3), (4.5)
= [y 1(H) N Vo] by (4.1). (4.6)
This completes the proof. O

We note that these hypotheses do not imply ¥ ~'(H) N Vo = Fy scheme-theoretically, as
the following example illustrates.

Example 4.4 1et P? have coordinates [x:y:z:w],andlet V C P? x Spec k[¢] be defined
by the ideal

()N, y —tw, 7 — tw)?,

that s, V; is the plane x = 0 with an embedded nonreduced pointlocatedatp =[0: ¢ : ¢ : 1].
Let H be the hyperplane y = 0. Then H N Vj is the line x = y = 0 with an embedded point
at[0:0:0: 1], whereas the flat limit Fp = lim;_,o(H N V;) is the reduced line x = y = 0.
However, Fy and H NV are generically equal.

We will apply Lemma 4.3 repeatedly to analyze iterated limits, in the following form.
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Lemma4.5 LetV C M x T beaclosed subscheme, flat over T and pure of relative dimension
d.Lety : M — P" be amap and let H C P" x T be a flat family of hypersurfaces. Suppose
W~V (Hy) N Vy is generically reduced and of pure dimension d — 1.

Then limy_.o lim,.o (Y ~' (H) N V;) is generically reduced and, set-theoretically, we
have the equality

s—>0t—

lim lim (v~ (H,) N'V;) = lim (y ' (H,) N lim V) ( = lim(y " '(Hy,) N V0)>.
0 s—0 t—0 s—0
That is, we may “pull the H; past the lim;_, o ” without changing the generic scheme structure.

Proof Since w’l (Hop) N Vy is generically reduced and of the correct dimension, the same is
true for v~ (Hy) N Vo by semicontinuity (as in the proof of Lemma 4.3). Applying Lemma
4.3, we see lim,_.o ¥~ (Hy) N V, is generically reduced and has the same underlying set as
¥~V (Hy) N Vp. Therefore the limits of each as s — 0 are again generically equal. O

Finally, flat limits are preserved by flat pullbacks:

Lemma 4.6 Let f : V — W beaflat morphism of projective varieties. Let X C W x Spec(R)
be a subscheme. Then

“1{ 4 . —1
lim X ) =1 X)).
! (tl_rgg) : tl_Igg)(f (X1))
Proof We have f~!(X| Spec(R)\0) = f “I(x Yspec(r)\0- Flat pullback preserves closures, so
I X Tspecrn0) = £1(X) Ispec(r)o0-
Setting t = 0 gives
—1( 4 . —1 . —1
7 (tim X0) = lim (£7100,) = lim (£ (X))

which completes the proof. O

4.2 Limits of intersections

Let the ith factor of P” in the product P" x - - - x P" have coordinates [z : z¢ 121 : -+ :Z; ¢
-+ z,], and let ' have coordinates [wp : we : wy : --- : w;—1] as in Sect.2. Recall from
the introduction that we define

H,»w(t) =V(zp+tze+t221 4+ i+ i+ 120, 4.7)
H” (1) =V(wb+twc+t2w1 4w y), (4.3)

We first examine the limit of a single hyperplane section of a stratum. Let ; be the i-th
Kapranov map Mo s — P".

Lemma 1.2. Let T be a stable tree. Let V;(t) = ||~ (Hiw (1)) in Mo’n+3. Then the limiting
fiber is given by

1. P = i
lim (Vi (1) 0 X7) U X7,
T’eslide; (T)

and it is reduced.
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Proof Letv; € T be the node to which i is attached. Let o be the set partition corresponding
to T\{v;, i} (given by the branches at v;, with parts og, o1, ..., 0,) and let P, C P" be the
corresponding linear space. We have the diagram below:

My s ol pn

]
X il Ppr-1

T (4.9)
Recall from Eq. (2.1) that X7 is isomorphic to a product of Mg, ’s. This isomorphism
identifies |1; | with the corresponding divisor pulled back from the factor M dgeg(v;), On which

one marked point is identified with i and the others correspond canonically to the parts of o.

The bottom horizontal arrow in (4.9) is the composition X7 — MO,deg(v,-) M P

We calculate directly in projective coordinates. By Lemma 2.6, P, is given by the equations
zj = zx whenever j, k are in the same part of o and z; = 0 if j is in the same part as a.
Setting m to be the i-minimal marked point of 7', it follows that on Py, the Eq. (4.7) defining
Hi‘/f (t) reduces to

ifm < i,or
0=1"zm + 0™t

if m > i. In either case, saturating with respect to ¢ and setting + = 0 gives the limiting
equation z,, = 0, or simply y,, = 0 where y,, indexes the corresponding part of o.

The isomorphism (2.1) identifies the subscheme V (y,,) with the corresponding v, divisor
on the factor Mo,deg(v,-)' Thus y,, = 0 cuts out the reduced union of divisors that have a node
(i.e., an edge of the dual graph) separating marked point i from both the marked points a and
m.

Back on X7, these divisors correspond to dual graphs 7’ with a new edge e separating i
from a and m, such that contracting e results in the original tree 7 (since X7 € Xr). By
Remark 3.4, these are precisely the strata X7/ enumerated by slide; (T). O

Remark 4.7 In many cases, we can replace H;/f (#) by a simpler equation (by removing some
terms) and still get the same result as in Theorem 1.2. In particular, the proof above holds for
any hyperplane obtained by deleting entries corresponding to marked points that appear on
the branch Br, of T, since those coefficients restrict to 0 on X7.

Moreover, if we know the i-minimal element m in advance, we can also delete any other
summands other than the x,, term in order to slide the m branch towards a.

