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Abstract—Providing rich and useful information regarding
spectrum activities and propagation channels, radiomaps char-
acterize the detailed distribution of power spectral density (PSD)
and are important tools for network planning in modern wire-
less systems. Generally, radiomaps are constructed from radio
strength measurements by deployed sensors and user devices.
However, not all areas are accessible for radio measurements
due to physical constraints and security considerations, leading to
non-uniformly spaced measurements and blanks on a radiomap.
In this work, we explore distribution of radio spectrum strengths
in view of surrounding environments, and propose two radiomap
inpainting approaches for the reconstruction of radiomaps that
cover missing areas. Specifically, we first define a propagation-
based priority before integrating exemplar-based inpainting with
radio propagation model for fine-resolution small-size missing
area reconstruction on a radiomap. We next introduce a novel
radio depth map and propose a two-step template-perturbation
approach for large-size restricted region inpainting. Our experi-
mental results demonstrate the power of the proposed propaga-
tion priority and radio depth map in capturing PSD distribution,
as well as their efficacy in radiomap reconstruction.

Index Terms—Radiomap reconstruction, inpainting, radio
measurement, radio propagation

I. INTRODUCTION

W ITH the rapidly expanding deployment of Internet-of-
Things (IoT) sensors and fifth-generation (5G) stan-

dard cellular devices, radio spectrum information is becoming
more complex, dynamic, and harder to measure, thereby
posing vital challenges in spectrum planning and network
coverage analysis [1]. Spectrum resource management and
network planning critically rely on accurate information of
spatial radio frequency (RF) signal distribution and coverage.
To this end, radiomaps play important roles in modern wire-
less communication infrastructures. “Radiomap” characterizes
distribution of power spectral density (PSD), resulting from
concurrent wireless signal transmissions, as a function of
spatial position, frequency, and time [2], where each pixel
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(a) Landscape Map (b) Radiomap

(c) Sparse Observations (d) Restricted Regions

Fig. 1. Examples of radiomap: Fig. a) and Fig. b) show the landscape
map and the simulated radiomap (dBm) of a selected region with three
transmitters, respectively. The transmitter locations are marked as red in Fig.
a). The buildings are marked as blue in Fig. b). Fig. c) describes the sparse
observations collected from the deployed sensors. Fig. d) shows the radiomap
with a restricted region marked as red. Note that, the coordinates here are the
index of the signal power strengths conformed to the grid (5× 5 meters2 for
each grid block).

describes the spectrum power strength measurement shown
as Fig. 1. Providing vital and rich information regarding spec-
trum patterns and RF activities, radiomaps have inspired and
assisted massive applications, including cellular network fault
diagnosis [3], unmanned aerial vehicle (UAV) path planning
[4], and autonomous driving [5]. Practically, high-resolution
radiomap is often constructed from observations collected by
sparsely deployed sensors or user devices, shown as Fig. 1(c).
Thus, one practical challenge lies in the efficient and accurate
reconstruction of more complete radiomaps from partially
observed sparse signal power samples.

Recent proposals for radiomap reconstruction can be cate-
gorized as either model-based or data-based (i.e.,model-free)
approaches. Model-based methods usually assume a specific
model for radio propagation between the receivers and trans-
mitters. For example, a log-distance path loss (LDPL) model
in [6] helps estimate the spatial distribution of WiFi radio
strengths. In [7], another model-based algorithm is based on
the thin-plate kernels for radiomap estimation. By contrast,
model-free data-based methods estimate the radiomaps relying
on observed PSD patterns without assuming a propagation
model. Classic methods include inverse distance weighted
(IDW) interpolation [8] and Radial Basis Function (RBF)
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interpolation [9]. Beyond interpolation-based methods, learn-
ing approaches, such as Unet [10] and generative adversarial
network (GAN) [11], have also shown promises in radiomap
reconstruction. Other methods for radiomap estimation include
image inpainting [12], graph signal processing [13], tensor
completion [14] and Gaussian process regression [15]. We
provide a more detailed overview in Section II.

Despite various successes, most existing approaches to
radiomap reconstruction from sparse observations assume
sufficient samples of received signal power strengths from
sensors preferably spread across the whole region as shown
in Fig. 1(c). However, off-limit or restricted regions, such
as mountain ranges and/or private properties, are inaccessible
to radiomap measurements because of physical constraints or
security consideration. As illustrated in Fig. 1(d), when radio
measurements are not available, a radiomap would contain
blanked areas. Radio spectrum strength estimation in such
restricted areas can be much more challenging and sometimes
impractical for traditional radiomap construction methods.
First, unlike in coarse radiomaps, missing observations often
cover restricted areas that are important to fine-resolution
radio planning. Radio coverage in these smaller areas is more
sensitive to landscape specifics instead of following a classic
radio propagation model, making model-based methods inef-
fective. On the other hand, unevenly sampled measurements
and blank areas on a radiomap can lead to less dependable
RF power estimation in the objective regions, particularly for
the locations near the center of the restricted regions, which
further limits the efficacy of interpolation-based method. In
addition, various practical reasons make it harder to collect
large numbers of measurement data samples, leading to in-
sufficient training samples for supervised learning algorithms.
Another analogous problem to radiomap reconstruction with
missing areas is that of image inpainting [16]. However, the
lack of regional radio propagation information leads to poor
performance when imitating image-inpainting approaches to
recovery accurate radio spectrum patterns.

This work focuses on capturing spatial spectrum power dis-
tribution from limited and uneven observations. In particular,
we develop a radio depth map and integrate radio propagation
model with image inpainting for radiomap reconstruction
covering blank areas. We propose two inpainting algorithms
to address small-size fine-resolution radiomap reconstruction
and large-size radiomap reconstruction, respectively. The main
contributions are:

• Exploring radio spectrum patterns and integrating ra-
dio propagation models, we propose an exemplar-based
method for small-size fine-resolution radiomap estimation
with a novel radio-based inpainting priority.

• Based on analysis of urban landscape combined with the
observed radiomaps, we define a novel radio depth map
and introduce a two-step template-perturbation method
for large-size blank inpainting.

• We provide two high-fidelity simulated datasets, where
the superior experimental results demonstrate the efficacy
of the proposed radiomap inpainting algorithms.

We organize the rest of this manuscript as follows. Sec-

tion II presents an overview of related works on radiomap
reconstruction and image inpainting. Following our problem
statement in Section III, we propose an exemplar-based ra-
diomap inpainting using propagation priority in Section IV.
We then present our two-step template-perturbation radiomap
reconstruction with a newly-defined radio depth map in Sec-
tion V. Experimental results in Section VI demonstrate the
performance of the proposed radiomap reconstruction before
the conclusions in Section VII.

