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ABSTRACT
. : : - . . . KEYWORDS
The term degenerate is used to describe abelian varieties whose Hodge rings contain exceptional cycles — Hodge ring; Mumford-Tate

Hodge cycles that are not generated by divisor classes. We can see the effect of the exceptional cycles on the group; Hodge group;
structure of an abelian variety through its Mumford-Tate group, Hodge group, and Sato-Tate group. In this Sato-Tate group
article we examine degeneracy through these different but related lenses. We specialize to a family of abelian
varieties of Fermat type, namely Jacobians of hyperelliptic curves of the form y2 = x™ — 1. We prove that the
Jacobian of the curve is degenerate whenever m is an odd, composite integer. We explore the various forms
of degeneracy for several examples, each illustrating different phenomena that can occur.
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SUBJECT CLASSIFICATION:
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1. Introduction

We say that a complex abelian variety A is nondegenerate if its (complexified) Hodge ring is generated by divisor classes. In this article
we are interested in studying abelian varieties that do not have this property. Abelian varieties whose Hodge rings are not generated
by divisor classes are called degenerate, and the Hodge cycles not coming from the divisor classes are called exceptional cycles.

While the definition of degeneracy is a statement about the Hodge ring, we can see the effects of degeneracy in groups constructed
from the Hodge structure of the abelian variety: the Mumford-Tate group, the Hodge group, and the Sato-Tate group. The Mumford-
Tate group and Hodge group are related to the Hodge ring via an action on certain cohomology groups. The algebraic Sato-Tate
conjecture and Mumford-Tate conjecture imply a relationship between the Sato-Tate group and the Mumford-Tate and Hodge groups.
Thus, it is natural that degeneracies of these groups should be intertwined with degeneracies in the Hodge ring.

In this paper we focus on nonsimple abelian varieties and study how the Hodge structures of their simple factors interact with
each other. This is particularly interesting in the case where one of the factors is of type IV in the Albert’s classification since the
product of nondegenerate simple abelian varieties is also nondegenerate as long as none of the factors are of this type (see Theorem
0.1 of [20]). Work of Moonen and Zarhin [26] gives a complete classification of degeneracy in dimensions 4 and 5 that is based on
the decomposition of an abelian variety into its simple factors. There are some explicit examples of degenerate abelian varieties in the
literature where the focus is on the associated Hodge rings (see, for example, [1, 28, 31]). Recent work of Lombardo [25] examines
degeneracy in the Mumford-Tate group of a dimension 4 Jacobian variety. This phenomenon does not occur in lower dimensions
since the Hodge ring of an abelian variety of dimension < 3 is always generated by divisor classes.

In this paper we build on these results by considering how the degeneracy of the Hodge ring can been seen in the Mumford-Tate
group, Hodge group, and Sato-Tate group within a particularly interesting family of abelian varieties of Fermat type: Jacobians of
curves of the form C,,: * = x™ — 1. This family of curves was studied by Shioda in [31], where he proved the Hodge conjecture for
their Jacobian varieties. The Hodge conjecture claims that the Hodge cycles of an abelian variety are all algebraic cycles, and one way
to verify this is by showing that all of the Hodge cycles are generated by divisor classes and then using the fact that the divisor classes
are all algebraic. Shioda, on the other hand, proves the Hodge conjecture for these Jacobian varieties without appealing to divisor
classes, and in certain cases he proves that the Hodge rings have exceptional cycles. In this paper we prove the following extension of
his result.

Theorem 1.1. Let m be an odd composite integer. Then the Jacobian Jac(Cy,) of the curve y* = x™ — 1 is degenerate in the sense that
the Hodge ring contains exceptional cycles.

We prove this result by first showing that, for any odd primes p < g such that the product pq divides m, the Jacobian of y* = x4 —1
can be viewed as a factor of Jac(C,,;) (note that this includes the case where p = g and so p? divides m). We then apply Lemma 3.3,
where we prove that Jac(Cp,) has exceptional Hodge cycles.

With the general result of Theorem 1.1 in hand, we aim to understand how degeneracy in the Hodge ring appears as degeneracy
in the Mumford-Tate, Hodge, and Sato-Tate groups of the Jacobian varieties. The Mumford-Tate and Hodge groups of degenerate
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abelian varieties are, in some sense, “smaller” than what we would see for a nondegenerate abelian variety. The Sato-Tate group of a
degenerate abelian variety will have a “smaller” identity component and, potentially, a component group that is “larger” than what we
would see for a nondegenerate CM abelian variety (i.e., one that is larger than the Galois group of the CM field over the base field).

Determining Sato-Tate groups of abelian varieties is the source of ongoing interest and work. There has been recent progress
on computing Sato-Tate groups of nondegenerate abelian varieties (see, for example, [2, 8, 9, 11-14, 17, 23]). A nice property of
nondegenerate abelian varieties is that the component group of the Sato-Tate group is isomorphic to Gal(K/F), where K is the
endomorphism field (i.e., the minimal extension over which all the endomorphisms of the abelian variety are defined) and F is the
field of definition of the abelian variety - this is due to the fact that the Sato-Tate group of the abelian variety is connected over this
field. However, the landscape for degenerate abelian varieties is still wide open. In particular, there are no examples in the literature
where the component groups for these degenerate Sato-Tate groups are computed. One difficulty is that we may need a larger field
than the endomorphism field in order to have a connected Sato-Tate group, and it’s not clear what field is needed. In this paper we
have several results regarding the identity component of the Sato-Tate group (see Propositions 5.1 and 5.5) as well as the following
conjecture regarding the full Sato-Tate group.

Conjecture 5.2. Let Jac(Cy) denote the Jacobian of the curve y* = x° — 1. Up to conjugation in USp(8), the Sato-Tate group of Jac(Co)
is

ST(Jac(Cy)) = (diag(Uy, Ua, Us, U1 U Us), y) s
where y is defined in equation (5.1) and U is defined in the Notation and Conventions section.

In addition to this example, we explore degeneracy for other values of m, carefully examining the Mumford-Tate groups, the Hodge
rings and Hodge groups, and the Sato-Tate groups of the varieties. We see different phenomena occurring for different values of m,
which makes this an intriguing problem to study.

Organization of the paper

In Section 2 we provide background information for the main objects of study. In Section 3 we take a deep dive into degeneracy. We
begin by generalizing a result of Lombardo [25] for degeneracy in Mumford-Tate groups. We prove Lemma 3.3, which states that
Jac(Cpq) has exceptional Hodge cycles for any odd primes p, g (not necessarily distinct). We then explain how the Hodge ring and
Hodge group are related to each other. Finally, we describe how degeneracy can affect the Sato-Tate group of an abelian variety. In
Section 4 we prove results for the decompositions of the Jacobian varieties into simple factors and we prove Theorem 1.1. In Section 5
we work on explicit examples that demonstrate various phenomena that can occur for degenerate abelian varieties. For each example,
we examine the Mumford-Tate group, Hodge ring, and Hodge group. For m = 9 and m = 15, we also study the Sato-Tate groups.
While the Sato-Tate group of Jac(Cy5) is somewhat mysterious, we show that it is less mysterious for Jac(Cy). We make a conjecture
for the full Sato-Tate group of Jac(Cy) and provide moment statistics to support the conjecture.

Notation and conventions

For any K-vector space W and K-algebra R, let Wp := W ®x R.
The curve yz = x™ — 1 is denoted by C,, and its Jacobian is denoted by J,,,. We write ¢,, for a primitive m
Let I denote the 2 x 2 identity matrix and define the matrix

]=<ﬂé>

We embed U(1) in SU(2) via u +— U = diag(u, u) and, for any positive integer n, define the following subgroup of the unitary
symplectic group USp(2n)

 root of unity.

U()" := (diag(Uy, Us, ..., Uy) | Ui € UQD)).

