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ABSTRACT
The advancement of traditional CPU architectures is seeing di-
minished returns due to the slowing of Moore’s Law and end of
Dennard Scaling. FPGA-based accelerators provide a new path for-
ward for High-Performance Computing. Instead of being con�ned
to Von Neumann architecture and instruction set architectures, re-
con�gurable hardware allows computational scientists to develop
application-speci�c architectures that can be expressed with com-
mon software programming languages thanks to advances in High-
Level Synthesis. Work has been done to provide more support to
these devices in the HPC community to ease adoption. This includes
work to provide MPI implementations that enable data transfers
between FPGAs within a compute cluster. However, a standardized
benchmarking suite that measures the performance of this function-
ality does not exist. In this paper, we propose an extension to the
OSU-Micro-Benchmarks suite, OMB-FPGA, that enables measuring
the performance of MPI point-to-point and collective communica-
tion between FPGAs and other communication endpoints.
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1 INTRODUCTION
With the slowing of Moore’s Law and the end of Dennard Scal-
ing, the High-Performance Computing community has reached an
era of uncertainty [10]. Increases in computing performance are
pursued through non-traditional architectures rather than simply
improving the implementation of existing general-purpose proces-
sors. The community has achieved much success with the adop-
tion of GPUs and heterogeneous computing frameworks such as
CUDA and ROCm [8, 17]. These devices are almost required for
Deep Learning workloads for training large models as otherwise
computation may take several orders of magnitude longer using a
traditional CPU architecture.

However, GPUs only are one foray into new architectural ap-
proaches. Multiple types of accelerators have been explored, such
as TPUs and DPUs. Perhaps the most unique of these architectures
is the Field Programmable Gate Array (FPGA). FPGAs have a long
history of being a prototyping platform for digital logic. However,
their uses have grown beyond prototyping into accelerating Dig-
ital Signal Processing code, implementing hardware "glue code,"
and playing roles in Embedded Systems. The HPC community has
shown interest in leveraging FPGAs since the early 2000s, but their
greatest growth only just happened over the past couple of years.
This is owed to the advancement of High Level Synthesis (HLS)
and an increase in soft logic resources on FPGA chips.

Traditionally, FPGAs are con�gured using Hardware Description
Languages (HDL). These languages, although powerful, are very
di�erent from languages that are ubiquitous in the software devel-
opment community. Skill gained from programming in C, Java, or
Python do not necessarily transfer to these HDL languages where
lines of code are not necessarily sequential, due to HDL being more
of a method to describe circuitry rather than issue instructions. In
addition, abstractions enabling dynamic memory management do
not exist, and a syntactically and semantically correct code may
fail to fully synthesize. This has prompted vendors to invest in
HLS tooling to enable software engineers to use familiar software
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languages to program FPGAs. Such high level interfaces have been
used in various applications to accelerate computation in a highly
productive manner [13, 16, 18]. The most notable vendor suites
utilizes these higher level development �ows are Vitis, a collection
of tools supporting programming Xilinx FPGAs using C/C++ and
OpenCL, and DPC++, a SYCL implementation by Intel that targets
Intel FPGAs as well as GPUs and CPUs.

Furthermore, FPGAs previously had much fewer logic resources,
both in terms of variety and quantity. However newer FPGAs tar-
getting HPC and data center workloads have much more LUTs,
Flip-Flops, and on-chip memories as well as newer resources such
as DSP slices and High Bandwidth Memory (HBM). This has both
enabled larger and more performant designs to be con�gured on
the FPGA. Finally, vendors have made an e�ort to make FPGA
accelerators suited for HPC, and prompting computing centers to
deploy them in large systems [4].

As these devices become more suitable for HPC workloads,
adoption among HPC applications, middleware, and benchmarking
suites will be vital for the widespread adoption of these accelerators.
There are already multiple projects leveraging these devices, such
as HPCC FPGA [13] and neural network applications[11]. However,
there is a lack of projects focused on easing the process of scaling
out FPGA-based applications in a manner familiar to current HPC
developers. One of the few projects targeting this problem is the
MVAPICH2-FPGA project [3]. This project enables OpenCL host
applications to pass bu�er mapped to FPGA memory into MPI rou-
tines, relieving application developers of the task of �rst handling
FPGA to host data transfers before initiating MPI communication.
Furthermore, the implementation provides optimization at the MPI
level that would otherwise be nontrivial or impossible to do at the
application level. However, readily available methods to measure
the performance of this implementation currently do not exist. Fur-
thermore, as the popularity of SYCL interfaces grows, supporting
these interfaces at the MPI-level will be necessary thus requiring
microbenchmarking suites to support this as well. Intel has even
gone as far as deprecating the Intel OpenCL for FPGAs SDK in
favor of SYCL being the only supported API for programming their
line of FPGAs.