II. RELATED WORKS

Here we provide an overview of radiomap reconstruc-
tion/estimation and image inpainting.

A. Radiomap Reconstruction

1) Model-based Radiomap Estimation: Model-based ap-
proaches usually assume a certain radio propagation model.
Specifically, power spectrum can be modeled as a function of
frequency f and position coordinate c by

r(c, f) =

Nt∑
i=1

gi(c, f)si(f), (1)

where Nt is the number of transmitters, gi denotes the channel
power gain of the ith transmitter, and si(f) is the PSD from
the ith transmitter [2]. Considering different spectrum usage
patterns in various frequency bands, one may usually focus
on the radiomap reconstruction in a certain frequency fj from
sparse observations [2]. A typical example of model-based
interpolation is based on log-distance path loss model (LDPL),
which has been successefully applied in the scenario of single-
narrowband WiFi [6]. Other model-based methods include
kernel expansion [7], parallel factor analysis [17] and fixed
rank kriging [18].

2) Model-free radiomap Estimation: Unlike model-based
radiomap estimation, model-free methods do not suppose
a specific radio propagation model but leveraging neighbor
spectrum observations. Furthermore, model-based approaches
include interpolation methods and deep-learning (DL)-based
methods.

Interpolation methods express the radio spectrum power at
a particular location as a combination of observed measure-
ments, denoted by

r(c, f) =

Ns∑
i=1

wi(c, f)qi(f), (2)

where qi is the observation from the ith receiver and wi is
the combination weights [2]. For example, in [8], the weight
wi can be defined by the inverse distance between transmitters
and receivers for the wireless localization. In addition to linear
interpolation, an alternative is radio basis function (RBF)
interpolation [19], where different kernels, such as Gaussian
or spline, can be applied. Beyond traditional interpolation
approaches, recent works of radiomap reconstruction take
advantages of novel data analysis techniques, such as graph
signal processing [13], multicomponent optimization [20],
matrix completion [21] and ordinary Kriging [22].
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Fig. 2. Example of Image Inpainting.

DL-based approaches have recently attracted significant
interest for radiomap estimation, owing to their power in
capturing underlying data features and/or mapping functions.
Different from interpolation methods, DL-based methods tend
to directly find the mapping between the geometric landscape
map and the spectrum power measurements through training.
Usually, such a functional relationship can be represented by
a neural network. For example, Unet is introduced in [10] for
pathloss prediction. Another well-known architecture, namely
autoencoder, also demonstrated its strength in radiomap esti-
mation [23]. Other learning-based approaches include transfer
learning [24], GAN-based frameworks [11], [25]–[27], rein-
forcement learning [28] and deep nerual networks [29].

Interested readers may refer to the review paper in [1] for
more details. Although radiomap estimation has seen years
of exploration, most of existing approaches focus on the
reconstruction of radiomap from sparse observations, without
considering the practical issue of missing measurement in
restricted areas.

B. Image Inpainting

Image inpainting is the process for completing missing
regions in images or for removing foreign objects added to
more natural images [30], as shown in Fig. 2. A classic
method is exemplar-based image inpainting, which reconstruct
missing regions from selected exemplar patches [31]. Other
modern concepts, such as dictionary learning [32], subspace
analysis [33] and information diffusion [34], can also im-
prove exemplar-based inpainting. Recently, deep learning has
demonstrated many successes in computer vision tasks, as well
as in image inpainting. Typical learning frameworks include
deep convolutional neural networks [35]–[37], auto-encoder
[38] and generative adversarial networks [39]–[41].

Despite the many successes of exemplar-based and learning-
based inpainting approaches in generic image processing,
existing methods have only shown modest success in radiomap
reconstruction, possibly because they tend to neglect the
fundamentals of radio physics. Moreover, since the radiomaps
with missing patches often correspond to certain locations with
specific local landscape features, there may not exist enough
samples for effective training of DL based on neural networks.
How to efficiently inpaint the radiomap still remains an open
challenge.

III. PROBLEM DESCRIPTION

We study a wireless network coverage of a rectangular area
corresponding to an available landscape map. Without loss of

Fig. 3. Illustration of Objective Scenarios: A restricted area Zp with size
M×N is located in a larger area Z with size P ×Q. Given the observations
of unrestricted areas in the radiomap r(Z) together with the landscape, our
goal is to estimate the signal power r̃(Zp) ∈ RM×N in the restricted areas
to complete the radiomap r̃(Z) ∈ RP×Q of the whole region.

Fig. 4. Example of fine-resolution radio in a small-scale region (JHU-APL
Dataset [12]): Restricted area is marked yellow.

generality, our radio spectrum power observations are located
in a rectangular area Z with size P × Q, and are arranged
in a regular grid, shown as Fig. 3. We denote the radiomap
of Z by r(Z) ∈ RP×Q, where each power observation
r(Zi) (typically measured in dBm) is characterized by a 2-
dimensional coordinates Zi = (xi, yi). A restricted area Zp

with size M ×N is located within Z, marked as red in Fig.
3, where M ≤ P and N ≤ Q. No measurement in Zp is
available. Our objective is to estimate the radiomap r̃(Zp) of
the missing regions from other observed samples, with the
consideration of local landscape, such as buildings and roads,
and locations of transmitters. More specifically, we explore
different radiomap inpainting methods for two scenarios:

• Small-scale fine-resolution radiomap: Compared to tra-
ditional radiomap reconstruction problems, the small-
scale radiomap has higher resolution (e.g., down to 1
meter) and smaller area, which make it more sensitive
to the nearby landscape, such as buildings, trees and
roads, as shown in Fig. 4. Moreover, these regions
usually have limited and unbalanced observations around
restricted/inaccessible regions. We address the reconstruc-
tion of such small-scale fine-resolution radiomaps in
Section IV.

• Large-scale radiomap: Unlike small-scale radiomap in-
painting, large-scale radiomap estimation favors radio
propagation patterns with the consideration of shadowing
and landscape, shown as Fig. 3. To capture both landscape
and model information efficiently is a challenge. Large-
scale radiomap inpainting is to be discussed in Section
V.

IV. EXEMPLAR-BASED RADIOMAP INPAINTING WITH
PROPAGATION PRIORITY

We now introduce an exemplar-based radiomap inpainting
using radio propagation priority for small-scale radiomaps,
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Fig. 5. Scheme of Proposed Method

(a) (b)

Fig. 6. Illustration of Filling Process: a) Select a patch Ψq in the boundary
δΩ; b) Estimate the missing values in Ψq and regenerate Ψ̃q

where neighboring landscape dominates the radio spectrum
patterns.

