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ABSTRACT

The term degenerate is used to describe abelian varieties whose Hodge rings contain exceptional cycles –
Hodge cycles that are not generated by divisor classes. We can see the efect of the exceptional cycles on the
structure of an abelian variety through its Mumford-Tate group, Hodge group, and Sato-Tate group. In this
article we examine degeneracy through these diferent but related lenses. We specialize to a family of abelian

varieties of Fermat type, namely Jacobians of hyperelliptic curves of the form y2 = xm − 1. We prove that the
Jacobian of the curve is degenerate wheneverm is an odd, composite integer. We explore the various forms
of degeneracy for several examples, each illustrating diferent phenomena that can occur.
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1. Introduction

We say that a complex abelian varietyA is nondegenerate if its (complexioed) Hodge ring is generated by divisor classes. In this article
we are interested in studying abelian varieties that do not have this property. Abelian varieties whose Hodge rings are not generated
by divisor classes are called degenerate, and the Hodge cycles not coming from the divisor classes are called exceptional cycles.

While the deonition of degeneracy is a statement about the Hodge ring, we can see the efects of degeneracy in groups constructed
from the Hodge structure of the abelian variety: the Mumford-Tate group, the Hodge group, and the Sato-Tate group. TheMumford-
Tate group and Hodge group are related to the Hodge ring via an action on certain cohomology groups. The algebraic Sato-Tate
conjecture andMumford-Tate conjecture imply a relationship between the Sato-Tate group and theMumford-Tate andHodge groups.
Thus, it is natural that degeneracies of these groups should be intertwined with degeneracies in the Hodge ring.

In this paper we focus on nonsimple abelian varieties and study how the Hodge structures of their simple factors interact with
each other. This is particularly interesting in the case where one of the factors is of type IV in the Albert’s classiocation since the
product of nondegenerate simple abelian varieties is also nondegenerate as long as none of the factors are of this type (see Theorem
0.1 of [20]). Work of Moonen and Zarhin [26] gives a complete classiocation of degeneracy in dimensions 4 and 5 that is based on
the decomposition of an abelian variety into its simple factors. There are some explicit examples of degenerate abelian varieties in the
literature where the focus is on the associated Hodge rings (see, for example, [1, 28, 31]). Recent work of Lombardo [25] examines
degeneracy in the Mumford-Tate group of a dimension 4 Jacobian variety. This phenomenon does not occur in lower dimensions
since the Hodge ring of an abelian variety of dimension ≤ 3 is always generated by divisor classes.

In this paper we build on these results by considering how the degeneracy of the Hodge ring can been seen in the Mumford-Tate
group, Hodge group, and Sato-Tate group within a particularly interesting family of abelian varieties of Fermat type: Jacobians of
curves of the form Cm : y2 = xm − 1. This family of curves was studied by Shioda in [31], where he proved the Hodge conjecture for
their Jacobian varieties. The Hodge conjecture claims that the Hodge cycles of an abelian variety are all algebraic cycles, and one way
to verify this is by showing that all of the Hodge cycles are generated by divisor classes and then using the fact that the divisor classes
are all algebraic. Shioda, on the other hand, proves the Hodge conjecture for these Jacobian varieties without appealing to divisor
classes, and in certain cases he proves that the Hodge rings have exceptional cycles. In this paper we prove the following extension of
his result.

Theorem 1.1. Let m be an odd composite integer. Then the Jacobian Jac(Cm) of the curve y2 = xm − 1 is degenerate in the sense that
the Hodge ring contains exceptional cycles.

Weprove this result by orst showing that, for any odd primes p ≤ q such that the product pq dividesm, the Jacobian of y2 = xpq−1
can be viewed as a factor of Jac(Cm) (note that this includes the case where p = q and so p2 divides m). We then apply Lemma 3.3,
where we prove that Jac(Cpq) has exceptional Hodge cycles.

With the general result of Theorem 1.1 in hand, we aim to understand how degeneracy in the Hodge ring appears as degeneracy
in the Mumford-Tate, Hodge, and Sato-Tate groups of the Jacobian varieties. The Mumford-Tate and Hodge groups of degenerate
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2 H. GOODSON

abelian varieties are, in some sense, <smaller= than what we would see for a nondegenerate abelian variety. The Sato-Tate group of a
degenerate abelian variety will have a <smaller= identity component and, potentially, a component group that is <larger= than what we
would see for a nondegenerate CM abelian variety (i.e., one that is larger than the Galois group of the CM oeld over the base oeld).

Determining Sato-Tate groups of abelian varieties is the source of ongoing interest and work. There has been recent progress
on computing Sato-Tate groups of nondegenerate abelian varieties (see, for example, [2, 8, 9, 11–14, 17, 23]). A nice property of
nondegenerate abelian varieties is that the component group of the Sato-Tate group is isomorphic to Gal(K/F), where K is the
endomorphism oeld (i.e., the minimal extension over which all the endomorphisms of the abelian variety are deoned) and F is the
oeld of deonition of the abelian variety – this is due to the fact that the Sato-Tate group of the abelian variety is connected over this
oeld. However, the landscape for degenerate abelian varieties is still wide open. In particular, there are no examples in the literature
where the component groups for these degenerate Sato-Tate groups are computed. One dioculty is that we may need a larger oeld
than the endomorphism oeld in order to have a connected Sato-Tate group, and it’s not clear what oeld is needed. In this paper we
have several results regarding the identity component of the Sato-Tate group (see Propositions 5.1 and 5.5) as well as the following
conjecture regarding the full Sato-Tate group.

Conjecture 5.2. Let Jac(C9) denote the Jacobian of the curve y2 = x9 − 1. Up to conjugation inUSp(8), the Sato-Tate group of Jac(C9)

is

ST(Jac(C9)) �
〈
diag(U1,U2,U3,U1U2U3), γ

〉
,

where γ is deoned in equation (5.1) and Ui is deoned in the Notation and Conventions section.

In addition to this example, we explore degeneracy for other values ofm, carefully examining theMumford-Tate groups, theHodge
rings and Hodge groups, and the Sato-Tate groups of the varieties. We see diferent phenomena occurring for diferent values of m,
which makes this an intriguing problem to study.

Organization of the paper

In Section 2 we provide background information for the main objects of study. In Section 3 we take a deep dive into degeneracy. We
begin by generalizing a result of Lombardo [25] for degeneracy in Mumford-Tate groups. We prove Lemma 3.3, which states that
Jac(Cpq) has exceptional Hodge cycles for any odd primes p, q (not necessarily distinct). We then explain how the Hodge ring and
Hodge group are related to each other. Finally, we describe how degeneracy can afect the Sato-Tate group of an abelian variety. In
Section 4 we prove results for the decompositions of the Jacobian varieties into simple factors and we prove Theorem 1.1. In Section 5
we work on explicit examples that demonstrate various phenomena that can occur for degenerate abelian varieties. For each example,
we examine the Mumford-Tate group, Hodge ring, and Hodge group. For m = 9 and m = 15, we also study the Sato-Tate groups.
While the Sato-Tate group of Jac(C15) is somewhat mysterious, we show that it is less mysterious for Jac(C9). We make a conjecture
for the full Sato-Tate group of Jac(C9) and provide moment statistics to support the conjecture.

Notation and conventions

For any K-vector spaceW and K-algebra R, letWR := W ⊗K R.
The curve y2 = xm − 1 is denoted by Cm and its Jacobian is denoted by Jm. We write ζm for a primitivemth root of unity.
Let I denote the 2 × 2 identity matrix and deone the matrix

J =
(

0 1
−1 0

)
.

We embed U(1) in SU(2) via u �→ U = diag(u, u) and, for any positive integer n, deone the following subgroup of the unitary
symplectic group USp(2n)

U(1)n :=
〈
diag(U1,U2, . . . ,Un) | Ui ∈ U(1)

〉
.