Remark 4.8 Besides taking subsets of the summands as in the above remark, we can reorder
the subscripts on the variables in a hyperplane equation, which results in a modified slide
rule. For instance, intersecting X7 with the hyperplane

71+ tzp + t2Z4 + t3Z2 =0

applies an i-slide in which you look for the branch containing the first among 1, b, 4, 2 in
that order (so we consider 1 “smaller” than b and so on) and slide that branch away, rather
than the i-minimal branch as defined above.

@ Springer



56 Page22of37 M. Gillespie et al.

We now consider arbitrary complete intersections. Recall the following definition from
the introduction.

Definition 1.4. Letk = (ky, ..., k,) be a weak composition. Let {= (i j)forl <i <n
and 1 < j < k; be a tuple of complex parameters. We denote the subschemes cut out in

M07n+3 by the hyperplanes Hl.]’[’ (ti,j) and H”(t; ;) as

n ki

Vi) = () v & @), (4.10)
i=1j=1
n k[

Ve = ([ (HE @), (4.11)

i=1j=1

where W, is the total Kapranov map and €2, is the iterated Kapranov embedding.

Remark 4.9 (Monin—Rana’s equations for €2,,) In order to find the hyperplane equations in
Definition 1.4, we wrote Mathematica code that used the explicit (conjectural) equations
cutting out the embedding €2,,, due to Leonid Monin and Julie Rana in [16]. This was an
essential tool for experimenting with equations and testing conjectures.

Example 4.10 Fork = (1,0, 2), let P? x P3 x P have coordinates [x; : xc : x2 : x3] X [y
Ye:y1 i3] X [zp: zc 21 ¢ z2], and let P! x P2 x P3 have coordinates [xp : x.] x [yp @ ye:
yil X [zb : ze : 21 : 22]. Then V¥ ((1, 0, 2); 1) is defined by the equations

0= xp + 111X + 1 X2 + 17 133, (4.12)
0=zp+ 8,12 +13,21 +13 122, (4.13)
0 =25+ 1322c + 13,21 + 13,22, (4.14)

whereas V?((1, 0, 2), ?) is defined by the equations

0= xp + 11%, (4.15)
0=2zp+112 + 13121 + 15 22, (4.16)
0=2zp+ 1322+ t32,211 + t33,212. 4.17)

Theorem 1.5. Let k be a weak composition, and let { = G ) forl <i<nandl < j <k
be complex parameters. Let lim-__ denote the iterated limit

t—0
lim (=) := lim -+ lim -+ lim .-+ lim lim .- lim (-).
7—0 In ky —>0 tn1—>0 12,k =0 01—0 11 4, —0 t1.1—0

(The i-th block is empty if ki = 0, and lim denotes the flat limit.) Then we have set-
theoretically

im vV = |J X7 ad limvekin= |J Xr. @18
=0 TeSlide? (k) =0 T eSlide® (k)

Moreover, each boundary stratum Xt appearing in the union is an irreducible component
and is generically reduced in the limit.

Proof We first consider the w case. We proceed by induction on n, then on Y _ k;. The case
n =3 is trivial, as is the case Y_ k; = 0.
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Let n > 3 and let k be a weak composition with > k; < n, and assume the statement
holds for all smaller n and >_ k;. Suppose first that k, = 0. Let k' = (ky, ..., k,—1). In this
case we have

VO 1) = m, ' VOK, D).
Flat limits are preserved by flat pullback (Lemma 4.6) and 7, is flat, so

lim VO (k; 7) = 7, (pm Ve K'; ?)).
t—0 t—0
By the induction hypothesis, the right-hand limit is the generically reduced union of boundary
strata corresponding to the trees in Slide® (k). The preimage m, L(X1) of a stratum (with
generically reduced scheme structure) is again generically reduced, and is the union of strata
X7 formed by inserting the n-th marked point into 7 in all possible ways. This matches the
combinatorial process of the w-slide algorithm at step n when k,, = 0, so we obtain the strata
corresponding to Slide® (k).

Suppose instead k, > 0. Let k” = (ki, ..., k, — 1) and let " denote 7 without t, z, . By
the induction hypothesis, we have

zZ=1lm V&= |J Xxp (4.19)
=0 T eSlide” (k")

with generically reduced scheme structure on each irreducible component. We now examine
the final intersection and limit, and we have

lim V®(k; 1) = lim (hm Ve (k; Z)) (4.20)
—0 L e U NG |
— lim (hm Q;I(H,f(tn,k,,))mv‘U(k”;?”)) @.21)
tn,k,,—>0 ;’//_)6

Moving all the inner limits inwards then gives

C lim (sz;l(H;’(tn,k,,)m lim VO(K'; ?”)) 4.22)
t'l,kn_>0 ;//_>0

— lim (v,,(t,,,kn)mz) (4.23)
th ky =

where V,,(t) = Q;l(H,‘l"(t)) = |wn|_1(H;"(t)) as in Theorem 1.2 (since the top degree part
of the 2, embedding simply agrees with the Kapranov map |y, |). We will show that the right-
hand side of (4.23) is generically reduced and of the correct dimension. Therefore, by Lemma
4.5, the left-hand side of (4.20) is also generically reduced and agrees set-theoretically with
the right-hand side (4.23).

