
HINT: Designing Cache-Efficient MPI_Alltoall
using Hybrid Memory Copy Ordering and

Non-Temporal Instructions
Bharath Ramesh, Nick Contini, Nawras Alnaasan, Kaushik Kandadi Suresh, Mustafa Abduljabbar,

Aamir Shafi, Hari Subramoni, Dhabaleswar K. (DK) Panda
Department of Computer Science and Engineering

The Ohio State University
Columbus, USA

{ramesh.113, contini.26, alnaasan.1, kandadisuresh.1, abduljabbar.1, shafi.16, subramoni.1, panda.2}@osu.edu

Abstract—Modern multi/many-core processors in HPC systems
have hundreds of cores with deep memory hierarchies. HPC
applications run at high core counts often experience contention
between processes/threads on shared resources such as caches,
leading to degraded performance. This is especially true for dense
collective patterns, such as MPI_Alltoall, that have many concur-
rent memory transactions. The ordering of memory copies during
the MPI_Alltoall operation can significantly affect performance
as cache-efficient access patterns could potentially reduce cache
misses. However, the correct access pattern depends on various
factors, including cache associativity, cache sizes, coherence
protocols, and memory layouts. This paper first identifies sources
of bottlenecks in performing memory operations in an Alltoall.
We propose different orderings for the memory copies in Alltoall
operations and study their effectiveness for various message
sizes. We overcome bandwidth bottlenecks related to repeated
bus requests in the cache by proposing a hybrid memory copy
scheme that combines regular temporal and non-temporal stores.
Then, we implement an Alltoall algorithm that dynamically
picks between memory orders based on their performance for
different message sizes/number of processes. To the best of our
knowledge, this is the first work that explores a combination
of dynamic memory copy orders and non-temporal instructions
for optimizing MPI_Alltoall operations. Our proposed solutions
reduce the latency versus state-of-the-art solutions by up to 10x at
the micro-benchmark level and 22.2% for the CPU time per loop
in distributed Fast Fourier Transforms (FFTs) using P3DFFT.

Index Terms—MPI, MPI_Alltoall, Hilbert curves, XPMEM,
Intra-node communication, Non-temporal stores

I. INTRODUCTION

Modern multi-core CPUs have multiple levels of memory
hierarchies to cater to the needs of diverse workloads. Pro-
cessor caches play an essential role in performance due to
their low latency compared to other forms of memory such
as DRAM, HBM, SSDs, etc., but they have limited capacity.
Traditionally, caches are divided into multiple levels (in most
cases, L1, L2, and L3), with L1 having the lowest latency and
the latency increasing multi-fold as we traverse the memory
hierarchy from L2 to L3 and from L3 to main memory. This

*This research is supported in part by NSF grants #1818253, #1854828,
#2007991, #2018627, #2311830, #2312927, and XRAC grant #NCR-130002.

puts the burden on applications to utilize processor caches
effectively to avoid unnecessary latency hits. In a distributed
setting with multiple cores, the cache behavior of communica-
tion libraries also plays an important role in the performance
of applications. The Messaging Passing Interface (MPI) [1]
has been a pervasive programming model in high-performance
computing for distributed communication. MPI libraries often
have to look at reducing cache misses by optimizing buffer
accesses to be cache-efficient, especially for jobs with high
core counts per node. Efficient cache usage is especially
important for dense collective patterns such as MPI_Alltoall,
as the significant increase in memory transactions at high core
counts is likely to cause a large number of conflict misses
in the cache. Due to the trend of increasing core counts on
modern processors such as the AMD EPYC 9004 series [2]
with 192 cores per socket, the problem of optimizing the
cache usage of MPI_Alltoall within the node (intra-node)
is important. Cache optimizations for MPI_Alltoall can be
viewed from two standpoints – improving spatial locality and
improving the bandwidth of memory transactions.

Spatial locality in caches refers to the principle that a
program is likely to access memory addresses adjacent to
the currently accessed memory location. Good spatial locality
allows CPUs to speed up memory access by fetching multiple
data elements into the cache. In the context of MPI_Alltoall,
spatial locality is affected by the order of memory copies by
each process. Each process in an MPI_Alltoall operation with
N processes contains a contiguous send/receive buffer divided
into N contiguous chunks. Globally, the set of send buffers/re-
ceive buffers can be viewed as a matrix. We define the term
‘memory copy ordering’ for a process as the order of memory
copies into the receive buffer matrix. For example, consider
the pairwise algorithm for implementing MPI_Alltoall [3].
Figure 1(a) shows the communication pattern over time steps
for a pairwise Alltoall algorithm with N = 4 processes. It
consists of N - 1 remote and one local memory transfer (the
process copies data to itself). The memory copy ordering is
shown in Figure 1(b) in the receive buffer matrix. For process
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P0 P1 P2 P3

Step 1

Step 2

Step 3

(a) The communication pattern over time steps

(b) Memory access for send and receive buffers visualized as a matrix. Each
color represents memory operations performed by a process. Every number (say,
i) in the grid denotes the ith memory copy performed in the Alltoall. 0 is for
local sends/receives, whereas 1, 2, and 3 are remote sends/receives and map to
the step numbers in Figure 1(a).

Figure 1: The pairwise-exchange MPI_Alltoall algorithm with N=4.

P0 (shown in pink), the memory copy ordering is vertical
across the column in the receive buffer matrix (and hence
horizontal with good spatial locality on the send buffer matrix).
However, P1 has non-linear memory load patterns on the send
buffers, exhibiting poor spatial locality. This shows that the
memory copy ordering on the receive buffer matrix (and hence,
in the send buffer matrix) is important to achieve good spatial
locality during the Alltoall operation.