2. Background

2.1. Hodge structures

In this section, we follow the exposition in Chapters 1 and 17 of [4].
Let A be a projective abelian variety over C. We denote the orst homology group of A by V(A) := H1(A,Q) and its dual (the orst

cohomology group) byV∗(A) := H1(A,Q). The complex vector spaceV(A)C has a weight−1 Hodge structure, i.e., a decomposition

V(A)C = V(A)−1,0 ⊕V(A)0,−1 where V(A)−1,0 = V(A)0,−1. This corresponds to the following weight 1 Hodge structure of its dual

V∗
C = H(A)1,0 ⊕ H(A)0,1,
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where V(A)−1,0 = H1,0(A)∗ and V(A)0,−1 = H0,1(A)∗. The notation in the decomposition of H1(A,Q) is deoned by Ha,b(A) =
Ha(�b

A), where �b
A is the sheaf of holomorphic b-forms on A. We can also deone Ha,b(A) by

Ha,b(A) �
a∧
H1,0(A) ⊗

b∧
H0,1(A). (2.1)

Hodge structures of weight n, Hn(A,C) �
∧nH1(A,C), satisfy Hn(A,C) �

⊕
a+b=nH

a,b(A).

2.2. Hodge andMumford-Tate groups

The Hodge structure of the previous section determines a representation μ∞,A : Gm,C → GLVC
acting as multiplication by z on

V(A)−1,0 and trivially on V(A)0,−1. With this setup, we deone the Mumford-Tate group of A, denoted MT(A), to be the smallest
Q-algebraic subgroup of GLV such that μ∞,A(Gm,C) ⊆ MT(A)C. We deone the Hodge group of A to be the connected component
of the identity of MT(A) ∩ SLV .

The Hodge group can also be formed by restricting the representation μ∞,A to the (real Lie) circle group S1 := {z ∈ C | |z| = 1}.
With this setup, the Hodge group is the smallest Q-algebraic subgroup of GLV such that μ∞,A(S1) ⊆ Hg(A)C. The image of this
restriction of μ∞,A lies in SLVC

, and so the Hodge group is a Q-algebraic subgroup of SLV . In fact, one can show that the image of
the representation μ∞,A is contained in the symplectic group GSpVC

, taken with respect to the symplectic form given by the block
matrix diag(J, . . . , J). Hence, MT(A) and Hg(A) areQ-algebraic subgroups of GSpV and SpV , respectively.

In our work we will be interested in nonsimple abelian varieties. For n ≥ 1, we can identify Hg(An) with Hg(A) and the action
is performed diagonally on V(An) = (V(A))n. More generally, for n1, n2, . . . , nt ≥ 1, Hg(An1

1 × An2
2 × · · · × A

nt
t ) is isomorphic to

Hg(A1 × A2 × · · · × At). Even more generally, if A and B are abelian varieties then Hg(A × B) ⊆ Hg(A) × Hg(B). In our work we
will be interested in studying cases where the containment is strict.

2.3. The Hodge ring

In this section we use the notation found in [31]. We denote the (complexioed) Hodge ring of A by

B
∗(A) :=

dim(A)∑

d=0

B
d(A),

where Bd(A) = (H2d(A,Q) ∩Hd,d(A)) ⊗C is theC-span of Hodge cycles of codimension d on A. The subring of B∗(A) generated
by the divisor classes, i.e. generated by B1(A) , is

D
∗(A) :=

dim(A)∑

d=0

D
d(A),

where Dd(A) is the C-span of classes of intersection of d divisors.
The relationship between these spaces is relevant to the Hodge conjecture: Let C d(A) be the subspace of Bd(A) generated by the

classes of algebraic cycles on A of codimension d. Then

D
d(A) ⊆ C

d(A) ⊆ B
d(A)

and the Hodge conjecture for A asserts that every Hodge cycle is algebraic: C d(A) = Bd(A) for all d (see [1, 31]). One way to prove
the Hodge conjecture in codimension d is to prove the equality Dd(A) = Bd(A). However this equality does not always hold, even
when the Hodge conjecture is known to be true. In Section 3.2 we will further study the relationship between Dd(A) and Bd(A).

2.4. An �-adic construction of the Sato-Tate group

We follow the exposition of [8] and [33, Section 3.2]. See also [29, Chapter 8].
For any prime �, we deone the Tate module T� := lim←−n

A[�n]; this is a free Z�-module of rank 2g. We deone the rational Tate

module V� := T� ⊗Z Q, which is a Q�-vector space of dimension 2g. The Galois action on the Tate module is given by an �-adic
representation

ρA,� : Gal(F/F) → Aut(V�) ∼= GL2g,Q�
. (2.2)

The �-adic monodromy group of A, denoted GA,�, is the Zariski closure of the image of this map in GL2g,Q�
, and we deone G1

A,� :=
GA,� ∩ Sp2g,Q�

. We deone the Sato-Tate group of A, denoted ST(A), to be a maximal compact Lie subgroup of G1
A,� ⊗Q�

C contained
in USp(2g).

It is conjectured that ST(A) is independent of the choice of the prime � and of the embedding ofQ� inC; this is known to be true
in many cases, such as in dimension ≤ 3 and for products of CM abelian varieties (see, for example, [3, 21]). While the Sato-Tate
group is a compact Lie group, it may not be connected. We denote the connected component of the identity (also called the identity
component) of ST(A) by ST0(A).
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2.5. TheMumford-Tate and algebraic Sato-Tate conjectures

Deligne showed in [7] that the identity component of GA,� is always a subgroup of MT(A)Q�
, and it is conjectured that the inclusion

is actually an equality (see [33]).

Conjecture 2.1 (Mumford-Tate conjecture). The identity component of GA,� is equal toMT(A)Q�
.

Since the identity component of G1
A,� is a subgroup of Hg(A)Q�

, the Mumford-Tate conjecture predicts that this inclusion is also
an equality.

The Mumford-Tate conjecture is known to be true for many examples of abelian varieties, including for abelian varieties of CM
type (see, for example, [28, 34]) and for all abelian varieties of dimension g ≤ 3 [3, Theorem 6.11]. More generally, Commelin proved
that if the Mumford-Tate conjecture is true for abelian varieties A and B deoned over a onitely generated oeld then it is also true for
the product A × B [6].

When the Mumford-Tate conjecture holds, it follows from results of [3, Section 3] that, up to conjugation in USp(2g), the
Mumford-Tate group and the Hodge group uniquely determine the identity component of the Sato-Tate group. Unfortunately we
will not be able to gain information about the component group of the Sato-Tate group from these two groups. To address this,
Banaszak and Kedlaya gave the following reonement of the Mumford-Tate conjecture in [3].

Conjecture 2.2 (algebraic Sato-Tate conjecture). There is an algebraic subgroupAST(A) ofGSp2g overQ, called the algebraic Sato-Tate

group of A, such that the connected component of the identity AST0(A) is reductive and, for each prime �, G1
A,� = AST(A) ⊗Q Q�.

When this conjecture holds, the Sato-Tate group of A is a maximal compact Lie subgroup of AST(A)⊗QC contained in USp(2g).
There aremany cases where the algebraic Sato-Tate conjecture is known to be true. Banaszak andKedlaya prove that the conjecture

holds for all abelian varieties of dimension at most 3 [3, Theorem 6.11], for many examples of simple abelian varieties [3, Theorem
6.9], and for all abelian varieties of CM type [3, Theorem 6.6]. There are examples of inonite families of higher dimensional Jacobian
varieties for which the algebraic Sato-Tate conjecture is known to be true in [8, 15, 17]. Furthermore, Cantoral-Farfán and Commelin
[5] proved that the algebraic Sato-Tate conjecture holds whenever the Mumford-Tate conjecture holds for an abelian variety.

2.6. Moment statistics

In Section 5 we will compute moment sequences of the Sato-Tate groups of Jacobian varieties. These moment statistics can be used
to support the equidistribution statement of the generalized Sato-Tate conjecture by comparing them to moment statistics obtained
for the traces ai in the normalized L-polynomial. The numerical moment statistics are an approximation since one can only ever
compute them up to some prime.

The following background information has been adapted from [8, 17]. We deone the nth moment (centered at 0) of a probability
density function to be the expected value of the nth power of the values, i.e.Mn[X] = E[Xn]. For independent variables X and Y we
have E[X + Y] = E[X] + E[Y] and E[XY] = E[X]E[Y], which yield the following identity

Mn[X1 + · · · + Xm] =
∑

β1+···+βm=n

(
n

β1, . . . ,βm

)
Mβ1 [X1] · · ·Mβm [Xm],

where the Xi are independent.
In Section 5, we will work with the unitary group U(1) and consider the trace map onU ∈ U(1) deoned by z := tr(U) = u+ u =

2 cos(θ), where u = eiθ . From here we see that dz = 2 sin(θ)dθ and

μU(1) =
1

π

dz
√
4 − z2

is the pushforward of theHaarmeasure onU(1) to the interval [−2, 2] (see [33, Section 2]).We can deduce the following pushforward
measure

μU(1)k =
k∏

i=1

1

π

dzi√
4 − z2i

.

