
Accelerating MPI AllReduce Communication with
Efficient GPU-Based Compression Schemes on

Modern GPU Clusters
Qinghua Zhou, Bharath Ramesh, Aamir Shafi, Mustafa Abduljabbar,

Hari Subramoni and Dhabaleswar K. (DK) Panda
Department of Computer Science and Engineering, The Ohio State University

{zhou.2595, ramesh.113, shafi.16, abduljabbar.1, subramoni.1, panda.2}@osu.edu

Abstract—With the increasing scale of High-Performance
Computing (HPC) and Deep Learning (DL) applications through
GPU adaptation, the seamless communication of data stored on
GPUs has become a critical factor in enhancing overall applica-
tion performance. AllReduce is a communication collective oper-
ation that is commonly used in HPC applications and distributed
DL training, especially Data Parallelism. Data Parallelism is a
common strategy where parallel GPUs are used to process the
partitioned training dataset using a replica of the DL model.
However, AllReduce operation for large GPU data still performs
poorly due to the limited interconnect bandwidth between the
GPU nodes. Some strategies of Gradient Quantization or Sparse
AllReduce modifying the Stochastic Gradient Descent (SGD)
algorithms may not support different training scenarios. Recent
research shows integrating GPU-based compression into MPI
libraries is efficient to achieve faster data transmission. In this
paper, we propose optimized Recursive-Doubling and Ring AllRe-
duce algorithms that encompass efficient collective-level GPU-
based compression schemes in a state-of-the-art GPU-Aware MPI
library. At the microbenchmark level, the proposed Recursive-
Doubling and Ring algorithms with compression support achieve
benefits of up to 75.3% and 85.5% respectively compared to
the baseline, and 24.8% and 66.1% respectively compared to
naive point-to-point compression on modern GPU clusters. For
distributed DL training with PyTorch-DDP, these two approaches
yield up to 32.3% and 35.7% faster training than the baseline,
while maintaining similar accuracy.

Index Terms—AllReduce, Compression, GPU-Aware MPI,
Deep Learning, Data Parallelism

I. INTRODUCTION

Over the past few years, deep neural networks (DNNs)
have enabled tremendous advances in areas like natural lan-
guage processing, image classification, and self-driving cars.
DL frameworks like PyTorch [1] and TensorFlow [2] make
training—the compute-intensive part of developing DNNs—
efficient by supporting parallel execution on systems with
graphics processing units (GPUs). These GPU systems are
key to training the large DNNs that can automatically extract
features from complex datasets and uncover non-linear rela-
tionships between them. On the other hand, GPU vendors—
including NVIDIA, AMD, and Intel—are building HPC sys-
tems to meet the computational needs of both traditional
scientific and DL applications. Given the distributed nature
and significant scale of these systems, the communication

*This research is supported in part by NSF grants #1818253, #1854828,
#2007991, #2018627, #2311830, #2312927, and XRAC grant #NCR-130002.

performance between GPUs is crucial for ensuring optimal
overall performance of parallel applications.

The Message Passing Interface (MPI) [3], widely recog-
nized as the dominant parallel programming model, offers a
wide range of communication primitives to facilitate parallel
and distributed execution of applications on HPC systems.
MPI communication libraries [4], [5] have been commonly
employed to parallelize traditional scientific applications in the
past. They have also been extensively embraced recently by
DL frameworks as a communication backend for distributed
training [6], [7] that involves intensive computation.

A. Problem Statement
AllReduce is a communication collective operation that is

commonly used in HPC applications as well as distributed
DL training. Data Parallelism is a common strategy used in
distributed DL training where parallel GPUs are used to pro-
cess the partitioned training dataset using a replica of the DL
model. DDP (Distributed Data Parallel) training [8] extends
the Data Parallelism to multiple computing nodes—a strategy
adopted by PyTorch. This parallelism can combine with other
parallel strategies [9], [10] to form hybrid parallelism.

Many Allreduce algorithms have been developed in the past,
such as Baidu Ring [11], NCCL Ring [12] and double binary
tree [13], Link-Efficient NVGroup algorithm [14], etc. How-
ever, Allreduce operation can still be a bottleneck, especially
for large GPU data during distributed DL training. Recent
studies explored the Gradient Quantization [15] or Sparse
AllReduce [16] based on the sparsity of the gradient data.
These solutions usually require specific modified Stochastic
Gradient Descent(SGD) algorithms [16]. However, the modi-
fication at the application level may not support different train-
ing scenarios. The effectiveness of these solutions is contingent
on their compatibility with the specific SGD algorithms.