Cache-oblivious algorithms [4] have been proposed for
transposing matrices in prior work. They recursively subdivide
the matrix into smaller blocks, perform local operations in a
cache-efficient way, and merge the results to get the final trans-
pose. Examples of cache-oblivious algorithms include space-
filling curves such as Hilbert [5] curves, which have been
known to preserve locality well for a one-dimensional traversal
of a matrix and have been used to optimize dense matrix
operations [6]. This makes these curves an excellent choice
for achieving high spatial locality. However, in a distributed
setting such as MPI_Alltoall, a different memory copy or-
dering could perform better for certain message sizes/process
counts due to the effect of cache coherence protocols, available
bus bandwidth, how buffer addresses are laid out in memory,
and the mechanism of sharing data between processes. This
motivates the need for designs that can adapt memory copy
ordering to different architectures and memory layouts while
achieving good cache performance.

Memory bandwidth plays an important role in the perfor-
mance of an MPI_Alltoall as the number of memory transac-
tions of an MPI_Alltoall increases by a factor of N2, where
N is the number of processes. Improving cache bandwidth for
MPI_Alltoall on multiple processes per node is challenging

as the number of memory transactions significantly increases,
and not all data can fit into the cache. Many modern CPUs
provide non-temporal instructions, which give a hint to the
processor that access to the memory can bypass the cache,
thereby leading to fewer memory transactions on the bus.
This can significantly improve bandwidth for MPI_Alltoall-
like operations due to a reduction in bus transactions. However,
using these instructions comes with a latency hit, potentially
evicts data blocks in the cache (depending on the proces-
sor implementation), or leads to sub-par temporal locality
due to important data not being written to the cache. Prior
work [7] has explored the use of non-temporal instructions for
a two-copy (shared-memory) paradigm in MPI. However, their
approach has different access patterns due to the two-copy
paradigm (Section V-E) and does not target Alltoall operations.
This motivates the need for Alltoall designs that can retain
some blocks of data in the cache while also using non-
temporal instructions to reduce bus transactions in bandwidth-
constrained scenarios.

In this paper, we design an Intra-node Alltoall algorithm that
dynamically switches between memory copy orderings and
uses non-temporal instructions to reduce transactions on the
bus. Our approach significantly reduces latency and provides
higher bandwidth when compared to state-of-the-art solutions.
To this end, we propose HINT: An algorithm for Cache-
Efficient MPI_Alltoall using Hybrid Memory Copy Ordering
and Non-Temporal Instructions.

II. MOTIVATION

A. Increased cache usage of dense collectives

Figure 2: L1, L2, and L3 total cache misses with PAPI for different
collectives on an Intel Xeon Gold 6138 CPU.

We motivate the need for cache-friendly designs for alltoall
by profiling cache misses using the Performance Application
Programming Interface (PAPI) [8] for three collective com-
munication patterns in OSU micro-benchmarks [9]. We chose
broadcast, allreduce, and alltoall as candidate patterns as they
are in increasing order of the number of overall memory
transactions per process. Figure 2 shows L1, L2, and L3 misses
on rank 0, running our candidate patterns for 32 processes on
an Intel Xeon Gold 6128 CPU. The processes are spread across
both sockets, with the first 16 ranks on socket one and the rest
on socket two. As shown in the figure, the allreduce pattern has
around 100× the number of cache misses over broadcast at all
levels, and the alltoall pattern has up to 10× the cache misses
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over allreduce. While the number of cache misses depends
on the underlying algorithm involved, the experiment above
shows a general trend – denser communication patterns tend
to have a significantly higher number of cache misses and,
hence, are more likely to cause cache thrashing. Since keeping
as much data at a time in caches is known to have significant
performance advantages, having better cache locality for dense
collectives is a critical problem to solve.

B. Bandwidth advantages of non-temporal instructions

Figure 3: Tuned Stream benchmark copy bandwidth results for
100M doubles comparing non-temporal stores and regular stores for
different thread counts on an Intel Xeon Gold 6138 CPU.

We use a modified/tuned version of the STREAM copy
benchmark [10] to show the bandwidth advantages of non-
temporal instructions. We modified the tuned_STREAM_Copy
function to use _mm512_stream_pd non-temporal store in-
trinsic for writing into the result buffer, with each iteration
of the loop copying 64 bytes of data. Figure 3 shows the
bandwidth in MB/s for a memory copy of 100M elements
by varying the number of OpenMP threads on an Intel Xeon
Gold 6138 CPU. While non-temporal stores show a drop in
bandwidth for fewer threads (1-4), we observe an increase in
memory bandwidth when increasing the thread count. This
is primarily due to the increase in memory traffic when the
number of threads increases. Non-temporal stores avoid read-
for-ownership (RFO) bus requests and do not disturb the cache
hierarchy, which results in improved bandwidth when the
memory copies are bandwidth-limited. This shows that non-
temporal stores can improve large message copy performance
when the number of cores participating in memory copies is
large. Incorporating non-temporal instructions in MPI_Alltoall
requires a fine-grained approach for a given cache hierarchy
and buffer access pattern.

III. CONTRIBUTIONS

The overall idea of this paper is to dynamically switch
between different memory copy orders (or traversals of the
matrix of receive buffers) for more efficient cache behav-
ior when performing Alltoall. For large messages, we use
non-temporal instructions to accelerate copies in bandwidth-
constrained scenarios (for instance, at higher core counts). We
use x86 architectures and the AVX instruction set extensions
as a case study for non-temporal instructions, but our designs

are extendable and can be tuned for future architectures. In
summary, our paper makes the following key contributions:

1) Identify and highlight trends in cache misses for dense
collective patterns such as MPI_Alltoall.

2) Evaluate the impact and potential bandwidth benefits
of non-temporal instructions in multi-core scenarios and
design a hybrid memory copy scheme that combines the
benefits of non-temporal and regular temporal instruc-
tions. Our memory copy scheme shows up to a 50%
reduction in L1/L2/L3 cache misses and a 10x reduction
in processor stalls waiting for memory writes for a 1MB
MPI_Alltoall on 32 processes.