A. Overview of the Proposed Method

To fill a region based on surrounding observations, one
intuitive way is to estimate missing values patch-by-patch (or
block-by-block) from boundaries between observed regions
and target (restricted area) regions, leading to the center of
the restricted/inaccessible area, by following a scheme named
as exemplar-based inpainting [31] illustrated in Fig. 5.

Refining notation for the observed regions in Z as Φ and
the restricted region Zp by Ω, we are able to detect the
boundary between Φ and Ω as δΩ. In the exemplar-based
inpainting, a patch (block) of interest centered at the boundary
δΩ could be selected for estimation first, as shown in Fig.
6. Suppose that Ψp is a n × n patch centered in a location
p located at boundaries, i.e., p ∈ δΩ. One can calculate
inpainting priority of the patch Ψp as P (p) based on texture
properties and neighbor measurement information. Ordering
all patches centered at δΩ by P (p), a patch Ψq with the highest
priority and the most significant interest can be selected. Next,
several exemplar patches can be extracted from the observed
regions Φ depending on the similarity to Ψq , after which the
missing measurement in Ψq is reconstructed from the exemplar
patches. Once the selected Ψq is filled, we could update the
regions {Φ,Ω, δΩ} and repeat the aforementioned steps until
missing information in the restricted area Zp are estimated.

From the steps above, key issues in the exemplar-based
method are to define priority P (p) to determine the filling
direction, and to estimate the missing values from exemplars.
In the following subsections, we will discuss our proposed
methods on the integration of radio propagation model and
exemplar-based inpainting for radiomap estimation.

(a) Data scalar. (b) Radio factor. (c) Block term.

Fig. 7. Illustration of Calculating Priority: a) data scalar captures the texture
of radiomap; b) radio factor focuses on the radio power hitting the boundary;
c) block term highlights the shadowing effect.

B. Details of Proposed Method

In this part, we introduce a novel inpainting priority based
on radio propagation model and two approaches to estimate
missing radiomap values.

1) Definition of Priority: We start with the scenario with
one single transmitter. To determine the proper direction of
inpainting the missing values, we expect to propagate the
important patterns in texture (distribution of spectrum power)
and radio strength measurements with larger certainty. In
traditional image inpainting, the priority of inpainting direction
consists of a confidence term characterizing the uncertainty
and a data scalar capturing the texture patterns [16]. Similarly,
here we could define the following priority for patch selection:

P (p) = C(p) ·D(p) ·B(p) · L(p), (3)

where confidence C(p) and data scalar D(p) contain radiomap
pattern information (texture), while radio propagation factor
L(p) and block term B(p) describe radio propagation proper-
ties. More specifically, each term can be defined as follows:

• C(p): Confidence C(p) represents how confident the
values in Ψp are. If more samples are observed from Φ,
the corresponding patch is with a larger confidence term.
Suppose that the patch size is n×n. The confidence term
can be written as

C(p) = n−2
∑

v∈(Ψp∩Φ)

C(v), (4)

where C(v) is initialized as C(v) = 1 for v ∈ Φ;
otherwise, C(v) = 0. Here, C(p) ∈ [0, 1] describes
the averaged confidence levels in the Ψp. Note that, at
each round, the confidence term C(u) is updated by
C(u) = C(q) for a newly-estimated position u before
the next round.
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• D(p): Data scalar D(p) focuses on texture patterns near
patch Ψp, shown in Fig. 7(a). More specifically, it should
describe diffusion of textures and favor local gradients.
Let np be the normal of boundary at p. Then we can
denote the orthogonal direction of the texture gradient at
p as sp = [∇Tp]

⊥ where Tp is the power level around p.
We define the data scalar as

D(p) =
| < sp,np > |
∥sp∥∥np∥|

, (5)

where < ·, · > denotes inner product. Such data scalar
describes the local variations/gradients of radiomaps in
the direction hitting the boundaries.

• L(p): Radio propagation factor captures the radio model
pattern between the received signal strenght at location
p and the transmitter at location pt. Similar to the data
term D(p), we prefer to diffusing the radiomap patterns
following the direction of radio propagation. Thus, we
could measure the strengths of radio hitting the boundary
δΩ by

L(p) = |d(pt, p)|−β |lp · np|, (6)

where |d(pt, p)| is the distance between transmitter po-
sition pt and receiver location p, β is a hyperparameter
capturing the inverse distance weights (IDW) [8], np is
the normal of boundary at p, and lp is the direction
of radio propagation from pt to p, shown in Fig. 7(b).
Note that, here we use IDW model as an example. Other
options, such as LDPL, could also be applied.

• B(p): In small-scale areas, radiomap around an off-
limit area is usually sensitive to landscape differences.
Thus, we define a block term B(p) to capture the
shadowing and fading from obstacles. From the urban
landscape map, we can segment buildings (in yellow) and
background/free-space (in blue) as shown in Fig. 7(c).
Suppose that lp be the segment of the path linking t and
p, i.e., red areas in Fig. 7(c). Then, B(p) is defined as

B(p) = fraction of cumulative non-building length in lp
(7)

If radio propagates over more obstacles, Bp is smaller
and the priority would be lower.

Note that, thus far, our examples focus mainly on one transmit-
ter cases. Under Nt simultaneous transmitters, the radio-based
priority factor in Eq. (3) can be modified as

P (p) = C(p) ·D(p) · [
Nt∑
i=1

Bi(p) · Li(p)], (8)

where Bi(p) and Li(p) are respectively defined for the ith
transmitter. Note that, we consider all transmitters of identical
settings. One may also apply weighted sum in Eq. (8) accord-
ing to the relative strengths of each transmitter, which can be
embedded in the term Li(p) via LDPL models. By choosing
patches with larger P (p), we would optimize the inpainting
direction by considering both textures and radio propagation.