As one of the most widely used benchmarking suites used to
measure MPI performance, the OSU Micro-benchmark (OMB) is
an ideal medium to implement micro-benchmarking support for
FPGA-aware MPI implementations. By integrating support for FP-
GAs within OMB, MPI performance can be measured in various
con�gurations supported by the MPI implementation, such as point-
to-point and collective communication between FPGAs attached
to the same host or FPGAs on separate hosts connected over high-
performance networks such as In�niBand or Slingshot. Users will
also be able to test the performance of implementations using dif-
ferent bu�er reuse patterns - device-to-host, host-to-device, and
device-to-device transfers. Furthermore, since there may be various
types of interconnects between di�erent pairs of FPGAs, we pro-
pose the ability for users to test various processes to FPGA bindings.
Since FPGA accelerators have di�erent types of memory available,
We enable OMB users to specify whether bu�ers should be located
on DDR, HBM, or on-chip memory (PLRAM) on the device. Lastly,
we support MPI implementations supporting both OpenCL, which
is currently used for much of the research involving using FPGAs

in HPC, and SYCL, the only high-level interface for programming
Intel FPGAs.

In this paper, we detail work done to enable these bene�ts within
the OMB suite. We propose the following contributions:

(1) We extend an MPI implementation to support FPGA-to-
FPGA communication through a SYCL interface.

(2) We implement OMB-FPGA with support for both OpenCL
and SYCL interfaces, enabling the micro-benchmarking of
FPGA-aware MPI-based point-to-point and collective opera-
tions supported by emerging implementations.

(3) We provide users with the ability to choose the type of mem-
ory used on the FPGA accelerator.

(4) We create benchmarks measuring the performance of point-
to-point, pairwise, and collective communications within an
FPGA-enabled cluster and present the results collected.

2 BACKGROUND
2.1 FPGAs in HPC
FPGAs are traditionally used in hardware prototyping, signal pro-
cessing, and circuit "glue code." However, interest in the �eld of
HPC has picked up in recent years thanks to the diversi�cation
of on chip resources (such as DSPs and RAMs) and High Level
Synthesis programming �ows. FPGAs are not constrained to the
Von Neumann architecture, where a processor executes a list of
instructions and moves intermediate results of computation to and
from memories. This makes them a promising choice to implement
application-speci�c acceleration. Instead of loading, executing, and
then storing the result of an instruction, a specialized circuit can
be developed to enable e�cient data locality, feeding outputs of
one logical block directly into another. Furthermore, these logical
blocks can be duplicated to enable data parallelism within the de-
sign. Pipeline parallelism can be implemented by having logical
blocks immediately process new inputs after outputting results to
another logical block. Many operations can be done using these
techniques in a few clock cycles, ultimately increasing computa-
tional throughput despite FPGAs having lower clock frequencies
than most CPUs. However, very little work has been done to scale
out FPGA-based computation compared to other accelerators such
as GPUs. Enabling this is still an ongoing research problem.

2.2 OpenCL
OpenCL, i.e. "the Open Computing Language" is an open standard
developed by the Kronos group [14]. It’s primary purpose it to
provide an interface for running computational tasks across a va-
riety of devices, whether they are CPUs, GPUs, ASICs, or FPGAs.
Included in OpenCL is a language for writing device kernels as
well as host-side APIs for orchestrating data transfers, compiling
kernels at runtime, launching tasks, etc. Much previous work on
FPGA-based computation utilizes OpenCL in the host application
in combination with C/C++-based HLS or OpenCL kernels.

2.3 SYCL
SYCL is another open standard maintained by the Kronos group
[6]. Originally developed as an extension to OpenCL, SYCL aims to
provide a higher-level abstraction conforming to C++ programming
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practices. Its interfaces allow allows data transfers to be inferred
by the runtime by establishing dependencies between tasks using
bu�er objects. Application developers can thus opt to avoid explic-
itly writing data transfers in their code. However data transfers
can still be optimized by using lower level APIs when necessary,
such as when communicating between accelerators on separate
nodes. Multiple SYCL implementations are noteworthy in relation
to FPGAs. For example, Intel’s DPC++ implementation supports
the use of FPGA accelerators with Intel FPGAs, while TriSYCL aims
to provide SYCL interfaces when utilizing Xilinx FPGAs [7, 15].