2. Background
2.1. Hodge structures

In this section, we follow the exposition in Chapters 1 and 17 of [4].

Let A be a projective abelian variety over C. We denote the first homology group of A by V(A) := H; (A, Q) and its dual (the first
cohomology group) by V*(A) := H (4, Q). The complex vector space V(A)c hasa weight —1 Hodge structure, i.e., a decomposition
V(A)c = V(A0 @ v(A)"~! where V(A)~10 = V(A)®~L. This corresponds to the following weight 1 Hodge structure of its dual

Ve =HWMN)" @ HA),
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where V(A)~10 = HY0(A)* and V(A)%~! = H®!(A)*. The notation in the decomposition of H' (A, Q) is defined by H(A) =
H “(Qi"), where QZ is the sheaf of holomorphic b-forms on A. We can also define H' wb(A) by

a b
HY (4) ~ \ H(4) @ \ H*' (A). 2.1)

Hodge structures of weight n, H"(A, C) ~ A" H' (A, C), satisfy H"(A, C) =~ Datv—n H%P(A).

2.2. Hodge and Mumford-Tate groups

The Hodge structure of the previous section determines a representation ftooa : Gpuc — GLy, acting as multiplication by z on
V(A)~10 and trivially on V(A)%~!. With this setup, we define the Mumford-Tate group of A, denoted MT(A), to be the smallest
QQ-algebraic subgroup of GLy such that oo A (Gy,c) S MT(A)c. We define the Hodge group of A to be the connected component
of the identity of MT(A) N SLy.

The Hodge group can also be formed by restricting the representation jtoo 4 to the (real Lie) circle group S! := {z € C | |z| = 1}.
With this setup, the Hodge group is the smallest Q-algebraic subgroup of GLy such that 104 (S') € Hg(A)c. The image of this
restriction of ftoo,4 lies in SLy., and so the Hodge group is a Q-algebraic subgroup of SLy. In fact, one can show that the image of
the representation fioo,4 is contained in the symplectic group GSpy, ., taken with respect to the symplectic form given by the block
matrix diag(J, . ..,J). Hence, MT(A) and Hg(A) are Q-algebraic subgroups of GSp,, and Sp,, respectively.

In our work we will be interested in nonsimple abelian varieties. For n > 1, we can identify Hg(A") with Hg(A) and the action
is performed diagonally on V(A™) = (V(A))". More generally, for ny,n3,...,n; > 1, Hg(A]' x A} x -+ x A7) is isomorphic to
Hg(A; x Az X --- x Ay). Even more generally, if A and B are abelian varieties then Hg(A x B) € Hg(A) x Hg(B). In our work we
will be interested in studying cases where the containment is strict.

2.3. The Hodgering

In this section we use the notation found in [31]. We denote the (complexified) Hodge ring of A by
dim(A)
BA) = Y BUA),
d=0

where 2(A) = (H*(A,Q) N H*(A)) ® C is the C-span of Hodge cycles of codimension d on A. The subring of *(A) generated
by the divisor classes, i.e. generated by Z1(A) , is
dim(A)

7*A) = Y 7',
d=0

where 29(A) is the C-span of classes of intersection of d divisors.
The relationship between these spaces is relevant to the Hodge conjecture: Let €?(A) be the subspace of %9 (A) generated by the
classes of algebraic cycles on A of codimension d. Then

7'@4) € ¢4(4) € 24
and the Hodge conjecture for A asserts that every Hodge cycle is algebraic: €4(A) = %% (A) for all d (see [1, 31]). One way to prove

the Hodge conjecture in codimension d is to prove the equality 2¢(A) = %%(A). However this equality does not always hold, even
when the Hodge conjecture is known to be true. In Section 3.2 we will further study the relationship between 2%(A) and %%(A).

2.4. An {-adic construction of the Sato-Tate group

We follow the exposition of [8] and [33, Section 3.2]. See also [29, Chapter 8].

For any prime ¢, we define the Tate module T, := l(ir_nn A[£"]; this is a free Z;-module of rank 2g. We define the rational Tate
module Vy := Ty ®z Q, which is a Q-vector space of dimension 2g. The Galois action on the Tate module is given by an £-adic
representation

pae : Gal(F/F) — Aut(Vy) = Glag, - (2.2)
The ¢-adic monodromy group of A, denoted Gy, is the Zariski closure of the image of this map in GLyg q,, and we define G}M =
Ga,e N Spyg q, - We define the Sato-Tate group of A, denoted ST(A), to be a maximal compact Lie subgroup of Gllq) ; ®q, C contained
in USp(2g).

It is conjectured that ST(A) is independent of the choice of the prime £ and of the embedding of Q; in C; this is known to be true
in many cases, such as in dimension < 3 and for products of CM abelian varieties (see, for example, [3, 21]). While the Sato-Tate

group is a compact Lie group, it may not be connected. We denote the connected component of the identity (also called the identity
component) of ST(A) by ST?(A).
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2.5. The Mumford-Tate and algebraic Sato-Tate conjectures

Deligne showed in [7] that the identity component of G4 ¢ is always a subgroup of MT(A)(,, and it is conjectured that the inclusion
is actually an equality (see [33]).

Conjecture 2.1 (Mumford-Tate conjecture). The identity component of Ga ¢ is equal to MT(A)q,.

Since the identity component of G}LZ is a subgroup of Hg(A)(q,, the Mumford-Tate conjecture predicts that this inclusion is also
an equality.

The Mumford-Tate conjecture is known to be true for many examples of abelian varieties, including for abelian varieties of CM
type (see, for example, [28, 34]) and for all abelian varieties of dimension g < 3 [3, Theorem 6.11]. More generally, Commelin proved
that if the Mumford-Tate conjecture is true for abelian varieties A and B defined over a finitely generated field then it is also true for
the product A x B [6].

When the Mumford-Tate conjecture holds, it follows from results of [3, Section 3] that, up to conjugation in USp(2g), the
Mumford-Tate group and the Hodge group uniquely determine the identity component of the Sato-Tate group. Unfortunately we
will not be able to gain information about the component group of the Sato-Tate group from these two groups. To address this,
Banaszak and Kedlaya gave the following refinement of the Mumford-Tate conjecture in [3].

Conjecture 2.2 (algebraic Sato-Tate conjecture). There is an algebraic subgroup AST(A) of GSp,, over Q, called the algebraic Sato-Tate
group of A, such that the connected component of the identity AST®(A) is reductive and, for each prime £, G}u = AST(A) ®¢ Qq.

When this conjecture holds, the Sato-Tate group of A is a maximal compact Lie subgroup of AST(A) ®q C contained in USp(2g).

There are many cases where the algebraic Sato-Tate conjecture is known to be true. Banaszak and Kedlaya prove that the conjecture
holds for all abelian varieties of dimension at most 3 [3, Theorem 6.11], for many examples of simple abelian varieties [3, Theorem
6.9], and for all abelian varieties of CM type [3, Theorem 6.6]. There are examples of infinite families of higher dimensional Jacobian
varieties for which the algebraic Sato-Tate conjecture is known to be true in [8, 15, 17]. Furthermore, Cantoral-Farfan and Commelin
[5] proved that the algebraic Sato-Tate conjecture holds whenever the Mumford-Tate conjecture holds for an abelian variety.

2.6. Moment statistics

In Section 5 we will compute moment sequences of the Sato-Tate groups of Jacobian varieties. These moment statistics can be used
to support the equidistribution statement of the generalized Sato-Tate conjecture by comparing them to moment statistics obtained
for the traces g; in the normalized L-polynomial. The numerical moment statistics are an approximation since one can only ever
compute them up to some prime.