2) Recovery of Missing Measurement: After selecting patch
Ψq with the highest priority, we now discuss the problem of
missing measurement recovery in off-limit regions. Here, we
introduce two exemplar-based approaches, i.e., EPC and EPD,
as follows:

• Estimation via Exemplar copy (EPC): A typical appraoch
to estimate the missing points is to copy values from
similar observed patches of the same indices [16]. Here,
we also consider exemplar-based copying to estimate the
missing points. Let Ψq be the n × n patch selected
by P (p). Here, n can be the hyperparameter selected
based on the specific region size and data features. To
implement EPC, we first find the closest exemplar patch
Ψs from the observed region according to

Ψs = arg min
Ψw,w∈Φ

∑
i∈Φ

[(Ψw)i − (Ψq)i]
2, (9)

where (Ψ)i is the signal strength measurement at position
i within patch Ψ. We then fill the missing value via

(Ψ̃q)i =

{
(Ψq)i i ∈ Φ

(Ψs)i i ∈ Ω
. (10)

• Estimation via dictionary learning (EPD): Dictionary
learning in exemplar-based image inpainting [32] op-
timizes a sparse vector to combine codewords in a
dictionary. For an n × n patch Ψq , we may randomly
pick a set of patches from Φ and generate a dictionary
A ∈ Rn2×K containing K normalized code-words via K-
SVD [42] or matching pursuit [43]. Reshaping patch Ψq

as a vector xq , dictionary learning optimizes the sparse
vector β ∈ RK×1 for codeword combining via:

β̃ = argmin
β

||(xq)Φ −AΦβ||22 + λ||β||1, (11)

where (xq)Φ is an observed part in Ψq and AΦβ are the
encoded signals corresponding to (xq)Φ. The optimized
β allows radiomap reconstruction for missing regions:

(Ψ̃q)i =

{
(Ψq)i i ∈ Φ

(Aβ)i i ∈ Ω
. (12)

In general, EPC performs better when radiomap contains
regular and smooth patterns, whereas EPD is more adept
in handling complex landscape. Exemplar-based radiomap
inpainting with propagation priority can be summarized in
Algorithm 1.

V. TEMPLATE-PERTURBATION RADIOMAP INPAINTING
BASED ON RADIO DEPTH MAP

In this section, we introduce a two-step template-
perturbation radiomap inpainting for more general large-scale
regions, as shown in Fig. 9.

A. Large-scale radiomap Inpainting

Large-sacle radiomap inpainting faces additional challenges
beyond small scale radiomap:

• Small-scale radiomap is sensitive to surrounding land-
scape, whereas certain regions in large-scale radiomap
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Fig. 8. Scheme of Proposed Two-Step Radiomap Inpainting Method: The radiomap is first decomposed into a template to capture the overall patterns and into
a perturbation to characterize the details. Then, different algorithms are developed to inpaint the perturbation and template, respectively. Finally, the inpainted
perturbation and template are fused to generate the final results.

Algorithm 1 Exemplar-based Radiomap Inpainting with Radio
Propagation Priority (EPC/EPD)

Input: Radiomap r(Z) ∈ RP×Q and the restricted area
Zp with size M × N (observed region is denoted by Φ
while missing region Ω is initialized by Zp), and building
segmentation m(Z) ∈ RP×Q.
while Ω ̸= ∅ do:

1. Extract the boundary δΩ between observed region Φ
and target region Ω;

2. Given a patch Ψp with size n× n centered at point p
located at boundaries, i.e., p ∈ δΩ, calculate the priority of
the patch as P (p) based Eq. (3);

3. Order all patches Ψp centered at δΩ by P (p) and select
the one with highest priority as Ψq;

4. Select exemplars from observed regions for Ψq and
estimate the missing values in Ψq by EPC in Eq. (10) or
EPD in Eq. (12);

5. Update Φ and Ω;
6. Update the confidence C(p) term in the priority as

calculated in Eq. (4);
end while
Output: Estimated radiomap r̃(Zp) of the protected area.

may be better characterized by large-scale propagation
model. For example, as shown in Fig. 9(a), spectrum
patterns in the black block are dominated by large scale
propagation model whereas PSD distribution within the
red block is more sensitive to nearby landscape. An
important problem is to effectively capture both radio
propagation and local shadowing effect. In our proposed
EPC/EPD, we embed this landscape information in the
propagation priority defined by Eq. (7).

• In many cases involving low sensor population density,
missing measurement regions on a radiomap may cover
a larger area and do not have many observations for
radiomap reconstruction especially for the middle of large
regions, as shown in Fig. 9(b). For radiomap recovery of
larger-scale restricted regions, computational complexity
and estimation accuracy also present additional chal-
lenges.

(a) (b)

Fig. 9. Example of large-scale regions of radiomap (dB): a) Illustration
of spectrum patterns in different regions, where red parts favor the nearby
landscape and black parts is dominated by the propagation model; b) Example
of large-size protected areas, which lack the spectral neighbor information near
the center of the region.

Fig. 10. Example of radiomap Decomposition.

To address the aforementioned challenges, here we propose
a two-step template-perturbation radiomap inpainting. More
specifically, we decompose the original radiomap into a low-
resolution template capturing the overall radio propagation
pattern, and a high-resolution perturbation characterizing de-
tailed shadowing effects as shown in Fig. 10. For the high-
resolution perturbation, we apply the exemplar-based radiomap
inpainting, i.e., EPC/EPD as described in Algorithm 1. For the
low-resolution template, we define a novel radio depth map to
assist propagation template inpainting. The overall strategy of
the proposed two-step algorithm is illustrated in Fig. 8, with
additional details discussed next.

B. Details of the Proposed Methods

1) Construction of Template and Perturbation: Given a
radiomap r(Z) ∈ RP×Q containing restricted area Zp of size
M×N , we first decompose it into a low-resolution template to
capture the smooth radio propagation patterns, together with a
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fine-resolution perturbation to describe the shadowing details
as Fig. 10.

To construct a low-resolution smooth template, we first
construct superpixels based on the landscape map. In this
work, we consider the entropy rate superpixel segmentation
(ERS) as [44], which is with low complexity and competitive
efficiency. In ERS [45], a graph G = {V, E} is constructed to
model the dataset, where the pixels serve as the nodes V and
their pairwise similarities are represented by edges E = {eij}.
Next, we formulate the superpixel segmentation problem as a
subgraph construction

Let L ⊆ E be a subset of edges that partition the original
graph. ERS aims to find an optimal partition by L, which
balances the compactness and size of each cluster (subgraph).
To capture the underlying structure among pixels in the
landscape map, a Gaussian kernel is applied to define the pixel
similarity between two nodes [45], denoted by

wij = e
−

dERS(vi,vj)

2η2 , (13)

where dERS(·, ·) is calculated by the multiplication of the in-
tensity difference and the spatial distance. Next, the stationary
distribution of random walk over the partitioned graph can be
characterized by the following transition probabilities, i.e.,

pij =



wij

wi
i ̸= j, eij ∈ L

0 i ̸= j, eij /∈ L

1−
∑

j:eij∈L wij

wi
i = j

, (14)

where wi =
∑

k:eik∈E wij is the sum of incident weights of
node vi. Following the entropy rate of random walk model
[45], the compactness and homogeneity of the cluster can be
characterized by random walk entropy, denoted by

H(L) = −
∑
i

µi

∑
j

pij(L) log(pij(L)), (15)

where µi = wi/wT is defined by a normalized term wT .
Beyond compactness, the distribution of cluster membership

can be captured by pL(i), i = 1, · · · , NL, i.e.,

pL(i) = |Gi|/|G|, (16)

where NL is the number of clusters (subgraphs), |Gi| denotes
the size of each subgraph, and |G| captures the total number
of nodes. Then, a regularizing term T (L) can be defined as

T (L) = −
∑
i

pL(i) log(pL(i))−NL, (17)

which penalizes large cluster size.
Now, the ERS can be formulated as the following optimiza-

tion problem:

L∗ = argL maxTr{H(L) + αT (L)} (18)
s.t. L ⊆ E ,

which can solved by a greedy algorithm. Interested readers
may refer to [45] for more details.