2.4 MPI
Message Passing Interface (MPI) is the defacto solution for inter-
process communication in HPC [12]. It abstracts underlying data
transfer mechanisms from the application enabling high productiv-
ity aswell as high performance, making it popular among the largest
computing systems in the world. Without an interface like MPI,
applications would be forced to employ many di�erent methods of
data transfer, causing a replication of work across applications as
well as increasing the potential of writing suboptimal or bug-ridden
code. With the correct MPI implementation, applications can avoid
interacting directly with high-performance network APIs, shared
memory transfers, and host-to-device or device-to-host transfers.
For example, an MPI implementation can support transfers over
In�niBand, Slingshot, and RoCE interconnects or GPU to GPU
transfers with virtually no changes to an applications communica-
tion code [19, 20]. Contini et. al. [3] discusses providing high-level
inter-FPGA communication by removing the need for applications
to execute OpenCL calls to transfer data from FPGA to host mem-
ory while also providing FPGA-speci�c optimizations within an
MPI implementation. In order to support more work in this area, a
proper benchmark must be developed to measure the current and
future performance of MPI implementations supporting inter-FPGA
communication.

2.5 OSU-Micro-Benchmarks
OMB [9] is a communication microbenchmarking suite. It has sev-
eral benchmarks measuring the performance of point-to-point,
multi-pair, and collective communication, and also supports mea-
suring multiple communications libraries, including MPI, NCCL,
UPC, and UPC++. Python and Java interfaces to MPI can also be
tested. Lastly, it also has added CUDA [1] and ROCm support, en-
abling users to measure GPU to host, host to GPU, and GPU to GPU
latency between two processes. This suite is widely used in the
HPC community and enables the comparison of di�erent commu-
nication runtimes. By extending support to FPGAs, communication
between these devices can be measured and compared with other
devices.

3 DESIGN
3.1 Supporting the OpenCL Interface
The �rst step to enabling FPGA support in OMB is creating a way
for each benchmark to transparently allocate device bu�ers. Using
OpenCL, one might expect that this is a simple call to clCreateBu�er,
but in fact, there are many steps required before attempting to
allocate a device bu�er.

3.1.1 Device Selection. First, the available platforms must be
queried using clGetPlatformIDs, giving the caller the ability to view
the available devices for di�erent vendors using clGetDeviceIDs.
From here, OMB must have logic to appropriately assign each rank
in a benchmark to a proper device. Since most HPC applications
use a 1:1 mapping of processes to accelerators, we take the same
approach in this work. As a result, the default mapping scheme
maps the �rst device to rank 0, the next device to rank 1, and so on.

However, users may not want to use the default mapping scheme.
As shown in Figure 1a, systems may have multiple FPGAs within
a single node, so the choice of which FPGA is mapped to a given
rank may a�ect the results of the benchmark. For example, it can
generally be expected that messages that must travel between dif-
ferent PCIe root complexes will incur a higher latency than those
traveling over the same root complex. It is also possible that some
MPI implementations take advantage of P2P transfers provided
by Xilinx’s OpenCL implementation [3], thus transfers that only
travel over a PCIe switch may experience lower latency than trans-
fers that must go through a shared PCIe root complex. Figures 1a
demonstrates these di�erent con�gurations. With this in mind, we
provide a FPGA_MAPPING environment variable that allows users
to specify which FPGA maps to which rank. The expected value of
the variable is a colon-separated list of FPGA indices. For example,
if the user passes a string such as 2:0:3, OMB will map the device
at index 2 to rank 0, device index 0 to rank 1, and device index 3
to rank 2. By providing this �exibility, users may test an MPI im-
plementation’s performance when sending messages over di�erent
data paths.

3.1.2 Placeholder Kernels and Bu�er Allocation. Even if a device
to be used for the benchmark has been selected for a given pro-
cess, a device bu�er still cannot be created. This is because some
OpenCL runtimes (such as Xilinx’s implementation) require that a
device binary be �ashed to the FPGA before creating bu�ers. Since
FPGAs have di�erent types of memory and arguments to device
kernels might be mapped to speci�c memories, the runtime can-
not determine where device bu�ers should be physically located
until a program is loaded. Our OMB implementation resolves this
by creating a device binary containing an placeholder kernel at
build time. This binary is programmed to the FPGA card using
clCreateProgramWithBinary during an initialization step.

