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Abstract
In this paper, we consider products of ψ and ω classes on M0,n+3. For each product, we con-
struct a flat family of subschemes of M0,n+3 whose general fiber is a complete intersection
representing the product, and whose special fiber is a generically reduced union of boundary
strata. Our construction is built up inductively as a sequence of one-parameter degenerations,
using an explicit parametrized collection of hyperplane sections. Combinatorially, our con-
struction expresses each product as a positive, multiplicity-free sum of classes of boundary
strata. These are given by a combinatorial algorithm on trees we call slide labeling. As a
corollary, we obtain a positive combinatorial formula for the κ classes in terms of boundary
strata. For degree-n products ofω classes, the special fiber is a finite reduced union of (bound-
ary) points, and its cardinality is one of the multidegrees of the corresponding embedding
�n : M0,n+3 → P

1 × · · · × P
n . In the case of the product ω1 · · · ωn , these points exhibit a

connection to permutation pattern avoidance. Finally, we show that in certain cases, a prior
interpretation of the multidegrees via tournaments can also be obtained by degenerations.
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1 Introduction

Let M0,n+3 be the Deligne–Mumford moduli space [5] of complex genus 0 stable curves
C with n + 3 marked points labeled by the set {a, b, c, 1, . . . , n}. Write ψi for the i-
th psi class, the first Chern class of the line bundle Li whose fiber over a marked curve
(C; pa, pb, pc, p1, . . . , pn) ∈ M0,n+3 is the cotangent space to C at the i-th marked point
pi . We also define ωi to be the i-th omega class, the pullback of ψi under the forgetting map
π : M0,n+3 → M0,i+3 obtained by forgetting the marked points pi+1, . . . , pn .

In this paper, we consider products in the Chow ring A•(M0,n+3) of the form

ψk := ψ
k1
1 · · · ψkn

n , ωk := ω
k1
1 · · · ωkn

n , (1.1)

where k = (k1, . . . , kn) is a weak composition, i.e. a tuple of nonnegative integers, and∑
ki � n. We introduce a family of subschemes of M0,n+3, whose general member is

a complete intersection representing ψk or ωk, and whose special fiber degenerates to a
generically reduced union of boundary strata.We furthermore give a combinatorial algorithm
that produces the resulting strata, in terms of the dual trees corresponding to these strata.

Our construction is by giving explicit parametrized hyperplane sections coming from the
associated line bundles. The ψ and ω classes give rise to two natural projective maps from
M0,n+3:

�n = |ψ1| × · · · × |ψn | : M0,n+3 → P
n × P

n × · · · × P
n, (1.2)

�n = |ω1| × · · · × |ωn | : M0,n+3 ↪→ P
1 × P

2 × · · · × P
n . (1.3)

The first map is the combined or total Kapranov map given by the psi classes, while
the second map, sometimes called the iterated Kapranov map (see [3, 8, 14, 16]), is an
embedding and is given by the omega classes. Hyperplane sections of these maps represent
the intersection products (1.1) in A•(M0,n+3) above.

When
∑

ki = n, it is well-known that the product of psi classes ψk is the multinomial
coefficient

( n
k1,...,kn

)
times the class of a point. The product of omega classesωk is the so-called

asymmetric multinomial coefficient
〈

n
k1,...,kn

〉
times the class of a point [3, 8].

When
∑

ki < n, the products ψk and ωk represent positive-dimensional cycle classes,
and by standard formulas they can be expressed as products of sums of boundary strata of
M0,n+3. In particular, using the notation D(A | Ac) for the boundary divisor in whichmarked
points A are separated by Ac by a node, two standard formulas for psi classes and boundary
strata are

ψi =
∑

	

D(i, 	 | j, k, 	c), (1.4)

D(A | Ac)2 = −D(A | Ac)

( ∑

	

D(a1, a2, 	
c | 	, Ac) +

∑

	

D(A, 	 | 	c, b1, b2)

)

, (1.5)

where in each summation, the two specified marked points ( j, k in the first sum, a1, a2 ∈ A
in the second, b1, b2 ∈ Ac in the last) are arbitrary and fixed, and 	 ranges over all nonempty
subsets of the unspecified marked points. One can repeatedly use these formulas to expand
any product ofψ classes in terms of boundary divisors, but the resulting possible expressions
are not unique, and it is unclear if any such expressions are actually achievable as fundamental
classes of complete intersections ofM0,n+3 by hyperplanes.Moreover,many such expansions
result in alternating sums or terms with multiplicity (see Example 1.9), despite the fact that
these products are necessarily effective and, aswewill show, can be represented bygenerically
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reduced unions of boundary strata. Related work on products of psi classes includes [1, 9,
15, 18].

Our approach is as follows. For each k, we introduce a parametrized hyperplane intersec-
tion Vψ(k; �t) forψk (respectively, V ω(k; �t) forωk) onM0,n+3 in a tuple of parameters �t . We
show that under a specific limit �t → �0, the resulting vanishing locus on M0,n+3 degenerates
into a generically reduced union of boundary strata (Theorem 1.5). In fact, these strata may
be obtained by two closely-related combinatorial rules we call (ψ- and ω-) slide labelings
of trees (Theorem 3.14). As a corollary, we obtain combinatorial formulas in A•(M0,n+3)

for the products ψk and ωk as positive, multiplicity-free sums of boundary strata, which
moreover arise as limits of complete intersections. A complete example of our construction,
for the product ψ1ψ2, is given in Example 1.8.

1.1 Degenerations and slide rules

For each i = 1, . . . , n, let |ψi | : M0,n+3 → P
n be the i-th Kapranov map. Let |ωi | :

M0,n+3 → P
i be the i-th reduced Kapranov map, that is,

|ωi | : M0,n+3
π−→ M0,i+3

|ψi |−−−→ P
i .

We give Pn projective coordinates [zb : zc : z1 : · · · : ẑi : · · · : zn] (where ẑi indicates that zi
is omitted) and P

i the coordinates [wb : wc : w1 : · · · : wi−1]. Here, the hyperplane z j = 0
pulls back to the union of divisors

⋃
D(i	 | aj	c), and w j = 0 is the pullback of such a

hyperplane under the forgetting map π . (See Sect. 2 for background on the Kapranov map
and these conventions.)

Let t be a parameter. We consider the following moving hyperplane equations for ψi and
ωi .

Definition 1.1 (Moving hyperplanes for ψi and ωi ) We define the hyperplane loci

Hψ
i (t) = V(zb + t zc + t2z1 + · · · + t i zi−1 + t i+1zi+1 + · · · + tnzn) ⊆ P

n, (1.6)

Hω
i (t) = V(wb + twc + t2w1 + · · · + t iwi−1) ⊆ P

i . (1.7)

Our construction relies on the key fact that, for t �= 0, the hyperplane Hψ
i (t) inPn is transverse

to every boundary stratum XT ⊆ M0,n+3 of every dimension. Moreover, as t → 0, the limit
of every such intersection is a reduced union of boundary strata. Below, we write XT for the
stratum indexed by the stable tree T and slidei (T ) for a set of trees defined combinatorially
in Definition 3.3 via slide rules.

Lemma 1.2 Let T be a stable tree. Let Vi (t) = |ψi |−1(Hψ
i (t)) in M0,n+3. Then the limiting

fiber is given by

lim
t→0

Vi (t) ∩ XT =
⋃

T ′∈slidei (T )

XT ′

and is reduced.

For any fixed tree T , the right hand side above can instead be obtained by intersecting XT

with a hyperplane of the form z j = 0, though the particular z j depends on T . Intersections
of the form XT ∩ {z j = 0} are well-known and may be derived from (1.4). The novelty here
is the use of a single moving hyperplane for all strata XT , which moreover has the following
useful property.
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Lemma 1.3 (Injectivity) If T �= T ′, the sets of trees slidei (T ) and slidei (T ′) are disjoint.

This lemma leads directly to the generic reducedness statement in Theorem 1.5 below.
We now define vanishing loci Vψ(k; �t) and V ω(k; �t) as intersections with, for each i , ki

hyperplanes Hψ
i (t) or Hω

i (t) (Definition 1.1), with independent parameters.

Definition 1.4 Let k = (k1, . . . , kn) be a weak composition. Let �t = (ti, j ) for 1 ≤ i ≤ n and
1 ≤ j ≤ ki be a tuple of complex parameters. We denote the subschemes cut out in M0,n+3

by the hyperplanes Hψ
i (ti, j ) and Hω

i (ti, j ) as

Vψ(k; �t) =
n⋂

i=1

ki⋂

j=1

�−1
n (Hψ

i (ti, j )), (1.8)

V ω(k; �t) =
n⋂

i=1

ki⋂

j=1

�−1
n (Hω

i (ti, j )), (1.9)

where �n is the total Kapranov map and �n is the iterated Kapranov embedding.

Our main result is as follows. There are combinatorially-defined sets of boundary strata,
denoted by Slideψ(k) and Slideω(k) (see Definitions 3.8–3.9) that give a rule for the limiting
intersections of hyperplanes in Definition 1.4, with respect to a specific limit.

Theorem 1.5 Let k be a weak composition, and let �t = (ti, j ) for 1 � i � n and 1 � j � ki
be complex parameters. Let lim�t→�0 denote the iterated limit

lim
�t→�0

(−) := lim
tn,kn→0

· · · lim
tn,1→0

· · · · · · lim
t2,k2→0

· · · lim
t2,1→0

lim
t1,k1→0

· · · lim
t1,1→0

(−)
.

(The i-th block is empty if ki = 0, and lim denotes the flat limit.) Thenwehave set theoretically

lim
�t→�0

Vψ(k; �t) =
⋃

T∈Slideψ (k)

XT and lim
�t→�0

V ω(k; �t) =
⋃

T∈Slideω(k)

XT . (1.10)

Moreover, each boundary stratum XT appearing in the union is an irreducible component
and is generically reduced in the limit.

As a consequence, we obtain:

Corollary 1.6 Let k be a weak composition. Then in A•(M0,n+3) we have

ψk =
∑

T∈Slideψ (k)

[XT ], ωk =
∑

T∈Slideω(k)

[XT ]. (1.11)

Remark 1.7 (Products of pullbacks of psi classes) Our construction generalizes readily to
products of classes of the form

ωi, j := π∗
n ◦ π∗

n−1 ◦ · · · ◦ π∗
j+1(ψi ),

that is, pullbacks of arbitrary psi classes along the sequence of forgetful maps πi . (We have
ωi = ωi,i and ψi = ωi,n .) See Sect. 4.3.
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[1 : 0 : 0]

[0 : 1 : 0] [0 : 0 : 1][0 : 1 : 1]

D(ab2|c1)

D(abc|12)

D(ab|c12)

a

b c

1

2

a

b 2

1

c

Fig. 1 At left, the equation yb + syc + s2y1 = 0 shown as a dashed line in P
2 for a small parameter s ≈ 0.

It intersects the ψ1 boundary strata, shown in boldface blue, at two points. As s → 0 the two red points of
intersection approach the boundary points with y-coordinates [0 : 1 : 1] and [0 : 0 : 1], drawn at right (color
figure online)

Example 1.8 (A degeneration forψ1ψ2) Consider the productψ1ψ2 on M0,{a,b,c,1,2}. Recall
that M0,{a,b,c,1,2} embeds into P

2 × P
2 via |ψ1| and |ψ2|; we coordinatize P2 × P

2 as

[xb : xc : x2] × [yb : yc : y1].
The two hyperplane families in P2 × P

2 that we will introduce, corresponding to ψ1 and ψ2

in the product, are

xb + t xc + t2x2 = 0 and yb + syc + s2y1 = 0

for parameters t, s ∈ C.
We first take t → 0, which gives the equation xb = 0. Geometrically, the set of curves

in M0,{a,b,c,1,2} that have coordinate xb = 0 are precisely those for which the marked point
1 is separated from a and b by a node, which is the union of the three boundary strata
D(ab | c12), D(abc | 12), and D(ab2 | 1c). (This is a special case of the formula for ψ1

given by Eq. (1.4).)
In the second copy of P2 in P

2 × P
2, these three boundary strata are precisely the set

of curves whose coordinates satisfy either yb = 0 or yc = y1, which we may visualize
via Fig. 1 as the two boldface blue lines in P

2. Then the equation yb + syc + s2y1 = 0,
drawn as a dashed line in Fig. 1, intersects these strata at two points and approaches the
horizontal blue line yb = 0 as s → 0. Note that, on the stratum where yb = 0, the equation
yb + syc + s2y1 = 0 yields the condition yc = 0 as s → 0, since yc is effectively the leading
term.