With the superpixel construction, the original region Z with
size P ×Q can be represented by a set of K superpixels, i.e.,

S = {S1, S2, ..., SK} with
∑K

i=1 |Si| = P ·Q. By calculating
the mean PSD measurements within the same superpixel as
its new value, we are able to construct a low-resolution
smooth template of the radiomap. Denote the template by
t(Z) ∈ RP×Q. Each value in the template located at position
Zα is calculated by

t(Zα) =
1

|Si|
∑
β∈Si

r(Zβ), (19)

where Zα ∈ Si. Through calculating the difference between
the original radiomap and template, we could obtain the
perturbation h(Z) ∈ RP×Q as

h(Z) = r(Z)− t(Z). (20)

2) Radiomap Inpainting for Template and Perturbation:
Given the definition of perturbation and template, we recon-
struct the restricted regions of PSD measurements in t(Z) and
h(Z), respectively.
2-A. Perturbation Reconstruction: Since the perturbation cap-
tures detailed shadowing effects and has similar patterns as
fine-resolution small-scale radiomaps, we can easily adopt
the exemplar-based EPC/EPD introduced in Algorithm 1 to
reconstruct the missing areas in h(Z).
2-B. Template Reconstruction: We now focus on the
exemplar-based inpainting for radiomap template t(Z). To
reconstruct missing values in the template t(Z), we develop
an exemplar-based inpainting similar as Fig. 5 in Algorithm
1. We reconstruct missing values from the boundary δΩ to
the center patch by patch by first defining a n × n patch Ψp

centered at location p ∈ δΩ. Next, we calculate all patch
priorities P (p) and select the one patch with the highest
priority as Ψq to fill. Subsequently, we select several exemplar
patches from the observed areas according to their distance to
Ψq , after which we estimate the missing values in Ψq from
these exemplars. Note that, unlike perturbation inpainting in
Algorithm 1 which stresses shadowing effects and pattern
textures, the template spectral patterns rely more on radio
propagation model.

To summarize, we define a novel depth map to calculate
the patch priority and a different similarity distance to find
the exemplar patches as follows:

• Radio Depth Map: In computer vision, a depth map
is an image or image channel containing information
related to the distance of surfaces from a viewpoint, often
applied for image structure reconstruction [46]. Motivated
by image depth map, we define a novel radio depth map
W (Z) ∈ RP×Q as a map containing radio propagation
information related to the distance from the viewpoint
of transmitters. More specifically, we consider spectrum
power loss due to the blocking effect from buildings. Let
Nt be the number of transmitters. We then calculate the
depth map value at location Zα via

W (Zα) = f(

Nt∑
i=1

Ei(Zα) ·Bi(Zα)), (21)

where Bi(·) follows the definition of Eq. (7), Ei(·)
captures power of different transmitters and f(·) is the
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(a) Transmitter Location (b) IDW-based (c) LDPL-based

Fig. 11. Example pf Depth Map with Three Transmitters: transmitter locations
are marked as red.

normalization function. Note that the propagation factor
Ei(·) can be defined by inverse distance weight (IDW)
[8]. Let di be the distance between the transmitter i and
Zα. Then for a hyperparameter σ, we have

Ei(Zα) = d−σ
i . (22)

Another alternative is to use the LDPL model [6]

Ei(Zα) = θi − ϵi · log(di), (23)

where the parameters can be solved by the multi-variable
linear regression from the spectrum observations. An ex-
ample of the depth map in a region with three transmitters
are shown as Fig. 11. To provide the flexibility of model
tuning and reduce complexity, we usually apply IDW-
based depth map for radiomap inpainting.

• Patch Priority: With a depth map, we now introduce
a depth-based priority for radiomap inpainting. Given a
patch Ψp centered at p, we define its inpainting priority
as

P (p) = C(p) ·D(p) · V (p), (24)

where confidence term C(p) is defined in Eq. (4), data
texture term D(p) is calculated by Eq. (5), and the depth
factor V (p) follows

V (p) =
|W (Ψp)|

|W (Ψp)|+
∑

q∈Ψp∩Φ(W (q)−W (Ψp))2
, (25)

where W (Ψp) is the radio depth map of the patch Ψp,
|W (Ψp)| is the number of observed pixels within patch
Ψp, W (q) is the value of depth map at position q with
average denoted by W (Ψp). V (p) favors patches with
smooth patterns and higher depth certainty.

• Exemplar Similarity: After selecting patch Ψq with
the highest filling priority, we can find exemplars from
observed regions Φ similar to Ψq to assist missing value
estimation. Since the template captures overall smooth
patterns for all missing areas, we could utilize landscape
map m(Z) and depth map W (Z) to better select similar
patches. Here, m(Z) is the landscape of the entire re-
gion Z. More specifically, distance between a candidate
exemplar Ψu and the target region Ψq is calculated by

SIM(Ψu,Ψq) =a · ||(Ψq)Φ − (Ψu)Φ||2F
+ b · ||W (Ψq)−W (Ψu)||2F
+ c · ||m(Ψq)−m(Ψu)||2F
+ d · dis(q, u), (26)

Algorithm 2 Exemplar-based Radiomap Inpainting for Tem-
plate (EPT)

Input: Template radiomap t(Z) ∈ RP×Q and the restricted
area Zp with size M ×N (observed region is denoted by Φ
while missing region Ω is initialized by Zp), and landscape
map m(Z) ∈ RP×Q.
1. Construct the radio depth map W (Z) ∈ RP×Q based on
Eq. (21);
while Ω ̸= ∅ do:

2. Extract the boundary δΩ between observed region Φ
and target region Ω;

3. Given a patch Ψp with size n× n centered at point p
located at boundaries, i.e., p ∈ δΩ, calculate the priority of
the patch as P (p) based Eq. (24);

4. Order all patches Ψp centered at δΩ by P (p) and select
the one with highest priority as Ψq to fill first;

5. Select exemplars from observed region for Ψq based
on Eq. (26);

6. Estimate the missing values in Ψq by EPC in Eq. (10)
or EPD in Eq. (12);

7. Update Φ and Ω;
8. Update the confidence C(p) term in the priority as

calculated in Eq. (4);
end while
Output: Estimated radiomap t̃(Zp) of the protected area.

where the first term measures similarity of radio spec-
trum, the second term describes the similarity in depth
map, the third term measures neighbor radio information,
and the last term involves distance between two patch
locations. In general, we set larger values for a and b
to allow higher impact on the radio spectrum and depth
map. From the exemplar patch, we can apply dictionary
learning or directly copy EPD (EPC), respectively, to fill
the missing areas in Ψq .

