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ABSTRACT
With the rising demand for computing power in High-Performance
Computing and Deep Learning applications, there is a noticeable
trend in out�tting modern exascale clusters with accelerators. In
recent years, Intel has been designing and developing GPU prod-
ucts and their associated ecosystems. Concurrently, application
developers are transitioning their programs to Intel GPUs, seeking
to maximize the computational capabilities of multi-GPU systems
by utilizing e�cient communication facilitated by modern GPU-
aware MPI libraries. Hence, it is critical to design an e�cient MPI
collective library speci�cally tailored for Intel GPUs to optimize
communication performance. In this paper, we proposed hybrid and
IPC-based designs for data movement collective MPI operations
on contemporary Intel GPU systems. For large message communi-
cation, we developed a comprehensive design for data movement
collectives that surpasses reliance on basic send/recv pairs, e�ec-
tively minimizing overheads. For small messages, we employ CPU
staging techniques and compare various underlying libraries to en-
sure optimal performance. We evaluate the bene�ts of our designs
at both the benchmark and application layers on the Intel DevCloud,
utilizing 4 Intel GPUs connected with X4 Links. In benchmark-level
evaluations, our Alltoall and Allgather implementations show a
constant 100 �s improvement for large messages, while other opera-
tions like Bcast achieve a 72x performance enhancement compared
to MPICH at 32MB. In application-level evaluations, our proposed
designs demonstrate up to a 30% improvement for the HPC appli-
cation heFFTe compared to the second-best solution using MPICH.
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1 INTRODUCTION
Accelerators, such as Graphics Processing Units (GPUs), are pivotal
in contemporary High-Performance Computing (HPC) ecosystems.
Both HPC and Deep Learning (DL) applications heavily depend
on the computational power provided by GPUs. The emergence
of generative AI has underscored the signi�cance of GPU perfor-
mance, with leading systems in the TOP500 rankings utilizing these
processors to enhance the execution of intricate HPC/DL tasks. To
facilitate the optimized scaling of GPU-based applications, an e�-
cient communication library is essential for enabling streamlined
data movement among GPUs.

Despite entering the GPU market later, Intel is actively involved
in the design and development of various GPU products and their
associated ecosystems. In 2020, Intel introduced the Iris X4 Max,
followed by the Intel Data Center GPU Max series. Figures 1(a)
depict the micro-architecture of Intel X4 HPC stack used in Intel
Data Center GPU Max series. Each stack contains 4 slices and each
slice contains 16 X4 cores, computing units of the Intel GPUs. Each
X4 core consists of Vector Engines and Matrix Engines, referred to
as Intel X4 Matrix Extensions (Intel XMX). These cores are equipped
with Vector Engines are designed to speed up traditional graphics,
computing, and HPC tasks. Additionally, they include eight 4096-bit
Intel XMX units optimized for accelerating AI workloads.

Furthermore, Intel GPUs are integrated into the Aurora super-
computer, securing the second position in the TOP500 list as of
November 2023. It’s important to note that Aurora’s performance
metrics were submitted with a measurement on only half of the
planned �nal system. The success of Aurora underscores the e�ec-
tiveness of Intel GPUs, emphasizing the necessity of developing an
e�cient MPI communication library tailored for HPC systems with
Intel GPUs.

To enhance the usability of Intel GPUs, Intel introduced the
oneAPI framework, encompassing the SYCL backend for high-level
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Figure 1: The example overview of Intel Data Center GPU Max and the intro-node connection via X4 links.

programming on these platforms. Additionally, the oneAPI suite in-
corporates Level Zero library, providing lower-level options that af-
ford developers the �exibility to optimize data movement strategies
according to their speci�c requirements. Like NVLink for NVIDIA
GPUs, Intel o�ers Intel X4 links for high-performance interconnec-
tivity among its GPUs. It facilitates load and store operations, bulk
data transfers, and synchronization of semantics. This technology
serves as a scalability element capable of enabling communication
for up to eight X4 HPC Stacks through an integrated switch. Figure
1(b) exhibits four-way scalable con�gurations, representing one of
the potential X4 con�gurations.