The two intersection points approach the two boundary points with coordinates [0 : 1 :
0] × [0 : 1 : 1] and [0 : 0 : 1] × [0 : 0 : 1], shown at right in Fig. 1. These boundary points
may also be represented by their dual trees:

a 1

2b c

a c

1b 2
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Our choice of hyperplanes and the associated combinatorial algorithm always lead to a
set of distinct trees for any product of ψ or ω classes, which is not readily achieved by other
known methods for calculating such products, as illustrated by the following example.

Example 1.9 We may calculate ψ1ψ2 directly (but without an explicit realization via hyper-
planes) as follows. By Eq. (1.4), we have

ψ1ψ2 = (D(ab | c12) + D(abc | 12) + D(ab2 | c1)) · ψ2.

Expanding out the product on the right hand side, wemay think of the first term as intersecting
the stratum D(ab | c12)with theψ2 class restricted to the component containing the marked
point 2. Choosing j = 1 and k = c in Eq. (1.4), we see that this intersection gives the
boundary point corresponding to the second tree in Example 1.8 above. The middle term
vanishes, and for the third term, if we separate 2 from j = a and k = b, we again obtain the
same tree as before. Thus we find again that ψ1ψ2 is twice the class of a point, but the same
tree occurs with multiplicity two in this calculation.

Of course, all points on M0,n+3 are rationally equivalent. However, the same issue arises
for calculating products in positive dimension (even ψ1ψ2 on M0,6), where boundary strata
are not all equivalent.

For further examples, see Examples 3.10 and 3.12 for the products ψ1ψ
2
3 and ω1ω

2
3,

respectively.

1.2 Application to kappa classes

Our results and approach also yield positive boundary class formulas for the kappa classes
κi and generalized kappa classes, answering a question of Cavalieri [2, p. 38]. We recall that
κi is defined by pushforward:

κi := (πn+1)∗(ψ i+1
n+1) for i � 0, (1.12)

where πn+1 is the forgetting map that forgets the marked point n + 1. The kappa classes are
of particular interest in higher genus, where they are used in defining the tautological ring of
Mg,n [20].

Below, we write vi to denote the internal vertex of a tree to which leaf edge i is attached.
We write deg(vi ) for the degree of the vertex vi .

Definition 1.10 Let K (n; i) ⊆ Slideψ(0n, i + 1) be the subset of trees T in which
deg(vn+1) = 3.

Theorem 1.11 On M0,{a,b,c,1,...,n}, we have

κi =
∑

T∈K (n;i)
[Xπn+1(T )].

The generalized kappa classes are defined similarly as iterated pushforwards: for n � 3
and a weak composition r = (r1, . . . , rm), we define

Rn;r := (πn+1,...,n+m)∗(ψr1
n+1 · · · ψrm

n+m), (1.13)

where πn+1,...,n+m is the iterated forgetting map.

Definition 1.12 Let R(n; r) ⊆ Slideψ(0n, r1, . . . , rm) be the subset of trees T such that, for
each j = n + 1, . . . , n + m, the tree π j+1,...,n+m(T ) has deg(v j ) = 3.
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Theorem 1.13 On M0,{a,b,c,1,...,n}, we have

Rn;r =
∑

T∈R(n;r)
[Xπn+1,...,n+m (T )].

Note that this sum is not, and likely cannot be, multiplicity-free (see Corollary 4.16 and
Problem 6.11).

1.3 Multidegrees and application to tournaments

When
∑

ki = n, the integers deg(ψk) and deg(ωk) are also called the multidegrees of the
maps �n and �n , written degk(�n) and degk(�n). They are the numbers of intersection
points of the image of M0,n+3 with n general hyperplanes from the products of projective
spaces (1.2) and (1.3), taking ki hyperplanes from the i-th factor, for each i . Thus, a key
special case of Corollary 1.6 is the following enumerative statement.

Corollary 1.14 If k1 + · · · + kn = n, we have

degk(�n) =
∫

M0,n+3

ψk = |Slideψ(k)| (1.14)

degk(�n) =
∫

M0,n+3

ωk = |Slideω(k)|. (1.15)

It is well known that degk(�n) is given by the multinomial coefficient
( n
k1,...,kn

)
(see e.g. [2]),

so (1.14) shows that this is the number of trivalent trees in Slideψ(k). The integers
〈

n

k1, . . . , kn

〉

:= degk(�n)

are called the asymmetric multinomial coefficients. A recursive formula for them was previ-
ously given in [3], as well as a combinatorial interpretation via parking functions. In [8], it
was also shown that a different set of boundary points called Tour(k) also enumerates the
multidegrees degk(�n). These points are defined combinatorially via an algorithm called a
lazy tournament, and we will recall the definition in Sect. 5 below.

The recursions underlying these prior enumerative results—the string equation for ψk

and the asymmetric string equation for ωk—relate them via forgetting maps to multidegrees
with one fewer marked point. The slide rule introduced in this paper, by contrast, builds up
ψk and ωk from products with one fewer factor (i.e. positive-dimensional cycle classes), but
the same number of marked points. These recursions seem to be entirely different, and we
do not know a combinatorial analog of the (ordinary or asymmetric) string equation for the
sets Slideψ(k) or Slideω(k); it would be interesting to find one.

Along these lines, we askwhether the tournament points Tour(k)may similarly be realized
as limiting intersectionswith hyperplanes. Ourmain result in this direction is that it is possible
for the following families of tuples k.

Theorem 1.15 Suppose the tuple k = (k1, . . . , kn) is of one of the following forms:

• (0, 0, . . . , 0, 0, n),
• (0, 0, . . . , 0, 1, n − 1),
• (0, 0, . . . , 0, n − 1, 1), or
• (0, 0, 2, 2).
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Then there exists an explicitly constructed set of hyperplanes in P
1 × · · · × P

n, with ki of
them from P

i for each i , such that their intersection locus V tour(k, �t) in M0,n+3, pulled back
under �n, satisfies

lim
�t→�0

V tour(k; �t) = Tour(k). (1.16)

Moreover, given any set of hyperplanes satisfying (1.16) for k = (k1, . . . , kn), there exists
such a set for (k1, . . . , kn−1, 0, kn + 1).

1.4 Outline of paper

The paper is organized as follows. We provide necessary background and notation in Sect. 2.
In Sect. 3 we define the slide rules and give some combinatorial properties of the resulting
trees. In Sect. 4 we prove the main theorems on degenerations, namely Theorems 1.2 and 1.5
andCorollary 1.6, andwe also prove Theorem1.11. In Sect. 5we prove Theorem1.15, andwe
conclude with some further combinatorial and geometric observations in Sect. 6, including
an interesting pattern avoidance condition that arises in the trees Slideω(1, 1, 1, . . . , 1).

2 Background

We now provide some geometric and combinatorial background needed to state and prove
our results.

2.1 Structure ofM0,S and trivalent trees

Throughout, we let S = {a, b, c, 1, 2, . . . , n}. A point of M0,S consists of an (isomorphism
class of a) genus 0 curve C with at most nodal singularities and marked points labeled by the
elements of S, such that each irreducible component has at least three special points, defined
as marked points or nodes. In this paper, we draw the irreducible P1 components as circles, as
in Fig. 2. The dual tree of a point in M0,S is the leaf-labeled tree formed by drawing a vertex
in the center of each P

1 circle and then connecting this vertex to each marked point on its
circle and each vertex on an adjacent circle connected by a node. The dual tree is guaranteed
to be a tree since the curve has genus 0.

A tree is trivalent if every vertex has degree 1 or 3 and at least one vertex of degree 3,
and it is at least trivalent or stable if it has no vertices of degree 2 and at least one vertex
of degree ≥ 3. The dual tree of any stable genus 0 curve is a stable tree. We define the extra
valency of a stable tree T with set of internal vertices V to be

∑
v∈V (deg(v) − 3).

1

2

3

4

5

1

2

3

4

5

1

2

3

4

5

Fig. 2 At left, a stable curve in M0,5, in which each circle represents a copy of P1. At center, we form the
dual tree of the curve shown at right. The tree also represents the dimension-1 boundary stratum consisting of
the closure of the set of all stable curves in which 1, 2, 3 are on one component and 4, 5 are on another
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The interior of M0,S is the open set M0,S ⊂ M0,S consisting of all the curves that have
a single P

1 with all distinct marked points. The points of the interior correspond to those
whose dual tree consists of a central node with |S| leaves attached.

The boundary of M0,S is the complement of the interior, consisting of the points corre-
sponding to stable curves with more than one irreducible component. Given a set partition
S = A � B with |A|, |B| � 2, the boundary divisor D(A | B) is the closure of the set
of stable curves C with two components, such that the marked points in A ⊂ S are on one
component and the marked points in B ⊂ S are on another. The boundary of M0,S is the
union of the divisors D(A | B) for all choices of A and B. Sometimes we abuse notation and
write D(A | B) for the associated class in the Chow ring.

Let T be an at-least-trivalent tree whose leaves are labeled by S. Then the boundary
stratum XT corresponding to T is the closure of the set of all stable curves whose dual tree
is T . Let V be the set of non-leaf vertices of T , and for each v ∈ V , let N (v) be the set
of vertices adjacent to v. The dimension of XT is the extra valency of T . More specifically,
there is a canonical isomorphism

XT ∼=
∏

v∈V
M0,N (v) =

∏

v∈V
M0,deg(v), (2.1)

called the clutching or gluing map. The boundary strata XT form a quasi-affine stratifi-
cation (as defined in [6]) of M0,n , and the zero-dimensional boundary strata, or boundary
points, correspond bijectively to the trivalent trees on leaf set S. Indeed, since the points are
isomorphism classes of stable curves and an automorphism of P1 is determined by where it
sends three points, a stable curve whose dual tree is trivalent represents the only element of
its isomorphism class.

Keel has given a presentation of the Chow ring A•(M0,n+3) that shows that the classes
[XT ] generate it as a Z-algebra [13]. The relations among the [XT ]’s are all obtained from
the basicWDVV relations by pullback and pushforward along forgetting maps and clutching
maps.

Remark 2.1 If two sums of boundary classes [XT ] are rationally equivalent, then both sums
consist of the same total number of strata (counting multiplicities). This follows from Keel’s
presentation (and the easy fact that it holds for the WDVV relations).

2.2 Kapranovmorphisms

For all facts stated throughout the next two subsections (Sects. 2.2 and 2.3), we refer the
reader to Kapranov’s paper [12], in which the Kapranov morphism below was originally
defined.

The ith cotangent line bundle Li on M0,S is the line bundle whose fiber over a curve
C ∈ M0,S is the cotangent space of C at the marked point i . The i-th ψ class is the first
Chern class of this line bundle, written ψi = c1(Li ). The corresponding map to projective
space

|ψi | : M0,S → P
n,

is called the Kapranov morphism.
We coordinatize this map as follows. It is known that |ψi | contracts each of the n + 2

divisors D({i, j} | {i, j}c), for j �= i , to a point β j ∈ P
n . These points are, moreover,

in general linear position. We choose coordinates so that βb, βc, β1, . . . , β̂i , . . . , βn ∈ P
n

123



56 Page 10 of 37 M. Gillespie et al.

are the standard coordinate points [1 : · · · : 0], . . . , [0 : · · · : 1] and βa is the barycenter
[1 : 1 : · · · : 1]. We name the projective coordinates [zb : zc : z1 : · · · : ẑi : · · · : zn].
(The notation ẑi means we omit that term from the sequence.) The hyperplane z j = 0 pulls
back to the union of divisors

⋃
D(i	 | aj	c), where 	 ranges over the nonempty subsets of

S \ {a, i, j}.
Given a pointC in the interiorM0,S , by abuse of notationwe alsowrite pa, pb, pc, p1, . . . ,

pn for the coordinates of the n+3marked points on the unique component ofC , after choosing
an isomorphism C ∼= P

1. With these coordinates, the restriction of |ψi | to the interior M0,S

is given by

|ψi |(C) =
[
pa − pb
pi − pb

: pa − pc
pi − pc

: pa − p1
pi − p1

: · · · : pa − pn
pi − pn

]

(2.2)

where we omit the (undefined) term pa−pi
pi−pi

. It is convenient to choose coordinates on C in
which pa = 0 and pi = ∞, in which case the map simplifies to

|ψi |(C) = [pb : pc : p1 : · · · : p̂i : · · · : pn]. (2.3)

We now describe how to use the above formulas to compute |ψi | on boundary strata, i.e.
reducible stable curves C . Essentially, |ψi | reduces to a smaller Kapranov morphism using
the irreducible component of C containing pi (followed by a linear map into P

n).

Definition 2.2 (Branches at i) Let C be a stable curve with dual tree T . Let vi ∈ T be the
internal vertex adjacent to leaf edge i . We refer to the connected components of T \ {vi }
(defined by vertex deletion) as the branches of T at i . The root of a branch is the vertex
attached to vi by an edge. We write σi (C) to denote the set partition of S \ i given by the
equivalence relation of being on the same branch.