The following background information has been adapted from [8, 17]. We define the nth moment (centered at 0) of a probability
density function to be the expected value of the nth power of the values, i.e. M,[X] = E[X"]. For independent variables X and Y we
have E[X + Y] = E[X] 4 E[Y] and E[XY] = E[X]E[Y], which yield the following identity

MiXi+ -+ Xal= Y ( ! )Mﬂl[xly--Mﬂm[Xm],
Bite -t Bm=n ﬂl» "/Sm
where the X; are independent.
In Section 5, we will work with the unitary group U(1) and consider the trace map on U € U(1) definedbyz :=tr(U) = u+u =
2 cos(0), where u = ¢, From here we see that dz = 2sin(6)d6 and
1 dz
Hu@a) = e

is the pushforward of the Haar measure on U(1) to the interval [—2, 2] (see [33, Section 2]). We can deduce the following pushforward
measure
k

1 dz;
Humk = 1_[ - 5
i1 % [4— Zi2

We can now define the moment sequence M[u], where p is a positive measure on some interval I = [—d, d]. The n™ moment
M, [u] is, by definition, u(¢,), where ¢y, is the function z — 2z". This yields M,,[uum)] = (n72), where (n72) := 0 if n is odd. Hence,
M[pum] = (1,0,2,0,6,0,20,0,...). From here, we take binomial convolutions to obtain

n
Myl = Z <,3 8 )Mﬂl [uu] - Mg ol
Prootp=n D PR

For a dimension g abelian variety, denote by u; the projection of the Haar measure onto the interval [—(zf), (215)], where i €

{1,2,...,g}. We compute M,[u;] by averaging over the components of the Sato-Tate group.
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3. Degenerate abelian varieties

We define an abelian variety A to be degenerate if its Hodge ring is not generated by divisor classes, i.e., the containment Z*(A) C
Z*(A) is strict. Results of Hazama [20] show that A is stably nondegenerate if and only if the rank of the Hodge group is maximal
(A is stably nondegenerate if 2*(A") = H*(A") for all n > 0), which implies a similar statement for the Mumford-Tate group.
Hazama also proves an interesting result regarding products of abelian varieties: if A and B are both stably nondegenerate, then the
only scenario in which A x B could be degenerate is if one of its simple factors is of type IV in the Albert’s classification (see [20]).
Recall that an abelian variety X is of type IV if the center of End(X) ®z Q is a CM field K with totally real subfield Ky containing
elements of K that are fixed by the Rosati involution induced by the polarization of X (see, for example, [27, Section 21]).

The main goal of this section is to investigate degeneracy via Mumford-Tate groups, Hodge rings, and Hodge groups. The results
of Sections 3.1 and 3.3 are general, while the result in Section 3.2 holds for Jacobians of the curves y* = x™ — 1. In Section 3.4 we will
show how degeneracy can affect the Sato-Tate group of an abelian variety.

3.1. Degeneracy via the Mumford-Tate group

In this section we study degeneracy of nonsimple abelian varieties via their Mumford-Tate groups. Consider a product A; x Az x
-+ x A, of nonisogenous (absolutely) simple abelian varieties. The question we wish to answer is: when is the Mumford-Tate group
of this product smaller than expected? In particular, we wish to know when one of the canonical projections

MT(A; X Ay x --- x Ay) — MT(A))

is an isomorphism or an isogeny. To answer this, we generalize results of Lombardo [25]. In what follows, we focus on abelian varieties
A; with CM.

3.1.1. Notation
Let E be a CM field and let L/Q be the Galois closure of E/Q. Let T = Resg;@(G) be the corresponding algebraic torus over Q. A
specific case of this is T5(Q) = E*. See Section 2.3.1 of [25] for more details.

Let G = Gal(L/Q) and let H be the subgroup of G associated to E: H = Gal(L/E). We can identify a CM type ® of E with a subset
of H\ G, and we define the set ® = {g € G | Hg € ®}. In our work, the reflex field of E will always satisfy E* = E though its CM-type
®* will usually be distinct from .

There are several important maps that we will carefully define. The first of these is the usual norm function N: L — E defined by
N(x) =[], o(x), where the product is taken over all o in Gal(L/E). In the special case where L = E, this norm map is simply the
identity. This norm map induces a map on the associated tori.

We define two dual maps on the character groups of the tori T, denoted by Tg. The first is a map on characters associated to E:

(b*: ?E — ?E*

B~ Y [¥Al.

Y ed*

Here [B] denotes the character of Tk corresponding to the embedding 8: E — Q. The second map sends characters associated to E*
to those associated to L:

N*: ?E* —> ?L
[Hg] — » [hg].

heH

Here we are defining the map by considering the isomorphism Tg+ ~ Z[H \ G] (see the exposition in [25]). In our work, we will be
interested in the composition of these maps: N*¢*: Tg — T.

3.1.2. The canonical projection map

The work in this section closely follows Section 4 of [25] where the results are stated for a product of two absolutely simple abelian
varieties. Let E; denote the CM field of the absolutely simple abelian variety A; for 1 < i < n. We begin with a result for character
maps.

Lemma 3.1. Fori=1,...,n, let E; be a CM field, L; be its Galois closure over Q, and L be a finite Galois extension of Q that contains
each L;. The image of the map

(N1,N2,....,N») (@1,02,---0n)
— 7 5 -5

Tr TE*XTEéx-”XTEﬁ Tg, x Tgy, x -+ x T,

is MT(A; X Ay X -+ X Ap).
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Proof. See the proof of Lemma 4.1 of [25], which does not depend on the number of factors in the product. O
Now consider the projection 7r;: MT(A; X Az X --+ X Ay) = MT(A)).
Lemma 3.2. Let/f"i ={0} x --- x {0} x ?E,. x {0} x -+ x {0}. The canonical projection m; is an isomorphism if and only if
T; + ker(Ni¢p* + -+« + N¥¢*) = Tgg, x - x Tg,.
Similarly, 7r; is an isogeny if and only zf’T\, + ker(Ny ¢ + - - - + N;i¢yr) has finite index in the product f.l"};1 X oo X ?Ew
Proof. This result is an easy generalization of Lemma 4.2 of [25], and so we include just enough detail in the proof to aid in

understanding the result.
Using the notation and definitions in Section 3.1.1 and the results of Lemma 3.1, we can build the following commutative diagram

N1, ..., duNy i
T, OGO AT (A X - X Ay) —— MT(A;)
J/(Nl ----- Nn)
T X -+ - X Trx T oo x T Tr.
B R T ) SR 2 i
and its dual
~ Nigpf++Niph  —~— w —
TL ” OMT(A; X -+ X Ay) 4 OMT(A;)

| I I

TETX"‘XTE* TElx"'XTE,, )TEi

where 7;, p; are the canonical projections on the i-th factor, and we denote by f* the map induced on characters by a morphism f of
algebraic tori.

Proving that the (surjective) projection m; is injective is equivalent to proving that 7" is surjective. Similarly, proving that the
projection 7; is an isogeny is equivalent to proving that 7 has finite cokernel. By diagram chasing, in both cases we need only
consider the kernel and cokernel of

TE,- —>’fE1 X oo ><TE,1 —>1\//ﬁ“(A1 X - X Ap).
The kernel of the map [, ?Ei — MT (A1 x -+ x A,) coincides with the kernel of

~ ~  Nigi+-tNigr A
TElx...XTEnu)TL
since I\ﬁ(Al X - XAy —> ?L is injective. Hence, I\ﬁ(Al X --- X Ay) can be identified with (?E1 X ++e X ?En)/ ker(Nj¢; + - -+
+NL)- . ~ ~ ~
Under this identification, the map 7" is surjective if and only if p} (T¥, ), which equals T}, surjects onto Tg, x - - - x Tf, / ker(N{ ¢}
+ -+ Ni¢}). Similarly, 7 is an isogeny if and only if p¥ (Tf,) maps to Tg, X - -+ x Tg,/ker(Nf¢} + --- + Nj¢?) with finite
cokernel. O

As in [25, Lemma 4.3], this can all be rephrased in terms of matrices. In the notation of Section 3.1.1, let E; denote the CM field of
the absolutely simple abelian variety A; for 1 < i < nand let L be a finite Galois extension of Q containing the Galois closure of each
E;. Furthermore, let G denote the Galois group of L over QQ, and H; < G be the subgroup corresponding to E;.