1.1 Motivation
In the context of emerging dense GPU systems with multiple Intel
GPUs, designing e�cient GPU collective operations is crucial to
fully leverage the potential of interconnected GPU architectures.
Modern high-performance MPI solutions increasingly prioritize
low latency and high bandwidth communication. Low latency is es-
sential for e�ciently transmitting smaller message sizes due to their
frequent exchange. Conversely, the focus shifts to achieving high
bandwidth for larger messages, particularly in applications with
substantial communication payloads. Optimizing for high band-
width becomes essential to meet the needs of these data-intensive
applications, ensuring that larger messages are transmitted with
maximum e�ciency and minimal delay.

Over recent years, Intel has expanded its GPU ecosystem from
a single GPU to multiple GPUs, connecting them with X4 links.
This evolution encourages application developers to transition their
programs to the Intel system, taking advantage of multi-GPU com-
putation facilitated by GPU-aware MPI libraries. heFFTe serves as
an exemplary application harnessing the power of multiple Intel
GPUs through MPI collective operations. It has crafted GPU kernels
using oneAPI and the oneMKL library, strategically employing All-
toall(v) communication patterns to facilitate e�cient data transfer
between GPU memories. This emphasizes the need for creating an

e�cient collective library speci�cally designed for Intel GPUs to
optimize the performance of these applications.

GPU inter-process communication (IPC) optimizes data move-
ment among GPUs within a node. Hence, MPI library develop-
ers leverage this technique to transfer large amounts of data be-
tween GPUs, particularly in point-to-point communications. While
the IPC protocol provides high-bandwidth communication perfor-
mance, there are currently limited optimized designs for collective
operations, especially for Intel GPUs. Existing Intel GPU-aware
MPI libraries, such as MPICH, showcase robust implementations
for point-to-point communication using IPC techniques for large
messages. However, these libraries often reuse point-to-point calls
in collective operations without a comprehensive and optimized
design. This practice introduces additional overhead, highlighting
the need for more tailored and e�cient designs in the collective
communication layer to enhance overall performance.

1.2 Challenges
We address the following challenges to design and implement a
hybrid data movement collective MPI library for intra-node com-
munication:

• What strategies and techniques should be employed to design
and implement a high-performance MPI library for data
movement collective operations?

• How can we design a library for intra-node communica-
tion across multiple GPUs, leveraging the high speed and
bandwidth of Intel X4 links?

• How do we determine the optimal choice of libraries (e.g.,
oneAPI/SYCL, Level Zero) for memory allocation and copy-
ing in the CPU staging approach?

• How can we devise a comprehensive design for data move-
ment collectives, moving beyond the reliance on basic send/recv
pairs and minimising overheads?
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• Can we enhance the performance of HPC and DL applica-
tions relying on MPI collective operations, particularly on
modern dense Intel GPU systems?

1.3 Contributions
This paper makes the following contributions:

• Implement and optimize collective operations for the small
message, employing the CPU staging approach alongside
SYCL APIs and fast memcpy techniques. (Section 3.2, Fig-
ure 4)

• Design and implement a comprehensive IPC solution specif-
ically crafted for managing large messages, ensuring mini-
mal introduction of unnecessary synchronization overheads.
(Section 3.3, 3.4, and 3.5)

• Analyze various protocols and implement a hybrid design to
deliver optimal performance across all message sizes. (Fig-
ure 4)

• Evaluate MPI collective operations and compare our pro-
posed designs with Intel MPI and MPICH. Our Alltoall im-
plementation exhibits a constant 100 �s improvement for
large messages, while Bcast achieves a 72x performance en-
hancement compared to MPICH at 32 MB. (Figure 6 to 11)

• Demonstrate that our proposed designs yield up to a 30%
improvement for heFFTe in the application-level evaluation
compared to the second-best solution using MPICH. (Fig-
ure 12)

To the best of our knowledge, our proposed design is the
�rst to outperform Intel MPI and MPICH libraries for intra-
node data movement collective operations on Intel GPUs.