Example 2.3 The stable curve C below at left has the dual tree shown at center, with its
disconnected branches at i = 4 shown at right.

Byexamining thebranches,wefind the set partition for i = 4 isσ4(C) = {{a, b, c}, {2}, {1, 3}}.
Definition 2.4 Let σ be a partition of S \ i .

Define P◦
σ ⊂ P

n to be the set of points such that:

• zr = zs if and only if r , s are in the same part of σ , and
• zr = 0 if and only if r , a are in the same part of σ .

Let Pσ = P◦
σ be its closure. It is convenient to parametrize Pσ as follows: we choose an

ordering σ0, . . . , σk of the parts of σ with a ∈ σ0, and for r ∈ S \ i we define σ(r) to be the
index j such that r ∈ σ j . We then have the linear map

ισ : Pk−1 → Pσ ⊂ P
n,

[y1 : · · · : yk] �→ [yσ(b) : yσ(c) : yσ(1) : · · · : ŷσ(i) : · · · : yσ(n)],
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where y0 is defined to be 0 (that is, if r ∈ σ0 then zr = 0).

Example 2.5 Let σ = {{a, b, c}, {1, 3}, {4}}, a set partition of S\2 for n = 4. Then a point of
Pσ ⊂ P

4 has the form

[0 : 0 : y1 : y1 : y2]
for y1 and y2 not both zero.

Proposition 2.6 Let C ∈ M0,S be a stable curve with dual tree T , and let σ = σi (C) be
the set partition given by the branches of T at i . Let C ′ ⊆ C be the irreducible component
containing pi , with special points Y . We may think of C ′ as an interior point of the smaller
moduli space M0,Y , and compute |ψi |(C ′) accordingly by (2.2). Then we have

|ψi |(C) = ισ ◦ |ψi |(C ′).

In other words, the coordinates of (2.2) are copied into the coordinates Pn according to the
set partition σ .

Example 2.7 Let C be the curve in Example 2.3, and let C ′ be the component containing
marked point 4. If we parameterize C ′ ∼= P

1 such that branch {4} is at ∞, branch {a, b, c} is
at 0, and {2} and {1, 3} are at t and s respectively, then |ψ4|(C ′) = [s : t], the map ισ sends
[y1 : y2] to [0 : 0 : y1 : y2 : y1], and by Proposition 2.6 we have

|ψ4|(C) = [0 : 0 : s : t : s].

2.3 The total and iterated Kapranovmaps

We can now define the maps �n and �n .

Definition 2.8 We define �n : M0,S → P
n ×P

n × · · · ×P
n to be the product |ψ1| × |ψ2| ×

· · · × |ψn |. That is,
�n(C) = (|ψ1|(C), |ψ2|(C), . . . , |ψn |(C)).

Themap�n is not an embedding, since it only records the coordinates of special points on
components C ′ ⊆ C containing at least one marked point i � 1. However, �n is birational
onto its image (indeed even a single |ψi | map is birational onto its image).

Example 2.9 If C is the curve in Example 2.3, we have

�n(C) = ([0 : 0 : 0 : 1 : 0], [0 : 0 : s : s : s − t], [0 : 0 : 1 : 0 : 0], [0 : 0 : s : t : s])
where the second coordinate |ψ2|(C) is obtained by combining Lemma 2.6 and Eq. (2.2),
using the same parameterization of the red component C ′ for both |ψ2| and |ψ4|. Note that
the coordinates in the second copy of P4 match the format shown in Example 2.5.

To define �n , we can combine the ψ and forgetting maps as follows. The Kapranov
morphism is a projective embedding of the universal curve over M0,S\n :

M0,S
� � |ψn|

��

πn

��

P
n ×M0,S\n

��

M0,S\n.
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We may repeat this construction using the map |ψn−1| on M0,S\n , and so on, obtaining a
sequence of embeddings. This gives the iterated Kapranov morphism

�n : M0,S ↪→ P
1 × P

2 × · · · × P
n .

Keel and Tevelev [14] first observed that �n is in fact a closed embedding. The i-th factor of
this embedding is given by forgetting the points pi+1, . . . , pn , then applying the Kapranov
morphism |ψi | on the smaller moduli space. Since the ω classes are defined as the pullbacks
of ψ classes under the forgetting maps, we may alternatively define

�n = |ω1| × · · · × |ωn |.
Example 2.10 If C is the curve in Example 2.3, we have

�n(C) = ([0 : 1], [0 : 0 : 1], [0 : 0 : 1 : 0], [0 : 0 : s : t : s]).
Remark 2.11 Example 2.9 demonstrates that �n is not an embedding. Indeed, if we replace
the {a, b, c} branch of the curve with any other arrangement of a, b, c with respect to each
other, the resulting curve will have the same coordinates under �n . On the other hand, since
�n’s coordinates are computed after applying forgetting maps at each step, there will exist a
step where a numbered marked point will “see” the structure of such an ambiguous branch.
Hence �n is injective.

3 Slide rules

In this section, we define the slide rules for ψ and ω. We first state each rule as a generative
procedure for generating a list of trees. We also describe the resulting sets of trees directly
in terms of edge labelings. We prove in Sect. 4 that the trees (strata) given by these rules
compute the products ωk and ψk.

Let T be a stable (at-least trivalent) tree with leaves labeled a < b < c < 1 < · · · < n.

Definition 3.1 Fix 1 � i � n and let vi ∈ T be the internal vertex adjacent to i . Let Bra
denote the branch at i containing a. We write ea for the edge connecting Bra to vi .

Definition 3.2 With i as above, let m be the minimal leaf label of T \(Bra ∪ {i}); we call m
the i-minimal marked point. We write Brm to denote the branch at i containing m.

Definition 3.3 (Slide at i) An i-slide on T is performed as follows: with the notation above,
we add a vertex v in the middle of edge ea , move Brm to attach its root to v, and attach each
remaining branch of T at i (other than Bra and the leaf labeled i) to either vi or v, such that
the resulting tree is stable.

We write slidei (T ) for the set of stable trees obtained this way. Note that stability requires
at least one branch to remain at vi . In particular, slidei (T ) is empty if deg(vi ) = 3.

Remark 3.4 It is straightforward to check that slidei (T ) can alternatively be defined as the
set of all trees T ′ for which:

• Contracting a single edge e in T ′ results in T (in the above notation, the edge connecting
v and vi ), and

• The leaves a and m are on the same branch with respect to i in T ′.
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Example 3.5 As an example of a 3-slide, let T be the following tree, along with the new
vertex v to be added to edge ea as shown below. We also indicate the vertex vi = v3 with a
dot.

ea

vi

a

b

c2

1

3
4

5
6

Then Bra is the subtree having leaves a, b, 5. The other branches at 3 (besides the leaf labeled
3) have sets of leaves {4}, {1, 6}, and {c, 2}, and since the latter has the smallest minimal
element (m = c) among these branches, Brm is the branch containing c and 2. Performing
the 3-slide, and keeping only the stable trees, gives us the following three trees:

Remark 3.6 In general, there are 2deg(vi )−3 − 1 elements in slidei (T ). Indeed, each branch
other than:

• branch Bra ,
• the leaf i , and
• branch Brm ,

has the choice of either being attached to vi or v, with the exception that they cannot all be
attached to v.

The following lemma about i-slides, while straightforward, is essential to the generic
reducedness result.

Lemma 3.7 (Injectivity) Let T , T ′ be distinct stable trees on leaf set S. Then the sets slidei (T )

and slidei (T ′) are disjoint.

Proof Suppose R ∈ slidei (T ) ∩ slidei (T ′). Let vi ∈ R be the vertex where i is attached.
Let eA ∈ R be the edge adjacent to vi connecting to the branch of R at i containing a. Then
by the definition of an i-slide, both T and T ′ are the result of contracting the edge eA of R.
Thus, T = T ′. ��

We now define the general slide rules for intersections of ψ and ω classes. In both of the
following we let k = (k1, . . . , kn) be a weak composition. We write � (resp. ˙) for the
unique tree with a single internal vertex and leaves a, b, c (resp. a, b, c, 1, . . . , n).

Definition 3.8 (Slide rules for ψ) We define Slideψ(k) as the set of all stable trees obtained
as follows.

1. Start with˙ as step i = 0.
2. For i = 1, . . . , n, perform ki successive i-slides in all possible ways starting from the

trees obtained in step i − 1.
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Definition 3.9 (Slide rules for ω) Define Slideω(k) as the set of all stable trees obtained as
follows.

1. Start with � as step i = 0.
2. For i = 1, . . . , n:

a. Consider all trees formed by inserting i at any existing non-leaf vertex on a tree
obtained in step i − 1.

b. Perform ki successive i-slides in all possible ways starting from the trees obtained
in the previous step.

More formally, if T is a set of S-labeled stable trees, we write

slidei (T) :=
⋃

T∈T
slidei (T ).

By Lemma 3.7, this is a disjoint union. For k � 0, we write slide(k)
i (T) := slidei ◦ · · · ◦

slidei (T) for the result of applying k successive slides to the elements of T (in all possible
ways). We also write π−1

n+1(T ) for the set of all trees T ′ obtained by inserting n + 1 at an

internal node of T . (This corresponds to the geometric computation of π−1
n+1(XT ).) If T is a

set of trees, we write π−1
n+1(T) for the corresponding (evidently disjoint) union.

With this notation, we may state Definitions 3.8 and 3.9 formally as:

Slideω(k) := slide(kn)
n ◦ π−1

n ◦ · · · ◦ slide(ki )
i ◦ π−1

i ◦ · · · ◦ slide(k1)
1 ◦ π−1

1 (�),

Slideψ(k) := slide(kn)
n ◦ · · · ◦ slide(ki )

i ◦ · · · ◦ slide(k1)
1 (˙).

We illustrate the slide rule for k = (1, 0, 2) for both ψ and ω in the next two examples.

Example 3.10 As an example, we compute Slideψ(1, 0, 2). We first start with the unique
tree with a single internal vertex and six leaves labeled a, b, c, 1, 2, 3. We then perform one
1-slide to obtain the trees:

a

b
c

1

2
3

a

b
c

1

2
3

a

b
c

1

2
3

a

b
2

1

c
3

a

b
3

1

2

c

a

b
c

1

3

2

a

b
c

1

2

3

a

b

2

1

3

c

and then apply two 3-slides to each of these. Notice that we can only perform a 3-slide when
the vertex that leaf 3 is attached to has degree greater than three. In particular, only the trees
in the top row shown above will generate nonempty sets after two 3-slides. Performing two
3-slides on these trees yields the three trivalent trees:

T1 = T2 = T3 =

a

b c 1

3

2

a

b c 3

1

2

a

b
c 1

3

2
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Thus Slideψ(1, 0, 2) = {T1, T2, T3}.
Remark 3.11 Notice that, at any given step in the slide algorithm, a tree T can be ignored
if, for any vertex v ∈ T , the total number of remaining slides for all leaves i adjacent to v

is greater than deg(v) − 3. The slides starting from such a tree will eventually result in the
empty set. This can also be seen geometrically for dimension reasons, using the factorization
in Eq. (2.1).

Example 3.12 For comparison, we now compute Slideω(1, 0, 2). We start with� and at step
1 insert the 1 at an internal vertex in all possible ways (which is only one possible way in
this case). We then perform a 1-slide:

1a

b

c
slide1

a

b c

1

We then insert 2 in all possible ways (and do not perform any 2-slides), then insert 3 in all
possible ways afterwards. We reach the four trees below:

a

b c

12

3

a

b c

12

3

a

b c

12

3

a

b c

12

3

Wefinally perform two 3-slides starting from each of these trees; the two on the right produce
the empty set, and the two on the left map to trees T3 and T1 from Example 3.10. Thus
Slideω(1, 0, 2) = {T1, T3}.

In addition to the generative procedure above, it is also convenient to have a criterion to
say directly when a given stable tree T is in Slideψ(k) or Slideω(k).

Definition 3.13 The (ω or ψ) k-slide labeling of T , if it exists, is formed by the following
process (and if the process terminates before completion, it does not exist). Set 
 = n.

1. Contract labeled edges. Let T ′ be the tree formed by contracting all internal edges of T
that are already labeled.

2. Identify the next edge to label. In T ′, let v
 be the internal vertex adjacent to leaf edge

. Let e be the first edge on the path from v
 to a, and let v be the other vertex of e. If
v = a, the process terminates; otherwise go to the next step.

3. If minimal values decrease, label the edge. Define mv

(resp. mv) to be the smallest

label on any branch from v
 (resp. v) not containing a or 
. If 
 > mv

> mv in the ω

case, or if simply mv

> mv in the ψ case, then label edge e by 
 (in both T ′ and T ).