We can now deone the moment sequence M[μ], where μ is a positive measure on some interval I = [−d, d]. The nth moment
Mn[μ] is, by deonition, μ(φn), where φn is the function z �→ zn. This yieldsMn[μU(1)] =

( n
n/2

)
, where

( n
n/2

)
:= 0 if n is odd. Hence,

M[μU(1)] = (1, 0, 2, 0, 6, 0, 20, 0, . . .). From here, we take binomial convolutions to obtain

Mn[μU(1)k] =
∑

β1+···+βk=n

(
n

β1, . . . ,βk

)
Mβ1[μU(1)] · · ·Mβk [μU(1)].

For a dimension g abelian variety, denote by μi the projection of the Haar measure onto the interval
[
−
(2g
i

)
,
(2g
i

)]
, where i ∈

{1, 2, . . . , g}. We computeMn[μi] by averaging over the components of the Sato-Tate group.
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3. Degenerate abelian varieties

We deone an abelian variety A to be degenerate if its Hodge ring is not generated by divisor classes, i.e., the containment D∗(A) ⊂
B∗(A) is strict. Results of Hazama [20] show that A is stably nondegenerate if and only if the rank of the Hodge group is maximal
(A is stably nondegenerate if D∗(An) = B∗(An) for all n > 0), which implies a similar statement for the Mumford-Tate group.
Hazama also proves an interesting result regarding products of abelian varieties: if A and B are both stably nondegenerate, then the
only scenario in which A × B could be degenerate is if one of its simple factors is of type IV in the Albert’s classiocation (see [20]).
Recall that an abelian variety X is of type IV if the center of End(X) ⊗Z Q is a CM oeld K with totally real suboeld K0 containing
elements of K that are oxed by the Rosati involution induced by the polarization of X (see, for example, [27, Section 21]).

The main goal of this section is to investigate degeneracy via Mumford-Tate groups, Hodge rings, and Hodge groups. The results
of Sections 3.1 and 3.3 are general, while the result in Section 3.2 holds for Jacobians of the curves y2 = xm − 1. In Section 3.4 we will
show how degeneracy can afect the Sato-Tate group of an abelian variety.

3.1. Degeneracy via theMumford-Tate group

In this section we study degeneracy of nonsimple abelian varieties via their Mumford-Tate groups. Consider a product A1 × A2 ×
· · · × An of nonisogenous (absolutely) simple abelian varieties. The question we wish to answer is: when is the Mumford-Tate group
of this product smaller than expected? In particular, we wish to know when one of the canonical projections

MT(A1 × A2 × · · · × An) −→ MT(Ai)

is an isomorphism or an isogeny. To answer this, we generalize results of Lombardo [25]. In what follows, we focus on abelian varieties
Ai with CM.

3.1.1. Notation

Let E be a CM oeld and let L/Q be the Galois closure of E/Q. Let TE = ResE/Q(Gm) be the corresponding algebraic torus overQ. A
specioc case of this is TE(Q) = E×. See Section 2.3.1 of [25] for more details.

LetG = Gal(L/Q) and letH be the subgroup ofG associated to E:H = Gal(L/E). We can identify a CM type� of E with a subset
ofH \G, and we deone the set �̃ = {g ∈ G | Hg ∈ �}. In our work, the renex oeld of Ewill always satisfy E∗ = E though its CM-type
�∗ will usually be distinct from �.

There are several important maps that we will carefully deone. The orst of these is the usual norm function N : L → E deoned by
N(x) =

∏
σ σ(x), where the product is taken over all σ in Gal(L/E). In the special case where L = E, this norm map is simply the

identity. This norm map induces a map on the associated tori.
We deone two dual maps on the character groups of the tori TE, denoted by T̂E. The orst is a map on characters associated to E:

φ∗ : T̂E → T̂E∗

[β] �→
∑

ψ∈�∗
[ψβ].

Here [β] denotes the character of TE corresponding to the embedding β : E → Q. The second map sends characters associated to E∗

to those associated to L:

N∗ : T̂E∗ → T̂L

[Hg] �→
∑

h∈H
[hg].

Here we are deoning the map by considering the isomorphism T̂E∗ � Z[H \ G] (see the exposition in [25]). In our work, we will be
interested in the composition of these maps: N∗φ∗ : T̂E → T̂L.

3.1.2. The canonical projectionmap

The work in this section closely follows Section 4 of [25] where the results are stated for a product of two absolutely simple abelian
varieties. Let Ei denote the CM oeld of the absolutely simple abelian variety Ai for 1 ≤ i ≤ n. We begin with a result for character
maps.

Lemma 3.1. For i = 1, . . . , n, let Ei be a CM oeld, Li be its Galois closure over Q, and L be a onite Galois extension of Q that contains
each Li. The image of the map

TL
(N1,N2,...,Nn)−−−−−−−→ TE∗

1
× TE∗

2
× · · · × TE∗

n

(φ1,φ2,...,φn)−−−−−−−→ TE1 × TE2 × · · · × TEn

isMT(A1 × A2 × · · · × An).
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Proof. See the proof of Lemma 4.1 of [25], which does not depend on the number of factors in the product.

Now consider the projection πi : MT(A1 × A2 × · · · × An) → MT(Ai).

Lemma 3.2. Let T̂i = {0} × · · · × {0} × T̂Ei × {0} × · · · × {0}. The canonical projection πi is an isomorphism if and only if

T̂i + ker(N∗
1φ

∗
1 + · · · + N∗

nφ
∗
n) = T̂E1 × · · · × T̂En .

Similarly, πi is an isogeny if and only if T̂i + ker(N∗
1φ

∗
1 + · · · + N∗

nφ
∗
n) has onite index in the product T̂E1 × · · · × T̂En .

Proof. This result is an easy generalization of Lemma 4.2 of [25], and so we include just enough detail in the proof to aid in
understanding the result.

Using the notation and deonitions in Section 3.1.1 and the results of Lemma 3.1, we can build the following commutative diagram

TL
(φ1N1, ...,φnNn)

�� ��

(N1,...,Nn)

��

MT(A1 × · · · × An)
πi

�� ��
� �

��

MT(Ai)� �

��

TE∗
1
× · · · × TE∗

n (φ1, ...,φn)
�� TE1 × · · · × TEn pi

�� �� TEi

and its dual

T̂L M̂T(A1 × · · · × An)� �
N∗
1φ∗

1+···+N∗
nφ∗

n
�� M̂T(Ai)� �

π∗
i

��

T̂E∗
1
× · · · × T̂E∗

n

N∗
1+···+N∗

n

��

T̂E1 × · · · × T̂En

����

(φ∗
1 , ...,φ

∗
n)

�� T̂Ei
� �

p∗
i

��

����

where πi, pi are the canonical projections on the i-th factor, and we denote by f ∗ the map induced on characters by a morphism f of
algebraic tori.

Proving that the (surjective) projection πi is injective is equivalent to proving that π∗
i is surjective. Similarly, proving that the

projection πi is an isogeny is equivalent to proving that π∗
i has onite cokernel. By diagram chasing, in both cases we need only

consider the kernel and cokernel of

T̂Ei −→ T̂E1 × · · · × T̂En −→ M̂T(A1 × · · · × An).

The kernel of the map
∏

i T̂Ei −→ M̂T(A1 × · · · × An) coincides with the kernel of

T̂E1 × · · · × T̂En

N∗
1φ∗

1+···+N∗
nφ∗

n−−−−−−−−−→ T̂L

since M̂T(A1 × · · · × An) → T̂L is injective. Hence, M̂T(A1 × · · · × An) can be identioed with (T̂E1 × · · · × T̂En)/ ker(N
∗
1φ

∗
1 + · · ·

+N∗
nφ

∗
n).

Under this identiocation, the map π∗
i is surjective if and only if p∗

i

(
T̂Ei

)
, which equals T̂i, surjects onto T̂E1 ×· · ·× T̂En/ ker(N

∗
1φ

∗
1

+ · · · + N∗
nφ

∗
n). Similarly, π∗

i is an isogeny if and only if p∗
i

(
T̂Ei

)
maps to T̂E1 × · · · × T̂En/ ker(N

∗
1φ

∗
1 + · · · + N∗

nφ
∗
n) with onite

cokernel.