2 BACKGROUND
2.1 Intel GPUs
The Intel Data Center GPU Max series [5], also referred to as Ponte
Vecchio or PVC is a powerful accelerator that’s speci�cally de-
signed to handle demanding workloads in deep learning, arti�cial
intelligence, and HPC. This new GPU product is based on the Intel
X4 -HPC micro-architecture with a compute-focused, programable
and scalable element called the X4 -core. X4 -core includes special-
ized matrix engines also referred to as Intel X4 Matrix Extensions
(Intel XMX) for accelerating tasks such as matrix multiplication,
which is commonly used in AI training and inference. Intel Data
Center GPU Max 1100 is one of the products from the Intel Data
Center GPU Max series that was launched in early 2023 and comes
equipped with 56 X4 cores and 48GB of HBM2e memory.

2.2 GPU-aware MPI
In traditional MPI implementations, when communicating between
two GPUs on di�erent nodes, developers have to manage the trans-
fer of data between them using memcpy. However, with GPU-aware
MPI, the users can provide either a host or device bu�er directly to
the MPI library. During data transfer initiation, the MPI implemen-
tation internally identi�es the type of bu�er. Based on the size and
type of bu�er, MPI implementation employs optimized algorithms
and selects the most e�cient pathway for communication. This
intelligent approach ensures that data transfers are executed with

minimal latency and maximal throughput, enhancing the overall
performance.

2.3 Level-Zero Library
The Intel Level Zero (L0, ZE) [6] is a low-level API that is designed
to facilitate interaction with accelerator devices, with the added
bene�t of �exibility through support for a broad set of features, such
as uni�ed shared memory, synchronization primitives, and device
function pointers. The primary objective of this implementation
is to provide a system-level programming interface that enables
higher-level runtime APIs and libraries to target heterogeneous
hardware. Alongside this core functionality, the L0 implementation
provides various other features such as device partitioning, instru-
mentation, debugging, power management, frequency control, and
hardware diagnostics.

2.4 Inter-process Communication (IPC)
MPI processes operate within distinct address spaces, necessitating
the use of inter-process communication techniques to exchange
data with each other. Similarly, in the realm of GPU inter-process
communication, the GPU IPC feature optimizes data movement
among GPU processes within a node. CUDA IPC [11] enables direct
data copying from the GPU address space of one process to another
without host intervention. To achieve this, a process must expose
a portion of its address space to the remote processes, thereby
creating a memory handle for the shared address. Following this,
the handle is transferred to the remote process. Upon reception, the
remote processes gain access to and can modify the shared remote
address space using the provided IPC memory handle.

3 DESIGNING THE LARGE MESSAGE
COMMUNICATION USING IPC TECHNIQUE

3.1 Overview of the Designs
We delve into the details of the hybrid and IPC-based data move-
ment collective designs in two parts: CPU Staging approaches
and IPC designs. These approaches excel in di�erent message size
ranges. Typically, IPC designs involve the exchange of IPC handles
with peers for initialization, introducing some overhead. These over-
heads become more signi�cant for small message communication.
Therefore, for small messages, we adopt CPU staging approaches
to mitigate the IPC initialization overhead. We implemented our
designs based on MVAPICH-Plus, building upon the foundation
of MPI point-to-point operations as base implementations for the
collective operations. In this work, we support common MPI opera-
tions such as Alltoall, Allgather, Bcast, Gather, and Scatter. Addi-
tionally, we also provide support for the "v" series MPI collectives,
including Alltoallv. In this paper, our focus will be on discussing
Alltoall, given its dense communication pattern.

3.2 CPU Staging Approaches for Small Messages
CPU staging is the most naive approach to handle GPU bu�ers
when implementing a GPU-aware MPI library. This method in-
volves allocating a host bu�er in CPU memory, copying the data
from the device to the host, performing regular MPI operations for
communication between processes, and storing the data back into
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Figure 2: Overview of the timeline details for CPU staging approaches and IPC designs.

the device bu�er from the host staging bu�er. Figure 2(a) provides
detailed time results for implementing a CPU staging approach for
collective operations. The red and blue arrows indicate the actual
data transfer between the device and host bu�er and processes.