We let M; denote the matrix that represents the map N ¢*. The rows of M; are indexed by elements of G whereas the columns of
M; are indexed by the set H; \ G. We then compute the composition N}¢; for each [B] € ?Ei in order to determine the entries of M;.
In the special case where E; = L, the matrix M, is a square matrix with rows and columns indexed by G (since H; = {1}). Its entry in
position (gj, Higx) is given by

1 ifgig Le 5?‘
0 otherwise.

(gj) Higk) = {

The matrix M representing the map Ny¢; 4 - - - + N;;¢;; is obtained by concatenating the matrices My, . .., M,, horizontally. This
construction allows us to easily examine the kernel of the map when working out explicit examples.

We will apply these results to Jacobians of curves of the form y? = x™ — 1. In Section 4 we give the decompositions of the Jacobian
varieties into simple factors, and in Section 5 we use these decompositions to write the matrix M and study the degeneracy of the
Mumford-Tate groups. We see examples where the canonical projection of the Mumford-Tate group is an isomorphism and ones
where it is merely an isogeny.
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3.2. Degeneracy via Hodge rings

Recall that the Hodge ring of A is denoted Z*(A) and the subring generated by divisor classes is denoted 2*(A). As noted in
Section 2.3, we have the containment 2*(A) € %*(A). The question we wish to answer is: when is the containment strict? More
precisely, we wish to know when %*(A) is not generated by the divisor classes %' (A). We can think of this as the Hodge ring being
larger than expected. The additional Hodge cycles that are not generated by divisor classes are referred to as exceptional cycles, and
so we can also ask: in what codimensions do we have exceptional cycles?

In general, these are difficult questions to answer. However, if we specify to Jacobian varieties J,, of curves Cy,: y2 = x™ — 1 then
we can give satisfactory answers. The following result largely follows from Lemma 5.5 of [31] and will be used to prove Theorem 1.1.

Lemma 3.3. Let m = pq, with p < q odd primes. Suppose q is relatively prime to ((p + 1)/2)!. Then B*(J,») has exceptional Hodge
cycles whend = (p + 1) /2.

Proof. Consider the quotient
d—1
B (Jn) / > B Um) - B U
r=1

If the dimension of this space is greater than or equal to 1, then there will be Hodge cycles in B%(J,,) that do not come from lower
codimension. In particular, there will be exceptional cycles that are not generated by divisor classes.

Shioda relates the dimension of this space to the number N,,(d) of certain indecomposable elements of a semigroup (see Section
1C of [31]). For certain values of m, Shioda gives a lower bound for this quantity (see Lemma 5.5 of [31]): letting m = (2d — 1)n?/,
we have

Np(d) >m' —1 (3.1)

whenever ged(m’, d!) = 1.
Form = pqgandd = (p + 1)/2, welet m' = g so that m = (2d — 1)m’. If gcd(g, d!) = 1 then the inequality in (3.1) becomes

Np(d) =2 g—1
which is greater than 1 for any g > 2. Thus, there are exceptional cycles in B4(J,,), where d = (Pp+1))2. O

This result will always hold if we choose g > p since then g > (p+ 1)/2 and is, therefore, relatively prime to every smaller positive
integer. In Section 4.1 we use this result to prove Theorem 1.1.

Lemma 3.3 does not give a value or even a bound for the number of exceptional cycles — we simply get a lower bound on the
number of cycles that do not come from a lower codimension. However, as we will see in Section 5, it is possible to compute the
generators of the Hodge ring for the Jacobian varieties J,, and so we will be able to see which cycles are exceptional.

3.3. Degeneracy via Hodge groups

Asnoted in Section 2.2, the Hodge and Mumford-Tate groups are closely related to each other. The Hodge group is also closely related
to the Lefschetz group, denoted L(A), which is the connected component of the identity in the centralizer of the endomorphism ring
End(Az)q in Spy. In general, Hg(A) € L(A) and while the inclusion can be strict, there are cases where we have equality. In fact,
when dim(A) < 3 it is known that we always have equality [3].

The question we wish to answer is: when is the Hodge group smaller than the Lefschetz group? In this paper we study this problem
specifically for the Jacobian varieties Jac(y* = x™ — 1). We could investigate an answer to this through the Hodge group’s relationship
to the Mumford-Tate group, but we choose a different approach in this paper: we make use of a connection to Hodge rings.

The following result relates the Q-span of Hodge cycles with the Hodge group. Note that, in the notation of Section 3.2, %(A) =
Hif 1o © C.

Theorem 3.4. [4, Theorem 17.3.3] Let A be an abelian variety of dimension g. For any 1 < d < g, denote by
Hifo oo (A) = H*(4,Q) N HH(4)
the Q-vector space of Hodge cycles of codimension d on A. Then
Hfoge(A) = H¥(A, Q1.
There is a balance between the size of the Hodge group and the dimension of Hé‘i dg (A). The existence of exceptional Hodge
cycles, which we sometimes learn of through Lemma 3.3, often coincides with a smaller than expected Hodge group. In fact, we see

something even more interesting: the exceptional cycles give us information about the embedding of Hg(A) into USp(2g). We will
see examples of this correspondence between Hodge rings and Hodge groups in Section 5.
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3.4. Effects on the Sato-Tate group

As noted in Section 2.5, when the Mumford-Tate conjecture holds for an abelian variety A then the Mumford-Tate group and
Hodge group can be used to gain information about the Sato-Tate group of A. In particular, the Hodge group will equal the identity
component of the algebraic Sato-Tate group. The results and exposition in Sections 3.1, 3.2, and 3.3 help us understand the role
degeneracy can play in the Sato-Tate group.

The degeneracy we see in the Mumford-Tate group in Section 3.1 tells us when the Mumford-Tate group of A coincides with the
Mumford-Tate group of certain factors. When the Mumford-Tate conjecture holds for A, this will imply that ST?(A) ~ ST%(A;). As
with the Mumford-Tate group, in this situation we have a smaller than expected identity component for the Sato-Tate group.

The degeneracy of the Mumford-Tate group gives us some information about the Hodge group and the identity component of the
algebraic Sato-Tate group of A. However in order to compute moment statistics for the Sato-Tate group, we need to know the explicit
embedding of the Hodge group in USp(2g), where g is the dimension of A. The exceptional cycles in the Hodge ring of A give extra
relations on the elements of the Hodge ring (see Theorem 3.4); these extra relations can be used to determine the embedding of the
Hodge group.

Since the Mumford-Tate and Hodge groups only give us information about the identity component of the Sato-Tate group, we
will not gain information about the component group. The Sato-Tate group of a degenerate abelian variety can have not only an
identity component that is smaller than expected, but can also have a larger component group than what would be explained by
endomorphisms. In general, for an abelian variety A/F we have a canonical surjection

ST(A)/ST°(A) — Gal(K/F),

where K is the endomorphism field of A, but the surjection is not necessarily an isomorphism if A is degenerate (see, for example,
[13]). In general, we have an isomorphism ST(A)/ STY(A) ~ Gal(L/F), where L is the minimal Galois extension of F for which
ST(AL) is connected.! The field L is the fixed field of the kernel of a map induced by the £-adic representation p ¢ in equation (2.2)
(see [33, Theorem 3.12]). In some cases, we can use results of Zywina [36] to determine this field L. In Section 5 we will see examples
where the field L is the endomorphism field of A and ones where an extension is needed.