With these functionalities done at init time, we can �nally wrap
calls to ‘clCreateBu�er‘ in a high-level bu�er allocation function.
However, there still remains a problem. In our testing, we noticed
that although with these steps we can successfully complete a
basic point-to-point benchmark and pass validation, the measured
latency and bandwidth in these tests are impossible to achieve.
In theory, a Xilinx U200 card can only transfer data over a PCIe
Gen3x16 interface at a bandwidth of 16 GB/s. Furthermore, Xilinx’s
own xbutil only achieves a 12 GB/s read bandwidth and 8 GB/s
write bandwidth on our MRI cluster. However, our device to host
transfer tests were demonstrating bandwidths of up to 32 GB/s,
which is not possible to achieve with the given interconnect. This
is due to the OpenCL runtime attempting to skip data transfers
between devices and hosts if the runtime thinks that the data in a
device bu�er has not been updated.
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Figure 1: Diagrams showing the system of a cluster with FPGAs and the system architecture of OMB with FPGA support

To force OpenCL to execute data transfers and measure the true
bandwidth of transferring between device bu�ers, we added func-
tion calls that execute the placeholder kernels mentioned earlier
in this section using clCreateKernel and clEnqueueTask. This kernel
contains no computation or I/O. The kernel only takes a device
bu�er as an argument and has an empty body. This is su�cient
enough to cause the OpenCL runtime to believe the device bu�ers
have potentially been altered, and thus device-to-host data transfers
will occur. Kernel execution is called before any measured MPI call
involving FPGA bu�ers is made. However, this kernel execution
is not included in any latency or bandwidth calculations. This is
because there is a kernel launch overhead that could signi�cantly
skew the measured results, especially at lower message sizes, and
no communication occurs during kernel execution.

3.2 Supporting the SYCL Interface
3.2.1 Device Selection. SYCL provides an abstract class referred to
as a selector. The role of the selector is to determine which device
to use for a given SYCL command queue. This is generally used to
provide a simple way to create command queues speci�c to GPUs,
CPUs, etc. However, users can implement their own selectors to
enforce stricter requirements. For example, on a system with multi-
ple GPUs, a user may implement a selector that only uses a speci�c
model, exists in a speci�c numa domain, etc. In our benchmarks, we
speci�cally use these selectors to implement appropriate mapping.

The selectors provided by SYCL implementations are generally
not very robust; if you use an FPGA selector, the selector will simply
choose the �rst FPGA detected. However in the context of OMB,
we want each rank to be assigned to a di�erent FPGA. Also, we
would like to provide users to provide their own mappings through
FPGA_MAPPING, just as in the previous section. We implement a
selector that will selects the nth device, where n is either the rank
of the current process or a user provided index.

3.2.2 Bu�er Allocation and Data Transfers. With this selector im-
plemented, we can instantiate an instance of this selector and pass
it to the SYCL queue constructor, thus assigning the nth device to be
used for the current rank in the benchmark. Upon queue creationwe
can �nally allocate device bu�ers using sycl::queue::malloc_device.
These bu�ers are used throughout the course of the benchmark,
making calls to sycl::queue::memcpy when necessary to initialize
and validate the contents of these bu�ers.

3.2.3 Placeholder Kernels. For the speci�c implementation of SYCL
that we are using, Intel DPC++, a placeholder kernel is not necessary.
It doesn’t appear that this implementation tries to avoid redundant
staging. This is especially interesting since this version of SYCL
is implemented on top of OpenCL. However a placeholder kernel
may be necessary for other implementations of SYCL or other
devices with di�erent drivers, thus we implement the placeholder
kernel anyway. We do not utilize it for evaluation, so we provide
these details merely to detail how it would be implemented in
the case that other SYCL implementations require it. We simply
implement the placeholder kernel using a C++ lambda function
with an empty body, explicitly listing bu�ers that we intend to use
for communication in the lamba’s capture list. This lambda function
is then added to the SYCL queue for execution before measuring
the MPI communication.