As in [25, Lemma 4.3], this can all be rephrased in terms of matrices. In the notation of Section 3.1.1, let Ei denote the CM oeld of
the absolutely simple abelian variety Ai for 1 ≤ i ≤ n and let L be a onite Galois extension ofQ containing the Galois closure of each
Ei. Furthermore, let G denote the Galois group of L overQ, and Hi ≤ G be the subgroup corresponding to Ei.

We letMi denote the matrix that represents the map N∗
i φ

∗
i . The rows ofMi are indexed by elements of G whereas the columns of

Mi are indexed by the setHi \G. We then compute the compositionN∗
i φ

∗
i for each [β] ∈ T̂Ei in order to determine the entries ofMi.

In the special case where Ei = L, the matrixMi is a square matrix with rows and columns indexed by G (sinceHi = {1}). Its entry in
position (gj,Higk) is given by

(gj,Higk) =

{
1 if gjg

−1
k ∈ �̃∗

i

0 otherwise.

The matrixM representing the mapN∗
1φ

∗
1 + · · · +N∗

nφ
∗
n is obtained by concatenating the matricesM1, . . . ,Mn horizontally. This

construction allows us to easily examine the kernel of the map when working out explicit examples.
We will apply these results to Jacobians of curves of the form y2 = xm −1. In Section 4 we give the decompositions of the Jacobian

varieties into simple factors, and in Section 5 we use these decompositions to write the matrix M and study the degeneracy of the
Mumford-Tate groups. We see examples where the canonical projection of the Mumford-Tate group is an isomorphism and ones
where it is merely an isogeny.
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3.2. Degeneracy via Hodge rings

Recall that the Hodge ring of A is denoted B∗(A) and the subring generated by divisor classes is denoted D∗(A). As noted in
Section 2.3, we have the containment D∗(A) ⊆ B∗(A). The question we wish to answer is: when is the containment strict? More
precisely, we wish to know when B∗(A) is not generated by the divisor classes B1(A). We can think of this as the Hodge ring being
larger than expected. The additional Hodge cycles that are not generated by divisor classes are referred to as exceptional cycles, and
so we can also ask: in what codimensions do we have exceptional cycles?

In general, these are diocult questions to answer. However, if we specify to Jacobian varieties Jm of curves Cm : y2 = xm − 1 then
we can give satisfactory answers. The following result largely follows from Lemma 5.5 of [31] and will be used to prove Theorem 1.1.

Lemma 3.3. Let m = pq, with p ≤ q odd primes. Suppose q is relatively prime to ((p + 1)/2)!. Then Bd(Jm) has exceptional Hodge
cycles when d = (p + 1)/2.

Proof. Consider the quotient

B
d(Jm)

/ d−1∑

r=1

B
r(Jm) · Bd−r(Jm).

If the dimension of this space is greater than or equal to 1, then there will be Hodge cycles in Bd(Jm) that do not come from lower
codimension. In particular, there will be exceptional cycles that are not generated by divisor classes.

Shioda relates the dimension of this space to the number Nm(d) of certain indecomposable elements of a semigroup (see Section
1C of [31]). For certain values of m, Shioda gives a lower bound for this quantity (see Lemma 5.5 of [31]): letting m = (2d − 1)m′,
we have

Nm(d) ≥ m′ − 1 (3.1)

whenever gcd(m′, d!) = 1.
Form = pq and d = (p + 1)/2, we letm′ = q so thatm = (2d − 1)m′. If gcd(q, d!) = 1 then the inequality in (3.1) becomes

Nm(d) ≥ q − 1

which is greater than 1 for any q > 2. Thus, there are exceptional cycles in Bd(Jm), where d = (p + 1)/2.

This result will always hold if we choose q ≥ p since then q > (p+1)/2 and is, therefore, relatively prime to every smaller positive
integer. In Section 4.1 we use this result to prove Theorem 1.1.

Lemma 3.3 does not give a value or even a bound for the number of exceptional cycles – we simply get a lower bound on the
number of cycles that do not come from a lower codimension. However, as we will see in Section 5, it is possible to compute the
generators of the Hodge ring for the Jacobian varieties Jm and so we will be able to see which cycles are exceptional.

3.3. Degeneracy via Hodge groups

As noted in Section 2.2, the Hodge andMumford-Tate groups are closely related to each other. TheHodge group is also closely related
to the Lefschetz group, denoted L(A), which is the connected component of the identity in the centralizer of the endomorphism ring
End(AF)Q in SpV . In general, Hg(A) ⊆ L(A) and while the inclusion can be strict, there are cases where we have equality. In fact,
when dim(A) ≤ 3 it is known that we always have equality [3].

The question we wish to answer is: when is the Hodge group smaller than the Lefschetz group? In this paper we study this problem
speciocally for the Jacobian varieties Jac(y2 = xm−1). We could investigate an answer to this through the Hodge group’s relationship
to the Mumford-Tate group, but we choose a diferent approach in this paper: we make use of a connection to Hodge rings.

The following result relates theQ-span of Hodge cycles with the Hodge group. Note that, in the notation of Section 3.2, Bd(A) =
H2d
Hodge(A) ⊗ C.

Theorem 3.4. [4, Theorem 17.3.3] Let A be an abelian variety of dimension g. For any 1 ≤ d ≤ g, denote by

H2d
Hodge(A) := H2d(A,Q) ∩ Hd,d(A)

theQ-vector space of Hodge cycles of codimension d on A. Then

H2d
Hodge(A) = H2d(A,Q)Hg(A).

There is a balance between the size of the Hodge group and the dimension of H2d
Hodge(A). The existence of exceptional Hodge

cycles, which we sometimes learn of through Lemma 3.3, oven coincides with a smaller than expected Hodge group. In fact, we see
something even more interesting: the exceptional cycles give us information about the embedding of Hg(A) into USp(2g). We will
see examples of this correspondence between Hodge rings and Hodge groups in Section 5.
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3.4. Efects on the Sato-Tate group

As noted in Section 2.5, when the Mumford-Tate conjecture holds for an abelian variety A then the Mumford-Tate group and
Hodge group can be used to gain information about the Sato-Tate group of A. In particular, the Hodge group will equal the identity
component of the algebraic Sato-Tate group. The results and exposition in Sections 3.1, 3.2, and 3.3 help us understand the role
degeneracy can play in the Sato-Tate group.

The degeneracy we see in the Mumford-Tate group in Section 3.1 tells us when the Mumford-Tate group of A coincides with the
Mumford-Tate group of certain factors. When the Mumford-Tate conjecture holds for A, this will imply that ST0(A) � ST0(Ai). As
with the Mumford-Tate group, in this situation we have a smaller than expected identity component for the Sato-Tate group.

The degeneracy of the Mumford-Tate group gives us some information about the Hodge group and the identity component of the
algebraic Sato-Tate group of A. However in order to compute moment statistics for the Sato-Tate group, we need to know the explicit
embedding of the Hodge group in USp(2g), where g is the dimension of A. The exceptional cycles in the Hodge ring of A give extra
relations on the elements of the Hodge ring (see Theorem 3.4); these extra relations can be used to determine the embedding of the
Hodge group.

Since the Mumford-Tate and Hodge groups only give us information about the identity component of the Sato-Tate group, we
will not gain information about the component group. The Sato-Tate group of a degenerate abelian variety can have not only an
identity component that is smaller than expected, but can also have a larger component group than what would be explained by
endomorphisms. In general, for an abelian variety A/F we have a canonical surjection

ST(A)/ ST0(A) → Gal(K/F),

where K is the endomorphism oeld of A, but the surjection is not necessarily an isomorphism if A is degenerate (see, for example,
[13]). In general, we have an isomorphism ST(A)/ ST0(A) � Gal(L/F), where L is the minimal Galois extension of F for which
ST(AL) is connected.

1 The oeld L is the oxed oeld of the kernel of a map induced by the �-adic representation ρA,� in equation (2.2)
(see [33, Theorem 3.12]). In some cases, we can use results of Zywina [36] to determine this oeld L. In Section 5 we will see examples
where the oeld L is the endomorphism oeld of A and ones where an extension is needed.

4. Decompositions of Jacobians

Let Cm/Q denote the smooth projective curve with hyperelliptic equation y2 = xm − 1, and let Jm denote its Jacobian. In this section
we describe how Jm decomposes into simple factors. We begin with two cases: m = p2 and m = pq, where p and q are distinct odd
primes.