To examine the right-hand side of (4.23), consider an irreducible component X7~ C Z,
where T” € Slide® (k") as in Eq. (4.19). By Theorem 1.2,

li V(1 NXypr = X
lmO n(n,kn) T U T

1, —
kn T esliden (T")

with reduced scheme structure. By Lemma 3.7 (injectivity of the slide rule), as T” varies,
the sets slide, (T") are disjoint, so each resulting stratum X7 occurs exactly once. We thus
have set-theoretically

lim Var)NZ= ( U XT>= U xr

Tn.kn = " i de® (K : ” i Je®
T"eSlide? (k") ~ Teslide,(T") T eSlide® (k)

@ Springer



56 Page 24 of37 M. Gillespie et al.

where each X7 occurs with multiplicity one, i.e. has generically reduced scheme structure,
and the last equality is by the definition of the w-slide rule. This completes the proof for wX.

The argument for VY(k; 7) and Slide¥ (k) is similar, but takes place entirely in MQ n+3
(without pullbacks). Thus we can, in particular, skip the k,, = O case; let i be largest such
that k; > 0. Then the argument is identical to the case k,, > 0 for V“(k; 7), except HY (1, k,)

is replaced by Hiw (i k), and accordingly slide, (T") is replaced by slide; (T”). |
Remark 4.11 1t follows from the iterated limit calculation that the parameters #; ; can be
replaced, without changing the limit, by powers #; ; = "/ of a single parameter ¢ — 0, for

SOme eXponents m, i, > -+ > my 1 > --- > mq1 > 0. This produces a flat family over
P!

As a consequence, we obtain:

Corollary 1.6. Let k be a weak composition. Then in A'(Mo,ng) we have

yk= 3 Xl of = Y Xgl (4.24)
T eSlide? (k) T Slide® (k)

Example 4.12 By Theorem 1.5 and Examples 3.10 and 3.12, we have (using the same notation
as in those examples) that

iv3 = (X7 + X751+ [X7y] and w103 = [X7]+ [X7,].

4.3 Pullbacks of psi classes along a sequence of forgetful maps

Our degeneration and slide rule generalizes in a straightforward way to products involving
both 1 and w factors, or in the most generality, to products involving pullbacks of psi classes
along a single sequence of forgetting maps. In particular, for each 1 < i < j < n, we put

Wi j =Ty 0, ooy (i),

the class pulled back from Mo j+3. The ordinary @ and v classes are then w; = w;; and

Y¥i = w; . Theorem 1.5 and Corollary 1.6 then generalize to products of the form [] wl ]
for any tuple of nonnegative integers k = (k; ;) with 3" k; ; < n, as follows. We apply all
degenerations (respectively, slides) in the smallest M ;43 first, in any order; it is convenient
to do them in increasing order of i. We then pull back to the next smallest j, and so on. For all
such products, the analog of the slide rule gives a positive, multiplicity-free sum of boundary
strata.

Example 4.13 The product w1,1w1,4wi4 = a)ll//ll//f on M()j is given by 5 points. It is also

straightforward to check that no product of only ¢ classes or only w classes on Mg 7 is 5
times the class of a point.

Example 4.14 By abuse of notation, write Slide (k) for the slide set for the product [ | w; fi ’ .Let

(k’ ;) be obtained from k by decrementing some k; ; > 0 with j < n and 1ncrement1ng
k, L Then the analog of Proposition 3.15 shows

Slide(k) < Slide(k’).
k/
This inclusion refines Proposition 3.15. In particular, it reflects the fact that [ | a) ;i <o, ]’
(the statement o < B for cycle classes means 8 — « is effective.) This can be shown dlrectly

@ Springer



Degenerations and multiplicity-free formulas for products of ¥ and... Page250f37 56

from the fact that the w; ; are basepoint-free, which in turn follows from the fact that the
Y; are basepoint-free and the pullback of a basepoint-free divisor class is basepoint-free.
Effectively these products increase as they approach products of Y classes and decrease as
they approach products of w classes.

4.4 Application to « classes

We prove Theorems 1.11 and 1.13 on kappa classes and generalized kappa classes,
ki = ()T,
Ry;r = (TTn1,., n+m)*(‘lf,:;1 s :;:l_m)
We recall the relevant sets of trees:

e For n and i, the set K(n,i) < Slide¥ (0",i + 1) consists of the trees T for which
deg(vp+1) = 3.

e For n and a composition r = (ry,...,r;), the set R(n;r) is the subset of
Slide?¥ O, r1,...,ry) of trees T such that, for each n + 1 < j < n + m, the tree
7jt1,...n+m(T) has deg(v;) = 3.

‘We show:

Theorem 4.15 Foralln andi andr,

Ki = Z (X1 (0] Rp:x = Z (X7i1, (D]

TeK (n,i) TeR(n:r)

Proof By Corollary 1.6, we have in A.(M()_{a’b’c,]’._”njL]})
vti= Y. X7l
TeSlide¥ (07,i+1)
Pushing forward along 7,11, we obtain
i =Dt = Y (Tl X7).
T eSlide¥ (07,i+1)

Let T € Slide? (0",i + 1) and let vp+1 € T be the internal vertex adjacent to n + 1. If
deg(v,+1) > 3, then 7,41 (X 1) has dimension lower than X7, so

() X1 =0.
Otherwise, if deg(v) = 3, then 7,1 maps X isomorphically onto its image Xy, (r), SO
T+ D[ X7] = [Xnp ()]

The desired equation for «; follows. For R,.r, the argument is similar: we apply the pushfor-
ward

r r
Ruyy = (Mpg1,., n+m)*(wn]+1 ce niy;»m)

one step at a time, starting from the sum given by the slide set Slide¥ (0", r). For each T, if the
degree condition for R(n; r) C Slide¥ (0, r) is satisfied, the pushforward is an isomorphism
of [Xr] onto its image. Otherwise, the dimension contracts in some step and the summand
vanishes. m]
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These formulas are not in general multiplicity-free. Indeed, we expect that no multiplicity-
free formula can exist for x; or R, in general; see Problem 6.11. For «;, we can account for
the multiplicities directly.