Given that most MPI libraries optimize MPI collective opera-
tions for CPU bu�ers, the primary overhead that can signi�cantly
impact overall performance is the speed of memory copy opera-
tions. The previous work [4] has demonstrated that the bu�er type
(whether allocated with C or SYCL APIs) can in�uence data copying
performance. In our implementation, we leverage two underlying
libraries for GPU data allocation and copying: SYCL and Level Zero.
Table 1 provides a summary of common APIs used by CUDA, SYCL,
and Level Zero. Note that when using Level Zero APIs, the process
involves creating and handling a CommandList to execute memory
copying operations. When copying data, a memory copy command
is appended to the CommandList, but the operations are not exe-
cuted until the execute API is called. Synchronization APIs can be
used to wait for the command to �nish or the command can be
tracked with an event. Following this, the CommandList also needs
to be reset for subsequent usage. The performance implications of
this choice will be discussed in Figure 3 and Section 4.2. With the
Level Zero library, we can also employ a fast memcpy technique
to e�ciently copy data between the host and device, particularly
bene�cial for scenarios involving reused GPU bu�ers. When en-
countering a new device bu�er for the �rst time, we create the
IPC handle and use the mmap APIs to map the device bu�er to host
space. With a caching design, it can utilize the mapped space after
the second time, and the memory copying API can be a simple C
memcpy. This fast memcpy approach delivers excellent performance
for very small messages, ranging from 1 byte to 128 bytes. We also
compare the performance in Figure 4 and Section 4.2.

3.3 IPC Designs for Large Messages
IPC enables direct data copying from the GPU address space of
one process to another without host intervention. In the Intel GPU
ecosystem, it can leverage high-bandwidth data transferring using
X4 Links. In general, many data movement collective operations

rely on basic point-to-point Send and Recv calls to transfer data
between processes. Consequently, they implement basic IPC sup-
port within these point-to-point operations. This implies that there
are no other optimizations for the collective operations. While it
may be convenient for MPI developers, this approach introduces
overhead in terms of launching multiple point-to-point operations
and the initialization of IPC handles. Instead of calling a multitude
of point-to-point operations in the collective implementation, we
consider the entire data movement path as a holistic picture. Fig-
ure 2(b) illustrates our designs from the perspective of Rank 0 only.
The process begins by creating IPC handles for the required device
bu�ers for all peer ranks. Subsequently, these IPC handles are sent
to the target peer processes. In the example, Rank 1 and Rank n
create IPC handles for their corresponding device bu�er in the
host memory and transmit them to Rank 0 through Unix Domain
Sockets. Upon opening the IPC handles received from the peer
processes, a virtual memory space is mapped to the remote device
bu�er, enabling the current process to access it. In the example,
Rank 0 opens the IPC handles from Rank 1 and Rank N, gaining
access to the remote bu�ers. Having access to peers’ device bu�ers
allows us to use the Level Zero APIs to facilitate memory copy
between GPUs. With full access to the peers’ bu�ers, we can aggre-
gate multiple memory copy commands into a single command list
and execute and synchronize it once to avoid redundant launches
and synchronizations.

From an implementation perspective, Level Zero exhibits similar
logic and provides comparable APIs to CUDA. For instance, it em-
ploys zeMemGetIpcHandle and zeMemOpenIpcHandle for creating
and opening IPC handles. Additionally, an event can be employed
to track the completion of a command. In our collective implemen-
tation, we simply utilize zeCommandQueueSynchronize to wait for
all commands to be completed.

3.4 IPC Handler Exchanging through UNIX
Domain Socket

During the IPC handles exchanging step, it is necessary to receive
the IPC handle from the peer processes and then open it in the
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Table 1: The di�erence mechanism and APIs between CUDA, SYCL and Level Zero.
Category CUDA SYCL Level Zero

Memory Allocation

cudaMalloc sycl::malloc_device zeMemAllocDevice
cudaMallocHost sycl::malloc_host zeMemAllocHost

cudaMallocManaged sycl::malloc_shared zeMemAllocShared
cudaFree sycl::free zeMemFree

Synchronization cudaDeviceSynchronize sycl::queue::wait zeCommandQueueSynchronize

IPC cudaIpcGetMemHandle zeMemGetIpcHandle
cudaIpcOpenMemHandle zeMemOpenIpcHandle