Otherwise, the process terminates.
4. Iterate. If there are less than k
 internal edges of T labeled by 
, repeat steps 1–4.

Otherwise, decrement 
 by 1. If 
 = 0 the labeling is complete, and if 
 > 0 repeat steps
1–4.

Theorem 3.14 The sets Slideω(k) and Slideψ(k) are, respectively, the sets of all trivalent
trees that admit an ω or ψ type k-slide labeling.
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Fig. 3 The three points of Slideψ(1, 0, 2), along with their ψ-type slide labelings. In the third labeling above,
we think of the edges labeled 3 as contracted before trying to label the third edge by 1. The 1 then compares
the minima of c vs b in the contracted tree, and hence can “slide” along its path towards a

By Remark 3.4, it is clear that the contraction and labeling steps simply reverse the slides
in each case, and we omit the proof.

The slide labeling interpretation allows us to easily show the following.

Proposition 3.15 For all compositions k, Slideω(k) ⊆ Slideψ(k).

Proof Anyω-type slide labeling is also aψ-type slide labeling since the inequality l > mv

>

mv is a stricter condition than simply mv

> mv in step 3 of the slide labeling process. ��

This containment can also be seen by ‘simulating’ the generative procedure for Slideω starting
from˙ rather than �, excluding the leaves j > i when determining the i-minimal marked
point m, and requiring at least one branch containing a leaf j ′ < i (rather than an arbitrary
branch) to remain attached to vi . This expresses Slideω as a subset of the choices for Slideψ .

Example 3.16 The points of Slideψ(1, 0, 2) are shown in Fig. 3, along with their slide label-
ings. Note that the middle tree does not admit an ω-type slide labeling, because after
contracting the edges labeled 3, the 1 compares minima 2 vs c, and while 2 > c, it is
not the case that 1 > 2 > c. Therefore it only admits a ψ-type labeling for (1, 0, 2) and not
an ω-type labeling.

3.1 Nonempty slide sets

Using the slide labeling rule, we can identify a particular tree that is in all of the (nonempty)
sets Slideω(k1, . . . , kn) for k1 + · · · + kn = n, and in many of the sets Slideψ(k1, . . . , kn).
We require the following conditions to state these results.

Definition 3.17 Let k be a composition of n. We say k is Catalan if, for all i ,

kn + kn−1 + · · · + kn−i+1 ≥ i .

We say k is almost-Catalan for all i ,

kn + kn−1 + · · · + kn−i+1 ≥ i − 1.

Proposition 3.18 Let T0 be the tree

T0 = · · ·

a

b c 1 2 3 n− 2

n

n− 1

.

Then T0 ∈ Slideω(k) if and only if k is Catalan, and T0 ∈ Slideψ(k) if and only if k is
almost-Catalan.
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Proof Let ec, e1, e2, . . . , en−1 be the internal edges in T0 above from left to right.
For ω, the slide labeling is valid if and only if, just before an edge is labeled by i , the

i-minimal element (after contracting previously labeled edges) is less than i . This occurs if
and only if some larger label j > i labels the edge ei before we begin labeling edges by i .
In addition, all edges to the right of ei must have labels larger than i as well, since the edge
labelings occur along the paths towards a. Thus the total number of edges labeled before step
i , which is given by kn + kn−1 + · · · + ki+1, is at least as large as the number of internal
edges to the right of vertex vi−1, namely, n − i . Thus we have

kn + kn−1 + · · · + ki+1 ≥ n − i

for all i . Since k1 + · · · + kn = n, this is equivalent to the Catalan condition.
For ψ , the same argument as above holds except that ei does not have to be labeled by

something larger than i , and so we only need kn + kn−1 + · · · + ki+1 ≥ n − i − 1, which is
equivalent to the almost-Catalan condition. ��

Proposition 3.19 For a composition k with k1 + k2 + · · · + kn = n, the set Slideω(k) is
nonempty if and only if k is Catalan.

While this follows from Corollary 1.14 combined with the combinatorial results on mul-
tidegrees in [3], we give a direct combinatorial proof here.

Proof Note that the extra valency (see Sect. 2.1) of all trees at a given step of the slide rule
algorithm is a fixed constant; indeed, inserting a new leaf increases the extra valency by 1,
and applying slidei decreases it by 1. In particular, after step i we have a set of trees having
extra valency i − (k1 + k2 + · · · + ki ).

Now, suppose Slideω(k) is nonempty. Then since the extra valency at step i is i − (k1 +
k2 + · · · + ki ), we have i ≥ k1 + k2 + · · · + ki for all i , and a simple algebraic manipulation
(along with the fact that k1 + k2 + · · · + kn = n) shows that this is equivalent to the Catalan
condition.

The converse follows from Proposition 3.18. ��

Remark 3.20 The sets Slideψ(k) are nonempty for all k with
∑

ki ≤ n, since the extra
valency at each step is n − (k1 + · · · + ki ), and the valency can always be distributed in each
slide to guarantee that before the i th slide the vertex attached to i has degree at least ki + 3.

4 Limiting hyperplanes onM0,n and Ã and ! product formulas

Wenow show that the trees in Slideω(k) and Slideψ(k) describe boundary strata representing,
respectively, the cycle classes ωk := ω

k1
1 · · · ωkn

n and ψk := ψ
k1
1 · · · ψkn

n .
Wewill do this by constructing an explicit flat limit of hyperplanes.We start with necessary

general preliminaries on flat limits.

4.1 Flat limits

Let M be a smooth projective variety, T a smooth curve (we will always use A1 or an open
subset thereof), 0 ∈ T a closed point, and t ∈ T the generic point. Let V ⊆ M × T be a
closed subscheme. We write V0 for the fiber over 0 and Vt for the generic fiber.
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The flat limit of Vt as t → 0 is by definition the fiber of the scheme-theoretic closure,

lim
t→0

Vt := (V |T−{0}) |0 .

Algebraically, the limit is given by saturating the ideal of V with respect to t , then setting
t = 0. In general we have

lim
t→0

Vt ⊆ V0,

but equality need not hold; in fact it holds (scheme-theoretically) if and only if V is flat over
a neighborhood of 0 ∈ T . See [10, Proposition III.9.8].

Below, our approach will involve calculating the cycle class of a flat limit by finding an
“almost-transverse” V0 that equals it generically. A scheme X is generically reduced if it is
reduced on some dense open subscheme; in this case, all the irreducible components of X
have multiplicity 1. We also say X has pure dimension d if all of its irreducible components
have the same dimension d .

We recall the following fact about transversality and intersection products:

Proposition 4.1 Let M be a smooth variety (not necessarily proper) and X , X ′ ⊆ M sub-
schemes of pure codimensions c, c′. Suppose X ∩ X ′ is of pure codimension c + c′ and is
generically reduced. Then [X ∩ X ′] = [X ] · [X ′].
Proof By [7, Prop 8.2(a)], each irreducible component Z ⊆ X ∩ X ′ occurs in [X ] · [X ′]
with coefficient between 1 and the scheme-theoretic multiplicity of Z in X ∩ X ′. Generic
reducedness says that this multiplicity is also 1. ��

The next lemma is a “generically reduced” version of Lemma 37.24.6 in the Stacks project
[19, https://stacks.math.columbia.edu/tag/0574], which is the analogous result for reduced
fibers.

Lemma 4.2 Let V → T be flat and proper over a neighborhood of 0 ∈ T . Assume V is pure
of dimension d. If V0 is generically reduced, so is Vt .

Proof Let Z ⊆ Vt be an irreducible component and let Z be its closure in V . Since t is the
generic point of T , Z → T is dominant and flat; by properness the image contains 0 ∈ T ,
so Z ∩ V0 is nonempty. Hence by flatness Z ∩ V0 is of pure dimension d − 1.

Let Z ′ ⊆ Z ∩ V0 be an irreducible component. By assumption, V0 is reduced and smooth
along some dense open subset U ⊆ V0. Let x ∈ U ∩ Z ′ be a closed point (which must exist
sinceU is dense and Z ′ is an irreducible component). Then the Zariski tangent space to V0 at
x has dimension exactly d − 1. Since V0 is locally cut out in V by the single equation t = 0,
the Zariski tangent space to V at x has dimension � (d − 1) + 1 = d . Since this matches
the Krull dimension of V , it follows that x is a smooth, in particular reduced, point of V .
Therefore Z is actually smooth and reduced at x , hence is generically (smooth and) reduced.
Since Z was arbitrary, it follows that Vt is generically reduced. ��

We will need the following statement about “almost-transversality” for dynamic intersec-
tions, a criterion for the flat limit to be generically reduced.

Lemma 4.3 Let M be a smooth projective variety, T a smooth curve and 0 ∈ T . Let V ⊆
M × T be a subscheme, flat over T and pure of relative dimension d. Let ψ : M → P

n be a
map and H ⊆ P

n a hypersurface.
Suppose ψ−1(H) ∩ V0 is generically reduced and of pure dimension d − 1. Then

limt→0(ψ
−1(H) ∩ Vt ) is generically reduced and has the same underlying set asψ−1(H)∩

V0.
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Proof Write F0 = limt→0(ψ
−1(H) ∩ Vt ) for the flat limit. We first check that F0 is pure of

dimension d − 1. By flatness, it is enough to show that ψ−1(H) ∩ Vt is pure of dimension
d − 1. Fiber dimension is upper semi-continuous for proper maps ([21, Theorem 11.4.2]),
so

dim(ψ−1(H) ∩ Vt ) � dim(ψ−1(H) ∩ V0) = d − 1.

Conversely, since ψ−1(H) is a Cartier divisor, ψ−1(H) ∩ Vt is given by a principal ideal
on Vt , so by Krull’s Principal Ideal Theorem [21, Theorem 11.3.2] and the purity of Vt , every
component of ψ−1(H) ∩ Vt has dimension � dim(Vt ) − 1 = d − 1. Thus, ψ−1(H) ∩ Vt is
pure of dimension d − 1 as required.

Next, since F0 ⊆ ψ−1(H) ∩ V0 and ψ−1(H) ∩ V0 is generically reduced and both are of
the same (pure) dimension, F0 is also generically reduced.

Finally, we show that F0 agrees set-theoretically with ψ−1(H) ∩ V0, i.e. ψ−1(H) ∩ V0
does not have extra components compared to F0. It suffices to show that the fundamental
cycles [F0] and [ψ−1(H) ∩ V0] are the same. We have

[ψ−1(H) ∩ V0] = [ψ−1(H)] · [V0] (4.1)

by Proposition 4.1 and our assumption on ψ−1(H) ∩ V0. Also, by Lemma 4.2, since F0 is
generically reduced, so is ψ−1(H) ∩ Vt , so by Proposition 4.1 a second time,

[ψ−1(H) ∩ Vt ] = [ψ−1(H)] · [Vt ]. (4.2)

Lastly, by [7, Corollary 11.1], the limit intersection class satisfies

lim
t→0

(
[ψ−1(H)] · [Vt ]

)
= [ψ−1(H)] · [V0]. (4.3)

Combining, we have

[F0] := lim
t→0

[ψ−1(H) ∩ Vt ] = lim
t→0

(
[ψ−1(H)] · [Vt ]

)
by (4.2), (4.4)

= [ψ−1(H)] · [V0] by (4.3), (4.5)

= [ψ−1(H) ∩ V0] by (4.1). (4.6)

This completes the proof. ��

We note that these hypotheses do not imply ψ−1(H) ∩ V0 = F0 scheme-theoretically, as
the following example illustrates.

Example 4.4 Let P3 have coordinates [x : y : z : w], and let V ⊂ P
3 × Spec k[t] be defined

by the ideal

(x) ∩ (x, y − tw, z − tw)2,

that is, Vt is the plane x = 0with an embedded nonreduced point located at p = [0 : t : t : 1].
Let H be the hyperplane y = 0. Then H ∩ V0 is the line x = y = 0 with an embedded point
at [0 : 0 : 0 : 1], whereas the flat limit F0 = limt→0(H ∩ Vt ) is the reduced line x = y = 0.
However, F0 and H ∩ V0 are generically equal.

We will apply Lemma 4.3 repeatedly to analyze iterated limits, in the following form.
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Lemma 4.5 Let V ⊆ M×T be a closed subscheme, flat over T and pure of relative dimension
d. Let ψ : M → P

n be a map and let H ⊂ P
n ×T be a flat family of hypersurfaces. Suppose

ψ−1(H0) ∩ V0 is generically reduced and of pure dimension d − 1.
Then lims→0 limt→0

(
ψ−1(Hs) ∩ Vt

)
is generically reduced and, set-theoretically, we

have the equality

lim
s→0

lim
t→0

(
ψ−1(Hs) ∩ Vt

) = lim
s→0

(
ψ−1(Hs) ∩ lim

t→0
Vt

)
(

= lim
s→0

(ψ−1(Hs) ∩ V0)

)

.