In the orst case, let πp denote the map πp : (x, y) �→ (xp, y) from Cm to the degree p hyperelliptic curve Cp : y
2 = xp − 1. We let

X denote the identity component of the kernel of (πp)∗ : Jm → Jp. This gives the following isogeny overQ

Jp2 ∼ X × Jp. (4.1)

We can easily compute the dimension of X to be dim(Jm) − dim(Jp) = p(p − 1)/2 = φ(m)/2, where φ is Euler’s totient function.
In the second case, there are two such maps: πp : (x, y) �→ (xq, y) from Cm to Cp : y

2 = xp − 1 and πq : (x, y) �→ (xp, y) from Cm

to Cq : y
2 = xq − 1. We obtain the following isogeny overQ

Jpq ∼ X × Jp × Jq, (4.2)

where the dimension of X is computed to be φ(m)/2.

Proposition 4.1. Let m = p2, respectively pq. Then the Prym variety X given by the isogeny in equation (4.1), respectively equation
(4.2), is absolutely simple.

By work of Shimura-Taniyama [30], we can prove that X is absolutely simple by proving that its CM-type is primitive. Before
proving Proposition 4.1, we provide two lemmas that will be useful.

Lemma 4.2. Let m = pq, where p and q are odd primes (not necessarily distinct). Let X be the Prym variety obtained as a quotient of
Jm as in (4.1) or (4.2). Then the CM-type of X is (Q(ζm);�), where

� = {σj | gcd(j,m) = 1 and j ≤ g},

g = (m − 1)/2, and σj(ζm) = ζ
j
m.

1The oeld L is exactly the oeld K when A is nondegenerate. In particular, this is the case for all abelian varieties for dimension ≤ 3.
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Proof. For ease of notation, let C : = Cm. Since C is a genus g = (m − 1)/2 hyperelliptic curve, we may identify the complex
uniformization of Jm with H0(CC,�

1
C) = C〈xidx/y | 0 ≤ i < g〉. We brieny split into two cases:

Case 1: p = q. Recall that there is a map πp : (x, y) �→ (xp, y) from C to Cp. By pulling back regular diferentials of Cp, we see that
π∗
pCp corresponds to the vector subspace

C

〈
xap−1dx/y | a = 1, 2, . . . ,

p − 1

2

〉

of H0(CC,�
1
C). Thus, the quotient Jm/Jp (which is isogenous to X) has natural analytic uniformization given by the quotient of

C〈xidx/y | 0 ≤ i < g〉 by this vector space. The dimension of the new vector space is m−1
2 − p−1

2 = φ(m)/2.
Case 2: p �= q. In this case, there are two such maps: πp : (x, y) �→ (xq, y) from C to Cp and πq : (x, y) �→ (xp, y) from C to Cq. As

above, we pull back regular diferentials of Cp and Cq. The quotient of Jm by the Jacobians of the two curves (which is isogenous to

X) has natural analytic uniformization given by the quotient of C〈xidx/y | 0 ≤ i < g〉 by the vector subspace generated by

C
〈
xaq−1dx/y | a = 1, 2, . . . , (p − 1)/2

〉
∪ C

〈
xap−1dx/y | a = 1, 2, . . . , (q − 1)/2

〉
.

The dimension of the new vector space is m−1
2 − p−1

2 − q−1
2 = φ(m)/2.

In both cases, the automorphism α : (x, y) �→ (ζmx, y) induces an action of Q(ζm) on the (φ(m)/2)-dimensional vector space

given above. Since α∗xjdx/y = ζ
j+1
m xjdx/y, we ond that characters appearing in this uniformization will be of the form ζm �→ ζ

j
m

where j is coprime tom.
Thus, we can identify the CM type � of Gal(Q(ζm)/Q) from the statement of the lemma as the CM-type of X.

Lemma 4.3. Let m be an odd composite number. Deone the set

Sm =
{
1, . . . ,

m − 1

2

}
∩ Z/mZ×.

Then aSm = Sm for some a ∈ Z/mZ× if and only if a = 1.

Proof. First note that aSm = Sm is clearly true if a = 1. Also, aSm cannot equal Sm if a > m−1
2 since then a · 1 �∈ Sm.

Now suppose a ∈ Sm satisoes 1 < a ≤ m−1
2 . We will show that there is a value b ∈ Sm such that ab �∈ Sm.

Note that there is an integer in the interval
(
m−1
2a , m−1

a

)
. Indeed, the only way for this to not be true is if (m−1)/a < (m−1)/2a+1,

which would implym − 1 < (m − 1)/2 + a. However this is not possible since a ∈ Sm and, hence, a < (m − 1)/2.
Now let b be an integer in this interval: m−1

2a < b < m−1
a . This implies that (m − 1)/2 < ab < m − 1, which proves that ab is not

in Sm. Thus, we have proved the desired result.

Proof of Proposition 4.1. As noted below the statement of Proposition 4.1, it is suocient to prove that the CM-type ofX is primitive.
Proposition 26 of [30] claims the following: A CM-type S is primitive if and only if γ S = S for γ in the Galois group only when γ is
the identity.

We gave the CM-type � of X in Lemma 4.2. Identifying the automorphisms in � with the set Sm = {1, . . . , (m− 1)/2} ∩Z/mZ×

allows us to apply the results of Lemma 4.3 and conclude that γ� = � only when γ is the identity element. Hence, � is a primitive
CM type and X is absolutely simple.

We can see the decompositions in equations (4.1) and (4.2) at the level of Frobenius polynomials. Let PA,p(x) denote the Frobenius
polynomial of the abelian variety A at p. Then for A = Jp2 we have PA,p(x) = PX,p(x) · PJp,p(x) and for A = Jpq we have PA,p(x) =
PX,p(x) · PJp,p(x) · PJq,p(x) for all good primes p.

We can compute Frobenius polynomials for Jm for more general odd, composite m in Sage over good primes p. Upon factoring,
we are able to see how the Jacobian variety Jm decomposes into simple factors. This leads us to the following conjecture.

Conjecture 4.4. Let m be a positive odd integer. Then the decomposition of Jm into simple factors contains exactly one simple factor of
dimension φ(d)/2 for each divisor d > 1 of m. Furthermore, if p is a prime divisor of m then the factor of dimension φ(p)/2 is the
Jacobian of the curve Cp : y

2 = xp − 1.

Thus far we have only considered odd values of m. In the case where m is even, a result of [10] can be applied to determine the
splitting of the Jacobian.

Proposition 4.5. [10, Lemma 4.1] Let g = 2k be an even integer, and C2g+2 : y2 = x2g+2 + c, where c ∈ Q×. Then we have the

following isogeny overQ

Jac(C2g+2) ∼ Jac(Cg+1)
2,

where Cg+1 : y
2 = xg+1 + c.
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This allows us to prove the following statement.

Corollary 4.6. Let m = p2 or pq. Then the Jacobian of the hyperelliptic curve C2m satisoes the following isogeny overQ

J2m ∼

{
(X × Jp)

2 if m = p2,

(X × Jp × Jq)
2 if m = pq.

Proof. In both cases, J2m ∼ (Jm)2 by Lemma 4.1 of [10] since the dimension of J2m is even: we set 2m = 2g + 2 and ond that
g = m − 1 is even sincem is odd. The result then follows from equations (4.1) and (4.2).

4.1. Proof of Theorem 1.1

We are now in a position to prove that for any odd, compositem, the Jacobian Jm of y2 = xm − 1 is degenerate.

Proof. Let m be an odd, composite integer divisible by pq, where p and q are primes (not necessarily distinct). As in the beginning
of Section 4, we can view the Jacobian of the curve y2 = xpq − 1 as a factor of Jm via a map on the curve: πpq : Cm → Cpq deoned

by (x, y) �→ (xm/pq, y). We proved in Lemma 3.3 that the Jacobian variety Jpq has exceptional Hodge cycles. Thus, Jm has degenerate
factors and is, therefore, also degenerate.

5. Examples

In this section we explore the various forms of degeneracy for several Jacobian varieties Jm, each illustrating diferent phenomena
that can occur. The examples are presented in a non-hodgepodge manner: we carefully examine degeneracy in the Mumford-Tate
groups, the Hodge rings and Hodge groups, and the Sato-Tate groups of the varieties. Most of the computations were done in Sage
(code available at [16]).

5.1. y2 = x9 − 1

We orst consider the genus 4 curve C9 : y
2 = x9 − 1. The isogeny in equation (4.1) tells us that its Jacobian factors as J9 ∼ X × J3.