IPC Handle Exchange Direct send IPC Handle(s) to Peer(s) Through Unix Domain Socket

Memory Copy cudaMemcpy sycl::queue.memcpy

zeCommandListAppendMemoryCopy
zeCommandListClose

zeCommandQueueExecuteCommandLists
zeCommandListReset

current process. While CUDA and ROCm IPC handles can be eas-
ily exchanged through various inter-process data transferring ap-
proaches, such as shared memory, Level Zero IPC handles can only
be exchanged using UNIX Domain Sockets (UDS). As UDS can be
established once and reused, we establish the connection at the
MPI_Init stage. During runtime, we simply reuse the connection and
exchange the IPC handles by making use of sendmsg and recvmsg.
This incurs minimal overhead that can be ignored.

3.5 Data Movement Using IPC
In the Naive IPC design, which uses Send and Recv pairs to transfer
data in a collective operation, developers do not need to modify
their algorithms, especially on the receiving side. This is because
the receiving processes are aware of where to place the received
data into the proper bu�er location. However, in our proposed de-
signs, the sender processes take on the responsibility of copying
the data to the correct remote bu�er regions using the Level Zero
APIs so they have to know the exact destinations. In common MPI
operations such as Bcast, Scatter, and Allgather, sender processes
can calculate the o�set of the destinations and copy the data to the
appropriate region easily. However, it becomes more challenging
for the "v" series collectives, such as Alltoallv, because the destina-
tion o�sets vary and are invisible to the sender processes. In our
implementation, we employ several Gather operations to collect
the destination o�sets for the sender processes. The evaluation in
Figure 11 indicates that there are minimal overheads compared to
the Alltoall designs.

4 EVALUATION
4.1 Experimental Setup
Our experiments were conducted on the Intel Developer Cloud,
also referred to as Intel DevCloud. The compute node utilized for
these experiments features a dual-socket Intel Xeon Platinum 8480+
CPU with 56 physical cores per socket, totalling 112 logical cores.
Additionally, the node is equipped with 512 GB of memory and
four Intel Data Center GPU Max 1100 GPUs, known as Intel PVC
1100. Each PVC 1100 GPU comprises 56 X4 Cores and 48GB of
HBM2e memory. The GPUs are interconnected via high-speed X4
link bridges operating at a speed of 26.5 GB/s.

Benchmark-level evaluation: The OSU Micro-Benchmarks
(OMB) [2] suite o�ers MPI-level evaluations for CUDA and ROCm
device bu�ers on NVIDIA and AMDGPUs. Notably, it lacks support
for Intel GPUs. To address this limitation, we enhanced OMB ver-
sion 7.3 to facilitate the allocation of oneAPI/SYCL device bu�ers
speci�cally for Intel GPUs. Each data point was subjected to 5 it-
erations, and the mean of the medium values was calculated for
analysis.

Application-level evaluation: The heFFTe [1] application pro-
vides an exceptionally e�cient Fast Fourier Transform (FFT) library
with GPU kernel support. While conventional FFT problems rely
on point-to-point operations for data exchange, heFFTe enhances
e�ciency by employing Alltoall or Alltoallv operations concur-
rently within di�erent process groups. To meet API requirements
for Alltoall operations, heFFTe utilizes a data padding approach for
e�ective implementation.

To benchmark our design, we employed Intel MPI 2021.11 and
MPICH 4.2.0 as the baseline. Note that utilizing IPC features with
Intel MPI requires sudo privileges on Intel DevCloud; therefore,
we disabled it with Intel MPI. However, IPC can still be used with
MPICH and our proposed designs.