Corollary 4.16 For all n and i, we have

ki = Z (deg(vn+1) — 3 [ Xn,. ()]
T eSlide? (07,i)

Proof Let T e Slide¥ (0", i). By the calculation above, T contributes to the expression for
i; if, after performing an (i + 1)st (n + 1)-slide, the resulting tree 7’ has deg(v,+1) = 3.
That is, the slide should move all but v,4; and exactly one other branch to the new vertex.
Since the locations of the a and m branches, and of v, itself, are fixed, there are exactly
deg(v,+1) — 3 other choices. Each of these choices has 7,11 (T") = m,41(T), s0 7, +1(T)
arises deg(v,+1) — 3 times. O

It is not difficult to show that the nonvanishing terms in Corollary 4.16 (in which
deg(v,4+1) > 3) give a set of distinct trees m,4+1(T).

Example 4.17 We compute k1 on MO,{a,b,c, 1,2)- We write (A)—(B)—(C) to denote the bound-
ary stratum whose dual tree consists of three internal vertices v4, vg, vc alon@ path, and leaf
edges labeled by A (resp. B, C) attached to v4 (resp. vg, vc). We have, on Mo (4,p.c,1,2,3)>

Slide? (0, 0,2) = {(ab)—(c)—(123), (ab)—(c1)—(23), (ab)—(c2)—(13),
(abc)—(1)—(23), (abl)—(c)—(23), (ab2)—(c)—(13)}.
All but the first of these have deg(v3) = 3. Applying Corollary 4.16, we get
k1 =2-D(ab | cl12) + D(abc | 12) + D(abl | ¢2) + D(ab2 | cl) € Al(Mo,{a,b,cylyz}).

5 Hyperplanes for lazy tournament points

We now consider the sets of boundary points determined by the lazy tournament rule of [8].
Since these points also enumerate deg (€2,), it is natural to ask if they too can be achieved
as degenerations of complete intersections as well. We approach this problem in this section.

5.1 Tournaments

We first recall the definition of lazy tournaments from [8].

Definition 5.1 Let 7 be a leaf-labeled trivalent tree. The lazy tournament of 7 is a labeling
of the edges of T computed as follows. Start by labeling each leaf edge (that is, an edge
adjacent to a leaf vertex) by the value on the corresponding leaf, as in the second picture of
Fig.4. Then iterate the following process:

1. Identify which pair ‘face off’. Among all pairs of labeled edges (i, j) (ordered so that
i < j)thatshare a vertex and have a third unlabeled edge E attached to that vertex, choose
the pair with the largest value of 7.

2. Determine the winner. The larger number j is the winner, and the smaller number i is
the loser of the match.
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Fig.4 From left to right: A leaf-labeled trivalent tree 7', its initial labeling of the leaf edges, and its full lazy
tournament edge labeling. Winners of each round of the tournament are shown in boldface at right, indicating
T € Tour(1,0,1,2)

3. Determine which of i or j advances. Label E by either i or j as follows:

(a) If E is adjacent to a labeled edge u # j with u > i, then label E by i. (We say i
advances.)
(b) Otherwise, label E by j. (We say j advances.)

We then repeat steps 1-3 until all edges of the tree are labeled.

We refer to Step 3(a) above as the laziness rule, since j drops out of the tournament
despite winning its match. This happens when j can see that its opponent i will be defeated,
again, in its next round against #. An example of the result of the lazy tournament process is
shown in Fig.4.

Definition 5.2 For any weak composition k = (kq, ..., k,) of n, let Tour(Kk) be the set of
trivalent trees with leaf labels S, in which (a) the leaf edges a and b share a vertex, and (b)
each label i > 1 wins exactly k; times in the tournament.

In Fig.4, the tree T is in Tour(1, 0, 1, 2).
Theorem 5.3 ([8]) We have degy () = fy7, of' - = |Tour (k).

From a combinatorial perspective, one advantage of the sets Tour(k) is that they are disjoint
(as k ranges over all length n compositions of ). This is in contrast to the sets Slide(k), which
all have at least one common tree by Proposition 3.18. Notably, an immediate corollary of
Theorem 5.3 is that the total degree (defined as the sum of the multidegrees) is

Zdegk(Qn)=(2n—1)!!=(2n—1)-(2n—3)~---'5-3-1.
k

This enumeration by the odd double factorial follows from the fact that every tree in which
a, b is paired occurs in exactly one of the tournament sets (by disjointness), and the trees
in which a, b are paired correspond bijectively under 7}, to the set of all boundary points in
MO,S\Z;- It is well known that there are (2n — 1)!! such points.

5.2 Hyperplanes for tournaments

The aim of this section is to prove Theorem 1.15, which we restate here for the reader’s
convenience.

Theorem 1.15. Suppose the tuple k = (k1, ..., k) is of one of the following forms:
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0,0,...,0,0,n),
0,0,...,0,1,n—1),
0,0,...,0,n—1,1), or
0,0,2,2).

[ ]
[ ]
. bl
[ ]

Then there exists an explicitly constructed set of hyperplanes in P' x --- x P, with k; of

them from®' for each i, such that their intersection locus V" (k, 1) in M 13, pulled back
under 2, satisfies

lim V' (k; 7) = Tour(k). (5.1)
—0
Moreover, given any set of hyperplanes satisfying (5.1) for k = (ki, ..., ky,), there exists

such a set for (ky, ..., kn—1,0, k, + 1).