3) Analyze the effect of ordering memory copies for Alltoall
and propose a hybrid design that dynamically switches
between different memory copy orders. We observe up
to a 20% improvement by switching between memory
copy orderings versus fixing one memory copy ordering
for all message sizes.

4) Discuss extensions to the proposed Alltoall algorithm for
non-powers-of-two process counts/multi-node systems.

5) Design a hybrid scheme that features non-temporal in-
structions in MPI_Alltoall and combines them with
the proposed memory copy orders to further accelerate
large message (≥64K) scale-up performance. The hybrid
scheme outperforms pure non-temporal/temporal memory
copies by up to 20% in MPI_Alltoall micro-benchmarks.

6) Perform a thorough evaluation of the performance of the
proposed designs against state-of-the-art MPI libraries on
different architectures. Our designs outperform state-of-
the-art by up to 10x for MPI_Alltoall evaluated using
OSU micro-benchmarks and up to 22.2% for the P3DFFT
application.

IV. BACKGROUND

A. XPMEM
Linux Cross-Memory Attach (XPMEM) [11] is a Linux

kernel module that enables a process to access the memory
regions of other processes. This is done by exposing a part of
the virtual memory address space of the owner process and
attaching that memory region to the process that is accessing
it. The owner process can expose its region by calling xp-
mem_make() and other processes can attach this region by call-
ing xpmem_get() and xpmem_attach(). The attached memory
can simply be accessed using direct loads and stores. XPMEM
is particularly beneficial for applications that require low-
latency access to remote memory. Many MPI implementations
leverage XPMEM to optimize intra-node communication by
performing single-copy transfers.

B. Cache-oblivious Algorithms
Cache-oblivious algorithms are designed to efficiently uti-

lize a processor’s cache without requiring knowledge of the
cache size or organization. An algorithm is cache-oblivious
if the program variables are independent of the hardware
configuration. The aim is to minimize cache misses and exploit
cache performance, making these algorithms optimal in an
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asymptotic sense and suitable for a wide range of memory
hierarchies without specific tuning for any particular cache
size or machine. Examples of cache-oblivious algorithms can
be found in matrix multiplication, matrix transposition, sorting,
and FFT applications [4].

V. DESIGN AND IMPLEMENTATION

In this section, we first show the implementation of different
one-dimensional traversals of a matrix. Then, we extend these
traversals to a distributed setting for use in MPI_Alltoall
and identify bottlenecks for large message sizes. Finally,
we propose a solution to overcome cache-related bandwidth
bottlenecks.

A. Implementing different matrix traversals for use in Alltoall
An MPI_Alltoall can be viewed as a global matrix trans-

pose. The send/receive buffer on each process is contiguous
and contains data to be sent/received to/from every other
process. The set of send buffers and the set of receive buffers
can be visualized as two matrices. The goal of the Alltoall is
to transpose the send buffers into the receive buffers. As a first
step, we implement three different one-dimensional traversals
of a matrix - Hilbert curves, row-wise and column-wise. Each
one is labeled based on the order of traversal of the receive
buffer matrix. We chose Hilbert curves as they are known
to be cache-oblivious and slightly better performing than
other space-filling curves for many HPC patterns [12]. The
motivation for selecting row-wise and column-wise traversals
is simple – the row-wise order accesses memory addresses in
the receive buffer matrix linearly, whereas the column-wise
order performs linear access of memory addresses in the send
buffer matrix. We only designed for process grids whose size
is a power of two since Hilbert curves are more natural to
implement on power of two grids.

Figure 4 shows a visualization of the three different orders.
The Hilbert curve recursively divides the matrix into sub-
matrices of equal size. Each ‘base’ case sub-matrix contains a
‘U’ shape. These are rotated based on different orientations
to form the final Hilbert curve. The row-wise order scans
the receive buffers row by row, whereas the column-wise
order scans in column order. Once a one-dimensional order
is generated (using numbers starting from 1 up to N2 where
N is the number of processes), we subdivide the matrix to
distribute tasks to different processes. This varies based on
the traversal order. Algorithm 1 shows the methodology behind
distributing memory copy operations between processes. The
functions return the bounds of a sub-matrix, which spec-
ifies the part of the receive buffer matrix a process will
work on. In the row-wise case (get_bounds_row), the row
corresponding to the receive buffer for a rank (a numeric
identifier for each MPI process) is returned. In the column-
wise case (get_bounds_col), the algorithm returns a column in
the receive buffer matrix corresponding to the rank. For Hilbert
curves, the algorithm divides the matrix into equal-sized sub-
matrices. This is shown in the get_bounds_hilbert function.
We fix the number of rows for each sub-grid by taking the

largest power of two greater than or equal to the square root
of N, where N is the number of processes. Once the number of
rows is fixed, we divide N by that number to get the number
of columns in each sub-grid. Each sub-grid contains the work
to be done by a process during the Alltoall. As the processes
are equally divided across processor sockets (also known as a
spread-based mapping strategy), we first chose to fix the rows
in the sub-matrix to preserve NUMA locality.

(a) Hilbert curve based ordering

(b) Row-wise ordering

(c) Column-wise ordering

Figure 4: Ordering of memory copy operations on every process for
Hilbert curves, row-wise and column-wise traversals of the receive
buffer matrix.

B. Generating metadata for the Alltoall operation

(a) Hilbert ordering (b) Column ordering (c) Row-wise ordering

Figure 5: Metadata tuple grid generated in Algorithm 2 for three
different memory copy orderings.

Once the receive buffer matrix is divided based on Algo-
rithm 1, we must process the grid to add metadata for the
Alltoall operation. The idea is to have metadata that provides
each process information on the data transfers that need to
happen.