Here J3 denotes the CM elliptic curve y2 = x3 − 1 and, by Proposition 4.1, X is an absolutely simple, 3-dimensional abelian variety.
Lemma 4.2 tells us that the CM oeld of X is Q(ζ9). We note that X is not the Jacobian of a curve. Indeed, by results of [22], (up to
isomorphism) there is only one genus 3 curve with CM oeld Q(ζ9) and primitive CM type: the Picard curve y3 = x4 − x. However,
by computing and comparing Frobenius polynomials of y2 = x9 − 1 and y3 = x4 − x, we can see that the latter does not appear as a
factor of the former.

There are some results in the literature that give us information about the degeneracy of J9. Remark 5.6 of [25] shows that the
projection MT(J9) → MT(X) is an isomorphism; this is proved using results similar to those in Section 3.1. In [31, Example 6.1],
Shioda works out the Hodge ring for J9. In particular, Shioda uses a result that is a special case of Lemma 3.3 to determine that there
are exceptional Hodge cycles in codimension 2. The exceptional cycles in codimension 2 can be described by

B
2(J9)/D

2(J9) = {ω1 ∧ ω4 ∧ ω3 ∧ ω2, ω2 ∧ ω3 ∧ ω4 ∧ ω1},

where ωj = xj−1dx/y is a standard basis element of H1(Cm). There are no exceptional cycles in other codimensions.
We now show howwe can determine the Hodge group of J9 from this. Recall that the Hodge groupHg(J9) is an algebraic subgroup

of SLV and that Hg(J9)C contains h(S1). Furthermore, Theorem 3.4 tells us H2d
Hodge(J9) = H2d(J9,Q)Hg(J9).

We can identify SLV with the group of 2g × 2g matrices with determinant 1. Since J9 is of CM-type, Theorem 17.3.5 of [4] tells us
that its Hodge group is commutative. Thus, we can say that elements of Hg(J9) are of the form

U = diag(U1,U2,U3,U4),

where Ui = diag(ui, ui) and ui ∈ S1, and where there may be some relations among the Ui. We compute U · v for each element v of
the space of Hodge cycles in order to determine what relations are required in order to obtain U · v = v. For example,

U · (ω1 ∧ ω4 ∧ ω3 ∧ ω2) = u1u4u2u3(ω1 ∧ ω4 ∧ ω3 ∧ ω2).

This yields the relation u4 = u1u2u3. The other exceptional cycle yields the same relation. Thus, we may conclude that the elements
of Hg(J9) are of the form

U = diag(U1,U2,U3,U1U2U3).
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5.1.1. Sato-Tate group

Since the Mumford-Tate conjecture holds for J9, the Hodge group equals the identity component of the algebraic Sato-Tate group.
The identity component of the Sato-Tate group is a maximal compact subgroup of this, and so we have the following result.

Proposition 5.1. Up to conjugation in USp(8), the identity component of the Sato-Tate group of J9 is isomorphic to U(1)3. More
speciocally,

ST0(J9) � 〈diag(U1,U2,U3,U1U2U3)〉.

This matches the result of Theorem 6.9 of [10], though here we used a diferent method to obtain the result and we give the
additional relations needed for the embedding in USp(8).

In order to determine the full Sato-Tate group of J9, we orst need to know the minimal oeld L for which ST((J9)L) is connected.
As noted in Section 3.4, this oeld can be computed using results of Zywina. In fact, Zywina determines that this oeld is equal to the
CM oeld of C9 (see Section 1.7 of [36]). Hence, ST(J9)/ ST

0(J9) � Gal(Q(ζ9)/Q).
This is enough information to comparemoment statistics for the identity component of the Sato-Tate group to numericalmoments

since ST0(J9) = ST((J9)Q(ζ9)). The numerical a1-moments in Table 1 were computed over the oeld Q(ζ9) and for all primes up to
p < 223 using an algorithm described in [18] and [19]. Note that the values of the a1-moments were rounded in order to ot the values
in the table.

The errors for the even moments are within a margin of 1% and are consistent with the errors for the odd moments (which should
all be zero). Choosing a larger bound for p will lead to better estimates.

For nondegenerate abelian varieties, we can determine generators of the component group of the Sato-Tate group through the
twisted Lefschetz group (see [3]). The twisted Lefschetz group, denoted TL(A), is a closed algebraic subgroup of Sp2g deoned by

TL(A) :=
⋃

τ∈Gal(F/F)

L(A)(τ ),

where L(A)(τ ) := {γ ∈ Sp2g | γαγ −1 = τ(α) for all α ∈ End(AF)Q}.
We can compute the twisted Lefschetz group for the Jacobian variety J9 even though this is a degenerate abelian variety. The

nontrivial Lefschetz sets L(J9)(τ ) are those coming fromelements τ inG = Gal(Q(ζ9)/Q) sinceQ(ζ9) is the endomorphismoeld of J9.
The Galois groupG is generated by the order-6 automorphism τ2 : ζ9 → ζ 2

9 and we have that the component group of
⋃

τ∈G L(A)(τ )

is generated by

γ =

»
¼¼½

0 I 0 0
0 0 0 I
0 0 J 0
J 0 0 0

¾
¿¿À . (5.1)

The matrix γ was computed using the techniques of [8] and [17].
We now compute moment statistics of the group 〈diag(U1,U2,U3,U1U2U3), γ 〉 and compare them to the numerical moments

over Q. The numerical moments in Table 2 were computed for all primes up to p < 223 using an algorithm described in [18] and
[19]. Note that the values of the a1-moments were rounded in order to ot the values in the table.

As in Table 1, the errors for the even moments shown in Table 2 are within a margin of 1% and are consistent with the errors for
the odd moments. This leads us to make the following conjecture.

Conjecture 5.2. Let Jac(C9) denote the Jacobian of the curve y2 = x9 − 1. Up to conjugation inUSp(8), the Sato-Tate group of Jac(C9)

is

ST(Jac(C9)) �
〈
diag(U1,U2,U3,U1U2U3), γ

〉
,

where γ is deoned in equation (5.1) and Ui is deoned in the Notation and Conventions section.

Table 1. Table ofμ1- and a1-moments for ST(J9) overQ(ζ9).

M2 M4 M6 M8 M10

μ1 8 216 8000 343000 16003008

a1 8.01253 216.204 7997.25 342072 15901600

Table 2. Table ofμ1- and a1-moments for J9 overQ.

M2 M4 M6 M8 M10 M12

μ1 2 38 1340 57190 2667252 131481812

a1 2 38 1338 57010 2649180 129958000
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Table 3. Table ofμ1-moments for J18 overQ(ζ18).

M2 M4 M6 M8 M10 M12

μ1 32 3456 512000 87808000 16387080192 3231289442304

As further evidence supporting this claim, we recall that the Sato-Tate group of J9 is connected over the oeldQ(ζ9) and note that
the component group of the above group is isomorphic to the Galois group G = Gal(Q(ζ9)/Q).

5.1.2. y2 = x18 − 1

We orst apply Proposition 4.5 to the Jacobian of the curve C18 : y
2 = x18 − 1 and ond that

J18 ∼ (J9)
2.

Hence, by the discussion in Section 2.2, the Hodge group Hg(J18) is isomorphic to Hg(J9), which acts on V(J18) diagonally. Since
the Mumford-Tate conjecture holds for J9, it also holds for J18 ∼ (J9)

2 (see Section 2.5). Thus, the Hodge group equals the identity
component of the algebraic Sato-Tate group. The identity component of the Sato-Tate group is a maximal compact subgroup of this,
and so we have the following result.

Proposition 5.3. Up to conjugation in USp(16), the identity component of the Sato-Tate group of J18 is isomorphic to (U(1)3)2. More
speciocally,

ST0(J18) = 〈diag(U1,U2,U3,U1U2U3,U1,U2,U3,U1U2U3)〉.

This matches the result in Section 6.6 of [10], though here we give the additional relations needed for the embedding in USp(16).
These additional relations enable us to compute moment statistics for the identity component (see Table 3).

5.2. y2 = x15 − 1

We now consider the curve C15 : y
2 = x15 − 1. The isogeny in equation (4.2) tells us that its Jacobian factors as J15 ∼ X × J5 × J3,

where X is an absolutely simple 4-dimensional abelian variety. By Lemma 4.2, X has CM byQ(ζ15).
While the Hodge ring andHodge group degeneracies are similar to those we saw in Section 5.1, we see interesting new phenomena

for the Mumford-Tate group and Sato-Tate group.