We prove this in five lemmas; four for the four cases in the theorem, and one for the
inductive construction for obtaining (ki, ..., k,—1,0,k, + 1) from k. For each one, we
construct modified versions of the hyperplanes used in the slide rule, changing which variables
appear and in what order. These changes effectively modify the minimality condition in each
step of the slide rule; see Remarks 4.7 and 4.8.

Below, we write [y, @ y. @ y1 : y2 @ --- : yy—2] for the coordinates of P! and
[zp :2¢ 121 :22 ¢ -+ : Zu—1] for the coordinates of P".

Lemma5.4 Fork = (0,0,...,0,n), we have that V*°'((0,0, ..., 0, n); N = V“((0,0,
...,0,n); f). Furthermore,

lim VU ((0,0, ..., 0, n); 1) = Tour(0, 0, ..., 0, ).

t—0
Proof Ttiseasily verified, using the slide and tournament rules, that the sets Tour (0, 0, . .., 0, n)
and Slide® (0, 0, . .., 0, n) coincide. Indeed they both only contain the single tree:

a n

AT T
(see Proposition 3.18). Thus we are done by Theorem 1.5. O

Throughout the remainder of this section, we will say that V% (k; 7) is defined by a given
set of hyperplane equations in P! x P? x - - . x P" if it is equal to Q! of the vanishing locus
of those equations.

Lemma 5.5 Define VU ((0,0,...,0, 1,n — 1); 1) by the set of equations:
Yo =0, zp =0zu—1, Ze =121, 21 =1422, 22 =1523, ..., Zn-3 =Zp-2
where t = (t1, 12, ..., ty). Then

lim V' ((0,0,...,0, 1,n — 1); 1) = Tour(0,0, ..., 0, 1,n — 1).

t—0

Proof Intersecting with the first equation, y, = 0, restricts to the divisors in which b is on the
a branch from the perspective of n — 1. Moreover, since we will be intersecting with n — 1
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hyperplanes in P, we may restrict our attention to divisors in which n’s internal vertex v,
has degree at least n + 2. In particular, we may restrict to the boundary strata

D({a,b} | {c,1,2,...,n—1,n} U
Ujeteramn Da.bc 1o o on =20} | {j.n — 1}).

First consider the divisor D({a, b} | ¢, 1, 2, ..., n). Then by Remark 4.8, intersecting with
Zp = thzy—1 and taking the limit as 1, — 0 effectively sets z,_; = 0, which treats n — 1 as the
minimal element and slides it towards a. We can again restrict by dimensionality to the stratum

in which the three internal vertices have leaves {a, b}, {n — 1}, and {c, 1,2, ...,n — 2, n}.
The remaining equations similarly slide c, 1, ..., n — 3 towards a, yielding the unique point
shown below.

a n

b n—-1¢1 2 n—3 n-—2

Now consider a divisor of the form D({a, b, c, 1, ..., f co.,n—2,n} | {j,n—1}). The first
equation, z, = t2z,—1, simply says that we slide b towards a (so that they share an internal
vertex), and again by dimensionality we can restrict to the case in which all remaining edges
are still attached to the same internal vertex as n. The remaining equations similarly slide

c,1,2,...,j— 1in that order towards a, then move the branch containing the pair j, n — 1
towards a, and finally move j + 1,...,n — 2 towards a. An example is shown below for
n==6and j =2.
a 6
b c 1 A 3 4
2 5
One can easily verify that these are precisely the boundary points whose lazy tournament
has n — 1 winning one round and » winning the rest. O

Lemma 5.6 Define V™ ((0,0,...,0,n— 1, 1); 1) by the set of n — 1 equations defining the
smaller locus V®((0,0,...,0,n — 1); ?) in the y variables, plus the single equation

b = h2n—1
in the z variables. Then

lim VU (0,0,...,0,n —1,1); 1) = Tour(0,0, ...,0,n — 1, 1).

t—0
Proof Intersecting with the first n — 1 equations and taking the corresponding limits, we
know for size n — 1 we obtain the unique tree Ty in Slide®(0, 0, ..., 0,n — 1), namely the
caterpillar tree Tp with a, b on one end, n — 2, n — 1 on the other, and leaves ¢, 1,2, ...,n—3
in order in between. Thus on M(),n+3 we are in the union of divisors in 7, L1y, given by
inserting the leaf n to attach to any one of the internal vertices of 7.

We now consider the equation z; = t,z,—1. Intersecting and taking the limit with a divisor

in which n and b are on the same vertex slides the b towards a, and otherwise slides the branch
containing n — 1 towards a. In the former case we get the point:
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|
b noc1 2 n—3 n-—2

and in the latter cases we get points that look like (for n = 6, where the 6 may be merged
with any of the other points ¢, 1, 3, 4, 5 rather than with 2):

a 5

2 6

These are precisely the trees whose lazy tournament has n — 1 winning n — 1 rounds and
n winning once. O

Lemma 5.7 Define V' ((0, 0, 2, 2); (11, ta, t3, t4)) by the set of equations
Ww=0, Yyed+tyi+03y» =0, zp4+523=0, z.+uz +13z2=0.
Then
lim V" ((0, 0, 2, 2); 7) = Tour(0, 0, 2, 2).

t—0
Proof Since these equations are for one single multidegree, we have simply verified via
a computer computation that the intersections limit to the six lazy tournament points in
Tour(0, 0, 2, 2).