Algorithm 2 describes this in detail. In the first step, we
take the matrix from generating different orders and generate
a three-element tuple for each entry. This is shown in the
generate_tuple_grid function. For each element in the matrix,
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Algorithm 1: Algorithm to distribute work between pro-
cesses for different memory copy orders for the Alltoall
operation

Input : N where N is a power of two
Output: Grid with numbers in a specific matrix traversal order
Function: get_bounds_hilbert(grid, rank, N)
begin

num_subgrid_rows← next_pof2(sqrt(N))
num_subgrid_cols← N/num_subgrid_rows
X_start← 0, X_end← num_subgrid_rows
Y _start← 0, Y _end← num_subgrid_cols
ctr ← 0
while ctr < rank do

if Y_end != N then
Y _start← Y _start+ num_subgrid_cols
Y _end← Y _start+ num_subgrid_cols

end
else

Y _start← 0, Y _end← num_subgrid_cols
X_start← X_start+ num_subgrid_rows
X_end← X_start+ num_subgrid_rows

end
ctr ← ctr + 1

end
return X_start, X_end, Y_start, Y_end

end
Function: get_bounds_row(grid, rank, N)
begin

X_start = rank, X_end = rank Y_start = 0, Y_end = N - 1 return
X_start, X_end, Y_start, Y_end

end
Function: get_bounds_col(grid, rank, N)
begin

X_start = 0, X_end = N - 1 Y_start = rank, Y_end = rank return
X_start, X_end, Y_start, Y_end

end

the tuple encodes three different values — 1) a number that
represents the order in which data must be accessed (larger
numbers are accessed later in the traversal), 2) the row,
which represents the source rank, and 3) the column, which
represents the destination rank. The goal of having a tuple is
for each process to know the source and destination buffers it
must do memory loads/stores on.

Figure 5(a) shows a 4X4 grid of tuples subdivided into four
equal-sized grids (of size 2X2) for the Hilbert curve-based
order. Each color represents work to be done for a certain rank
in the Alltoall – red for rank 0, green for rank 1, blue for rank
2, and orange for rank 3. For example, consider the sub-grid in
red, which corresponds to the work for rank 0. Flattening this
sub-grid yields four entries – (1,0,0), (2,0,1), (4,1,0), (3,1,1).
Once the sub-grid is flattened, we sort the tuples using the first
tuple element as the key. This gives the list – (1,0,0), (2,0,1),
(3,1,1), (4,1,0), which is in Hilbert order for the sub-grid.
Rank 0 would then use the list to determine the exact order of
operations it has to execute for the Alltoall. This is described
in V-C. Similarly, a metadata grid is generated for the other
two traversals, as shown in Figures 5(c) and 5(b). This
metadata is saved inside the communicator, so order/metadata
generation only happens once per communicator.

C. Algorithm for XPMEM-based Alltoall using metadata
The tuple_grid obtained from the previous step is used

to implement the Alltoall in MPI. We use XPMEM to map

Algorithm 2: Algorithm to generate metadata for the
Alltoall operation

Input : N where N is a power of two
Input : rank- An identifier for each process in the MPI context
Output: Grid with numbers in a specific matrix traversal order
Function: generate_tuple_grid(grid, N)
begin

tuple_grid← malloc(N ∗N ∗ 3 ∗ sizeof(int))
for r ← 0 to N do

for c← 0 to N do
tuple_grid[r][c]← (grid[r][c], r, c)

end
end

end
Function: gen_metadata_encoded(grid, rank, N)
begin

tuple_grid← generate_tuple_grid(grid,N)
bounds← get_bounds(tuple_grid, rank,N);
order ← get_flattened_submatrix(bounds)
sort(order, key_index← 0)
return order

end

remote process address spaces so that any arbitrary process
can perform copies on behalf of another process.

Algorithm 3 shows our algorithm implementation. The Al-
gorithm takes the ordering of tuples described in the previous
section. We cache this inside a communicator to avoid the
repeated generation of the Hilbert curve and the tuple grid.
In the first step of the algorithm, all processes write metadata
about the send/receive buffer address so that they can be used
by other processes for address space mapping using XPMEM.
Then, every process iterates over the order array (whose size
equals the number of local processes in the communicator) to
perform memory copies. The order tuple contains the intended
source and destination ranks for each loop iteration. This
is then translated to a global rank for use in the case of
multi-node alltoalls for correct indexing of the buffers. If
the source/destination are remote processes, the process tries
to attach to the remote buffer using XPMEM. This involves
a kernel call to map the remote process’s address space to
the local process but is amortized using a cache that avoids
repeated calls for the same buffer. Once the correct pointers
are obtained and the offsets are calculated, the process issues
a memory copy from source to destination. At the end of
the algorithm, all processes execute a barrier. This ensures
correctness as it mandates every process to notify completing
work on behalf of other processes.

We implemented both an offline and online approach for
letting the algorithm pick between different memory orderings.
In the offline approach, we run the MPI library with an Alltoall
benchmark with warmup iterations (so that setup costs are
ignored) for various process counts and message sizes. We
then generate a JSON file, which the MPI library can read
at runtime. This information is then used to select the ideal
memory copy ordering for a given message size/process count.
The advantage of this is that the code does not need iterations
during calls to MPI_Alltoall to try different combinations
before finalizing the best memory ordering for a given message
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size. In the online approach, we let each memory copy
ordering run three times back to back for each message size,
process count and send/receive buffer address combination
(ignoring the first iteration in the Alltoall, which involves setup
costs). Once one memory copy ordering is run, we switch to
the next one. At the end of nine iterations (since we have three
different memory orderings in our current implementation),
the code picks the memory copy ordering with the lowest
time. The number of times each memory ordering is run is
a parameter that can be changed if required. All evaluations
in this paper are done with the offline approach since this only
needs to happen once for a given architecture.