3.3 Enabling User Speci�ed Memory Type for
Benchmark Bu�ers

In previous extensions to OMB, it was required to implement the
ability for users to specify whether the bu�ers used in the MPI
operation were located within host or accelerator memory. The
same requirement is needed for FPGA support, although requires
a bit more robustness. One of the unique aspects of FPGA-based
accelerators when compared to other accelerators like GPUs is
the variety of available memories. For example, many chips have
SRAM available on-chip. Soft logic resources can also be used to
synthesize memories on-chip, although at much smaller capacities.
Furthermore, the Xilinx Alveo U200, U250, and U280 cards have
DDR available o�-chip, while the Alveo U280, U50, and U55c cards
have High-Bandwidth Memory available o�-chip. The Vitis devel-
opment �ow allows user to allocate bu�ers on any of these memory
resources, thus it is important to provide these di�erent memories
as optional pools to allocate memory from.

We implement this functionality by extending our bu�er alloca-
tion wrapper to utilize the appropriate interfaces. Xilinx’s OpenCL
extension enables applications to specify which of these memo-
ries a bu�er can be allocated from. When calling clCreateBu�er,
a cl_mem_ext_ptr_t struct must be populated with the kernel to
be called and the index of the kernel argument this bu�er will be
passed as. This indicates another challenge when implementing
FPGA support for OMB. The kernel discussed in section 3.1 must
be built multiple times, each time mapping the kernel arguments
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to a di�erent type of memory. Furthermore, not all FPGA accel-
erators have the same available memory resources as discussed
above. In order to resolve this issue, the build system has been
modi�ed to ask users for the target platform of the kernel. Using
this it can be determined what memory resources are available thus
allowing the build system to build the kernel with the appropriate
con�gurations.

While DPC++ does have a few extensions for FPGAs that allow
the user to control how memory is implemented in kernel code, it
does not provide a way for the host to allocate kernel arguments.
As a result, we do not implement this feature for the SYCL-based
benchmarks.

3.4 Adding Validation for FPGA-based MPI
Calls

The default behavior of each benchmark is to measure the latency
or bandwidth of an MPI operation. However, users of benchmark
suites, such as OMB, do not always simply seek to make measure-
ments but also to validate that the MPI operations are functionally
correct. This is useful when trying to recreate a bug experienced
in an application at the micro-benchmarking level or for MPI im-
plementers to verify new versions of their libraries. OMB features
the ability to validate operations by adding a -c argument to the
command line. To implement validation for FPGAs, we add calls to
clEnqueueReadBu�er for OpenCL runs and sycl::memcpy for SYCL
runs after the operation has completed to stage data from the FPGA
accelerator to host memory, after which that host memory can be
checked to see if it contains valid contents. To prevent false pos-
itives, the staging bu�er is allocated each time validation is run.
This bu�er is also only ever used for validation purposes, meaning
at no stage during the communication is this bu�er altered.

3.5 Implementing User Choice of Bu�er Reuse
Policy

The default behavior of OMB only allocates one bu�er each for the
send and receive data in each benchmark. This essentially means
the benchmark reuses the same bu�ers for each measurement of the
MPI operation. Applications often reuse the same bu�ers for MPI
communication, as many MPI optimizations are only useful in this
context. For example, in the FPGA-aware designs in MVAPICH2,
there is a design that uses P2P bu�er transfers to optimize intranode
point-to-point communication. However, in the design, there is an
import and export process that incurs a single time overhead for
each bu�er used in this design. If only one bu�er is ever used for the
operation, then the cost is only paid once. However, applications
do not always reuse bu�ers, sometimes out of necessity. In this
case, this cost would be paid multiple times. The aggregated cost
of these multiple import and export procedures may be signi�cant,
thus in OMB, there is an option to specify that multiple bu�ers
should be used during the course of the benchmark to simulate
this behavior. For benchmark runs involving FPGAs, we achieve
this through multiple calls to clCreateBu�er for OpenCL runs or
sycl::malloc_device for SYCL runs for both send and receive bu�ers,
using the same processes we discussed in section 3.1.

3.6 FPGA-based MPI Benchmarks Usage
Using the work discussed in previous sections, we can integrate
FPGA support for several benchmarks provided by OMB. For point-
to-point and multi-pair OpenCL-based benchmarks, users can indi-
cate that the benchmark allocate the send and receive bu�er from
a speci�c memory type by passing ’H’ for host memory, ’D’ for
DDR memory, ’B’ for HBM, or ’P’ for PLRAM on the command
line. For example, if a user wants to measure latency from a host
bu�er to DDR memory on an FPGA accelerator, the command
should be typed as osu_latency H D. For SYCL-based benchmarks,
only ’H’ and ’D’ are provided. The default memory type is host
memory, thus it is important to pass these arguments to test FPGA
support. For collective benchmarks, the -d 〈platform〉 �ag speci�es
that OMB should utilize device memory allocated through a given
runtime, thus when using the OpenCL interface, the command line
would have -d opencl in it, while -d sycl would be used for the SYCL
interface.