4.2 Protocol Selection
The type of CPU staging bu�er chosen can have a substantial im-
pact on data copying performance. The observation that a bu�er
allocated with oneAPI exhibits superior performance serves as a re-
minder that performance outcomes may di�er when utilizing Level
Zero. Therefore, we conducted a performance analysis comparing
the utilization of oneAPI/SYCL and Level Zero libraries. Figure 3
illustrates the latency of data movement when employing combina-
tions of SYCL or ZE allocated bu�ers and SYCL or ZE memory copy
APIs. Figure 3(a) displays the performance of device-to-host mem-
ory copying, while Figure 3(b) showcases the host-to-device side.
The solid lines represent the use of SYCL memcpy. Clearly, SYCL
memcpy consistently delivers superior performance compared to
ZE memcpy, regardless of the malloc API employed. Additionally,
SYCL malloc demonstrates a slightly better performance compared
to ZEmalloc for both device-to-host and host-to-device cases. Based
on the evaluation results, it is recommended to adopt SYCL APIs
for allocating the CPU staging bu�er and performing data transfers
between device and host bu�ers.
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(a) Device-to-Host (b) Host-to-Device

Figure 3: Comparison of data movement performance (D2H, H2D) involving
di�erent malloc and memcpy approaches, encompassing SYCL and Level Zero (ZE)
libraries.

(a) Small Messages

Figure 4: Comparison of Alltoall la-
tency utilizing di�erent protocols (fast
memcopy, SYCL memcopy, and IPC)
on 4 Intel GPUs.

While the CPU staging approach yields consistently low laten-
cies for small messages, the �gures exhibit a notable increase be-
yond medium-sized messages, such as 4K. In Figure 4, the OMB
Alltoall latencies are compared between the pure CPU staging ap-
proach and IPC designs. Within the CPU staging approach, we
further evaluated two di�erent protocols, employing fast memcpy
and SYCL memcpy. In the case of very small messages, the fast
memcpy approach exhibits the lowest latency, ranging from ap-
proximately 4 to 5 �s for message sizes between 1 and 16 bytes.
For medium-sized messages (32 B to 16 KB), the SYCL memcpy
approach achieves the lowest latencies, ranging from 7 to 45 �s.
Despite the constant overhead of around 60 �s in IPC designs, the
CPU staging approach incurs higher latencies beyond 32 KB. The
evaluation results highlight that no single approach can universally
perform well. Fine-tuning the thresholds of each protocol is essen-
tial, and these values may vary for di�erent collective operations.
However, with this experience, the tuning knowledge gained can
be readily extended to optimize performance for other collective
operations.

4.3 Pro�ling of Di�erent Approaches
Given that di�erent designs demonstrate excellence in varying
ranges, we conducted further pro�ling of MPI operations to analyze
our designs. In Figure 5, the time pro�ling results for the CPU
staging approach and the IPC designs for Alltoall are depicted.
Figure 5(a) illustrates the three primary stages of CPU staging,
comprising D2H memory copying (in red), CPU-based Alltoall
communication (in orange), and H2Dmemory copying (in blue). For
message sizes ranging from 1 byte to 2 KB, the CPU communication
times remain consistent and nearly identical, spanning from 3 to
5 �s. The primary factor in�uencing the total time is the memory
copying time. The use of fast memory copy techniques mitigates
the memory copying overhead for message sizes from 1 byte to 16
bytes, resulting in a relatively small overhead. Beyond 8 KB, both
the memory copying time and the communication time increase,
with the memory copying time growing even faster. This leads to
the total running time surpassing the running time of using IPC
designs at 64 KB.

Figure 5(b) shows the four main stages of our IPC designs, encom-
passing initialization (in red), IPC handle creation, exchange, and
opening (in blue), IPC communication (in green), and �nalization
(in orange). The initialization and �nalization phases are around 4
�s and 2 �s, which are relatively small and can be disregarded. How-
ever, a signi�cant overhead is observed in the IPC handle exchange
part, with a constant 47 �s used regardless of the message size. This
is attributed to the time spent on IPC handling initialization and
construction rather than the communication itself. In addition, the
IPC communication introduces its own overhead, approximately
around 8 �s, noticeable particularly for small messages under 32
KB. For large messages (>32 KB), the communication time increases
in direct proportion to the message size.

The pro�ling results elucidate how time is allocated across di�er-
ent approaches, particularly highlighting the IPC designs. Despite
the communication time being relatively small, there is a substan-
tial amount of initialization overhead in the IPC designs, and it
explains the necessity of employing the CPU staging approach for
small message communication.