4. Decompositions of Jacobians

Let C,,,/Q denote the smooth projective curve with hyperelliptic equation y? = x™ — 1, and let J,,, denote its Jacobian. In this section
we describe how J,,, decomposes into simple factors. We begin with two cases: m = p* and m = pq, where p and q are distinct odd
primes.

In the first case, let 7, denote the map 7, : (x,) > (x#,y) from C,, to the degree p hyperelliptic curve Cp: y* = xP — 1. We let
X denote the identity component of the kernel of (1))« J;u — Jp. This gives the following isogeny over Q

Jpr ~ X X Jp. (4.1)

We can easily compute the dimension of X to be dim(J;;) — dim(J,) = p(p — 1)/2 = ¢(m) /2, where ¢ is Euler’s totient function.
In the second case, there are two such maps: 7,: (x,y) — (x4,) from C,y to Cp : y* = ¥ — land 74 (x,y) — (xF,y) from Cy,
to Cy : y* = x1 — 1. We obtain the following isogeny over Q

Jpq ~ X X Jp X Jgs (4.2)

where the dimension of X is computed to be ¢ (m)/2.

Proposition 4.1. Let m = p?, respectively pq. Then the Prym variety X given by the isogeny in equation (4.1), respectively equation
(4.2), is absolutely simple.

By work of Shimura-Taniyama [30], we can prove that X is absolutely simple by proving that its CM-type is primitive. Before
proving Proposition 4.1, we provide two lemmas that will be useful.

Lemma 4.2. Let m = pq, where p and q are odd primes (not necessarily distinct). Let X be the Prym variety obtained as a quotient of
Jm as in (4.1) or (4.2). Then the CM-type of X is (Q(¢m); D), where

¢ = {0 | ged(jym) = landj < g},

g=(m—1)/2, and Gj(é'm) = dn

'The field L is exactly the field K when A is nondegenerate. In particular, this is the case for all abelian varieties for dimension < 3.
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Proof. For ease of notation, let C: = C,,. Since C is a genus ¢ = (m — 1)/2 hyperelliptic curve, we may identify the complex
uniformization of J,, with H*(Cg, Qé) = C{x'dx/y | 0 < i < g). We briefly split into two cases:

Case 1: p = q. Recall that there is a map 7, : (x,y) = (&7, y) from C to C,. By pulling back regular differentials of C,, we see that
n; C, corresponds to the vector subspace

—1
C<xapldx/y la= 1,2,...,pT>

of H(Cc, Q(). Thus, the quotient J,,/J, (which is isogenous to X) has natural analytic uniformization given by the quotient of

C(x'dx/y | 0 < i < g) by this vector space. The dimension of the new vector space is ’"T_l — p%l = ¢(m)/2.
Case 2: p # q. In this case, there are two such maps: 7, : (x, y) > (x%,y) from Cto Cy and 71, : (x,y) = (xF, ) from Cto Cg. As
above, we pull back regular differentials of C, and Cg. The quotient of ], by the Jacobians of the two curves (which is isogenous to

X) has natural analytic uniformization given by the quotient of C(x'dx/y | 0 < i < g) by the vector subspace generated by
Cx™ dx/yla=1,2,...,(p— D/2)UC(x? 'dx/y |a=1,2,...,(g — 1/2).

The dimension of the new vector space is mT_l - P%I - q%l = ¢(m)/2.

In both cases, the automorphigm a: (%,9) — ({mx,y) induces an action of Q(¢,,) on the (¢ (m)/2)-dimensional vector space
given above. Since a*¥/dx/y = {fnﬂxj dx/y, we find that characters appearing in this uniformization will be of the form ¢,, — o,

where j is coprime to m.
Thus, we can identify the CM type ® of Gal(Q(¢,,)/Q) from the statement of the lemma as the CM-type of X. O

Lemma 4.3. Let m be an odd composite number. Define the set
-1
Sy = {1’”7} NZ/mZ".
Then aSpy, = Sy, for some a € Z/mZ> if and only ifa = 1.

Proof. First note that aS,, = Sy, is clearly true if a = 1. Also, aS, cannot equal S, if a > mT_l sincethena-1 ¢ S,,.

Now suppose a € S, satisfies 1 < a < mT_l We will show that there is a value b € S, such that ab ¢ S,,,.

Note that there is an integer in the interval (mz—_al, mT_l) Indeed, the only way for this to notbe trueisif (m—1)/a < (m—1)/2a+1,
which would imply m — 1 < (m — 1)/2 4 a. However this is not possible since a € S, and, hence, a < (m — 1)/2.

Now let b be an integer in this interval: m2_—a1 <b< mT_l This implies that (m — 1)/2 < ab < m — 1, which proves that ab is not
in S;,. Thus, we have proved the desired result.

O

Proof of Proposition 4.1. Asnoted below the statement of Proposition 4.1, it is sufficient to prove that the CM-type of X is primitive.
Proposition 26 of [30] claims the following: A CM-type S is primitive if and only if yS = § for y in the Galois group only when y is
the identity.

We gave the CM-type ® of X in Lemma 4.2. Identifying the automorphisms in ® with the set S,,, = {1,...,(m —1)/2} NZ/mZ*
allows us to apply the results of Lemma 4.3 and conclude that y & = ® only when y is the identity element. Hence, & is a primitive
CM type and X is absolutely simple. O

We can see the decompositions in equations (4.1) and (4.2) at the level of Frobenius polynomials. Let P4, (x) denote the Frobenius
polynomial of the abelian variety A at p. Then for A = Jp2 we have P4 p(x) = Pxp(x) - Py, p(x) and for A = J,; we have Py, (x) =
Pyp(x) - Pj,p(x) - Py p(x) for all good primes p.

We can compute Frobenius polynomials for J,, for more general odd, composite m in Sage over good primes p. Upon factoring,
we are able to see how the Jacobian variety J,,, decomposes into simple factors. This leads us to the following conjecture.

Conjecture 4.4. Let m be a positive odd integer. Then the decomposition of J,, into simple factors contains exactly one simple factor of
dimension ¢ (d)/2 for each divisor d > 1 of m. Furthermore, if p is a prime divisor of m then the factor of dimension ¢ (p)/2 is the
Jacobian of the curve Cp: y* = xP — 1.

Thus far we have only considered odd values of m. In the case where m is even, a result of [10] can be applied to determine the
splitting of the Jacobian.

Proposition 4.5. [10, Lemma 4.1] Let g = 2k be an even integer, and Cagyy : y* = x*¥1% + ¢, where ¢ € Q*. Then we have the
following isogeny over Q
Jac(Cagi2) ~ Jac(Cgr1)?,

where Coy1 1 y* = 28T +c.
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This allows us to prove the following statement.

Corollary 4.6. Let m = p? or pq. Then the Jacobian of the hyperelliptic curve Cay, satisfies the following isogeny over Q

J (X x ]p)2 ifm = p?,

2m ™~ .

" X x Jp x ]q)2 ifm = pq.

Proof. In both cases, Jom ~ (p)? by Lemma 4.1 of [10] since the dimension of ], is even: we set 2m = 2g + 2 and find that
g = m — 1is even since m is odd. The result then follows from equations (4.1) and (4.2). ]

4.1. Proof of Theorem 1.1

We are now in a position to prove that for any odd, composite m, the Jacobian J,, of y* = x™ — 1 is degenerate.

Proof. Let m be an odd, composite integer divisible by pg, where p and q are primes (not necessarily distinct). As in the beginning
of Section 4, we can view the Jacobian of the curve y2 = xP1 — 1 as a factor of J,; via a map on the curve: Tpg: Cm — Cpq defined
by (x,y) — (x™/P4, y). We proved in Lemma 3.3 that the Jacobian variety Jpq has exceptional Hodge cycles. Thus, J;, has degenerate
factors and is, therefore, also degenerate. O

5. Examples

In this section we explore the various forms of degeneracy for several Jacobian varieties Jy,,, each illustrating different phenomena
that can occur. The examples are presented in a non-hodgepodge manner: we carefully examine degeneracy in the Mumford-Tate
groups, the Hodge rings and Hodge groups, and the Sato-Tate groups of the varieties. Most of the computations were done in Sage
(code available at [16]).