Algorithm 3: XPMEM-based algorithm using any generic
ordering for MPI_Alltoall

Input : sendbuf: Send buffer used in the alltoall
Input : recvbuf: Receive buffer used in the alltoall
Input : nbytes: Size of buffer to be communicated
Input : order: List of tuples containing orders from the metadata step
Input : comm_ptr: Communicator used by MPI for the alltoall
Input : shmem_comm_ptr: Communicator for intra-node operations
Output: Performs a distributed matrix transpose
Function: memory_copy_order_alltoall(sendbuf, recvbuf, nbytes,
order, shmem_comm_ptr, comm_ptr)
begin

share_xpmem_metadata(sendbuf)
share_xpmem_metadata(recvbuf)
local_size = get_num_procs (shmem_comm_ptr)
rank = get_rank(comm_ptr)
for i← 0 to local_size do

src←get_global_rank(comm_ptr,order[i].src)
dst←get_global_rank(comm_ptr,order[i].dst)
src_buf ← sendbuf
dst_buf ← recvbuf
if src != rank then

src_buf ← get_remote_sendbuf(src)
end
if dst != rank then

dst_buf ← get_remote_recvbuf(dst)
end
send_offset← nbytes ∗ src
recv_offset← nbytes ∗ dst
src_buf ← src_buf + send_offset
dst_buf ← dst_buf + recv_offset
memcpy(dst_buf, src_buf, nbytes)

end
intra_node_barrier(shmem_comm_ptr)

end

D. Empirically analyzing trends with different orderings for
MPI_Alltoall

In this section, we analyze trends using the proposed orders
on a range of message sizes on an Intel Cascade Lake proces-
sor. Figure 6 shows latency numbers for MPI_Alltoall with the
OSU micro-benchmark suite on 8, 16, and 32 processes. We
split the analysis into two message ranges – the first covering
messages up to 32K bytes (around the L1 cache size) and the
second from 32K bytes to 1M (the L2 cache size).

Figures 6(a), 6(b) and 6(c) show latency numbers up to 32K
bytes. Our Hilbert curve-based implementation performs up to
20% worse than row-wise or column-wise traversals up to a
message size of 16K for 8/16PPN and up to 8K for 32PPN.
For 8PPN, the column-wise traversal outperforms all orderings
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Figure 6: MPI_Alltoall performance comparisons between the
three proposed memory copy ordering schemes using OSU micro-
benchmarks for different processes per node (PPN) on an Intel Xeon
Platinum processor.

up to 2K bytes, after which the row-wise ordering performs
better. However, at 32PPN, the row-wise ordering outperforms
the column-wise ordering up to 8K bytes. This experiment
shows that one order for accessing the receive buffer does not
win in all cases, which demonstrates the need for a hybrid
design that switches between different schemes based on the
message size and PPN.

Figures 6(d), 6(e) and 6(f) show latency numbers from
64K bytes to 1M bytes. The row-wise ordering outperforms
column-wise and Hilbert schemes by up to 10% for 8PPN. For
16PPN and 32PPN, the trend seen in the small message spec-
trum is reversed. The Hilbert curve outperforms the column-
wise and row-wise ordering except for 128K bytes and 256K
bytes at 16PPN. On running profiling with PAPI for 128K
bytes and 256K bytes, we found that the row-wise scheme had
a significantly lower value for PAPI_STL_ICY, which shows
the number of cycles with no instruction issue, indicating that
the row-wise scheme more efficiently sent in micro-ops to the
processor front-end. We are still investigating further to see
why such trends occur.

Another interesting trend we observed when the message
size crosses the L1 cache size is shown in Figure 7. As
shown in the figure, the value of PAPI_MEM_WCY jumps
four-fold from 16K to 32K and sharply increases as the
message size increases. The PAPI_MEM_WCY represents
the number of cycles stalled waiting for memory writes. On
the Intel Cascade Lake processor, this counter maps to the
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RESOURCE_STALLS:SB. This indicates that the processor
core was stalled for many cycles, waiting for the store buffer
to be free. A store buffer exists between the CPU and core
local caches to speculate on stores on an invalidated cache line
so that the core does not have to stall until an acknowledgment
is received [13]. Since the number of store buffers is limited,
this motivates the need for designs that can reduce the number
of cache transactions on the bus, thereby improving bandwidth
and reducing stalls.
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Figure 7: Profiling store buffer-related memory resource stalls
using the PAPI_MEM_WCY counter from PAPI for a 32 process
MPI_Alltoall on an Intel Xeon Platinum system. We observe a steep
increase in memory stalls starting from 32K bytes.

E. Obtaining better bandwidth with non-temporal stores
The number of memory transactions for Alltoall increases

significantly with the increase in message size and the number
of processes. Since the operation involves a matrix transpose,
memory transactions might require writes to caches that must
invalidate other caches before proceeding further. This places a
read-for-ownership (RFO) request on the bus. In large message
Alltoalls, most of the data communicated does not fit in the
cache, and hence RFO requests could potentially waste band-
width and cause stalls in the memory pipeline. This is observed
in the previous section where PAPI_MEM_WCY sharply
increases beyond 16K bytes. To alleviate this bottleneck, non-
temporal instructions are provided in many architectures to
give hints to a processor that a memory region does not have
to be cached. This significantly increases bandwidth but has a
potential hit in latency for smaller message sizes.

To overcome these bottlenecks, we propose a hybrid mem-
ory copy for our Alltoall algorithm. Algorithm 4 shows our
proposed design. When the size of the message is less than
a given threshold, we fall back to a regular memcpy. If the
message size to be copied is greater than or equal to the
threshold, a regular memcpy is called up to the threshold,
and the algorithm uses a non-temporal memory copy with
prefetched loads for the rest of the message. The threshold
is chosen on a per-communicator basis (since it changes
based on the process count/architecture). Figure 8 shows a
comparison between temporal and non-temporal instructions
on 32 processes on both an AMD and an Intel Cascade
Lake system. Temporal memory copies significantly outper-
form non-temporal instructions up to 128KB on the AMD
system and 64KB on the Intel system. However, beyond these
thresholds, the non-temporal copy is much faster than the
temporal copy. Our scheme uses the best of both temporal and

non-temporal instructions by falling back to temporal copies
for messages less than the threshold and then dynamically
adjusting the ratio of temporal to non-temporal instructions for
messages larger than the threshold. Figure 9 shows how we
use the memory copy with the Hilbert ordering. Each ‘block’
corresponds to one load/store operation in the receive buffer
matrix. The processes follow the order defined in the Alltoall
and use a combination of temporal and non-temporal stores.