4.4 Micro-Benchmark Evaluation: Collective
We conducted a performance evaluation of our data movement
collective designs, encompassing Alltoall, Allgather, Bcast, Gather,
Scatter, and Alltoallv using OMB on Intel DevCloud with 1 node
and 4 GPUs. In comparison to the baseline MPICH, we observed
that MPICH only implements its IPC features for Alltoall and All-
gather. Figures 6 to 11 illustrate the latencies for each collective,
with separate �gures for small and large messages. We emphasize
the Alltoall numbers in Figure 6 as it represents the most dense
communication, and MPICH has optimizations speci�cally tailored
for this collective operation. For very small messages (<16 B), our
proposed designs exhibit the lowest latency, approximately around
4 �s, compared to 8 �s using Intel GPU and 15 �s using MPICH. As
for larger messages (16 B to 4 KB), the latency of MPICH increases
signi�cantly to around 160 to 200 �s, while Intel MPI ranges from
20 �s to 50 �s, and our approach maintains the lowest latency at 11
�s to 16 �s. With the IPC feature disabled for Intel MPI, the latency
of Intel MPI increases signi�cantly for large messages. In contrast,
MPICH and our proposed designs maintain a very low latency for
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Figure 5: Time pro�ling results of the CPU staging approach and the IPC designs.

large messages. For example, MPICH exhibits a latency of 3378
�s, while our proposed designs achieve a latency of 3258 �s at 32
MB. In fact, for large messages (>1 MB), our designs demonstrate
approximately constant 100 �s lower latencies compared to MPICH.
Similar performance trends are observed for Allgather, as shown in
Figure 7. Our proposed designs exhibit approximately 100 �s lower
latencies compared to MPICH for large messages. Notably, for small
messages where MPICH lacks optimized designs, it experiences a
latency of around 165 �s, while our designs and Intel MPI achieve
signi�cantly lower latencies at only 3 or 4 �s. For Bcast, Gather, and
Scatter, as illustrated in Figure 8, Figure 9, and Figure 10, respec-
tively, Intel MPI, MPICH, and our designs demonstrate competitive
low latencies for small messages, typically in just several microsec-
onds. However, our designs showcase outstanding performance
compared to the others for large messages. For instance, in Bcast,
our designs achieve 550 �s at 32 MB, while Intel MPI and MPICH
exhibit latencies of 29000 �s and 39000 �s, respectively.

We have also extended our implementation to the "v" series
collective operations. Figure 11 presents the performance numbers
for Alltoallv, and the results and trends are very similar to our
Alltoall performance, with only a slight overhead. Our designs
consistently deliver the best performance across all message sizes
when compared to the other baselines. Given that MPICH lacks an
IPC design for Alltoallv, it exhibits a latency of 348000 �s at 32 MB,
whereas our designs achieve a signi�cantly lower latency of only
3250 �s, making it approximately 100 times faster.

Broadly speaking, our designs demonstrate better or competitive
performance for small messages with the CPU staging approach
using fast memcopy or SYCL memcopy techniques. Additionally,
they exhibit signi�cantly better performance for large messages
utilizing our IPC designs.

4.5 Application-Level Evaluation
To assess the bene�ts of our design for real applications, we con-
ducted application-level experiments by running the HPC heFFTe
application. Figure 12(a) displays the performance in terms of
throughput using Alltoall as the backend, while Figure 12(b) em-
ploys Alltoallv as the backend, respectively. In the case of IPC
designs for Alltoall, both MPICH and our implementations out-
perform Intel MPI, achieving throughputs of 56 and 82 GFlops/s
in the �rst two cases, while Intel MPI lags with only 18 GFlops/s.

Remarkably, in the last case, our designs achieved a throughput of
128 GFlops/s, surpassing MPICH’s 98 GFlops/s by 1.3 times.

In Alltoallv communication, MPICH lacks IPC optimization, re-
sulting in throughput ranging from 2 to 6 GFlops/s across all three
cases. This performance is even worse than Intel MPI’s 18 to 26
GFlops/s. In contrast, our proposed designs demonstrate superior
throughput, achieving 59, 85, and 130 GFlops/s, marking a signif-
icant improvement of 24, 33, and 20 times compared to MPICH.
Notably, these values even surpass the performance achieved using
Alltoall in Figure 12(a). Ultimately, in addressing the same problem,
our proposed design leverages optimized Alltoallv communication
to outperform the second solution of MPICH with Alltoall commu-
nication by 5%, 4%, and 30%, demonstrating superior performance.