4 EXPERIMENTS AND EVALUATION
We run OMB utilizing the added support discussed in Section 3 for
demonstrative purposes. All results are collected using MVAPICH2-
FPGA. We have run the benchmarks with validation and all bench-
marks passed. While the FPGA mapping functionality works, they
have no signi�cant e�ect on the results due to the limited number
of con�gurations available on our test system. As a result all our
measurements involve either inter-PCIe root tranfers or internode
transfers over a high performance network.

We collect all of our numbers on a multi-node system with mul-
tiple FPGAs available per node. The FPGAs used were Xilinx U280
cards, each card existing under its own PCIe root complex. Each
card contains 32GB of o�-chip DDR, and 8GB of HBM. We use
version 2.14 of the Xilinx Runtime. Each card uses the 202211.1
version of the XDMA shell and has PCIe Gen 3 x16 connectivity.
Furthermore, we utilize nodes with Bittware 520N featuring Intel
Stratix 10 GX 2800 FPGAs. The cards are connected using PCIe Gen
3 x16, and we use the 32 GB of o�-chip DDR for our testing. The
boards are �ashed with the vendor-provided board support package.
Each node also features a dual socket con�guration with a AMD
Milan 7713 processor, clocked at 2 GHz, in each socket. Each node
is connected to a high performance network utilizing In�niband
100/200 HDR.

4.1 Point-to-Point
We run each OMB point-to-point benchmark with three con�gu-
rations. For all con�gurations we run 5 back-to-back executions
of the benchmark and present the average results. Within each
execution, multiple iterations of the MPI operation are carried out
(up to 1000 for small messages, as low as 100 for large messages).
Using the OpenCL interface, we execute evaluations with Xilinx
FPGAs located in the same node, and another with each FPGA on
separate nodes. For each of these con�gurations, we have runs
where the send and the receive bu�ers are allocated from one of the
available memory types: DDR, HBM, and PLRAM. Since PLRAM
has a very limited capacity, we were only able to successfully run
the benchmarks from a 16 KB up to a 64 KB message size. Both
DDR and HBM based results are gathered from 16 KB up to 16 MB.
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(a) Intranode (b) Internode (c) Intranode (d) Internode

Figure 2: Results from measuring latency of OpenCL-based point-to-point inter-FPGA communication with OMB-FPGA.

The last con�guration we present is using the SYCL interface on
the Bittware cards, but only using the DDR memory since the SYCL
interface does not allow us to specify di�erent memory banks from
the host, as explained in Section 3. Furthermore the drivers for the
Bittware cards have an issue where multiple MPI ranks on the same
node cannot create SYCL queues using separate devices. Since the
520n cards are no longer supported, we cannot provide results for
intranode con�gurations. That said, these con�gurations will be
usable with other FPGA cards whose drivers do not have this issue,
thus the designs we presented are still usable. The average variance
was very low for all SYCL and OpenCL testing.

4.1.1 Latency. Figures 2a and 2b show the measured latency for
both intranode and internode con�gurations for OpenCL-based
MPI. For most data points, the memory type doesn’t a�ect the end-
to-end latency of the point-to-point communication. However, in
the intranode measurements (Figure 2a) at 16MB we see that DDR
memory incurs approximately 10% more latency. In Figure 2b the
latency dips signi�cantly at 8MB. This indicates that likely there
is a change in the underlying protocol within MPI at this message
size between 4MB and 8MB. Within MPI implementations there
are many di�erent parameters that can be tweaked to improve
MPI performance without changing the higher level protocol used.
Internal bu�ers sizes, cache sizes, queue lengths, etc. can all be set
on a per system basis to increase performance. It is possible that
with proper tuning of these parameters latency experienced some
messages of sizes 4 MB and below can be improved.