For completeness we also provide a brief proof along the lines of the previous lemmas.
the second performs a 3-slide where the possible minimal elements are ¢, 1, 2 in that order.
Writing (A)—(B)—(C) to denote the boundary stratum given by the tree with three internal
vertices along a path whose leaves are labeled by the sets A, B, C in that order, it follows
that we are on one of the (inverse images under 4 of the) boundary strata

(ab)—=(c)=(123), (ab)—(c1)=(23), (ab)—(c2)—(13),
(abc)—(1)—(23), (abl)—(c)—(23), (ab2)—(c)—(13)

sssss

restrict to the case in which 4 is inserted at the vertex of degree 4 in each case above. The
equation zp + t3z3 = 0 slides either the branch containing b (from 4’s perspective) towards
a if the b and a branch do not coincide, and otherwise slides the branch containing 3 towards
a. The final equation then performs an ordinary 4-slide. This degeneration process yields 6
points in Fig. 5, which are precisely the points of Tour(0, 0, 2, 2). O

The final lemma below completes the proof of Theorem 1.15. We still use z variables to
label P" below, and now use w variables to label P"*!,

Lemma 5.8 Let k be a composition of n for which V' (k; 1) is already defined. Define
VIOUr((kt, k=1, 0,k + D3 1)
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a 4 a 3
] T
b c 3 1 2 b c 4 1 2
a 1 a 2
b c 4 b ¢ 4
2 3 1 3
a 2 a 1
b c 3 b ¢ 3
1 4 2 4

Fig.5 The six points in Tour(0, 0, 2, 2)

by changing the variables z; of the last k,, equations defining V°™ (k: 1) to the variables w;
of Pt and also adding the additional equation

2 3
Wy + Ly We + w4, qwa - 1w, = 0.

Then

Lim VU (K1, o k1, 0,k + 15 1) = Tour (ki - ky—1, 0, ky + 1).

t—0
Proof First note that the tournament points of Tour(ky, ..., k,—1, 0, k, + 1) are in bijection
with those of Tour(ky, ..., k,), and can be formed from the smaller trees by inserting n + 1

to pair with n. We show that the process of twisting up the existing hyperplanes and adding
the new hyperplane equation has this exact effect on the intersection points.

Indeed, the equations in all Plifori <n-—1 give the same strata as before, and then we
pull back under m,, and 7,4+ by inserting n and n + 1 in all possible ways. Then, applying
the relabeled equations in P"*! coming from the ones we had before in P, apply the same
slide moves except from the perspective of n 4 1 instead of n (ignoring the position of n).
But then we need to do a final intersection at n + 1, so in fact the leaf n» must remain attached
ton + 1 at each step. The final equation then does an ordinary n + 1-slide, which means that
n (being non-minimal) stays attached to n 4+ 1 and the other branch slides towards a. This
process is equivalent to making the n + 1 and n leaves collide. This completes the proof. O

6 Further discussion and open problems

We conclude with some further observations and avenues for future research, both in com-
binatorial directions (Sects. 6.1 through 6.3) and geometric (Sects. 6.4 through 6.7).
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6.1 Tournaments vs slide points

It follows from [8, Theorem 1.5] and Corollary 1.14 that |Tour(k)| = deg,(R2,) =
|Slide® (k)|. These two identities were obtained using different methods. The first follows
from a bijection with column-restricted parking functions [3, 8] which naturally satisfy the
asymmetric string recursion. The second follows from counting intersection points with
parametrized hyperplanes, and has the inductive structure of the slide rule.

Problem 6.1 Find a combinatorial bijection between the sets Tour (k) and Slide® (k).

One possible route to solving this problem is to use column-restricted parking functions
as an intermediate object. Along these lines, for the W, setting, parking functions may be
generalized to a set of objects enumerated by the ordinary multinomial coefficient

h n!
=—=d 7]
<k1,-..,k,,> kil k! egi(Wn)

for " k; = n. We assign to each tree T in Slide? (k) a word w in the letters 1,2, ..., n in
which the letter i occurs k; times. We construct w by beginning with an empty word; then
at each i-slide, we insert an i into w as follows. For each internal vertex v € T, let j, be the
minimal leaf vertex among the non-a branches of T at v. Order the internal vertices v by the
value of j,, breaking ties by saying v > v’ if v is closer to a. Let v; be the internal vertex
adjacent to leaf i, and let j be the position of v; in the ordering of the internal vertices. Then
we insert i into w at the jth position from the left.

This suggests the possibility of constructing an analogous bijection between Slide® (k)
and the column-restricted parking functions, which in turn are in bijection with Tour (k).

6.2 Pattern avoidance

One difficulty in Problem 6.1 is that the sets Slide® (k) and Tour(k) do not always consist
of trees of the same shapes. For instance, when k = (1, 1, ..., 1), every element of Tour (k)
corresponds to a caterpillar graph, meaning that its internal vertices form a path. Not every
element of Slide® (k), however, is a caterpillar. Intriguingly, there is a characterization of the
caterpillar graphs in Slide® (k) via permutation pattern avoidance.

We say a permutation 7 avoids the pattern 23-1 if there do not exist indices i and j with
i +1 < jsuchthat 7; < m; < m;41. For example, the 15 permutations on 4 letters that
avoid 23-1 are

4321, 3214, 4213, 2143, 2134, 4312, 3142, 3124, 4132, 1432, 1324, 4123, 1423, 1243, 1234,

whereas the permutation 2431 contains a 23-1 pattern with i = 1, j = 4. It turns out that
the slide labelings on caterpillar graphs in Slide”(1, 1, ..., 1) correspond precisely to the
23-1-avoiding permutations. For instance, the following tree occurs in Slide® (1, 1, 1, 1) and
has a slide labeling whose labeled internal edges, from left to right, form the word 2143:
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It would be interesting, and might shed new light on the structure of Slide” (k), to describe
the set (or various subsets of it) by pattern avoidance conditions. Notably, this may be an
avenue through which to recover the asymmetric string recursion, and so obtain a bijection
to tournaments.