We empirically found that the ideal temporal copy size de-
pends on the number of processes and the size of the L2 cache.
The initial value of threshold T is determined by dividing
the L2 cache size and the number of processes. Intuitively,
this allows the memory copy to use the L2 cache effectively
and reduces excessive bus transactions using non-temporal
instructions. This leads to significant gains in performance.
However, for very large messages (>= L2 cache) on some
scales, we observed that only using non-temporal instructions
yielded slightly better performance, likely due to the bus
bandwidth being the dominating factor for latency. Hence,
our design tries to scale down the threshold by a factor of
two in every iteration to see if performance improves before
deciding on a final value for an Alltoall. This is achieved by
the get_runtime_threshold function in Algorithm 4.

(a) (b)

Figure 8: Comparing non-temporal and temporal memory copies for
a 32PPN MPI_Alltoall using OSU micro-benchmarks.

Figure 9: Proposed hybrid non-temporal copy design using a Hilbert-
curve based ordering.

Figure 11 shows the efficacy of our non-temporal designs
for Alltoall on an Intel Cascade Lake system for 16 cores
and 32 cores. The figure shows numbers with Hilbert curves
but should apply to other orders as well. As shown in the
figure, our temporal and non-temporal hybrid store design
significantly reduces stalls waiting for the store buffer and
cache misses across the cache hierarchy.

Authors in [7] propose adaptive memory copy schemes for
optimizing MPI collectives on shared memory multi-cores.
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While their work also uses non-temporal stores, it follows the
two-copy (shared-memory) paradigm and does not target all-
toall. In a two-copy paradigm, every process copies a chunk of
data into shared memory, and remote processes copy data from
shared memory into their receive buffers (also known as copy-
in-copy-out). This allows for temporal locality (since buffers
copied to shared memory will be accessed again for collectives
like Allgather) but incurs an additional copy. Their adaptive
memory copy scheme (Algorithm 1 in their paper) uses a flag
to determine if data is likely to be accessed again or not and
either uses a temporal copy or a non-temporal copy. However,
this does not apply to our use case since we use XPMEM
(a single-copy scheme), due to which data is never accessed
again within the Alltoall. Moreover, in contrast to their solu-
tion, our scheme for memory copies combines both temporal
instructions and non-temporal instructions. Figure 10 shows
up to 20% improvements when combining both instructions
(using the hybrid copy scheme) for message sizes near the
cache boundary when compared against pure temporal/non-
temporal instructions in an intra-node MPI_Alltoall. For other
message sizes, we observed improvements between 5-10% in a
few cases and equal performance to the best of temporal/non-
temporal instructions for other sizes.

(a) 128PPN - AMD (b) 32PPN - Intel

Figure 10: Hybrid copy compared against using just non-
temporal/temporal memory copies in the Alltoall OSU micro-
benchmark.

Algorithm 4: Customized memory copy using non-
temporal instructions

Function: hybrid_nt_memcpy(recvbuf , sendbuf , nbytes, T)
begin

if nbytes < T then
memcpy(recvbuf, sendbuf, nbytes)

end
else

R = get_runtime_threshold(nbytes, T )
memcpy(recvbuf, sendbuf, R)
nt_memcpy(recvbuf, sendbuf, nbytes− R)

end
end

F. Extensions to the algorithm for use in networked systems
and non-powers of two process counts

Extentions for networked systems- Algorithm 5 shows
how the memory copy order alltoall (Algorithm 3) can be
used in a generic alltoall that works for networked cases as
well. The first phase involves an intra-node step, which calls
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Figure 11: Impact of hybrid non-temporal copy design for a 1M
byte MPI_Alltoall on an Intel Cascade Lake processor. We measure
cache misses for all three cache levels and memory stalls using PAPI
counters inside OSU-microbenchmarks.

Algorithm 5: Algorithm extending memory copy aware
alltoall for use in networked systems

Input : sendbuf: Send buffer used in the alltoall
Input : recvbuf: Receive buffer used in the alltoall
Input : nbytes: Size of buffer to be communicated
Input : order: List of tuples containing orders from the metadata step
Input : comm_ptr: Communicator used by MPI for the alltoall
Output: Performs a distributed matrix transpose
Function: mpi_alltoall(sendbuf, recvbuf, nbytes, order, comm_ptr)
begin

/* —– Intra-node step —– */
shmem_comm_ptr ← get_intra_node_comm(comm_ptr)
memory_copy_order_alltoall(sendbuf , recvbuf ,nbytes,
order, shmem_comm_ptr, comm_ptr)
/* —– Inter-node step —– */
global_size = get_num_procs(comm_ptr)
rank = get_rank(comm_ptr)
for i← 0 to global_size do

src← (rank − i+ global_size)%global_size
dst← (rank + i)%global_size
src_buf ← sendbuf + dst ∗ nbytes
dst_buf ← recvbuf + src ∗ nbytes
requests[2]← init_requests()
if !(is_in_same_node(src, rank) then

isend(src_buf, nbytes, dst, comm_ptr,&requests[0])
end
if !(is_in_same_node(dst, rank) then

irecv(dst_buf, nbytes, src, comm_ptr,&requests[1])
end
waitall(&requests)