Lastly, the di�erence in latency between the intranode and in-
ternode con�gurations is signi�cant; the internode con�guration
is almost half the latency of the intranode at multiple data points.
Both con�gurations will require sending the data over a PCIe in-
terface, but the internode con�guration must also send the data
over the In�niBand network. This means that theoretically the
internode latency should be either the same or greater than the
intranode latency, but this is not what we see in our results. Based
on our OMB-FPGA results, there is a need to retune the intranode
point-to-point protocols to close this performance gap. Based on
the protocols presented in [3], the implementation is trying to uti-
lize P2P transfers for intranode communications. Given this, the
P2P transfers used by the MPI implementation will be suboptimal
since the FPGA cards on this system are not connected over a PCIe
switch. This explains why the intranode performance is lower than
internode. It is likely that the protocol selection code in MVAPICH2-
FPGA needs to be changed to be aware of the interconnects between

communicating FPGAs and only use P2P transfers when it would
be bene�cial.

We also compare the latency of point to point communication
with di�erent reuse policies in Figures 2c and 2d respectively, where
single refers to maximum bu�er reuse by using a single bu�er and
multiple means decreased bu�er reuse by using multiple bu�ers.
Across the board, the e�ect of using multiple bu�ers is insigni�cant.
Usingmultiple bu�ers increases the latency by less than 10% inmost
cases. Using multiple bu�ers in the test generally a�ects caching
behavior. However, since a majority of the latency is caused by
the transfer between the host and the FPGA, the extra latency due
to decreased cache performance is a small portion of the overall
latency. We also surmise that the P2P bu�er registration costs are
negligible compared to other portions of the communication.

Figure 4a shows the latency of the SYCL-based MPI. The latency
experienced with this MPI implementation is signi�cantly higher
than the OpenCL-based MPI implementation. This is because the
MPI implementation itself uses naive designs for implementing
point-to-point communication. These results should not be used to
make conclusions on the performance of using OpenCL vs SYCL
to implement MPI as a result. The latency can be signi�cantly
increased by implementing the optimizations presented in [3] in
our SYCL-based MPI, such as implementing pipelining. However
this is out of the scope of this paper. Nevertheless, our OMB-FPGA
design can aid the development of these optimizations.

4.1.2 Bandwidth. The results collected using osu_bw are shown in
Figures 3a and 3a for both intranode and internode con�gurations
respectively with OpenCL-based MPI. Again we see the HBM-based
tests achieve a superior bandwidth at higher message sizes (2MB
and above) when compared to DDR in our intranode measurements
(Figure 3a. However, when comparing the bandwidth achieved by
intranode and internode tests at 1MB message size and above, we
can see that the internode test reaches a peak bandwidth of 7 GB/s
sooner than the intranode test. This indicates that the intranode
protocols need to be re-tuned, as the intranode performance should
be at least as good as the internode performance. Again, this is
likely related to the P2P protocols, as discussed in 4.1.1.

Xilinx provides tests that measure the bandwidth achieved when
transferring data between the FPGA and the host. The test transfers
16 MB of data and achieves an average of 9.7 GB/s when writing
from host to FPGA in our test environment. This represents the
peak theoretical performance of host to FPGA transfers when using
OpenCL. We also execute osu_bw with using host bu�ers for send
and receive bu�ers, achieving 26 GB/s and 12 GB/s for intranode and
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(a) Intranode (b) Internode (c) Bidirectional Intranode (d) Bidirectional Internode

Figure 3: Results from measuring bandwidth of OpenCL-based point-to-point inter-FPGA communication with OMB-FPGA.

(a) osu_latency (b) osu_bw (c) osu_bibw

Figure 4: Measurements for internode latency, bandwidth, and bi-directional bandwidth for SYCL-based inter-FPGA point-to-
point communication

(a) osu_gather - Scale Up (b) osu_allgather - Scale Up (c) osu_reduce - Scale Up (d) osu_alltoall - Scale Up

(e) osu_gather - Scale Out (f) osu_allgather - Scale Out (g) osu_reduce - Scale Out (h) osu_alltoall - Scale Out

Figure 5: Measured latencies of various MPI collectives

internode tests respectively. This represents the peak theoretical
performances of our MPI implementation when no host to device or
device to host transfers are involved in the communication. Further-
more, the theoretical peak of a PCIe Gen 3 x16 interface is 1̃5GB/s.
Since the achieved bandwidth of the xbutil test is lower than the
theoretical peak PCIe bandwidth, we conjecture that the Xilinx’s
drivers and/or OpenCL implementation may be limiting peak band-
width. Furthermore, since MVAPICH2-FPGA achieves a bandwidth

lower than the xbutil test and host-based communication achieves
higher bandwidth than MVAPICH2-FPGA, we conjecture that op-
timizations can be made to fully saturated the PCIe bandwidth,
which is the bottleneck of inter-FPGA communications.