We prove this general correspondence between caterpillar graphs in Slide®(1, 1, ..., 1)
and 23-1-avoiding permutations here. Below, we use the convention that the leaves a, b are
drawn on the left and the path moves out towards the right, so moving left (resp. right) means
moving along the path towards (resp. away from) a.

Proposition 6.2 Let Cat; < Slide“(1, 1, ..., 1) be the subset of trivalent trees that corre-
spond to caterpillar curves. For each tree T € Cat{, define the word w(T) by reading the
labels in the slide labeling of T from left to right. The set of words

{w(T): T e Caty}

are precisely the 23-1-avoiding permutations of length n, and in fact the words w(T) are all
distinct.

To prove this, we define the following leaf labeling algorithm.

Definition 6.3 (Leaf labeling algorithm) Let w be a 23-1-avoiding permutation. Define the
tree T, to be the tree constructed as follows: First label the internal edges of a caterpillar
tree by wy, ..., w, from left to right, and label the leftmost two leaves a, b. Then label the
remaining leaves n,n — 1,n — 2, ..., 1, ¢ in descending order via the following rule:
Atstep n — i, let j be the edge label just to the right of edge n — i (if such an edge j exists).
Case 1: If j < n — i, then label the leaf just to the right of n —iby n —i.
Case 2: If j > n — i or j does not exist, label the rightmost unlabeled leaf to the right of n — i
byn —i.
Finally, label the remaining unlabeled leaf by c.

Remark 6.4 At any Case 2 step, all edge labels to the right of n — i are greater than n — i, for
otherwise n — i and j would form a 23-1 pattern with a smaller label to the right.

As an example, the tree shown above for the permutation w = 2, 1, 4, 3 is precisely
the tree Ty, obtained by the leaf labeling algorithm. The following lemma shows that the
algorithm is always well-defined.

Lemma 6.5 Whenever Case 2 of the leaf labeling algorithm applies, there are exactly two
unlabeled leaves available to the right of edge n — i, one of which is the leaf just to the right
of it. Whenever Case 1 applies, the leaf just to the right of n — i has not yet been labeled.

Proof For the Case 2 claim, we first show that at step n — i, the only leaves to the right of
edge n — i that have already been labeled are labeled by the edge values to the right of n — i.
Assume for contradiction that some leaf to the right of n — i is labeled by y > n — i where
y is to the left of n — i. Then since leaf y is not adjacent to edge y, it was labeled using Case
2 on step y, and so in fact n — i > y by Remark 6.4, a contradiction.

Let k be the number of internal edges to the right of n — i; then there are k + 2 leaves to
the right of n — i, and so at least two leaves to the right of n — i are available. By induction
on i, we may assume the earlier steps of the algorithm are well-defined, in particular each
leaf x > n — i is to the right of the edge labeled x. This shows that the leaf to the right of the
edge n — i is unlabeled; and there is exactly one other unlabeled edge further to the right.
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For Case 1, suppose for contradiction that the leaf just to the right of n — i was already
labeled on a previous step, say by m > n —i. Then on step m, since m is not just to the right
of edge label m, it used Case 2 of the algorithm. Thus edge label m is just to the left of some
j > m, and both are to the left of n — i. Note that j* > n — i, som, j, n — i form a 23-1
pattern, a contradiction. O

Proof of Proposition 6.2. First note that the words w(7'), which come from the slide labeling,
are distinct since they are constructed inductively by starting with 1 and then inserting a 2,
3, 4, etc, with the position of insertion corresponding to the position we insert the new leaf
at the i-th step of the slide rule.

We next show by induction on n that each of the words w(7T') is 23-1 avoiding. Assume it
istrue forn — 1, and let T e Cat{;. Then deleting the leaf n from T results in a caterpillar tree
§ =m,(T) € Caty_,, so the slide labeling of S is 23-1 avoiding by the inductive hypothesis.

Note that in the slide labeling of 7', the internal edge just left of leaf edge n is labeled
first, by n, and then the remaining edges are labeled as they were in S. Therefore, the word
w(T) is obtained by inserting n into w(S) accordingly. So, to show that w(7) is still 23-1
avoiding, it suffices to show that the n that is inserted does not create a 23-1 pattern. Let x
be the slide label just left of n in w(7"), and assume for contradiction that there is some slide
label y < x to the right of n in w(T). Let z be the leaf just to the left of the slide label n;
then by the definition of the w-slide labeling, z is less than all leaf labels to its right. Thus in
particular z < y and so z < x by transitivity.

a

b z n x Y

In particular, z # x, so x labels some leaf to the right of n. Then since the slide label left
of n is x, the internal edge labels on the path from leaf n to x must all be greater than x as
well; let j be the leftmost such label. Then y < x < j and these three edges form a 23-1
pattern in w(S), a contradiction. It follows that w(T') is 23-1 avoiding as well.

We finally show that if w is any 23-1-avoiding permutation, the tree 7y, obtained by the
leaf labeling algorithm has valid slide labeling w. It suffices to check the condition (3) in
Definition 3.13 comparing minimal elements. We first check the condition at the edge label
n. Let z label the leaf just left of n, and let x be the edge label just left of n. At step x of the
leaf labeling algorithm, since n > x we are in Case 2, and so the leaf labeled by x is to the
right of n by Lemma 6.5. Moreover, all other leaves to the right of n were already labeled
and are greater than x. Thus x is the minimal leaf label to the right of n. Furthermore, since
the labeling of leaf z occurs after x, we have z < x. Therefore the slide labeling is valid at n.
It is valid for all smaller labels by a similar argument after contracting edge n and deleting
leaf n (since n labels the leaf just after n). O

Since the number of 23-1-avoiding permutations is the nth Bell number B, (see Claesson
[4] and OEIS entry A000110 [17]), we therefore have the following corollary.