That is, wemay “pull the Hs past the limt→0”without changing the generic scheme structure.

Proof Since ψ−1(H0) ∩ V0 is generically reduced and of the correct dimension, the same is
true for ψ−1(Hs) ∩ V0 by semicontinuity (as in the proof of Lemma 4.3). Applying Lemma
4.3, we see limt→0 ψ−1(Hs) ∩ Vt is generically reduced and has the same underlying set as
ψ−1(Hs) ∩ V0. Therefore the limits of each as s → 0 are again generically equal. ��

Finally, flat limits are preserved by flat pullbacks:

Lemma 4.6 Let f : V → W bea flatmorphismof projective varieties. Let X ⊂ W×Spec(R)

be a subscheme. Then

f −1
(
lim
t→0

Xt

)
= lim

t→0

(
f −1(Xt )

)
.

Proof We have f −1(X|Spec(R)\0) = f −1(X)|Spec(R)\0. Flat pullback preserves closures, so

f −1(X |Spec(R)\0) = f −1(X) |Spec(R)\0.

Setting t = 0 gives

f −1
(
lim
t→0

Xt

)
= lim

t→0

(
f −1(X)t

) = lim
t→0

(
f −1(Xt )

)

which completes the proof. ��

4.2 Limits of intersections

Let the i th factor of Pn in the product Pn × · · · ×P
n have coordinates [zb : zc : z1 : · · · : ẑi :

· · · : zn], and let Pi have coordinates [wb : wc : w1 : · · · : wi−1] as in Sect. 2. Recall from
the introduction that we define

Hψ
i (t) = V(zb + t zc + t2z1 + · · · + t i zi−1 + t i+1zi+1 + · · · + tnzn), (4.7)

Hω
i (t) = V(wb + twc + t2w1 + · · · + t iwi−1), (4.8)

We first examine the limit of a single hyperplane section of a stratum. Let ψi be the i-th
Kapranov map M0,S → P

n .

Lemma 1.2. Let T be a stable tree. Let Vi (t) = |ψi |−1(Hψ
i (t)) in M0,n+3. Then the limiting

fiber is given by

lim
t→0

(Vi (t) ∩ XT ) =
⋃

T ′∈slidei (T )

XT ′ ,

and it is reduced.
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Proof Let vi ∈ T be the node to which i is attached. Let σ be the set partition corresponding
to T \{vi , i} (given by the branches at vi , with parts σ0, σ1, . . . , σr ) and let Pσ ⊆ P

n be the
corresponding linear space. We have the diagram below:

M0,S P
n

XT P
r−1

|ψi|

|ψi|
ισ

(4.9)

Recall from Eq. (2.1) that XT is isomorphic to a product of M0,n′ ’s. This isomorphism
identifies |ψi |with the corresponding divisor pulled back from the factorM0,deg(vi ), onwhich
one marked point is identified with i and the others correspond canonically to the parts of σ .

The bottom horizontal arrow in (4.9) is the composition XT → M0,deg(vi )
|ψi |−−→ P

r−1.
Wecalculate directly in projective coordinates.ByLemma2.6, Pσ is givenby the equations

z j = zk whenever j, k are in the same part of σ and z j = 0 if j is in the same part as a.
Settingm to be the i-minimal marked point of T , it follows that on Pσ , the Eq. (4.7) defining
Hψ
i (t) reduces to

0 = tm+1zm + O(tm+2)

if m < i , or

0 = tmzm + O(tm+1)

if m > i . In either case, saturating with respect to t and setting t = 0 gives the limiting
equation zm = 0, or simply ym = 0 where ym indexes the corresponding part of σ .

The isomorphism (2.1) identifies the subschemeV(ym)with the correspondingψm divisor
on the factor M0,deg(vi ). Thus ym = 0 cuts out the reduced union of divisors that have a node
(i.e., an edge of the dual graph) separating marked point i from both the marked points a and
m.

Back on XT , these divisors correspond to dual graphs T ′ with a new edge e separating i
from a and m, such that contracting e results in the original tree T (since XT ′ ⊆ XT ). By
Remark 3.4, these are precisely the strata XT ′ enumerated by slidei (T ). ��

Remark 4.7 In many cases, we can replace Hψ
i (t) by a simpler equation (by removing some

terms) and still get the same result as in Theorem 1.2. In particular, the proof above holds for
any hyperplane obtained by deleting entries corresponding to marked points that appear on
the branch Bra of T , since those coefficients restrict to 0 on XT .

Moreover, if we know the i-minimal element m in advance, we can also delete any other
summands other than the xm term in order to slide the m branch towards a.

Remark 4.8 Besides taking subsets of the summands as in the above remark, we can reorder
the subscripts on the variables in a hyperplane equation, which results in a modified slide
rule. For instance, intersecting XT with the hyperplane

z1 + t zb + t2z4 + t3z2 = 0

applies an i-slide in which you look for the branch containing the first among 1, b, 4, 2 in
that order (so we consider 1 “smaller” than b and so on) and slide that branch away, rather
than the i-minimal branch as defined above.
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We now consider arbitrary complete intersections. Recall the following definition from
the introduction.

Definition 1.4. Let k = (k1, . . . , kn) be a weak composition. Let �t = (ti, j ) for 1 ≤ i ≤ n
and 1 ≤ j ≤ ki be a tuple of complex parameters. We denote the subschemes cut out in
M0,n+3 by the hyperplanes H

ψ
i (ti, j ) and Hω

i (ti, j ) as

Vψ(k; �t) =
n⋂

i=1

ki⋂

j=1

�−1
n (Hψ

i (ti, j )), (4.10)

V ω(k; �t) =
n⋂

i=1

ki⋂

j=1

�−1
n (Hω

i (ti, j )), (4.11)

where �n is the total Kapranov map and �n is the iterated Kapranov embedding.

Remark 4.9 (Monin–Rana’s equations for �n) In order to find the hyperplane equations in
Definition 1.4, we wrote Mathematica code that used the explicit (conjectural) equations
cutting out the embedding �n , due to Leonid Monin and Julie Rana in [16]. This was an
essential tool for experimenting with equations and testing conjectures.

Example 4.10 For k = (1, 0, 2), let P3 ×P
3 ×P

3 have coordinates [xb : xc : x2 : x3] × [yb :
yc : y1 : y3] × [zb : zc : z1 : z2], and let P1 ×P

2 ×P
3 have coordinates [xb : xc] × [yb : yc :

y1] × [zb : zc : z1 : z2]. Then Vψ((1, 0, 2); �t) is defined by the equations
0 = xb + t1,1xc + t21,1x2 + t31,1x3, (4.12)

0 = zb + t3,1zc + t23,1z1 + t33,1z2, (4.13)

0 = zb + t3,2zc + t23,2z1 + t33,2z2, (4.14)

whereas V ω((1, 0, 2), �t) is defined by the equations
0 = xb + t1,1xc, (4.15)

0 = zb + t3,1zc + t23,1z1 + t33,1z2, (4.16)

0 = zb + t3,2zc + t23,2z1 + t33,2z2. (4.17)

Theorem 1.5. Let k be a weak composition, and let �t = (ti, j ) for 1 � i � n and 1 � j � ki
be complex parameters. Let lim�t→�0 denote the iterated limit

lim
�t→�0

(−) := lim
tn,kn→0

· · · lim
tn,1→0

· · · · · · lim
t2,k2→0

· · · lim
t2,1→0

lim
t1,k1→0

· · · lim
t1,1→0

(−)
.

(The i-th block is empty if ki = 0, and lim denotes the flat limit.) Then we have set-
theoretically

lim
�t→�0

Vψ(k; �t) =
⋃

T∈Slideψ (k)

XT and lim
�t→�0

V ω(k; �t) =
⋃

T∈Slideω(k)

XT . (4.18)

Moreover, each boundary stratum XT appearing in the union is an irreducible component
and is generically reduced in the limit.

Proof We first consider the ω case. We proceed by induction on n, then on
∑

ki . The case
n = 3 is trivial, as is the case

∑
ki = 0.
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Let n ≥ 3 and let k be a weak composition with
∑

ki ≤ n, and assume the statement
holds for all smaller n and

∑
ki . Suppose first that kn = 0. Let k′ = (k1, . . . , kn−1). In this

case we have

V ω(k; �t) = π−1
n V ω(k′, �t).

Flat limits are preserved by flat pullback (Lemma 4.6) and πn is flat, so

lim
�t→�0

V ω(k; �t) = π−1
n

(
lim
�t→�0

V ω(k′; �t)
)
.

By the induction hypothesis, the right-hand limit is the generically reduced union of boundary
strata corresponding to the trees in Slideω(k′). The preimage π−1

n (XT ) of a stratum (with
generically reduced scheme structure) is again generically reduced, and is the union of strata
XT ′ formed by inserting the n-th marked point into T in all possible ways. This matches the
combinatorial process of the ω-slide algorithm at step n when kn = 0, so we obtain the strata
corresponding to Slideω(k).

Suppose instead kn > 0. Let k′′ = (k1, . . . , kn − 1) and let �t ′′ denote �t without tn,kn . By
the induction hypothesis, we have

Z = lim
�t ′′→�0

V ω(k′′; �t ′′) =
⋃

T ′′∈Slideω(k′′)
XT ′′ (4.19)

with generically reduced scheme structure on each irreducible component. We now examine
the final intersection and limit, and we have

lim
�t→�0

V ω(k; �t) = lim
tn,kn→0

(
lim
�t ′′→�0

V ω(k; �t)
)

(4.20)

= lim
tn,kn→0

(
lim
�t ′′→�0

�−1
n (Hω

n (tn,kn )) ∩ V ω(k′′; �t ′′)
)

(4.21)

Moving all the inner limits inwards then gives

⊆ lim
tn,kn→0

(
�−1

n (Hω
n (tn,kn )) ∩ lim

�t ′′→�0
V ω(k′′; �t ′′)

)
(4.22)

= lim
tn,kn→0

(
Vn(tn,kn ) ∩ Z

)
(4.23)

where Vn(t) = �−1
n (Hω

n (t)) = |ψn |−1(Hω
n (t)) as in Theorem 1.2 (since the top degree part

of the�n embedding simply agreeswith theKapranovmap |ψn |).Wewill show that the right-
hand side of (4.23) is generically reduced and of the correct dimension. Therefore, by Lemma
4.5, the left-hand side of (4.20) is also generically reduced and agrees set-theoretically with
the right-hand side (4.23).

To examine the right-hand side of (4.23), consider an irreducible component XT ′′ ⊂ Z ,
where T ′′ ∈ Slideω(k′′) as in Eq. (4.19). By Theorem 1.2,

lim
tn,kn→0

Vn(tn,kn ) ∩ XT ′′ =
⋃

T∈sliden(T ′′)
XT

with reduced scheme structure. By Lemma 3.7 (injectivity of the slide rule), as T ′′ varies,
the sets sliden(T ′′) are disjoint, so each resulting stratum XT occurs exactly once. We thus
have set-theoretically

lim
tn,kn→0

Vn(tn,kn ) ∩ Z =
⋃

T ′′∈Slideω(k′′)

( ⋃

T∈sliden(T ′′)
XT

)

=
⋃

T∈Slideω(k)

XT ,
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where each XT occurs with multiplicity one, i.e. has generically reduced scheme structure,
and the last equality is by the definition of the ω-slide rule. This completes the proof for ωk.

The argument for Vψ(k; �t) and Slideψ(k) is similar, but takes place entirely in M0,n+3

(without pullbacks). Thus we can, in particular, skip the kn = 0 case; let i be largest such
that ki > 0. Then the argument is identical to the case kn > 0 for V ω(k; �t), except Hω

n (tn,kn )

is replaced by Hψ
i (ti,ki ), and accordingly sliden(T ′′) is replaced by slidei (T ′′). ��

Remark 4.11 It follows from the iterated limit calculation that the parameters ti, j can be
replaced, without changing the limit, by powers ti, j = tmi, j of a single parameter t → 0, for
some exponents mn,kn � · · · � mn,1 � · · · � m1,1 � 0. This produces a flat family over
P
1.

As a consequence, we obtain:

Corollary 1.6. Let k be a weak composition. Then in A•(M0,n+3) we have

ψk =
∑

T∈Slideψ (k)

[XT ], ωk =
∑

T∈Slideω(k)

[XT ]. (4.24)

Example 4.12 ByTheorem1.5 and Examples 3.10 and 3.12, we have (using the same notation
as in those examples) that

ψ1ψ
2
3 = [XT1 ] + [XT2 ] + [XT3 ] and ω1ω

2
3 = [XT1 ] + [XT3 ].