51. y2=x°-1

We first consider the genus 4 curve Cy: y* = x” — 1. The isogeny in equation (4.1) tells us that its Jacobian factors as Jo ~ X x J3.
Here J3 denotes the CM elliptic curve y* = x> — 1 and, by Proposition 4.1, X is an absolutely simple, 3-dimensional abelian variety.
Lemma 4.2 tells us that the CM field of X is Q(¢9). We note that X is not the Jacobian of a curve. Indeed, by results of [22], (up to
isomorphism) there is only one genus 3 curve with CM field Q(¢9) and primitive CM type: the Picard curve y* = x* — x. However,
by computing and comparing Frobenius polynomials of y* = x° — 1 and y* = x* — x, we can see that the latter does not appear as a
factor of the former.

There are some results in the literature that give us information about the degeneracy of Jo. Remark 5.6 of [25] shows that the
projection MT(J9) — MT(X) is an isomorphism; this is proved using results similar to those in Section 3.1. In [31, Example 6.1],
Shioda works out the Hodge ring for Jo. In particular, Shioda uses a result that is a special case of Lemma 3.3 to determine that there
are exceptional Hodge cycles in codimension 2. The exceptional cycles in codimension 2 can be described by

B*(Jo)/D*(Jo) = {01 A wy AN@3 AW, w3 Aws Awg A@1}),
where wj = x¥'"!dx/y is a standard basis element of H' (C,,). There are no exceptional cycles in other codimensions.

We now show how we can determine the Hodge group of Jo from this. Recall that the Hodge group Hg(Jo) is an algebraic subgroup
of SLy and that Hg(Jo)c contains h(SY). Furthermore, Theorem 3.4 tells us HIZ-ILi)dge(]9) = H%(Jy, Q)HeUo),

We can identify SLy with the group of 2¢g x 2¢g matrices with determinant 1. Since Jg is of CM-type, Theorem 17.3.5 of [4] tells us
that its Hodge group is commutative. Thus, we can say that elements of Hg(Jy) are of the form

U = diag(Uy, Uz, Us, Uy),

where U; = diag(u;, ;) and u; € S', and where there may be some relations among the U;. We compute U - v for each element v of
the space of Hodge cycles in order to determine what relations are required in order to obtain U - v = v. For example,

U- (w1 Awg A3 Awy) = ujuatiauz (w1 A wg A w3 A @32).

This yields the relation us = u;usus3. The other exceptional cycle yields the same relation. Thus, we may conclude that the elements
of Hg(Jo) are of the form

U = diag(Uy, Uy, Us, U U, Us).
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5.1.1. Sato-Tate group
Since the Mumford-Tate conjecture holds for Jo, the Hodge group equals the identity component of the algebraic Sato-Tate group.
The identity component of the Sato-Tate group is a maximal compact subgroup of this, and so we have the following result.

Proposition 5.1. Up to conjugation in USp(8), the identity component of the Sato-Tate group of Jo is isomorphic to U(1)3. More
specifically,
ST’(Jo) == (diag(Us, Uz, Us, U1 U2 Us)).

This matches the result of Theorem 6.9 of [10], though here we used a different method to obtain the result and we give the
additional relations needed for the embedding in USp(8).

In order to determine the full Sato-Tate group of Jo, we first need to know the minimal field L for which ST((Jo)1) is connected.
As noted in Section 3.4, this field can be computed using results of Zywina. In fact, Zywina determines that this field is equal to the
CM field of Cy (see Section 1.7 of [36]). Hence, ST(Jo)/ ST (Jo) ~ Gal(Q(¢9)/Q).

This is enough information to compare moment statistics for the identity component of the Sato-Tate group to numerical moments
since STY(Jy) = ST((J9)Q(z))- The numerical a;-moments in Table 1 were computed over the field Q(¢9) and for all primes up to
p< 223 using an algorithm described in [18] and [19]. Note that the values of the a; -moments were rounded in order to fit the values
in the table.

The errors for the even moments are within a margin of 1% and are consistent with the errors for the odd moments (which should
all be zero). Choosing a larger bound for p will lead to better estimates.

For nondegenerate abelian varieties, we can determine generators of the component group of the Sato-Tate group through the
twisted Lefschetz group (see [3]). The twisted Lefschetz group, denoted TL(A), is a closed algebraic subgroup of Sp,, defined by

TL(A) = U L(A) (1),

reGal(F/F)

where L(A)(7) :={y € szg | yay~! = 1(a) foralla € End(Az)q}.

We can compute the twisted Lefschetz group for the Jacobian variety Jo even though this is a degenerate abelian variety. The
nontrivial Lefschetz sets L(Jy) () are those coming from elements 7 in G = Gal(Q(¢9)/Q) since Q (o) is the endomorphism field of Jo.
The Galois group G is generated by the order-6 automorphism 7,: {o — ¢ and we have that the component group of |, L(A)(7)
is generated by

0 I 0 O
0 0 0 I

=10 o 70 (5.1)
J 0 0 O

The matrix y was computed using the techniques of [8] and [17].

We now compute moment statistics of the group (diag(U;, Ua, Us, U, U, Us), y) and compare them to the numerical moments
over Q. The numerical moments in Table 2 were computed for all primes up to p < 2?3 using an algorithm described in [18] and
[19]. Note that the values of the a;-moments were rounded in order to fit the values in the table.

As in Table 1, the errors for the even moments shown in Table 2 are within a margin of 1% and are consistent with the errors for
the odd moments. This leads us to make the following conjecture.

Conjecture 5.2. Let Jac(Cy) denote the Jacobian of the curve y* = x° — 1. Up to conjugation in USp(8), the Sato-Tate group of Jac(Co)
is

ST(Jac(Cy)) =~ (diag(Ul, Uz, Us, U1 Uy Us), )/) ,

where y is defined in equation (5.1) and U is defined in the Notation and Conventions section.

Table 1. Table of 1¢1- and a1-moments for ST(Jg) over Q(&g).

My Ma Me Mg Mo

nr 8 216 8000 343000 16003008
a 8.01253  216.204  7997.25 342072 15901600

Table 2. Table of 11- and a;-moments for Jg over Q.

My Msg Mg Mg Mio Miz

nr o 2 38 1340 57190 2667252 131481812
a 2 38 1338 57010 2649180 129958000
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Table 3. Table of 11-moments for J1g over Q(¢1g).

My My Mg Mg Mio Mn2
"1 32 3456 512000 87808000 16387080192 3231289442304

As further evidence supporting this claim, we recall that the Sato-Tate group of Jg is connected over the field Q(¢9) and note that
the component group of the above group is isomorphic to the Galois group G = Gal(Q(¢9)/Q).

51.2. y?=x"® -1
We first apply Proposition 4.5 to the Jacobian of the curve Cjg: y* = x'® — 1 and find that

Jis ~ (Jo)*.

Hence, by the discussion in Section 2.2, the Hodge group Hg(J1g) is isomorphic to Hg(Jy), which acts on V(J13) diagonally. Since
the Mumford-Tate conjecture holds for Jo, it also holds for J13 ~ (Jo)? (see Section 2.5). Thus, the Hodge group equals the identity
component of the algebraic Sato-Tate group. The identity component of the Sato-Tate group is a maximal compact subgroup of this,
and so we have the following result.

Proposition 5.3. Up to conjugation in USp(16), the identity component of the Sato-Tate group of J1g is isomorphic to (U(1)?),. More
specifically,
ST(J18) = (diag(Uy, Uz, Us, Uy U Us, Uy, Uz, Us, U Uy Us)).