Corollary 6.6 The number of caterpillars in Slide® (1, 1, ..., 1) is the nth Bell number B,,.

6.3 The S, action and slide sets

The symmetric group S, acts on M ;13 by permuting the marked points 1, . . ., n. Likewise,
it acts on psi classes and boundary strata by relabeling. Thus, permuting the leaves of the
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trees in Slide¥ (ki, ..., k,) according to a permutation o € S, gives a positive formula for
the product

k1 ke Ks=1q ko1
w(r(])"'w(r(n)_wl e

as the sum of boundary classes [ X, (1)l for T Slide? (k). These strata may be obtained as the
limiting intersections with the hyperplanes formed by applying o to each of the hyperplanes
defining V¥ (k, 7) (this also has the effect of changing a hyperplane of class ¥; to one of class
Yo (i) and relabeling the projective coordinates). However, this gives a different set of trees
than those enumerated by Slide? (k, -1 (1) - - - » Ko =1()), because the slide rule is sensitive to
the ordering of the indices, and the iterated limit is also effectively taken in a different order.

Nonetheless, the two resulting sets of strata must be equinumerous (see Remark 2.1).
Therefore, there must be a bijection between Slide¥ (ky, ..., k,) and Slide? (ko (1)s -+ s kan))-

Problem 6.7 For any permutation o € S, and any composition K, construct an explicit
combinatorial bijection between Slide¥ (ky, .. ., k,) and Slide? (ko (1) -+ s ko))

As discussed above, the bijection itself is not given by simply applying a permutation to
the leaf labels of the trees. In fact, even the shapes of the trees are not preserved; the shapes
in Slide¥ (0, 1, 2) do not match those of Slide? (0, 2, 1).

This problem boils down to understanding how reordering the indices on the hyperplane
equations changes the slide points that we obtain. For a single i-slide, it simply changes the
notion of the “i-minimal element”. After more than one slide, however, the resulting trees
may be very different.

A slight variant is to consider arbitrary sequences of slides, such as Y1 Y211 ¥:

Problem 6.8 Let w = wy - - - we be aword in the symbols 1, . .., n, containing k; i’s for each
i.Let Slide&ord(w) denote the set of trees obtained by performing a wi-slide, then a w-slide,

and so on. Construct a combinatorial bijection between Slide£Oml (w) and SlideY (ki ..., ky).

6.4 Limiting hyperplanes for tournament points (general case)

In Sect.5, we exhibit certain infinite families of tournament points as limiting hyperplane
intersection points. It remains to be seen whether all tournament points admit such a geometric
realization.

A hint toward achieving this goal is [8, Theorem 1.8], which states that the coordinates of

the points Tour(ky, ..., k) in the P" factor all lie on the k, hyperplanes
2 =0,2.=0,74 =O""’Zkr—2=0
where [zp : z¢ : 21 ¢ -+ : Zr—1] are the projective coordinates of . This suggests looking

for a parametrized family of hyperplanes such that the hyperplanes themselves limit to the
ones listed above. The smallest case not covered by the results in Sect.5is k = (1, 1, 1).

Problem 6.9 Generalize Theorem 1.15 to all Catalan tuples (ky, ka, . .., kp).

For k = (1, 1, 1), we could not find an appropriate family of hyperplanes using modified
slides as in Sect.5. We suspect that it is not possible. It may instead be necessary to modify
the tournament points themselves (for example, the position of the leaf b is mostly irrelevant
to the tournament algorithm).
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6.5 Reducedness

We have seen that the limiting intersections in Theorem 1.5 are generically reduced.
Problem 6.10 Determine whether the limiting fibers in Theorem 1.5 are reduced.

We do not know the answer to this question when Y k; < n. An affirmative answer
would mean that Theorem 1.5 also computes 1pk and o in the K -theory ring K (Mo, n+3)s
as the class of the structure sheaf of a union of strata. If so, and if the components X7
for T e Slide (k) intersect sufficiently nicely, it would be possible to extract K-theoretic
formulas for ¥ and w as alternating sums in the classes of the structure sheaves [© xr1, by
inclusion—exclusion.

6.6 Kappa classes and multiplicity

Our formulas for kappa classes and generalized kappa classes, Theorem 1.11 and Corol-
lary 4.16, consist of boundary classes with multiplicities often greater than 1. In general, we
expect that no multiplicity-free formula can exist.

Problem 6.11 Fixr = (ry,...,ry). Letc =) r; —m and let s5 be the number of boundary
strata of codimension ¢ on Mg ,43. Is it true that
. R(n;r
fim REOL_ o
n—o00 s¢

n

Indeed, k¢ is 7+ 1 times the fundamental class of M ,,4 3. For k1, a straightforward summation
in Corollary 4.16 shows that «; is the sum of (n — 1)2" + 1 boundary divisors (counted with
multiplicity), whereas My ,,+3 has only 4 - 2" — n — 4 distinct boundary divisors. Hence, by
Remark 2.1, k1 can’t be expressed as a multiplicity-free sum of boundary divisors for n > 5,
and the limit in Problem 6.11 holds.

6.7 Other intersection products

It would be interesting to extend the methods of this paper to other intersection products on
moduli spaces of curves.

Problem 6.12 Construct degenerations of complete intersections of W and w classes on
Hassett spaces My 5 [11].

We suspect that the methods of this paper are special to genus 0, but any extensions to
positive genus would also be of interest.
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