2-C. Combination of Template and Perturbation: After
inpainting the missing regions h̃(Zp) in perturbation and
t̃(Zp) in the template, we obtain r̃(Zp) according to Eq. (20)
as

r̃(Zp) = t̃(Zp) + h̃(Zp). (27)

We further smooth the estimated r̃(Zp) for position compen-
sation. Among various smoothing schemes, such as inverse
gradient weight smooth [47] or the l0 gradient minimization
[48], we apply gradient inverse weighted smoothing for loca-
tion correction.

We summarize the algorithm of template inpainting as Algo-
rithm 2, and summmarize the two-step template-perturbation
radiomap reconstruction with depth map as Algorithm 3.

VI. EXPERIMENTAL RESULTS

We now present test results of the proposed radiomap
inpainting algorithms. More specifically, we test the EPD/EPC
with a small-scale high-fidelity JHU-APL (Johns Hopkins
University Applied Physics Laboratory) dataset. We also test
the template-perturbation TPI with a larger-scale BRATlab
dataset.
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Algorithm 3 Template-Perturbation Radiomap Inpainting
(TPI)

Input: Radiomap r(Z) ∈ RP×Q and the restricted area Zp

with size M × N (observed region is denoted by Φ while
missing region Ω is initialized by Zp), and urban landscape
map m(Z) ∈ RP×Q.
1. Construct superpixels of the whole region Z ∈ RP×Q

from m(Z) based on ERS as Eq. (18), and build the template
radiomap t(Z) ∈ RP×Q based on Eq. (19);
2. Construct the perturbation radiomap h(Z) ∈ RP×Q from
Eq. (20);
3. Inpaint the perturbation radiomap as h̃(Z) based on
Algorithm 1;
4. Inpaint the template radiomap as t̃(Z) based on Algo-
rithm 2;
5. Combine the estimated template and perturbation for the
estimated radiomap of the restricted areas Zp by r̃(Zp) =
t̃(Zp) + h̃(Zp);
6. Apply the gradient inverse weighted smoothing on r̃(Zp)
for location correction;
Output: Estimated radiomap r̃(Zp) of the protected area.

(a) Mean Power (watt). (b) Satellite

Fig. 12. Illustration of APL dataset.

A. Small-Scale High-Resolution radiomap Inpainting

We first present the results of EPD/EPC for high-resolution
radiomap inpainting.

1) Data Information and Preprocessing: We test the pro-
posed methods in the Johns Hopkins University Applied
Physics Laboratory (JHU-APL) dataset, reportedly generated
from the Wireless inSite Software [49] with Light Detection
and Ranging (LIDAR) information. This APL dataset targets a
designated region in Atlanta, Georgia, USA, and the resolution
of the LIDAR data is 1-meter. The location of the area
is at 33.7283∼33.7327 in latitude and -84.3923∼-84.3854
in longitude. The APL dataset is for one transmitter (TX)
whose signal is received in a 10-block area. The TX antenna
is a uniform square array of 16 × 16 elements, spaced at
0.5 wavelength. The TX is located at latitude/longitude of
33.689/-84.390. Its antenna height is 201 meters, with center
frequency of 2660 MHz. The single antenna receivers are at
height of 2.01 meters and uniformly spaced by 0.8 meters. We
average the antenna gains from the TX for each location and
conform it to a 604 × 800 grid, i.e., r(Z) ∈ R604×800. The
generated radiomap, together with its satellite image of nearby
landscape, are displayed in Fig. 12. Here, we further normalize
the radiomap measurements between 0∼1 for convenience by

(a) (b) (c)

Fig. 13. Preprocessing of APL Dataset: a) Normalized radiomap; b) Seg-
mented buildings; and c) Block term in priority.

(a) (b)

Fig. 14. Selected Areas to Test Performance: a) Scenario with smooth
spectral pattern; and b) Scenario with complex neighborhood landscape. The
restricted/inaccessible areas Zp with size 100× 100 are marked in yellow.

rnorm(p) = r(p)/r(p)max. Since the original radiomap and
the normalized one have exactly the same patterns, we can
apply inpainting to the normalized radiomap and transform
back without loss. To calculate the building block term in Eq.
(7), we segment the buildings against the background from the
satellite image. We show the normalized radiomap, segmented
buildings, and B(Z) in Fig. 13.

2) Performances in Different Scenarios: To evaluate the
proposed methods, we first consider two specific scenarios:
1) one with smooth spectral pattern and regular neighborhood
landscape shown as Fig. 14(a); and 2) one with complex
neighborhood landscape as shown in Fig. 14(b). In both
scenarios, we consider a restricted area with size 100 × 100,
marked as yellow in Fig. 14. The PSD in the whole restricted
area is unavailable, which we need to reconstruct from the
observed radiomaps in r(Z).

Since the observations are limited for a single region and
are insufficient for training DL neural networks, we mainly
use non-DL approaches as benchmarks. More specifically, we
compare our methods with model-based interpolation (MBI)
[6], RBF interpolation (RBF) [7], exemplar-based inpainting
(EI) [31], dictionary learning (DL) [32], and label propagation
(LP) [50]. Here, MBI and RBF are model-based methods
related to the distance from TX. EI and DL are image
inpainting approaches without considering radio propagation.
For LP, we combine the satellite images and information on
TX locations as features. In addition to proposed EPC/EPD,
we also test texture priority P (·)D(·) together with block
term B(·) under exemplar-based copy (EBC). To facilitate fair
comparison, we select the patch size of Ψp as 21 × 21. For
methods related to dictionary learning, we apply the K-SVD
[42] for dictionary generation and set the size of dictionary as
K = 500.

To visualize, the reconstructed radiomaps are shown in Fig
15, and the corresponding numerical results are shown as Table
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(a) Reconstructed Radiomap for Scenario 1.

(b) Reconstructed Radiomap for Scenario 2.

Fig. 15. Visualized Results in Selected Areas: (a) and (b) describe the regular and complex area, respectively; the results in red blocks are zoom-in presentations
of r̃(Zp).