5.2.1. Mumford-Tate group

In the notation of Section 3.1.1, let L = E1 = Q(ζ15),E2 = Q(ζ5), and E3 = Q(ζ3). Let G denote the Galois group of L over Q, and
Hi ≤ G be the subgroup corresponding to Ei: Hi = Gal(L/Ei).

The exposition aver the proof of Lemma 3.2 gives a method for representing the mapN∗
1φ

∗
1 +N∗

2φ
∗
2 +N∗

3φ
∗
3 as a matrixM, which

is the concatenation of matricesM1,M2, andM3 corresponding to the factors of J15. The rows of each matrix will be indexed by

G = {τ1, τ2, τ4, τ7, τ8, τ11, τ13, τ14}, (5.2)

where τj(ζ15) = ζ
j
15.

For an explicit example, we show how to compute a column for the matrix M2. The CM-type of E2 = Q(ζ5) is �2 = {σ1, σ2},
where σj(ζ5) = ζ

j
5, and the renex type is �∗

2 = {σ1, σ3}. The elements of H2 = Gal(L/E2) are τ1 and τ11. Consider the character

σ2 ∈ T̂E2 . We see that

N∗
2φ

∗
2 ([σ2]) = N∗

2 ([σ1σ2] + [σ3σ2])
= N∗

2 ([σ2] + [σ1])
= ([τ2] + [τ7]) + ([τ1] + [τ11]).

Taking into account the labeling of the rows of M coming from equation (5.2), we can conclude that the second column of M2 is
(1, 1, 0, 1, 0, 1, 0, 0).

We repeat this process for the matricesM1,M2,M3 and obtain

M =

»
¼¼¼¼¼¼¼¼¼¼½

1 1 1 1 0 0 0 0 1 1 0 0 1 0
0 1 1 0 1 0 0 1 0 1 0 1 0 1
1 0 1 0 1 0 1 0 0 0 1 1 1 0
0 0 1 1 0 0 1 1 0 1 0 1 1 0
1 1 0 0 1 1 0 0 1 0 1 0 0 1
0 1 0 1 0 1 0 1 1 1 0 0 0 1
1 0 0 1 0 1 1 0 1 0 1 0 1 0
0 0 0 0 1 1 1 1 0 0 1 1 0 1

¾
¿¿¿¿¿¿¿¿¿¿À

, (5.3)

where the vertical lines are included to visually separate theMi matrices.
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Proposition 5.4. The canonical projectionMT(J15) → X is a degree 2 isogeny.

Proof. We use Sage to compute the (right) kernel of the matrix M in equation (5.3). We then determine that the space spanned by
kernel ofM andZ8×{0}×{0} is an index-2 submodule ofZ8×Z4×Z2. This corresponds to T̂1×{0}×{0}+ker(N∗

1φ
∗
1+N∗

2φ
∗
2+N∗

3φ
∗
3 )

having index 2 in the product T̂E1 × T̂E2 × T̂E3 . Thus, by Lemma 3.2, the projection is a degree 2 isogeny.

5.2.2. Hodge ring and Hodge group

Lemma 3.3 tells us that there will be exceptional Hodge cycles in codimension 2. The 12 exceptional cycles in codmension 2 are
given by Shioda in [31, Section 6.2]. Shioda also identioed exceptional Hodge cycles in codimension 3, though in this case we have
B3 = B1 · B2.

The Hodge group of J15 is commutative, and so we can identify elements Hg(J15) with matrices in U(1)7. We use the method of
Section 5.1 to identify the additional relations on the elements of the Hodge group coming from the exceptional cycles in the Hodge
ring. We ond that elements of the Hodge group are of the form

U = diag(U1,U2,U3,U4,U2U3U4,U1U3U4,U1U2U
2
3U4).

Note that, when identioed with amatrix group, theHodge group is isomorphic to U(1)4. This is consistent with what we would expect
from our work with the Mumford-Tate group in Section 5.2.1 where we determined that MT(J15) is isogenous to the Mumford-Tate
group of a 4-dimensional simple abelian variety.

5.2.3. Sato-Tate group

Based on the above work and the relationship between the Sato-Tate group and the Hodge group of an abelian variety, we have the
following result.

Proposition 5.5. Up to conjugation in USp(14), the identity component of the Sato-Tate group of J15 is

ST0(J15) = 〈diag(U1,U2,U3,U4,U2U3U4,U1U3U4,U1U2U
2
3U4)〉.

This is consistent with the result in Table 2 of [10] where it is given that the identity component is isomorphic to U(1)4. In
Proposition 5.5 we improve upon the earlier result by giving the additional relations needed for the embedding in USp(14).

We can easily compute the moment statistics of the Sato-Tate group, but we see an interesting phenomenon when attempting to
compare these to the numerical moments coming from the curve C15. Recall from Section 3.4 that, in general, ST(A)/ ST0(A) �
Gal(L/F), where L is the minimal Galois extension of of F for which ST(AL) is connected. We saw in Section 5.1 that for J9 the oeld
L is exactly the endomorphism oeld of the variety. However that is not the case for J15 – we need a degree 2 extension ofQ(ζ15).

We get our orst hint that we may need a larger oeld by examining the moment statistics in Table 4. The numerical moments were
computed over the oeld Q(ζ15) for primes p < 232 by Sutherland [32] using an algorithm described in [18] and [19]. Note that the
values of the a1-moments were rounded in order to ot the values in the table.

We quickly see that these moment statistics do not match – the errors for M4 and M6 are much larger than we would expect for
the Sato-Tate group of the abelian variety.

We can use a technique developed in [36] to gain information about the oeld L – we will describe the strategy as it applies to
the abelien variety J15. For a prime p ≡ 1 (mod 15), we form the group �J15,p generated by the set of roots in Q of the Frobenious
polynomial of J15. If the group �J15,p is torsion-free then p splits completely in L (see Section 1.5 of [36]). By computing this group
for many primes, it appears that roughly half of the primes congruent to 1 modulo 15 split completely in L (there is Magma code to
assist with these computations available at [35]). This indicates that L is a degree 2 extension of the CM oeldQ(ζ15).

We use the L-functions and Modular Forms Database [24] to gain further information about the oeld L. There is only one oeld
listed that is a degree 2 extension ofQ(ζ15) with the same ramioed primes (3 and 5):

http://www.lmfdb.org/NumberField/16.0.3243658447265625.1

In order to further conorm that this is the oeld L for which ST(AL) is connected, we compute numerical moment statistics. The
numericalmoments in Table 5were computed over the above oeld for primes p < 232 by Sutherland [32] using an algorithmdescribed
in [18] and [19]. Note that the values of the a1-moments were rounded in order to ot the values in the table.

We see that the errors for the even moments are within a margin of 1% and are consistent with the errors for the odd moments.
Further work is needed in order to determine the full Sato-Tate group of J15 (over Q). We know that the component group of

the Sato-Tate group will satisfy ST(J15)/ ST
0(J15) � Gal(L/Q), however it is not clear how one could ond explicit generators for the

component group.

Table 4. Table ofμ1- and a1-moments for ST(J15)overQ(ζ15).

M2 M3 M4 M5 M6

μ1 14 0 834 0 78260

a1 13.992 0.037 641.326 5.495 49354.840
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Table 5. Table ofμ1- and a1-moments for ST(J15) over L.

M2 M3 M4 M5 M6

μ1 14 0 834 0 78260

a1 13.993 0.093 833.023 11.991 78067.503

5.3. y2 = x21 − 1

For our third example we consider the curve C21 : y
2 = x21 − 1. The isogeny in equation (4.2) tells us that its Jacobian factors as

J21 ∼ X × J7 × J3, where X is an absolutely simple abelian variety of dimension 6. By Lemma 4.2, X has CM by Q(ζ21). In this case
we see new phenomena in the Hodge ring setting, as well as for the Mumford-Tate group.