end
end

the proposed algorithm on a communicator representing each
node’s set of processes. Once the intra-node step is done, a
pairwise alltoall exchange (or any other inter-node algorithm)
can be implemented by skipping sends/receives from processes
within the same node. Note that further optimizations are
possible here, such as pipelining intra-node operations with
inter-node operations, but that remains out of the scope of
this paper. Our solution can also be used by applications that
create multiple communicators. One example is FFT-based
applications (like P3DFFT), which create row and column
communicators. These communicators can be created such that
each column contains all processes within the node, and each
row contains processes across different nodes. This way, the
“column-wise” alltoall would use our algorithm, and the “row-
wise” alltoall potentially uses something different.
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Extensions for non-powers of two: The algorithms assume
process counts that are a power of two only due to using a
standard geometric representation of the hilbert curve (2k · 2k
lattice for a k-order curve) and because most applications tend
to use powers of two process counts. Our approach is generic
and can accept extensions to the hilbert curve for non-powers
of two square edges ([14]), or other space-filling curves that do
not have this limitation, and can hence be extended to include
non-powers of two. Only Algorithm 1 needs to be changed
to incorporate the new work distribution between processes.
Another potential solution to supporting non-powers of two
process counts is using a Hilbert curve for the square region
with edge size a power-of-two in the alltoall matrix and filling
the rest of the square with a different traversal (either a space-
filling curve or any other ordering).

VI. EXPERIMENTAL EVALUATION

We evaluate our designs on three different x86 architectures
that support the AVX instruction set. The first system contains
two Intel Xeon Platinum 8280 Cascade Lake CPUs (one per
socket), the second system has two sockets with Intel Xeon
Gold 6138 Skylake CPUs, and the third system has AMD
EPYC 7713 CPUs with two sockets and 128 cores. The
detailed configuration of these systems is shown in Table I.

On each system, we compare the performance of our
design for MPI_Alltoall against state-of-the-art libraries on
all systems – MVAPICH2-X v2.3/Intel-MPI 19.0.9 for the
first system with Cascade Lake CPUs and MVAPICH2-X
v2.3/HPC-X v2.16 for the second and third systems. For Intel-
MPI and HPC-X, we use the default modules provided on the
system for comparisons. We use OSU micro-benchmarks for
demonstrating benchmark-level results. Each benchmark run is
an average of five trials, with each one running for the default
number of iterations set by the benchmark. On the AMD
system, we do not present results for 128ppn due to anomalies
we experienced when testing all MPI implementations; we
will investigate these outliers. For application-level results, we
demonstrate improvements with P3DFFT [15] by taking an
average of five runs for the ‘CPU time per loop’ metric.

Table I: Hardware specifications of clusters

Specification AMD EPYC Intel Platinum Intel Gold

Processor Family AMD EPYC Intel Cascade Lake Intel Skylake
Processor Model EPYC 7742 Xeon Platinum 8280 Xeon Gold 6138
Max Clock Speed 3.72 GHz 4 GHz 3.7 GHz
Sockets 2 2 2
Cores Per socket 64 28 20
NUMA nodes 2 2 6
RAM (DDR4) 256 GB 192 GB 192 GB
AVX capability AVX2 AVX-512 AVX-512

A. Micro-Benchmark Evaluation - Small/Medium messages
We first evaluate our designs against state-of-the-art libraries

for small/medium message sizes. We have only included
numbers where the number of processes is a power of two
since our Hilbert curve implementation assumes that process
grid dimensions are powers of two. Figures 12, 13 and 14
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Figure 12: Performance comparison of HINT against Intel-MPI and
MVAPICH2-X on the Intel Xeon Platinum system (Cascade Lake)
for message sizes from 256 bytes to 32K bytes using OSU micro-
benchmarks.
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Figure 13: Performance comparison of HINT against HPC-X and
MVAPICH2-X on the Intel Xeon Gold system (Skylake) for message
sizes from 256 bytes to 32K bytes using OSU micro-benchmarks.

show results for our proposed design starting from 256 bytes
to 32K.

On the Cascade Lake system (Figure 12), our proposed
designs outperform both Intel-MPI and MVAPICH2-X up
to at least 67% for 8PPN, 75% for 16PPN, and 76% for
32PPN. We attribute this to better cache locality and reduced
cache coherence transactions using different memory copy
orderings. On the Skylake system (Figure 13), we observe
similar trends with our proposed design outperforming HPC-
X and MVAPICH2-X up to at least 78% for 8PPN, 81% for
16PPN, and 81% for 32PPN. On the AMD system, which has
AVX2 instructions and a different cache coherence protocol,
we still see benefits across all PPNs. As shown in Figure 14,
we see up to at least 90% improvement compared to HPC-
X and MVAPICH2-X for 64PPN with similar results for
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Figure 14: Performance comparison of HINT against HPC-X and
MVAPICH2-X on the AMD system for message sizes from 256 bytes
to 32K bytes using OSU micro-benchmarks.

other PPNs. This shows that our design can adapt to different
architectures and applies to various message sizes and process
counts.

B. Micro-Benchmark Evaluation - Large messages

Our designs use a combination of memory copy ordering
and non-temporal instructions for large messages to get better
bandwidth and latency. Similar to our small message compar-
isons, we evaluate against state-of-the-art libraries on all three
platforms. Figures 15, 16 and 17 show results for our proposed
design starting from 64K to 1M bytes.

On the Cascade Lake system (Figure 15), we see up to
37% for 8PPN, 37% for 16PPN and 30% for 32PPN against
Intel-MPI. As discussed in the analysis section, using non-
temporal instructions eliminates RFO transactions and signif-
icantly reduces memory stalls/store misses, which is why we
see improved performance. Similarly, on the Skylake system
(Figure 16) we outperform HPC-X and MVAPICH2-X by up
to 22% for 8PPN, 36% for 16PPN, and 23% for 32PPN. The
Intel architectures are AVX-512 compatible and have 512-
bit wide SIMD units for memory/compute operations. The
AMD system, on the other hand, is AVX2 capable, so it
only has a 256-bit wide SIMD unit. Even in the AMD case,
we see improvements of up to 73% starting from 8PPN to
64PPN. This shows that our non-temporal copy designs apply
to architectures other than the one we analyzed. While we
observed a couple of data points with anomalies that have
to be investigated (for instance, 1MB messages on the AMD
system for 32PPN and the Skylake system for 16PPN), the
trends in latency for different message sizes are largely the
same across all architectures.