4.3 Pullbacks of psi classes along a sequence of forgetful maps

Our degeneration and slide rule generalizes in a straightforward way to products involving
bothψ and ω factors, or in the most generality, to products involving pullbacks of psi classes
along a single sequence of forgetting maps. In particular, for each 1 � i � j � n, we put

ωi, j := π∗
n ◦ π∗

n−1 ◦ · · · ◦ π∗
j+1(ψi ),

the class pulled back from M0, j+3. The ordinary ω and ψ classes are then ωi = ωi,i and

ψi = ωi,n . Theorem 1.5 and Corollary 1.6 then generalize to products of the form
∏

ω
ki, j
i, j ,

for any tuple of nonnegative integers k = (ki, j ) with
∑

ki, j � n, as follows. We apply all
degenerations (respectively, slides) in the smallest M0, j+3 first, in any order; it is convenient
to do them in increasing order of i . We then pull back to the next smallest j , and so on. For all
such products, the analog of the slide rule gives a positive, multiplicity-free sum of boundary
strata.

Example 4.13 The product ω1,1ω1,4ω
2
4,4 = ω1ψ1ψ

2
4 on M0,7 is given by 5 points. It is also

straightforward to check that no product of only ψ classes or only ω classes on M0,7 is 5
times the class of a point.

Example 4.14 By abuse of notation,write Slide(k) for the slide set for the product
∏

ω
ki, j
i, j . Let

k′ = (k′
i, j ) be obtained from k by decrementing some ki, j > 0 with j < n and incrementing

ki, j+1. Then the analog of Proposition 3.15 shows

Slide(k) ⊆ Slide(k′).

This inclusion refines Proposition 3.15. In particular, it reflects the fact that
∏

ω
ki, j
i, j �

∏
ω
k′
i, j
i, j

(the statement α � β for cycle classes means β − α is effective.) This can be shown directly
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from the fact that the ωi, j are basepoint-free, which in turn follows from the fact that the
ψi are basepoint-free and the pullback of a basepoint-free divisor class is basepoint-free.
Effectively these products increase as they approach products of ψ classes and decrease as
they approach products of ω classes.

4.4 Application to � classes

We prove Theorems 1.11 and 1.13 on kappa classes and generalized kappa classes,

κi := (πn+1)∗(ψ i+1
n+1),

Rn;r := (πn+1,...,n+m)∗(ψr1
n+1 · · · ψrm

n+m).

We recall the relevant sets of trees:

• For n and i , the set K (n, i) ⊆ Slideψ(0n, i + 1) consists of the trees T for which
deg(vn+1) = 3.

• For n and a composition r = (r1, . . . , rm), the set R(n; r) is the subset of
Slideψ(0n, r1, . . . , rm) of trees T such that, for each n + 1 � j � n + m, the tree
π j+1,...,n+m(T ) has deg(v j ) = 3.

We show:

Theorem 4.15 For all n and i and r,

κi =
∑

T∈K (n,i)

[Xπn+1(T )], Rn;r =
∑

T∈R(n;r)
[Xπn+1,...,n+m (T )].

Proof By Corollary 1.6, we have in A•(M0,{a,b,c,1,...,n+1})

ψ i+1
n+1 =

∑

T∈Slideψ (0n ,i+1)

[XT ].

Pushing forward along πn+1, we obtain

κi = (πn+1)∗(ψ i+1
n+1) =

∑

T∈Slideψ (0n ,i+1)

(πn+1)∗[XT ].

Let T ∈ Slideψ(0n, i + 1) and let vn+1 ∈ T be the internal vertex adjacent to n + 1. If
deg(vn+1) > 3, then πn+1(XT ) has dimension lower than XT , so

(πn+1)∗[XT ] = 0.

Otherwise, if deg(v) = 3, then πn+1 maps XT isomorphically onto its image Xπn+1(T ), so

(πn+1)∗[XT ] = [Xπn+1(T )].
The desired equation for κi follows. For Rn;r, the argument is similar: we apply the pushfor-
ward

Rn;r = (πn+1,...,n+m)∗(ψr1
n+1 · · · ψrm

n+m)

one step at a time, starting from the sum given by the slide set Slideψ(0n, r). For each T , if the
degree condition for R(n; r) ⊆ Slideψ(0n, r) is satisfied, the pushforward is an isomorphism
of [XT ] onto its image. Otherwise, the dimension contracts in some step and the summand
vanishes. ��
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These formulas are not in general multiplicity-free. Indeed, we expect that nomultiplicity-
free formula can exist for κi or Rn;r in general; see Problem 6.11. For κi , we can account for
the multiplicities directly.

Corollary 4.16 For all n and i , we have

κi =
∑

T∈Slideψ (0n ,i)

(deg(vn+1) − 3)[Xπn+1(T )].

Proof Let T ∈ Slideψ(0n, i). By the calculation above, T contributes to the expression for
κi if, after performing an (i + 1)st (n + 1)-slide, the resulting tree T ′ has deg(vn+1) = 3.
That is, the slide should move all but vn+1 and exactly one other branch to the new vertex.
Since the locations of the a and m branches, and of vn+1 itself, are fixed, there are exactly
deg(vn+1) − 3 other choices. Each of these choices has πn+1(T ′) = πn+1(T ), so πn+1(T )

arises deg(vn+1) − 3 times. ��
It is not difficult to show that the nonvanishing terms in Corollary 4.16 (in which

deg(vn+1) > 3) give a set of distinct trees πn+1(T ).

Example 4.17 Wecompute κ1 onM0,{a,b,c,1,2}.Wewrite (A)−(B)−(C) to denote the bound-
ary stratumwhose dual tree consists of three internal vertices vA, vB , vC along a path, and leaf
edges labeled by A (resp. B,C) attached to vA (resp. vB , vC ). We have, on M0,{a,b,c,1,2,3},

Slideψ(0, 0, 2) = {
(ab)−(c)−(123), (ab)−(c1)−(23), (ab)−(c2)−(13),

(abc)−(1)−(23), (ab1)−(c)−(23), (ab2)−(c)−(13)
}
.

All but the first of these have deg(v3) = 3. Applying Corollary 4.16, we get

κ1 = 2 · D(ab | c12) + D(abc | 12) + D(ab1 | c2) + D(ab2 | c1) ∈ A1(M0,{a,b,c,1,2}).

5 Hyperplanes for lazy tournament points

We now consider the sets of boundary points determined by the lazy tournament rule of [8].
Since these points also enumerate degk(�n), it is natural to ask if they too can be achieved
as degenerations of complete intersections as well. We approach this problem in this section.

5.1 Tournaments

We first recall the definition of lazy tournaments from [8].

Definition 5.1 Let T be a leaf-labeled trivalent tree. The lazy tournament of T is a labeling
of the edges of T computed as follows. Start by labeling each leaf edge (that is, an edge
adjacent to a leaf vertex) by the value on the corresponding leaf, as in the second picture of
Fig. 4. Then iterate the following process:

1. Identify which pair ‘face off’. Among all pairs of labeled edges (i, j) (ordered so that
i < j) that share a vertex and have a third unlabeled edge E attached to that vertex, choose
the pair with the largest value of i .

2. Determine the winner. The larger number j is the winner, and the smaller number i is
the loser of the match.
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Fig. 4 From left to right: A leaf-labeled trivalent tree T , its initial labeling of the leaf edges, and its full lazy
tournament edge labeling. Winners of each round of the tournament are shown in boldface at right, indicating
T ∈ Tour(1, 0, 1, 2)

3. Determine which of i or j advances. Label E by either i or j as follows:

(a) If E is adjacent to a labeled edge u �= j with u > i , then label E by i . (We say i
advances.)

(b) Otherwise, label E by j . (We say j advances.)

We then repeat steps 1–3 until all edges of the tree are labeled.

We refer to Step 3(a) above as the laziness rule, since j drops out of the tournament
despite winning its match. This happens when j can see that its opponent i will be defeated,
again, in its next round against u. An example of the result of the lazy tournament process is
shown in Fig. 4.

Definition 5.2 For any weak composition k = (k1, . . . , kn) of n, let Tour(k) be the set of
trivalent trees with leaf labels S, in which (a) the leaf edges a and b share a vertex, and (b)
each label i � 1 wins exactly ki times in the tournament.

In Fig. 4, the tree T is in Tour(1, 0, 1, 2).

Theorem 5.3 ([8])We have degk(�n) = ∫
M0,S

ω
k1
1 · · · ωkn

n = |Tour(k)|.
Froma combinatorial perspective, one advantage of the sets Tour(k) is that they are disjoint

(as k ranges over all length n compositions of n). This is in contrast to the sets Slide(k), which
all have at least one common tree by Proposition 3.18. Notably, an immediate corollary of
Theorem 5.3 is that the total degree (defined as the sum of the multidegrees) is

∑

k

degk(�n) = (2n − 1)!! = (2n − 1) · (2n − 3) · · · · · 5 · 3 · 1.

This enumeration by the odd double factorial follows from the fact that every tree in which
a, b is paired occurs in exactly one of the tournament sets (by disjointness), and the trees
in which a, b are paired correspond bijectively under πb to the set of all boundary points in
M0,S\b. It is well known that there are (2n − 1)!! such points.

5.2 Hyperplanes for tournaments

The aim of this section is to prove Theorem 1.15, which we restate here for the reader’s
convenience.

Theorem 1.15. Suppose the tuple k = (k1, . . . , kn) is of one of the following forms:
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• (0, 0, . . . , 0, 0, n),
• (0, 0, . . . , 0, 1, n − 1),
• (0, 0, . . . , 0, n − 1, 1), or
• (0, 0, 2, 2).

Then there exists an explicitly constructed set of hyperplanes in P
1 × · · · × P

n, with ki of
them from P

i for each i , such that their intersection locus V tour(k, �t) in M0,n+3, pulled back
under �n, satisfies

lim
�t→�0

V tour(k; �t) = Tour(k). (5.1)

Moreover, given any set of hyperplanes satisfying (5.1) for k = (k1, . . . , kn), there exists
such a set for (k1, . . . , kn−1, 0, kn + 1).

We prove this in five lemmas; four for the four cases in the theorem, and one for the
inductive construction for obtaining (k1, . . . , kn−1, 0, kn + 1) from k. For each one, we
constructmodifiedversions of the hyperplanes used in the slide rule, changingwhich variables
appear and in what order. These changes effectively modify the minimality condition in each
step of the slide rule; see Remarks 4.7 and 4.8.

Below, we write [yb : yc : y1 : y2 : · · · : yn−2] for the coordinates of Pn−1 and
[zb : zc : z1 : z2 : · · · : zn−1] for the coordinates of Pn .

Lemma 5.4 For k = (0, 0, . . . , 0, n), we have that V tour((0, 0, . . . , 0, n); �t) = V ω((0, 0,
. . . , 0, n); �t). Furthermore,

lim
�t→�0

V tour((0, 0, . . . , 0, n); �t) = Tour(0, 0, . . . , 0, n).

Proof It is easily verified, using the slide and tournament rules, that the setsTour(0, 0, . . . , 0, n)

and Slideω(0, 0, . . . , 0, n) coincide. Indeed they both only contain the single tree:

· · ·

a

b c 1 2 3 n− 2

n

n− 1

(see Proposition 3.18). Thus we are done by Theorem 1.5. ��
Throughout the remainder of this section, we will say that V tour(k; �t) is defined by a given

set of hyperplane equations in P1 ×P
2 × · · ·×P

n if it is equal to �−1
n of the vanishing locus

of those equations.

Lemma 5.5 Define V tour((0, 0, . . . , 0, 1, n − 1); �t) by the set of equations:
yb = 0, zb = t2zn−1, zc = t3z1, z1 = t4z2, z2 = t5z3, . . . , zn−3 = tnzn−2

where �t = (t1, t2, . . . , tn). Then

lim
�t→�0

V tour((0, 0, . . . , 0, 1, n − 1); �t) = Tour(0, 0, . . . , 0, 1, n − 1).

Proof Intersecting with the first equation, yb = 0, restricts to the divisors in which b is on the
a branch from the perspective of n − 1. Moreover, since we will be intersecting with n − 1
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hyperplanes in P
n , we may restrict our attention to divisors in which n’s internal vertex vn

has degree at least n + 2. In particular, we may restrict to the boundary strata

D({a, b} | {c, 1, 2, . . . , n − 1, n}) ∪
⋃

j∈{c,1,2,...,n−2} D({a, b, c, 1, . . . , ĵ, . . . , n − 2, n} | { j, n − 1}).
First consider the divisor D({a, b} | c, 1, 2, . . . , n). Then byRemark 4.8, intersectingwith

zb = t2zn−1 and taking the limit as t2 → 0 effectively sets zn−1 = 0, which treats n−1 as the
minimal element and slides it towardsa.We can again restrict by dimensionality to the stratum
in which the three internal vertices have leaves {a, b}, {n − 1}, and {c, 1, 2, . . . , n − 2, n}.
The remaining equations similarly slide c, 1, . . . , n − 3 towards a, yielding the unique point
shown below.