5.3.1. Mumford-Tate group

In order to study canonical projections of theMumford-Tate group, we build thematrixM representing themapN∗
1φ

∗
1+N∗

2φ
∗
2+N∗

3φ
∗
3

described in Section 3.1.2 (see Section 5.2.1 for more details on how to build this matrix). The matrixM is obtained by concatenating
matricesM1,M2,M3 corresponding to the factors X, J7, J3, respectively:

M =

»
¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼½

1 1 1 1 1 1 0 0 0 0 0 0 1 1 1 0 0 0 1 0
0 1 1 0 1 1 0 0 1 0 0 1 0 1 0 1 0 1 0 1
0 0 1 0 1 0 1 0 1 0 1 1 1 0 0 1 1 0 1 0
0 0 1 1 1 1 0 0 0 0 1 1 1 0 1 0 1 0 0 1
1 0 0 0 1 0 1 0 1 1 1 0 1 1 1 0 0 0 0 1
0 0 0 0 1 1 0 0 1 1 1 1 0 1 1 0 0 1 1 0
1 1 1 1 0 0 1 1 0 0 0 0 1 0 0 1 1 0 0 1
0 1 1 1 0 1 0 1 0 0 0 1 0 0 0 1 1 1 1 0
1 1 0 0 0 0 1 1 1 1 0 0 0 1 0 1 0 1 1 0
1 1 0 1 0 1 0 1 0 1 0 0 0 1 1 0 0 1 0 1
1 0 0 1 0 0 1 1 0 1 1 0 1 0 1 0 1 0 1 0
0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 1 1 1 0 1

¾
¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿À

, (5.4)

where the vertical lines are included to visually separate theMi matrices. We use Sage to compute the (right) kernel of the matrixM
in equation (5.4). The space spanned by the kernel of M and Z12 × {0} × {0} does not have onite index in Z12 × Z6 × Z2, which
tells us that the projectionMT(J21) → MT(X) is not an isomorphism nor an isogeny. However, we do ond that the space spanned by
ker(M) and Z12 × {0} × Z2 has index 1 in Z12 × Z6 × Z2. This yields the following result.

Proposition 5.6. The projectionMT(J21) → MT(X × J3) is an isomorphism.

5.3.2. Hodge ring and Hodge group

The exceptional Hodge cycles for J21 are given in [31, Section 6]. Applying the technique described in Section 5.1, we ond that the
elements of Hodge group are of the form

diag(U1, U2, U3, U1U2U3, U5, U6,U7, U1U3U6, U2U5U6, U1U5U6).

This implies that the Hodge group is isomorphic to U(1)6, which is surprising since the Mumford-Tate group of J21 is isomorphic
to the Mumford-Tate group of a 7-dimensional subvariety. It is possible that this phenomenon is related to the fact that the abelian
variety X is degenerate. This fact is proven by Shioda in [31, Section 6] by noting that there are exceptional cycles of J21 that come
fromX. This difers from our examples form = 9, 15, where in those cases all of the exceptional Hodge cycles came from the Jacobian
factors of Jm.

5.4. y2 = x27 − 1

An interesting example to consider next is the genus 13 curve C27 : y
2 = x27 − 1, which is not one of the examples worked out by

Shioda. Its Jacobian factors as J27 ∼ X2×X1×J3, whereX1 and J3 are the simple abelian varieties appearing in the decomposition of J9
in Section 5.1 and X2 is an absolutely simple abelian variety. To ond the dimension of X2 we simply compute dim(J27)−dim(J9) = 9.
We can easily extend Lemma 4.2 and conclude that the CM oeld of X2 isQ(ζ27).

5.4.1. Mumford-Tate group

Using the same technique described in detail in Section 5.2.1, we are able to prove the following result.

Proposition 5.7. The canonical projectMT(J27) → MT(X2) is an isomorphism.
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Proof. We use Sage to compute the (right) kernel of the matrix M obtained using the techniques described in Section 3.1.2. The
order of character group T̂E associated to X2 is φ(27) = 18. We determine that the space spanned by kernel ofM and Z18 ×{0}× {0}
spans all of Z18 × Z6 × Z2. Thus, by Lemma 3.2, the projection is an isomorphism.

5.4.2. Hodge ring and Hodge group

The Hodge ring of J27 is not worked out in Shioda’s paper [31], but we can use Theorem 5.2 of the paper to determine the exceptional
cycles that appear in the Hodge ring. For example, using code written in Sage, we ond that the space of exceptional cycles in
codimension 2 is generated by:

ω1 ∧ ω10 ∧ ω3 ∧ ω8 ω3 ∧ ω8 ∧ ω1 ∧ ω10

ω2 ∧ ω11 ∧ ω6 ∧ ω7 ω6 ∧ ω7 ∧ ω2 ∧ ω11

ω3 ∧ ω12 ∧ ω6 ∧ ω9 ω6 ∧ ω9 ∧ ω3 ∧ ω12

ω4 ∧ ω13 ∧ ω5 ∧ ω12 ω5 ∧ ω12 ∧ ω4 ∧ ω13

As in Sections 5.1 and 5.2, we can use the exceptional Hodge cycles to determine extra relations in the Hodge group of J27 from
this. We ond that the elements of Hg(J27), identioed as 2g × 2g matrices with determinant 1, are of the form

diag(U1,U2,U3,U4,U5,U6,U7,U8,U9,U1U3U8,U2U6U7,U3U6U9,U3U4U5U6U9).

Note that this implies that Hg(J27) is isomorphic to U(1)9 with embedding in USp(26) given by the relations noted above.

5.5. Further work formore general y2 = xm − 1

In this section we will investigate further examples and make conjectures about the degeneracy of Jacobian varieties Jm. We orst
consider examples wherem = p2, for p prime.

Recall from Section 4 that the Jacobian of Cp2 satisoes the following isogeny

Jp2 ∼ X × Jp,

where X is an absolutely simple abelian variety of dimension p(p − 1)/2.
The following result has been verioed by computing the kernel of the matrixM described in Section 3.1.2.

Proposition 5.8. Let Jp2 and X be deoned as above. Then the projectionMT(Jp2) → MT(X) is an isomorphism for odd primes p ≤ 29.

It seems likely that this holds more generally, and so we make the following conjecture.

Conjecture 5.9. Let Jp2 and X be deoned as above. Then the projectionMT(Jp2) → MT(X) is an isomorphism.

The next generalization we consider ism = p3. As in Section 5.4 we have that the Jacobian Jp3 satisoes the following isogeny

Jp3 ∼ X2 × X1 × Jp,

where X1 and Jp are the simple abelian varieties appearing in the decomposition of Jp2 and X2 is an absolutely simple abelian variety.
To ond the dimension of X2 we simply compute dim(Jp3) − dim(Jp2).

The following result is verioed using the same techniques as those in Section 5.4.

Proposition 5.10. Let Jp3 and X2 be deoned as above. Then the projection MT(Jp3) → MT(X2) is an isomorphism for odd primes
p ≤ 13.

As we suspect form = p2, it seems likely that this holds more generally, and so we make the following conjecture.

Conjecture 5.11. Let Jp3 and X2 be deoned as above. Then the projectionMT(Jp3) → MT(X2) is an isomorphism.

Webelieve that these results could be generalized tom = pk, for k > 1. For values ofmwith at least two distinct odd prime factors, it
is more diocult tomake a general statement regarding the canonical projection of theMumford-Tate group onto its factors. It remains
an open question of when the projection onto one or more factors is an isogeny or isomorphism.

In terms of theHodge rings andHodge groups, Lemma 3.3 tells us that there are exceptionalHodge cycles in codimension (p+1)/2
for the Jacobian Jm, though there may be exceptional cycles in other codimensions as well. One can compute all of the Hodge cycles
using Sage code that implements Theorem 5.2 of [31] and then determine which of these are exceptional. These exceptional cycles are
used to determine extra relations in the Hodge ring, which in turn give us the embedding of the identity component of the Sato-Tate
group of Jm in USp(2g). In the examples worked out in the preparation of this paper, there was not a clear pattern in the number or
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the format of the exceptional cycles. It would be interesting to work out more examples and determine if there is a way to characterize
the exceptional cycles based on the factorization ofm.

One of the initial goals for this project was to better understand the Sato-Tate groups of degenerate abelian varieties. By determining
the additional relations in the Hodge group (coming from exceptional cycles in the Hodge ring), we can describe the identity
component of the Sato-Tate group. Beyond this, there is still much work to be done. The orst main question to consider further
is: over what extension L/Q is the Sato-Tate group connected? We saw that in the case of J9, L is exactly the endomorphism oeld, but
for J15 it is a degree 2 extension of this oeld. Can we make a general statement about the oeld L?

The second main question is: how do we ond generators of the component group of the Sato-Tate group? This is particularly
unclear in the situation where the oeld L strictly contains the endomorphism oeld, which also means that any results in this direction
will be particularly interesting.
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