TABLE I
NUMERICAL RESULTS IN SELECTED AREAS.

EI DL RBF MBI LP EBC EPC EPD
MSE in Scenario 1 0.0092 0.0152 0.0448 0.0271 0.0327 0.0088 0.0038 0.0096
MSE in Scenario 2 0.0258 0.0158 0.0217 0.0173 0.0306 0.0227 0.0152 0.0136

I. Here, we apply standard MSE defined by

MSE =
1

m

m∑
i=1

(xi − x̃i)
2, (28)

where x̃i, i = 1, · · · ,m are the estimated radiomap. As
shown in Fig. 15, MBI is unable to accurately predict the
radiomap for the missing area since PSD in this dataset is
over smaller distance variation from the transmitter but is
more sensitive to the surrounding landscape as seen from Fig.
12. The RBF interpolation also fails because of unevenly-
distributed observed samples. The results of LP appear noisy
since training features from environment are with low quality.
The proposed methods based on radio propagation priority
exhibit superior performance compared with traditional image
inpainting methods, benefiting from the enhanced features and

textures based on propagation information. As shown in Fig.
13(c), the propagation priority terms favor the vertical direc-
tion to fill the region, which is consistent with the apparent
spectrum pattern in Fig. 13(a). EPC displays sharper features
while EPD provides more robust but more blurry results. In
the first scenario with smooth spectrum patterns, EPC displays
significant improvement since the vertical patterns therein are
clearer. In the second scenario near obstacles, EPC sometimes
leads to unexpected artifacts while EPD exhibits better robust-
ness. The numerical results in Table I are consistent with the
visual results. Thus, one can choose whether EPC or EPD
should be applied according to the complexity of the nearby
landscape.

3) Performances for Different Area Sizes: To evaluate the
performances in more general setups, we compare different
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(a) MSE. (b) NE

Fig. 16. Numerical Results in Different Area Sizes: Smaller MSE/NE is better. MBI fails to estimate the missing areas in small-scale radiomaps and displays
an irregular pattern over different area sizes.

(a) City Map. (b) Building Segmentation

Fig. 17. landscape of Braltab Dataset: a) Nearby envrionment; b) Segmented
buildings which are marked as yellow.

methods for restricted areas with various area sizes, i.e., 30×
30, 70×70, 100×100, 130×130, and 160×160. We randomly
generate 10 Zp for each region size, and calculate the mean
error of reconstructed radiomap for different generated areas.
In addition to MSE, we also examine the performance via
normalized error (NE) denoted by

NE =

∑m
i=1(xi − x̃i)

2∑m
i=1 x

2
i

. (29)

The results are shown in Fig. 16. The estimation error in-
creases with growing restricted regions since neighbor spec-
trum information is more limited and less accurate for larger
areas. Since the APL dataset is more sensitive to the land-
scape rather than the Tx distance, MBI fails to capture clear
spectral patterns and exhibits consistently poorer and irregular
performance. Overally, our proposed methods achieve the best
performance by comparison with the list of tested methods.
EPC and EPD show similar MSE results while EPD generates
better normalized error than EPC. The results indicate that
EPC works better in some special scenarios whereas EPD is
more robust. The conclusions are similar to Section VI-A2 and
further demonstrate the benefits of the proposed method.

B. Large-Scale radiomap Reconstruction

We next present the results of large-scale radiomap recon-
struction for restricted areas for the proposed EPD/EPC and
TPI.

1) Data Information and Preprocessing: We evaluate the
proposed algorithms in the BRATlab Dataset generated by the
simulation tool Altair Feko 1. The dataset is generated for

1https://www.altair.com/feko/

(a) TX Location. (b) Radiomap - 1 TX

(c) TX Locations. (d) Radiomap - 3 TX

Fig. 18. Illustration of Bratlab Dataset: a) - b) TX locations and radiomap
for the single-transmitter scenario; c) - d) TX locations and radiomap for
the Triple-transmitters scenario. The TX locations are marked as red, and the
radiomap is in dBm.

locations in California, USA, for which landscape map is ac-
cessible from OpenStreetMap 2. The locations are centered at
36.8767 ∼ 36.9170 in latitude and −121.4176 ∼ −121.3375
in longitude. The whole region is conformed as a 917× 1409
regular grid. There are 1120 buildings in this region and each
building is set as 17.5 meters. We segment the buildings from
the background to calculate the depth map shown as Fig. 17.
To measure the performances of the proposed methods, we
consider two scenarios: 1) 1-transmitter (TX) scenario; and 2)
3-TX scenario. For both scenarios, each transmitter contains
three antennas (model 720842A2) with height as 35 meters
and initial power as 46.00 dBm. The frequency used for each
antenna is 2625 MHz. In the 3-TX scenario, the three TXs
are located at (161, 288), (219, 1119), and (768, 817) in the
grid, respectively. In the 1-TX scenario, the TX is located as
(403, 784). The full radiomaps are shown in Fig. 18.

2) Performance in Selected Regions: Similar to the small-
scale radiomap reconstruction, we also first consider two spe-
cific scenarios: 1) one with regular patterns which has similar

2https://www.openstreetmap.org/#map=5/38.007/-95.844
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(a) Radio Depth Map. (b) Scenario 1. (c) Scenario 2.

Fig. 19. Illustration of Scenarios: 1) Radio depth map for 3-TX Bratlab dataset; 2) Scenario 1 with regular patterns; and 3) Scenario 2 with complex patterns.
The restricted area is zoomed in within the red block.

TABLE II
MSE OF RECONSTRUCTED RESTRICTED AREAS FOR DIFFERENT METHODS IN BRATLAB DATASET

MBI RBF EI DL NN LP EPC EPD TPI
Scenario 1 18.47 16.37 18.40 18.78 12.29 20.41 14.57 16.40 8.37
Scenario 2 139.32 130.29 137.33 126.11 115.21 123.11 121.76 111.07 104.01

Fig. 20. Visual Results of Reconstructed radiomap for Scenario 1: the results in red blocks are zoom-in presentations of r̃(Zp).

landscape to other observed regions; 2) one with complex
nearby landscape, which has more unique spectral patterns
in the radiomap. We select two 100×100 regions as restricted
areas in the 3-TX radiomaps, respectively, shown as Fig.
19(b) and Fig. 19(c). We compare our methods with the MBI,
RBF, and LP interpolations discussed in Section VI-A2. We
also present the comparison of our template-perturbation ra-
diomap inpainting (TPI) with dictionary learning (DL), image
inpainting (EI), deep regression neural networks (NN) and our
proposed EPC/EPD. For learning-based methods, such as LP
and NN, we input the distance to the TXs, the landscape map
and segmented building images as features. For the proposed
TPI, we apply Eq. (22) by setting σ = 0.01 to construct radio
depth map, with result shown in Fig. 19(a). The weights in Eq.
(26) are selected by setting a = 1, b = 1, c = 1 and d = 0.01.
EPC is applied in the Step 6 of TPI as illustrated in Algorithm
2. Interested users could adjust the parameters depending on
the resolution and PSD distribution in their own dataset. The
patch size is set as 15×15 for all inpainting-based approaches.
The dictionary size is K = 500 for DL-related methods.