· · ·

a

b n− 1 c 1 2 n− 3

n

n− 2

Now consider a divisor of the form D({a, b, c, 1, . . . , ĵ, . . . , n−2, n} | { j, n−1}). The first
equation, zb = t2zn−1, simply says that we slide b towards a (so that they share an internal
vertex), and again by dimensionality we can restrict to the case in which all remaining edges
are still attached to the same internal vertex as n. The remaining equations similarly slide
c, 1, 2, . . . , j − 1 in that order towards a, then move the branch containing the pair j, n − 1
towards a, and finally move j + 1, . . . , n − 2 towards a. An example is shown below for
n = 6 and j = 2.

a

b c 1

2 5

3

6

4

One can easily verify that these are precisely the boundary points whose lazy tournament
has n − 1 winning one round and n winning the rest. ��
Lemma 5.6 Define V tour((0, 0, . . . , 0, n − 1, 1); �t) by the set of n − 1 equations defining the
smaller locus V ω((0, 0, . . . , 0, n − 1); �t) in the y variables, plus the single equation

zb = tnzn−1

in the z variables. Then

lim
�t→�0

V tour((0, 0, . . . , 0, n − 1, 1); �t) = Tour(0, 0, . . . , 0, n − 1, 1).

Proof Intersecting with the first n − 1 equations and taking the corresponding limits, we
know for size n − 1 we obtain the unique tree T0 in Slideω(0, 0, . . . , 0, n − 1), namely the
caterpillar tree T0 with a, b on one end, n−2, n−1 on the other, and leaves c, 1, 2, . . . , n−3
in order in between. Thus on M0,n+3 we are in the union of divisors in π−1

n (T0), given by
inserting the leaf n to attach to any one of the internal vertices of T0.

We now consider the equation zb = tnzn−1. Intersecting and taking the limit with a divisor
in which n and b are on the same vertex slides the b towards a, and otherwise slides the branch
containing n − 1 towards a. In the former case we get the point:
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· · ·

a

b n c 1 2 n− 3

n− 1

n− 2

and in the latter cases we get points that look like (for n = 6, where the 6 may be merged
with any of the other points c, 1, 3, 4, 5 rather than with 2):

a

b c 1

2 6

3

5

4

These are precisely the trees whose lazy tournament has n − 1 winning n − 1 rounds and
n winning once. ��
Lemma 5.7 Define V tour((0, 0, 2, 2); (t1, t2, t3, t4)) by the set of equations

yb = 0, yc + t2y1 + t22 y2 = 0, zb + t3z3 = 0, zc + t4z1 + t24 z2 = 0.

Then

lim
�t→�0

V tour((0, 0, 2, 2); �t) = Tour(0, 0, 2, 2).

Proof Since these equations are for one single multidegree, we have simply verified via
a computer computation that the intersections limit to the six lazy tournament points in
Tour(0, 0, 2, 2).

For completeness we also provide a brief proof along the lines of the previous lemmas.
The first equation indicates that a, b are separated from 3 in the tree in M0,{a,b,c,1,2,3}, and
the second performs a 3-slide where the possible minimal elements are c, 1, 2 in that order.
Writing (A)−(B)−(C) to denote the boundary stratum given by the tree with three internal
vertices along a path whose leaves are labeled by the sets A, B,C in that order, it follows
that we are on one of the (inverse images under π4 of the) boundary strata

(ab)−(c)−(123), (ab)−(c1)−(23), (ab)−(c2)−(13),

(abc)−(1)−(23), (ab1)−(c)−(23), (ab2)−(c)−(13)

in M0,{a,b,c,1,2,3}. Pulling back under π4, we insert 4 at a leaf, and by dimensionality we may
restrict to the case in which 4 is inserted at the vertex of degree 4 in each case above. The
equation zb + t3z3 = 0 slides either the branch containing b (from 4’s perspective) towards
a if the b and a branch do not coincide, and otherwise slides the branch containing 3 towards
a. The final equation then performs an ordinary 4-slide. This degeneration process yields 6
points in Fig. 5, which are precisely the points of Tour(0, 0, 2, 2). ��

The final lemma below completes the proof of Theorem 1.15. We still use z variables to
label Pn below, and now use w variables to label Pn+1.

Lemma 5.8 Let k be a composition of n for which V tour(k; �t) is already defined. Define
V tour((k1, . . . , kn−1, 0, kn + 1); �t)
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a

b c 3 1

4

2

a

b c 4 1

3

2

a

b
2 3

c

1

4

a

b
1 3

c

2

4

a

b
1 4

c

2

3

a

b
2 4

c

1

3

Fig. 5 The six points in Tour(0, 0, 2, 2)

by changing the variables zi of the last kn equations defining V tour(k; �t) to the variables wi

of Pn+1, and also adding the additional equation

wb + tn+1wc + t2n+1w1 + t3n+1w2 + · · · + tnn+1wn−1 = 0.

Then

lim
�t→�0

V tour((k1, . . . , kn−1, 0, kn + 1); �t) = Tour(k1, . . . , kn−1, 0, kn + 1).

Proof First note that the tournament points of Tour(k1, . . . , kn−1, 0, kn + 1) are in bijection
with those of Tour(k1, . . . , kn), and can be formed from the smaller trees by inserting n + 1
to pair with n. We show that the process of twisting up the existing hyperplanes and adding
the new hyperplane equation has this exact effect on the intersection points.

Indeed, the equations in all Pi for i ≤ n − 1 give the same strata as before, and then we
pull back under πn and πn+1 by inserting n and n + 1 in all possible ways. Then, applying
the relabeled equations in P

n+1 coming from the ones we had before in P
n , apply the same

slide moves except from the perspective of n + 1 instead of n (ignoring the position of n).
But then we need to do a final intersection at n+ 1, so in fact the leaf n must remain attached
to n + 1 at each step. The final equation then does an ordinary n + 1-slide, which means that
n (being non-minimal) stays attached to n + 1 and the other branch slides towards a. This
process is equivalent to making the n + 1 and n leaves collide. This completes the proof. ��

6 Further discussion and open problems

We conclude with some further observations and avenues for future research, both in com-
binatorial directions (Sects. 6.1 through 6.3) and geometric (Sects. 6.4 through 6.7).
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6.1 Tournaments vs slide points

It follows from [8, Theorem 1.5] and Corollary 1.14 that |Tour(k)| = degk(�n) =
|Slideω(k)|. These two identities were obtained using different methods. The first follows
from a bijection with column-restricted parking functions [3, 8] which naturally satisfy the
asymmetric string recursion. The second follows from counting intersection points with
parametrized hyperplanes, and has the inductive structure of the slide rule.

Problem 6.1 Find a combinatorial bijection between the sets Tour(k) and Slideω(k).

One possible route to solving this problem is to use column-restricted parking functions
as an intermediate object. Along these lines, for the �n setting, parking functions may be
generalized to a set of objects enumerated by the ordinary multinomial coefficient

(
n

k1, . . . , kn

)

= n!
k1! · · · kn ! = degk(�n)

(when
∑

ki = n).We sketch here oneway to see combinatorially that |Slideψ(k)| = ( n
k1,...,kn

)

for
∑

ki = n. We assign to each tree T in Slideψ(k) a word w in the letters 1, 2, . . . , n in
which the letter i occurs ki times. We construct w by beginning with an empty word; then
at each i-slide, we insert an i into w as follows. For each internal vertex v ∈ T , let jv be the
minimal leaf vertex among the non-a branches of T at v. Order the internal vertices v by the
value of jv , breaking ties by saying v > v′ if v is closer to a. Let vi be the internal vertex
adjacent to leaf i , and let j be the position of vi in the ordering of the internal vertices. Then
we insert i into w at the j th position from the left.

This suggests the possibility of constructing an analogous bijection between Slideω(k)

and the column-restricted parking functions, which in turn are in bijection with Tour(k).

6.2 Pattern avoidance

One difficulty in Problem 6.1 is that the sets Slideω(k) and Tour(k) do not always consist
of trees of the same shapes. For instance, when k = (1, 1, . . . , 1), every element of Tour(k)

corresponds to a caterpillar graph, meaning that its internal vertices form a path. Not every
element of Slideω(k), however, is a caterpillar. Intriguingly, there is a characterization of the
caterpillar graphs in Slideω(k) via permutation pattern avoidance.

We say a permutation π avoids the pattern 23-1 if there do not exist indices i and j with
i + 1 < j such that π j < πi < πi+1. For example, the 15 permutations on 4 letters that
avoid 23-1 are

4321, 3214, 4213, 2143, 2134, 4312, 3142, 3124, 4132, 1432, 1324, 4123, 1423, 1243, 1234,

whereas the permutation 2431 contains a 23-1 pattern with i = 1, j = 4. It turns out that
the slide labelings on caterpillar graphs in Slideω(1, 1, . . . , 1) correspond precisely to the
23-1-avoiding permutations. For instance, the following tree occurs in Slideω(1, 1, 1, 1) and
has a slide labeling whose labeled internal edges, from left to right, form the word 2143:

2 1 4 3

a

b 2 c 4

3

1
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It would be interesting, and might shed new light on the structure of Slideω(k), to describe
the set (or various subsets of it) by pattern avoidance conditions. Notably, this may be an
avenue through which to recover the asymmetric string recursion, and so obtain a bijection
to tournaments.

We prove this general correspondence between caterpillar graphs in Slideω(1, 1, . . . , 1)
and 23-1-avoiding permutations here. Below, we use the convention that the leaves a, b are
drawn on the left and the path moves out towards the right, so moving left (resp. right) means
moving along the path towards (resp. away from) a.

Proposition 6.2 Let Catωn ⊆ Slideω(1, 1, . . . , 1) be the subset of trivalent trees that corre-
spond to caterpillar curves. For each tree T ∈ Catωn , define the word w(T ) by reading the
labels in the slide labeling of T from left to right. The set of words

{w(T ) : T ∈ Catωn }
are precisely the 23-1-avoiding permutations of length n, and in fact the words w(T ) are all
distinct.

To prove this, we define the following leaf labeling algorithm.

Definition 6.3 (Leaf labeling algorithm) Let w be a 23-1-avoiding permutation. Define the
tree Tw to be the tree constructed as follows: First label the internal edges of a caterpillar
tree by w1, . . . , wn from left to right, and label the leftmost two leaves a, b. Then label the
remaining leaves n, n − 1, n − 2, . . . , 1, c in descending order via the following rule:

At step n− i , let j be the edge label just to the right of edge n − i (if such an edge j exists).
Case 1: If j < n − i, then label the leaf just to the right of n − i by n − i .
Case 2: If j > n − i or j does not exist, label the rightmost unlabeled leaf to the right of n − i
by n − i .

Finally, label the remaining unlabeled leaf by c.

Remark 6.4 At any Case 2 step, all edge labels to the right of n − i are greater than n − i, for
otherwise n − i and j would form a 23-1 pattern with a smaller label to the right.

As an example, the tree shown above for the permutation w = 2, 1, 4, 3 is precisely
the tree Tw obtained by the leaf labeling algorithm. The following lemma shows that the
algorithm is always well-defined.

Lemma 6.5 Whenever Case 2 of the leaf labeling algorithm applies, there are exactly two
unlabeled leaves available to the right of edge n − i, one of which is the leaf just to the right
of it. Whenever Case 1 applies, the leaf just to the right of n − i has not yet been labeled.

Proof For the Case 2 claim, we first show that at step n − i , the only leaves to the right of
edge n − i that have already been labeled are labeled by the edge values to the right of n − i.
Assume for contradiction that some leaf to the right of n − i is labeled by y > n − i where
y is to the left of n − i. Then since leaf y is not adjacent to edge y, it was labeled using Case
2 on step y, and so in fact n − i > y by Remark 6.4, a contradiction.

Let k be the number of internal edges to the right of n − i; then there are k + 2 leaves to
the right of n − i, and so at least two leaves to the right of n − i are available. By induction
on i , we may assume the earlier steps of the algorithm are well-defined, in particular each
leaf x > n − i is to the right of the edge labeled x. This shows that the leaf to the right of the
edge n − i is unlabeled; and there is exactly one other unlabeled edge further to the right.
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For Case 1, suppose for contradiction that the leaf just to the right of n − i was already
labeled on a previous step, say by m > n − i . Then on step m, since m is not just to the right
of edge labelm, it used Case 2 of the algorithm. Thus edge labelm is just to the left of some
j′ > m, and both are to the left of n − i. Note that j ′ > n − i , so m, j′,n − i form a 23-1
pattern, a contradiction. ��
Proof of Proposition 6.2. First note that the words w(T ), which come from the slide labeling,
are distinct since they are constructed inductively by starting with 1 and then inserting a 2,
3, 4, etc, with the position of insertion corresponding to the position we insert the new leaf
at the i-th step of the slide rule.