5 RELATEDWORK
In recent years, GPUs have gained popularity for compute-intensive
tasks and are now standard in modern clusters. As a result, the
need for e�cient communication between GPU-to-GPU became
crucial. Wang et al. [16] proposed an optimal CUDA-based design
for In�ni-Band clusters to achieve e�cient GPU-GPU communi-
cation. In addition, Wang et al. [15] proposed a novel approach to
enhance data transfers between GPUs in RDMA-enabled clusters
without the intervention of the CPU. Potluri et al. [12] proposed
a novel hybrid design that uses host-based pipelining and GPUDi-
rect RDMA features in CUDA to optimize inter-node GPU-GPU
communication. Kawthar et al. [7] compared the point-to-point
communication performance of various GPU-aware MPI libraries
such as MVAPICH2-GDR, Spectrum MPI, and Open MPI + UCX.
Chen et al. [3] optimize the GPU Alltoall communication with IPC
designs for dense GPU systems.

While the majority of research has concentrated on CUDA and
NVIDIA GPUs, Kuznetsov et al. [10] reported their experience
of porting classical Molecular Dynamics (MD) applications from
CUDA to ROCm using the HIP framework. Kondratyuk et al. [8]
analyzed the MD applications performance on NVIDIA and AMD
GPUs. Kawthar et al. [14] proposed novel ROCm-awareMPI designs
for MVAPICH2-GDR library for inter and intra-node communica-
tion on AMD GPU clusters. Chen et al.[4] proposed GPU-aware
MPI designs for Intel GPUs using staging approaches.

In the realm of SYCL and Intel GPUs, several studies have re-
ported the performance of SYCL applications. Reguly et al. [13]
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Figure 6: Alltoall

(a) Small Messages
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Figure 7: Allgather

(a) Small Messages

(b) Large Messages

Figure 8: Bcast

(a) Small Messages

(b) Large Messages

Figure 9: Gather

(a) Small Messages

(b) Large Messages

Figure 10: Scatter

(a) Small Messages

(b) Large Messages

Figure 11: Alltoallv

examined the performance of one particular application on di�er-
ent devices using multiple programming models, including SYCL.
Kuncham et al. [9] ported the CUDA applications to SYCL and
evaluated the performance of SYCL and CUDA on NVIDIA GPUs.

Zhai et al. [17] designed an SYCL-based GPU backend for Microsoft
SEAL APIs.
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(a) Alltoall (b) Alltoallv

Figure 12: Comparison of application-level (heFFTe) performance on 4 Intel GPUs. (Higher is better)

6 CONCLUSION
As the HPC industry moves towards adopting Intel GPUs and more
applications are being ported to SYCL-based implementations, ef-
�cient support for collective communications becomes crucial at
the MPI level. Over the past decade, libraries like MVAPICH2-GDR
and Open MPI have improved support for NVIDIA and AMD GPUs.
Such advancements have raised expectations for similar support
and optimizations for data transfer on Intel GPUs using cutting-
edge MPI libraries. Current MPI libraries like MPICH often rely
on point-to-point communication for collectives operations which
imposes additional overhead. To address this, we implemented IPC-
based data movement designs to optimize collective operations.
Our approach combines hybrid staging for smaller messages and
IPC-based designs for larger ones, resulting in signi�cantly lower la-
tency compared to Intel MPI and MPICH. During benchmark evalu-
ations, our implementations of Alltoall consistently exhibit a steady
100 �s improvement for large messages, while operations such as
Bcast demonstrate a 72-fold increase in performance compared to
MPICH at 32 MB. Furthermore, in application-level evaluations,
our proposed designs show a signi�cant improvement of up to 30%
for heFFTe compared to the second-best solution using MPICH. In
the future, we intend to extend these proposed designs to optimize
MPI collectives based on reduction operations such as allreduce
and reduce. We will assess the performance of these enhancements
in both multi-GPU and multi-node environments.
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