The SYCL-based MPI internode performance can be seen
in Figure 4b. The bandwidth is far from the maximum available
bandwidth. Again this is related to the naive design of our MPI
implementation. For each MPI_Isend call, the data is �rst staged



PEARC ’24, July 21–25, 2024, Providence, RI, USA Nicholas Contini, et al.

to host memory before starting the asynchronous send. Since the
staging call is the highest latency portion of the transfer process,
this e�ectively serializes the communication, preventing greater
bandwidth from being achieved. Bandwidth can be improved by
more tightly integrating the staging code with the MPI runtime.

4.1.3 Bidirectional Bandwidth. Figure 2 demonstrates the results
collected using osu_bibw for intranode and internode con�gura-
tions with the OpenCL-based MPI. We see similar discrepancies to
the bandwidth results between the peak bandwidth of the intranode
and internode runs. However, the bidirectional bandwidth in the
internode results has a signi�cant jump between 512KB and 1MB
that is not apparent in the unidirectional bandwidth benchmarks.
This may indicate that the protocol used at message sizes 512KB
and below may be limiting both directions of communication thus
suggesting that tuning should be changed to select a di�erent proto-
col or reworking of the used protocol may be necessary. According
to [3], the pipelining protocol is used around this message range,
perhaps suggesting that pipelining should be used at lower mes-
sage sizes to maximize bidirectional bandwidth. The SYCL-based
MPI internode performance can be seen in Figure 4b. The bidirec-
tional bandwidth is twice of the unidirectional bandwidth, which
is expected. However, this is still poor performance, and as stated
above, tighter integration of the code responsible for moving data
between device and host can better utilize the available interconnect
bandwidth.

4.2 Collectives
We also measure the performance of FPGA-aware collective com-
munication using OMB benchmarks. The presented numbers are an
average of 5 runs, where we observed the variance to be very low.
In these benchmarks we only utilize DDR to allocate the send and
receive bu�ers for each run. We show two di�erent types of scaling:
scale up by increasing the number of communicating FPGAs within
a single node and scale out by increasing the number of nodes
participating in communication with 3 processes per node. The
results are shown in Figure 5. In general, we see that the collectives
with more dense communication patterns (i.e. alltoall) scale less
e�ectively than others. We also see that scaling out communication
is much more taxing than scaling up, as expected. A few of the mea-
surements warrant an attempt to retune the collective operations
for better performance such as the 1MB to 4MB message range in
the scale out results for osu_allgather in Figure 5f and the 1MB to
2MB message range for the osu_alltoall scale up results in Figure
5d. It is also abnormal for the 2-node runs to outperform the 1-node
runs in osu_reduce shown in 5c, thus we shall retune this collective
to have the other scales utilize similar algorithms to ones used in
the 2-node runs.

5 CONCLUSION AND FUTUREWORK
In this paper, we presented an extension to the
OSU-Micro-Benchmarks suite. This extension enables the bench-
marking of FPGA-aware MPI implementation by utilizing OpenCL
calls to appropriately allocate bu�ers and execute device kernels.
Furthermore, this contribution enables the ease of testing allocation
of bu�ers from multiple memory types on the FPGA accelerator,
as well as �exible process-to-device mapping to allow users to

easily test the data paths between di�erent FPGAs. Finally, we
demonstrate our benchmark designs by running point-to-point and
collective OMB benchmarks. Our results reveal that there is still
improvement to be done in the MPI implementation we tested with.
This future work will be accelerated due to the work presented
in this paper, as otherwise there would be no standardized way
of measuring the performance of the implementation. We plan to
make our extension to OMB publicly available for use.

In the future, we would like to further develop our implemen-
tation of a SYCL-aware MPI for FPGAs. Devlopment in this area
has already been done in [2], however it is not clear if this work ap-
plies to FPGAs, as well as multiple implementations of SYCL. OMB
also has dedicated benchmarks for measuring NCCL, RCCL, and
other non-MPI collective communication libraries’ performance.
ACCL [5] is a collective communication library that enables com-
munication through FPGAs that are connected through a dedicated
FPGA network. We would also like to explore adding the ability to
benchmark this runtime.
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