C. Application-level evaluation with P3DFFT

Fourier transforms are widely used across various scien-
tific domains and are often bottlenecked by communications
when performing distributed matrix transposes (MPI_Alltoall).
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Figure 15: Performance comparison of HINT against Intel-MPI and
MVAPICH2-X on the Intel Xeon Platinum system (Cascade Lake)
for message sizes from 64K bytes to 1M bytes using OSU micro-
benchmarks.
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Figure 16: Performance comparison of HINT against HPC-X and
MVAPICH2-X on the Intel Xeon Gold system (Skylake) for message
sizes from 64K bytes to 1M bytes using OSU micro-benchmarks.
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Figure 17: Performance comparison of HINT against HPC-X and
MVAPICH2-X on the AMD system for message sizes from 64K
bytes to 1M bytes using OSU micro-benchmarks.
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Figure 18: Performance comparison of HINT against Intel-MPI and
MVAPICH2-X on the Intel Xeon Platinum system (Cascade Lake)
for different problem sizes and PPNs in P3DFFT.

P3DFFT implements Fast Fourier Transforms (FFTs) in 3-
dimensions by performing distributed matrix transpositions
with MPI and domain decomposition. Every iteration of the
algorithm contains a forward and a backward transform, with
each transform calling an Alltoall with the receive buffer of
the forward transform used as the send buffer in the backward
transform. In this section, we evaluate the performance of
our designs against state-of-the-art MPI libraries for various
problem sizes using P3DFFT. We only show results on the
Intel Cascade Lake system as we could not get HPC-X to
build with P3DFFT on the other two systems, but the trends
should remain the same.

Figure 18 shows the performance comparison of HINT
against Intel-MPI and MVAPICH2-X for different prob-
lem sizes and process counts. At 8PPN, we see 4.8%
improvements over Intel-MPI and 3.7% over MVAPICH2-
X for 128x256x256 grids. The benefits increase for the
256x256x512 grid where we outperform Intel-MPI by 15.1%
and MVAPICH2-X by 12.2%. We observe similar trends for
16PPN and 32PPN. At 16PPN, our proposed solution outper-
forms Intel-MPI by 11.2% and MVAPICH2-X by 13.2% for
256x256x512 grids. For 256x512x512, the benefits increase
to 22.2% over Intel-MPI and 21.9% over MVAPICH2-X.
Similarly, at 32PPN, our designs outperform Intel-MPI and
MVAPICH2-X by up to 11%. We observe improvements in a
wide range of problem sizes and processes per node due to
having hybrid memory copy ordering that outperforms state-
of-the-art by a significant margin for small/medium messages.
Problem sizes using larger messages benefit from the non-
temporal memory copy scheme.

VII. RELATED WORK

MPI optimizations and tuning are widely studied, involv-
ing solutions that range from improving communication pat-
terns [16], [17], reducing latency [18], leveraging hardware
architectures and network [19], enhancing scalability [20],
increasing overlap between communication and computa-

tion [21], and minimizing memory usage [22]. Modern MPI
libraries often tune between bruck, recursive doubling, scatter
destination, and pairwise algorithms [3]. [16] proposes a rank
re-ordering approach based on application characteristics. Our
designs work on any ordering of ranks and can benefit from
application-aware mapping. [23], [24] analyze and model the
performance impact and limitations of cache coherence proto-
cols on MPI communication. [25] proposes the detection and
elimination of non-temporal memory accesses to reduce cache
pollution on multicores for mixed workloads of independent
applications. [26] provides a performance analysis of several
MPI collective operations and models the time complexity of
the linear and pairwise-exchange MPI_Alltoall algorithms.[27]
proposes cache-oblivious MPI_Alltoall algorithms to allocate
send and receive buffers on a shared heap using Morton
order. Implementing a shared heap requires modification of
the memory allocator, which interferes with custom allocator
implementations in state-of-the-art MPI libraries. Our designs
also work on processes with private heaps. The design adopted
by [27] only uses Morton curves, but our design is generic
and uses a combination of various memory copy orderings.
The benefits of this approach are explained in Section V-D
and shown in Figure 6. Moreover, our design addresses
bandwidth bottlenecks for large messages using non-temporal
instructions. [28] suggests a dynamic selection scheme of
MPI_Alltoall algorithms based on the system and workload
using the P-LogP model. Several other studies exploit the
underlying network features such as Infiniband HCA Gather-
Scatter [29], multi-HCA systems [30], and Smart Network In-
terface Cards (SmartNICs) such as NVIDIA’s BlueField Data
Processing Units (DPUs) [31], [32] to offload and improve the
performance of MPI_Alltoall. The inter-node solutions in [31],
[32], [29], [3], [16], [17] are orthogonal to our designs and can
benefit from our intra-node optimizations.

VIII. CONCLUSION AND FUTURE WORK

Dense collective patterns such as MPI_Alltoall have a sig-
nificant number of memory transactions as every process has
to send/receive a chunk of data to/from every other process.
The ordering of memory copies during the MPI_Alltoall
operation can have a large effect on performance. The best-
performing access pattern depends on various factors, includ-
ing cache coherence protocols, associativity, cache size, and
other architecture-specific features. In this paper, we first pro-
pose three different orders for performing Alltoalls, including
Hilbert-based curves, row-wise and column-wise orders. We
analyze trends at different process counts and propose a hybrid
Alltoall scheme using XPMEM that switches between orders
depending on the message size and process count. We then find
bottlenecks in memory transactions for large messages and
propose the usage of non-temporal instructions to improve bus
bandwidth. Our proposed solutions reduce the latency versus
state-of-the-art libraries by up to 10x for micro-benchmarks
and up to 22.2% for the P3DFFT application. In future work,
we intend to explore extensions to our designs for non-x86
architectures such as ARM.
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