We next show by induction on n that each of the words w(T ) is 23-1 avoiding. Assume it
is true for n−1, and let T ∈ Catωn . Then deleting the leaf n from T results in a caterpillar tree
S = πn(T ) ∈ Catωn−1, so the slide labeling of S is 23-1 avoiding by the inductive hypothesis.

Note that in the slide labeling of T , the internal edge just left of leaf edge n is labeled
first, by n, and then the remaining edges are labeled as they were in S. Therefore, the word
w(T ) is obtained by inserting n into w(S) accordingly. So, to show that w(T ) is still 23-1
avoiding, it suffices to show that the n that is inserted does not create a 23-1 pattern. Let x
be the slide label just left of n in w(T ), and assume for contradiction that there is some slide
label y < x to the right of n in w(T ). Let z be the leaf just to the left of the slide label n;
then by the definition of the ω-slide labeling, z is less than all leaf labels to its right. Thus in
particular z < y and so z < x by transitivity.

x n j y

a

b z n x y

In particular, z �= x , so x labels some leaf to the right of n. Then since the slide label left
of n is x, the internal edge labels on the path from leaf n to x must all be greater than x as
well; let j be the leftmost such label. Then y < x < j and these three edges form a 23-1
pattern in w(S), a contradiction. It follows that w(T ) is 23-1 avoiding as well.

We finally show that if w is any 23-1-avoiding permutation, the tree Tw obtained by the
leaf labeling algorithm has valid slide labeling w. It suffices to check the condition (3) in
Definition 3.13 comparing minimal elements. We first check the condition at the edge label
n. Let z label the leaf just left of n, and let x be the edge label just left of n. At step x of the
leaf labeling algorithm, since n > x we are in Case 2, and so the leaf labeled by x is to the
right of n by Lemma 6.5. Moreover, all other leaves to the right of n were already labeled
and are greater than x . Thus x is the minimal leaf label to the right of n. Furthermore, since
the labeling of leaf z occurs after x , we have z < x . Therefore the slide labeling is valid at n.
It is valid for all smaller labels by a similar argument after contracting edge n and deleting
leaf n (since n labels the leaf just after n). ��

Since the number of 23-1-avoiding permutations is the nth Bell number Bn (see Claesson
[4] and OEIS entry A000110 [17]), we therefore have the following corollary.

Corollary 6.6 The number of caterpillars in Slideω(1, 1, . . . , 1) is the nth Bell number Bn.

6.3 The Sn action and slide sets

The symmetric group Sn acts on M0,n+3 by permuting the marked points 1, . . . , n. Likewise,
it acts on psi classes and boundary strata by relabeling. Thus, permuting the leaves of the
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trees in Slideψ(k1, . . . , kn) according to a permutation σ ∈ Sn gives a positive formula for
the product

ψ
k1
σ(1) · · · ψkn

σ(n) = ψ
k
σ−1(1)

1 · · · ψk
σ−1(n)

n

as the sumof boundary classes [Xσ(T )] for T ∈ Slideψ(k). These stratamaybe obtained as the
limiting intersections with the hyperplanes formed by applying σ to each of the hyperplanes
defining Vψ(k, �t) (this also has the effect of changing a hyperplane of classψi to one of class
ψσ(i) and relabeling the projective coordinates). However, this gives a different set of trees
than those enumerated by Slideψ(kσ−1(1), . . . , kσ−1(n)), because the slide rule is sensitive to
the ordering of the indices, and the iterated limit is also effectively taken in a different order.

Nonetheless, the two resulting sets of strata must be equinumerous (see Remark 2.1).
Therefore, theremust be abijectionbetweenSlideψ(k1, . . . , kn) andSlideψ(kσ(1), . . . , kσ(n)).

Problem 6.7 For any permutation σ ∈ Sn and any composition k, construct an explicit
combinatorial bijection between Slideψ(k1, . . . , kn) and Slideψ(kσ(1), . . . , kσ(n)).

As discussed above, the bijection itself is not given by simply applying a permutation to
the leaf labels of the trees. In fact, even the shapes of the trees are not preserved; the shapes
in Slideψ(0, 1, 2) do not match those of Slideψ(0, 2, 1).

This problem boils down to understanding how reordering the indices on the hyperplane
equations changes the slide points that we obtain. For a single i-slide, it simply changes the
notion of the “i-minimal element”. After more than one slide, however, the resulting trees
may be very different.

A slight variant is to consider arbitrary sequences of slides, such as ψ1ψ2ψ1ψ2:

Problem 6.8 Letw = w1 · · · wc be a word in the symbols 1, . . . , n, containing ki i ’s for each
i . Let Slideψ

word(w) denote the set of trees obtained by performing aw1-slide, then aw2-slide,

and soon.Construct a combinatorial bijectionbetweenSlideψ
word(w)andSlideψ(k1, . . . , kn).

6.4 Limiting hyperplanes for tournament points (general case)

In Sect. 5, we exhibit certain infinite families of tournament points as limiting hyperplane
intersection points. It remains to be seenwhether all tournament points admit such a geometric
realization.

A hint toward achieving this goal is [8, Theorem 1.8], which states that the coordinates of
the points Tour(k1, . . . , kn) in the Pr factor all lie on the kr hyperplanes

zb = 0, zc = 0, z1 = 0, . . . , zkr−2 = 0

where [zb : zc : z1 : · · · : zr−1] are the projective coordinates of Pr . This suggests looking
for a parametrized family of hyperplanes such that the hyperplanes themselves limit to the
ones listed above. The smallest case not covered by the results in Sect. 5 is k = (1, 1, 1).

Problem 6.9 Generalize Theorem 1.15 to all Catalan tuples (k1, k2, . . . , kn).

For k = (1, 1, 1), we could not find an appropriate family of hyperplanes using modified
slides as in Sect. 5. We suspect that it is not possible. It may instead be necessary to modify
the tournament points themselves (for example, the position of the leaf b is mostly irrelevant
to the tournament algorithm).
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6.5 Reducedness

We have seen that the limiting intersections in Theorem 1.5 are generically reduced.

Problem 6.10 Determine whether the limiting fibers in Theorem 1.5 are reduced.

We do not know the answer to this question when
∑

ki < n. An affirmative answer
would mean that Theorem 1.5 also computes ψk and ωk in the K -theory ring K (M0,n+3),
as the class of the structure sheaf of a union of strata. If so, and if the components XT

for T ∈ Slideψ(k) intersect sufficiently nicely, it would be possible to extract K-theoretic
formulas for ψk and ωk as alternating sums in the classes of the structure sheaves [OXT ], by
inclusion–exclusion.

6.6 Kappa classes andmultiplicity

Our formulas for kappa classes and generalized kappa classes, Theorem 1.11 and Corol-
lary 4.16, consist of boundary classes with multiplicities often greater than 1. In general, we
expect that no multiplicity-free formula can exist.

Problem 6.11 Fix r = (r1, . . . , rm). Let c = ∑
ri −m and let scn be the number of boundary

strata of codimension c on M0,n+3. Is it true that

lim
n→∞

|R(n; r)|
scn

= ∞ ?

Indeed, κ0 isn+1 times the fundamental class ofM0.n+3. For κ1, a straightforward summation
in Corollary 4.16 shows that κ1 is the sum of (n − 1)2n + 1 boundary divisors (counted with
multiplicity), whereas M0,n+3 has only 4 · 2n − n − 4 distinct boundary divisors. Hence, by
Remark 2.1, κ1 can’t be expressed as a multiplicity-free sum of boundary divisors for n > 5,
and the limit in Problem 6.11 holds.

6.7 Other intersection products

It would be interesting to extend the methods of this paper to other intersection products on
moduli spaces of curves.

Problem 6.12 Construct degenerations of complete intersections of ψ and ω classes on
Hassett spaces M0, �w [11].

We suspect that the methods of this paper are special to genus 0, but any extensions to
positive genus would also be of interest.

Acknowledgements We thank Vance Blankers, Renzo Cavalieri, and Mark Shoemaker for several helpful
discussions pertaining to this work. We also thank an anonymous referee for helpful comments.

References

1. Blankers, V., Cavalieri, R.: Wall-crossings for Hassett descendant potentials. Int. Math. Res. Not. IMRN
2022(2), 898–927, 05 (2020)

2. Cavalieri, R.: Moduli spaces of pointed rational curves. Combinatorial Algebraic Geometry Summer
School (2016)

123



Degenerations and multiplicity-free formulas for products of ψ and... Page 37 of 37 56

3. Cavalieri, R., Gillespie, M., Monin, L.: Projective embeddings of M0,n and parking functions. J. Combin.
Theory Ser. A 182, 105471 (2021)

4. Claesson, A.: Generalized pattern avoidance. Eur. J. Combin. 22, 961–971 (2001)
5. Deligne, P., Mumford, D.: The irreducibility of the space of curves of given genus. Inst. Hautes Études

Sci. Publ. Math. 36, 75–109 (1969)
6. Eisenbud, D., Harris, J.: 3264 and All That: A Second Course in Algebraic Geometry. Cambridge Uni-

versity Press, Cambridge (2016)
7. Fulton, W.: Intersection Theory, vol. 2. Springer Science & Business Media, New York (2013)
8. Gillespie, M., Griffin, S.T., Levinson, J.: Lazy tournaments and multidegrees of a projective embedding

of M0,n . Combin. Theory 3(1), 3, 26 (2023)

9. Hahn, M.A., Li, S.: Intersecting ψ-classes on Mtrop
0,w (2021). arXiv:2108.00875

10. Hartshorne, R.: Algebraic Geometry. Graduate Texts in Mathematics, vol. 52. Springer, New York (1977)
11. Hassett, B.: Moduli spaces of weighted pointed stable curves. Adv. Math. 173(2), 316–352 (2003)
12. Kapranov, M.M.: Veronese curves and Grothendieck–Knudsen moduli space M0,n . J. Algebr. Geom.

2(2), 239–262 (1993)
13. Keel, S.: Intersection theory of moduli space of stable N-pointed curves of genus zero. Trans. Am. Math.

Soc. 330(2), 545–574 (1992)
14. Keel, S., Tevelev, J.: Equations for M0,n . Int. J. Math. 20(09), 1159–1184 (2009)
15. Kerber,M.,Markwig,H.: Intersecting Psi-classes on tropicalM0,n . Int.Math. Res. Not. IMRN 2, 221–240

(2009)
16. Monin, L., Rana, J.: Equations of M0,n . In: Combinatorial Algebraic Geometry, Fields Inst. Commun.,

vol. 80, pp. 113–132. Fields Inst. Res. Math. Sci., Toronto (2017)
17. OEIS Foundation Inc. The on-line encyclopedia of integer sequences (2021). http://oeis.org/A000110
18. Smyth, D.I.: Intersections of psi-classes on moduli spaces of m-stable curves (2018). arXiv:1808.03214
19. The Stacks Project Authors. Stacks Project. https://stacks.math.columbia.edu (2018)
20. Vakil, R.: The moduli space of curves and its tautological ring. Not. Am. Math. Soc. 50(6), 647–658

(2003)
21. Vakil, R.: The Rising Sea: Foundations of Algebraic Geometry. November 18, 2017 draft (2017). https://

math216.wordpress.com

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such publishing agreement and applicable
law.

123

http://arxiv.org/abs/2108.00875
http://oeis.org/A000110
http://arxiv.org/abs/1808.03214
https://stacks.math.columbia.edu
https://math216.wordpress.com
https://math216.wordpress.com

	Degenerations and multiplicity-free formulas for products of ψ and ω classes on overlineM0,n
	Abstract
	1 Introduction
	1.1 Degenerations and slide rules
	1.2 Application to kappa classes
	1.3 Multidegrees and application to tournaments
	1.4 Outline of paper

	2 Background
	2.1 Structure of  and trivalent trees
	2.2 Kapranov morphisms
	2.3 The total and iterated Kapranov maps

	3 Slide rules
	3.1 Nonempty slide sets

	4 Limiting hyperplanes on  and  and  product formulas
	4.1 Flat limits
	4.2 Limits of intersections
	4.3 Pullbacks of psi classes along a sequence of forgetful maps
	4.4 Application to  classes

	5 Hyperplanes for lazy tournament points
	5.1 Tournaments
	5.2 Hyperplanes for tournaments

	6 Further discussion and open problems
	6.1 Tournaments vs slide points
	6.2 Pattern avoidance
	6.3 The  action and slide sets
	6.4 Limiting hyperplanes for tournament points (general case)
	6.5 Reducedness
	6.6 Kappa classes and multiplicity
	6.7 Other intersection products

	Acknowledgements
	References