Table II provides the numerical MSE results, and Fig.
20 - 21 provide the corresponding the image results for

visualization. From the numerical results, our proposed TPI
achieves superior performance to all other tested approaches.
Fig. 20 shows that the model-based interpolation favors radio
propagation model and generates smoother patterns, which
could better capture scenarios with regular spectral patterns.
However, when dealing with more complex patterns like
Scenario 2, model-based interpolation methods, such as MBI
and LP, fail to capture the smaller-scale shadowing effects.
On the other hand, learning-based methods, including LP and
NN, could provide good approximation on the overall PSD
values if there are enough training samples. However, since the
landscape map is rather noisy in real-life scenarios, learning-
based approaches sometimes introduce unexpected artifacts, as
shown in Fig. 21. Compared with traditional image inpainting
methods, such as EI and DL, our model-based inpainting
significantly improve radiomap reconstruction, demonstrating
the benefits of our proposed radio-based priority and radio
depth map. To further evaluate the efficiency of the proposed
radio depth map, we also evaluate the performance of TPI in
randomly selected 100×100 missing areas in the APL dataset.
The overall MSE, as shown in Table III, demonstrates better
performance of the proposed EPC/EPD and TPI.
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Fig. 21. Visual Results of Reconstructed radiomap for Scenario 2: the results in red blocks are zoom-in presentations of r̃(Zp).

TABLE III
MSE IN A RANDOMLY SELECTED REGION IN APL DATASET

Methods MBI EI NN LP DL EPC EPD TPI
MSE 0.0231 0.0153 0.0184 0.0317 0.0144 0.0118 0.0102 0.0086

Fig. 22. MSE over Different Sizes of Restricted Areas.

3) Performance over Different Restricted Region Sizes:
Suppose that each restricted area has size n× n. We evaluate
the performances in regions with different sizes n ranging from
50 ∼ 200. To evaluate the overall performance, we randomly
select 20 regions from the 1-TX dataset and 3-TX dataset
as the restricted areas and calculate the average MSE. We
normalize the maximal MSE among all the methods as 1 to
display a more general curve, shown in Fig. 22. These results
show TPI with the best performances and EPD/EPC with
competitive results in comparison to DL-based approaches.
The experimental results demonstrate the efficiency of the
proposed methods and the defined radio depth map.

4) Potential Integration of Proposed Depth Map and Neural
Networks: Since landscape maps are often noisy and not
accurate, treating landscape and TX locations as features may
lead to unexpected artifacts in the radiomap reconstruction,
as shown in Fig. 21. To further illustrate the potential power

TABLE IV
COMPLEXITY OF INPAINTING THE MISSING AREA (SECONDS)

Method EI EPC EPD TPI
Rounds 59 54 55 50 (template) 62 (perturbation)
Time 653.3 562.4 981.4 1829.3

of the proposed radio depth map, we replace landscape maps
with radio depth map as the input feature for the DL neural
networks. An example result is shown as Fig. 23, where the
radio depth map leads to more accurate patterns and smaller
MSE for DL neural networks, demonstrating the potential
integration of the proposed radio depth map and DL in related
future research. We plan to explore more systematic ways to
combine model-based radiomap inpainting with DL in future
works.

5) Complexity: We now compare the computation com-
plexity of the proposed EPC, EPD and TPI against tradi-
tional exemplar-based inpainting (EI) [16]. For these algo-
rithms, computation cost mainly stems from inpainting se-
lected patches in each round, which is affected by the number
of rounds needed to inpaint the entire missing region. Thus,
we present the number of rounds in addition to computation
time for the radiomap inpainting.

We randomly pick 100 missing areas with size 100×100 in
the BRATlab dataset and implement the inpainting algorithms
in Matlab. The patch size is set as 23 × 23. To ensure
fair comparison, all tested algorithms are implemented with
unpackaged functions in Intel(R) Core(TM) i7-7700K CPU @
4.20GHz. The results are presented in Table IV. From the
results, EPC/EPD need fewer rounds than EI, indicating that
our proposed methods could capture a better texture feature
and display a more efficient inpainting direction. The pro-
posed EPC shows superior performance in computation time
compared to others. EPD needs more computation time due
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(a) Ground Truth. (b) Landscape Map as Input:
MSE=25.17.

(c) Radio Depth Map as Input:
MSE=8.74.

Fig. 23. Examples of the Results from Neural Networks with Different Input Features.

to its calculation of codeword weights in dictionary learning.
For TPI, we decompose it to a template and a perturbation,
both of which need the inpainting of missing area. As the
template captures the smooth patterns, it needs fewer rounds
than perturbation. Note that, the computation time may be
significantly reduced by applying prepackaged functions. For
example, the EI only needs 1.24 seconds if well packaged in
Matlab; similarly for EPD/EPI and TPI.

VII. CONCLUSION

In this work, we propose two novel algorithms for radiomap
inpainting for restricted regions. To integrate well known radio
propagation model with texture patterns, we first define a
radio propagation priority and introduce an exemplar-based
approach for small-scale fine-resolution radiomap inpainting.
To generalize radiomap inpainting, we further define a new
radio depth map and develop a two-step template-perturbation
algorithm for large-scale radiomaps. We evaluate our proposed
algorithms by using two different datasets. Our test results
demonstrate the efficiency of the propagation-based priority
and the radio depth map to spatially capture radio PSD
patterns. The proposed methods can benefit spectrum access
and management particularly for the restricted or sensitive
areas that either lack or has limited measurement access.

With rapid growth and expansion of IoT and 5G systems,
potential future directions should consider wireless network
optimization and spectrum planning based on radiomap re-
covery and prediction. One potential direction is the timely
fault detection of radio networks based on the sparse spectral
measurement observations from sensors and mobile devices.
Another promising direction may consider integrating deep
learning models into radiomap inpainting. Beyond direct ra-
diomaps applications, our proposed radio depth map could
efficiently model spectrum distribution and surrounding envi-
ronments, which is expected to have broader potential impacts
on wireless communication and IoT systems. We plan to
explore these and other related directions in the future works.
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