This matches the result in Section 6.6 of [10], though here we give the additional relations needed for the embedding in USp(16).
These additional relations enable us to compute moment statistics for the identity component (see Table 3).

52, y2=x" -1

We now consider the curve Cis: y2 = x!° — 1. The isogeny in equation (4.2) tells us that its Jacobian factors as J;5 ~ X x J5 x J3,
where X is an absolutely simple 4-dimensional abelian variety. By Lemma 4.2, X has CM by Q(¢15).

While the Hodge ring and Hodge group degeneracies are similar to those we saw in Section 5.1, we see interesting new phenomena
for the Mumford-Tate group and Sato-Tate group.

5.2.1. Mumford-Tate group
In the notation of Section 3.1.1, let L = E; = Q(¢15), E2 = Q(¢5), and E3 = Q(¢3). Let G denote the Galois group of L over @, and
H; < G be the subgroup corresponding to E;: H; = Gal(L/E;).

The exposition after the proof of Lemma 3.2 gives a method for representing the map N ¢} 4+ N3 ¢5 + N5 ¢5 as a matrix M, which
is the concatenation of matrices M;, M,, and M3 corresponding to the factors of J;5. The rows of each matrix will be indexed by

G= {Tl» T2, T4, T7, T8> T115 T135 7:14}) (52)
where 7j(¢15) = {{5.

For an explicit ¢Xample, we show how to compute a column for the matrix M,. The CM-type of E; = Q(¢s5) is 2 = {01, 02},
where 0j(¢5) = ;‘é, and the reflex type is ®; = {01, 03}. The elements of H, = Gal(L/E;) are 7; and t1;. Consider the character
03 € Tg,. We see that

N5 ¢35 ([02]) = N5 ([0102] + [0302])
= N5 ([o2] + [o1])
= ([t2] + [w7D) + ([71] + [T11D-

Taking into account the labeling of the rows of M coming from equation (5.2), we can conclude that the second column of M, is
(1,1,0,1,0,1,0,0).
We repeat this process for the matrices M}, M, M3 and obtain

1 1.1 1 0 O

, (5.3)

—_— O = O = O
O = = O O
O O O
— = O = O O
S O = O = =
—_— - O O == O O
— O = O = O = O
O = - -0 O O -
_——- O O = OO
—_ O = -0 O = O

O = OO O -

O O = O = O =
—_—_O O O = O

— === O OO

0 0 0 0 1

where the vertical lines are included to visually separate the M; matrices.
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Proposition 5.4. The canonical projection MT (J15) — X is a degree 2 isogeny.

Proof. We use Sage to compute the (right) kernel of the matrix M in equation (5.3). We then determine that the space spanned by
kernel of M and Z8 x {0} x {0} i isan 1ndex 2 submodule of Z8 x Z* x 72. This corresponds to T1 x {0} x {0} +ker(N} @] +N; 5 +N3 03)
having index 2 in the product TE1 X TE2 X TE3 Thus, by Lemma 3.2, the projection is a degree 2 isogeny. O

5.2.2. Hodge ring and Hodge group
Lemma 3.3 tells us that there will be exceptional Hodge cycles in codimension 2. The 12 exceptional cycles in codmension 2 are
given by Shioda in [31, Section 6.2]. Shioda also identified exceptional Hodge cycles in codimension 3, though in this case we have
B = B B

The Hodge group of /15 is commutative, and so we can identify elements Hg(J;5) with matrices in U(1)”. We use the method of
Section 5.1 to identify the additional relations on the elements of the Hodge group coming from the exceptional cycles in the Hodge
ring. We find that elements of the Hodge group are of the form

U = diag(Uy, Uy, Us, Uy, U U3 Uy, Uy Us Uy, Uy U, U3 Uy).

Note that, when identified with a matrix group, the Hodge group is isomorphic to U(1)*. This is consistent with what we would expect
from our work with the Mumford-Tate group in Section 5.2.1 where we determined that MT(J}5) is isogenous to the Mumford-Tate
group of a 4-dimensional simple abelian variety.

5.2.3. Sato-Tate group
Based on the above work and the relationship between the Sato-Tate group and the Hodge group of an abelian variety, we have the
following result.

Proposition 5.5. Up to conjugation in USp(14), the identity component of the Sato-Tate group of 15 is
STO(J15) = (diag(Uy, Uy, Us, Uy, UaUs Uy, Uy U3 Uy, U1 U, U3 Uy)).

This is consistent with the result in Table 2 of [10] where it is given that the identity component is isomorphic to U(1)%. In
Proposition 5.5 we improve upon the earlier result by giving the additional relations needed for the embedding in USp(14).

We can easily compute the moment statistics of the Sato-Tate group, but we see an interesting phenomenon when attempting to
compare these to the numerical moments coming from the curve Cjs. Recall from Section 3.4 that, in general, ST(A)/ ST°(A) ~
Gal(L/F), where L is the minimal Galois extension of of F for which ST(Ay) is connected. We saw in Section 5.1 that for Jo the field
L is exactly the endomorphism field of the variety. However that is not the case for J;5 — we need a degree 2 extension of Q(¢;5).

We get our first hint that we may need a larger field by examining the moment statistics in Table 4. The numerical moments were
computed over the field Q(¢;5) for primes p < 232 by Sutherland [32] using an algorithm described in [18] and [19]. Note that the
values of the a;-moments were rounded in order to fit the values in the table.

We quickly see that these moment statistics do not match - the errors for My and Mg are much larger than we would expect for
the Sato-Tate group of the abelian variety.

We can use a technique developed in [36] to gain information about the field L - we will describe the strategy as it applies to
the abelien variety J15. For a prime p = 1 (mod 15), we form the group ®;,, , generated by the set of roots in Q of the Frobenious
polynomial of Ji5. If the group @y, , is torsion-free then p splits completely in L (see Section 1.5 of [36]). By computing this group
for many primes, it appears that roughly half of the primes congruent to 1 modulo 15 split completely in L (there is Magma code to
assist with these computations available at [35]). This indicates that L is a degree 2 extension of the CM field Q(¢;5).

We use the L-functions and Modular Forms Database [24] to gain further information about the field L. There is only one field
listed that is a degree 2 extension of Q(¢15) with the same ramified primes (3 and 5):

http://www.Imfdb.org/NumberField/16.0.3243658447265625.1

In order to further confirm that this is the field L for which ST(Ay) is connected, we compute numerical moment statistics. The
numerical moments in Table 5 were computed over the above field for primes p < 23 by Sutherland [32] using an algorithm described
in [18] and [19]. Note that the values of the a;-moments were rounded in order to fit the values in the table.
We see that the errors for the even moments are within a margin of 1% and are consistent with the errors for the odd moments.
Further work is needed in order to determine the full Sato-Tate group of J;5 (over Q). We know that the component group of
the Sato-Tate group will satisfy ST(J;5)/ ST (J15) =~ Gal(L/Q), however it is not clear how one could find explicit generators for the
component group.

Table 4. Table of £1-and aj-moments for ST(J15) over Q(¢15).

M, M My Ms Mg

w14 0 834 0 78260
a; 13992 0037 641326 5495  49354.840
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Table 5. Table of 1t1-and a;-moments for ST(J15) over L.

My M3 Mgy Ms Mg

wi 14 0 834 0 78260
a; 13993 0093 833023 11.991  78067.503

53. y2=x21-1

For our third example we consider the curve Cy;: y2 = x21 — 1. The isogeny in equation (4.2) tells us that its Jacobian factors as
Jo1 ~ X x J7 x J3, where X is an absolutely simple abelian variety of dimension 6. By Lemma 4.2, X has CM by Q(¢21). In this case
we see new phenomena in the Hodge ring setting, as well as for the Mumford-Tate group.

5.3.1. Mumford-Tate group

In order to study canonical projections of the Mumford-Tate group, we build the matrix M representing the map Ny ¢} +N; ¢35 +Nj3 ¢}
described in Section 3.1.2 (see Section 5.2.1 for more details on how to build this matrix). The matrix M is obtained by concatenating
matrices My, M, M3 corresponding to the factors X, J7, J3, respectively:

1 111110000°U0O0[1 1100010
01 101 100100T1/01 010 1[0 1
00101 01010T1T1|[10071T1O0|10
001 1110000O0°T1TL1/1010T10|01
1000101071 110[1 11000001
00001 10071T1T1T1/01100T1|1 0

M=l 1 1 1100110000/1007110J01] (5.4)
01 11 010T100TU0T1|/000T1T1T1|10
110000111 100[010T10T1[1 0
1 101010107100[01100 1|01
1001001 10110[1010T1GQ0[10
0000O0OOT1T1T1T1T1T1/000T1T1T1|0 1

where the vertical lines are included to visually separate the M; matrices. We use Sage to compute the (right) kernel of the matrix M
in equation (5.4). The space spanned by the kernel of M and Z!2 x {0} x {0} does not have finite index in Z'? x Z° x Z2, which
tells us that the projection MT(J21) — MT(X) is not an isomorphism nor an isogeny. However, we do find that the space spanned by
ker(M) and Z!'? x {0} x Z? has index 1 in Z'2 x Z® x Z?. This yields the following result.

Proposition 5.6. The projection MT(J21) — MT(X x J3) is an isomorphism.

5.3.2. Hodgering and Hodge group
The exceptional Hodge cycles for J»; are given in [31, Section 6]. Applying the technique described in Section 5.1, we find that the
elements of Hodge group are of the form

diag(Uy, Uy, Us, U U2 Us, Us, Us, Uy, U U3Us, UUsUs, Uy UsUs).

This implies that the Hodge group is isomorphic to U(1)®, which is surprising since the Mumford-Tate group of /] is isomorphic
to the Mumford-Tate group of a 7-dimensional subvariety. It is possible that this phenomenon is related to the fact that the abelian
variety X is degenerate. This fact is proven by Shioda in [31, Section 6] by noting that there are exceptional cycles of J,; that come
from X. This differs from our examples for m = 9, 15, where in those cases all of the exceptional Hodge cycles came from the Jacobian
factors of J;,.

54. y2 =x? -1

An interesting example to consider next is the genus 13 curve Cy;: y* = x*7 — 1, which is not one of the examples worked out by
Shioda. Its Jacobian factors as /7 ~ X, x X1 x J3, where X; and J3 are the simple abelian varieties appearing in the decomposition of Jo
in Section 5.1 and X3 is an absolutely simple abelian variety. To find the dimension of X, we simply compute dim(J27) — dim(Jo) = 9.
We can easily extend Lemma 4.2 and conclude that the CM field of X is Q(&27).

5.4.1. Mumford-Tate group
Using the same technique described in detail in Section 5.2.1, we are able to prove the following result.

Proposition 5.7. The canonical project MT (J27) — MT(X3) is an isomorphism.
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Proof. We use Sage to compute the (right) kernel of the matrix M obtained using the techniques described in Section 3.1.2. The
order of character group T associated to X; is ¢ (27) = 18. We determine that the space spanned by kernel of M and Z'® x {0} x {0}
spans all of Z'8 x Z° x 7. Thus, by Lemma 3.2, the projection is an isomorphism. O

5.4.2. Hodge ring and Hodge group

The Hodge ring of /7 is not worked out in Shioda’s paper [31], but we can use Theorem 5.2 of the paper to determine the exceptional
cycles that appear in the Hodge ring. For example, using code written in Sage, we find that the space of exceptional cycles in
codimension 2 is generated by:

w1 A wig A W3 A g w3 A wg A W1 N\ W19
wy N w11 A g N @7 wg N w7 AWy N 011
w3 A\ W12 A\ Wg N Wy we A\ w9 N\ W3 N\ W12
wq4 N\ W13 A\ W5 A W12 w5 AN W12 A\ W4 N\ W13

As in Sections 5.1 and 5.2, we can use the exceptional Hodge cycles to determine extra relations in the Hodge group of J,7 from
this. We find that the elements of Hg(J,7), identified as 2¢g x 2¢ matrices with determinant 1, are of the form

diag(Uy, Ua, Us, Uy, Us, Us, U7, U, Ug, U1 U3 U, U UgUy, U3 UgUs, U3z U4 Us Ug Us).

Note that this implies that Hg(J>7) is isomorphic to U1)? with embedding in USp(26) given by the relations noted above.

5.5. Further work for more general y?> = x™ — 1

In this section we will investigate further examples and make conjectures about the degeneracy of Jacobian varieties J,,. We first
consider examples where m = p?, for p prime.
Recall from Section 4 that the Jacobian of Cy satisfies the following isogeny

]pz NXXIP)

where X is an absolutely simple abelian variety of dimension p(p — 1)/2.
The following result has been verified by computing the kernel of the matrix M described in Section 3.1.2.

Proposition 5.8. Let ]2 and X be defined as above. Then the projection MT(J,2) — MT(X) is an isomorphism for odd primes p < 29.
It seems likely that this holds more generally, and so we make the following conjecture.

Conjecture 5.9. Let ],» and X be defined as above. Then the projection MT(J,2) — MT(X) is an isomorphism.

The next generalization we consider is m = p>. As in Section 5.4 we have that the Jacobian Jp3 satisfies the following isogeny
Jps ~ X x Xy X Jp,

where X; and ], are the simple abelian varieties appearing in the decomposition of J,2 and X is an absolutely simple abelian variety.
To find the dimension of X, we simply compute dim(]ps) - dim(]pz).
The following result is verified using the same techniques as those in Section 5.4.

Proposition 5.10. Let ],3 and X be defined as above. Then the projection MT(J,3) — MT(Xy) is an isomorphism for odd primes
p <13

As we suspect for m = p?, it seems likely that this holds more generally, and so we make the following conjecture.

Conjecture 5.11. Let J,3 and X, be defined as above. Then the projection MT(J,3) — MT(Xy) is an isomorphism.

We believe that these results could be generalized tom = pk, for k > 1. For values of m with at least two distinct odd prime factors, it
is more difficult to make a general statement regarding the canonical projection of the Mumford-Tate group onto its factors. It remains
an open question of when the projection onto one or more factors is an isogeny or isomorphism.

In terms of the Hodge rings and Hodge groups, Lemma 3.3 tells us that there are exceptional Hodge cycles in codimension (p+1)/2
for the Jacobian J,,, though there may be exceptional cycles in other codimensions as well. One can compute all of the Hodge cycles
using Sage code that implements Theorem 5.2 of [31] and then determine which of these are exceptional. These exceptional cycles are
used to determine extra relations in the Hodge ring, which in turn give us the embedding of the identity component of the Sato-Tate
group of J,,, in USp(2g). In the examples worked out in the preparation of this paper, there was not a clear pattern in the number or
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the format of the exceptional cycles. It would be interesting to work out more examples and determine if there is a way to characterize
the exceptional cycles based on the factorization of m.

One of the initial goals for this project was to better understand the Sato-Tate groups of degenerate abelian varieties. By determining
the additional relations in the Hodge group (coming from exceptional cycles in the Hodge ring), we can describe the identity
component of the Sato-Tate group. Beyond this, there is still much work to be done. The first main question to consider further
is: over what extension L/Q is the Sato-Tate group connected? We saw that in the case of Jo, L is exactly the endomorphism field, but
for Ji5 it is a degree 2 extension of this field. Can we make a general statement about the field L?

The second main question is: how do we find generators of the component group of the Sato-Tate group? This is particularly
unclear in the situation where the field L strictly contains the endomorphism field, which also means that any results in this direction
will be particularly interesting.
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