Therefore, this paper aims to optimize the AllReduce
communication operation by designing general GPU-based
compression schemes at the communication middleware
level while preserving similar accuracy and without re-
quiring modifications to the applications.

B. Motivation
To analyze the communication bottleneck in DNN training

using DDP, we conduct profiling of representative DL models



244 244 244 244 244

1
0

50
100
150
200
250

7.8 9.3 25.0 25.3 30.0 97.5

C
ou

nt
s

Message Size (MBytes)

ResNet50

(a) ResNet50

244 244 244 244

1464

244
488

1
0

400

800

1200

1600

7.8 12
.8

25
.4

26
.3

27
.4

28
.5

36
.5

33
8.7

C
ou

nt
s

Message Size (MBytes)

ResNeXt101-32x8d

(b) ResNeXt101-32x8d

244 244

976

244

732

244

488

1
0

200
400
600
800

1000

3.9 10
.4

28
.3

28
.4

28
.4

32
.0

32
.2

33
7.9

C
ou

nt
s

Message Size (MBytes)

ConvNext_Base

(c) ConvNeXt Base

0

50

100

150

0.5 1 2 4 8 16 32 64 128

L
at

en
cy

(m
s)

Message size (MBytes)

(d) AllReduce communication latency

Fig. 1: Message sizes of Allreduce in PyTorch DDP Training with 8 GPUs (4 nodes) on Pitzer [17]. Large message sizes are
transferred for three DNN models. The communication latency increases rapidly with increasing message sizes in this range.

including ResNet50 [18], ResNext101-32x8d [19], and Con-
vNeXt Base [20] using CIFAR10 [21] dataset. The goal is
to determine the message sizes of AllReduce operation. Fig-
ures 1(a), 1(b) and 1(c) represent a frequency histogram of the
message sizes for AllReduce communication primitives in the
training of 5 epochs for the identified models using a state-of-
the-art GPU-Aware MPI library with 8 V100 GPUs on Pitzer
[17] cluster. These figures show that large messages (>1MB)
need to be exchanged between GPUs. For large message sizes,
the communication latency of AllReduce increases rapidly
with increasing message sizes as shown in Figure 1(d). We
observe that AllReduce communication primitives add large
overheads to the DNN training—this is due to the limited
interconnect bandwidth between the GPU node.

C. Challenges and Proposed Solutions
In the state-of-the-art GPU-aware MPI libraries for GPU

communication [14], [22], inter-node bandwidth has become
a primary bottleneck [23] for transferring large data between
multiple GPU nodes. Due to the saturated network bandwidth,
other optimization strategies could be explored to enhance
AllReduce communication performance.

Recent research [24] proposed On-the-fly compression by
leveraging advanced GPU-based compression algorithms [25],
[26] to accelerate point-to-point GPU communication for
the state-of-the-art MPI library. The AllReduce in MPI li-
braries [4], [5] may benefit from using naive compression
for point-to-point communications. However, inside the ad-
vanced AllReduce algorithms, non-blocking send and receive
operations are usually utilized to transfer the GPU data. Such
non-blocking operations could be blocked by compression/de-
compression operations triggered inside the send or receive
operations. Naive point-to-point compression for each trans-
mission operation may introduce redundant compression/de-
compression operations with unnecessary overheads.

To enable compression for AllReduce to achieve optimal
performance, this paper addresses the following research
challenge: What is the limitation of using naive point-
to-point compression technique for advanced AllReduce
algorithms? First, we need to select the appropriate advanced
AllReduce algorithms for transferring large GPU data and ana-
lyze the limitations of using naive point-to-point compression.

To implement compression at the collective level, re-
cent work [27] and [28] proposed optimization strategies
for MPI Alltoall and MPI Bcast operations, respectively.

However, the proposed optimizations cannot be directly ap-
plied to MPI AllReduce since the communication patterns in
MPI AllReduce are different than the other two operations.

We need to explore new implementations to improve the
performance of AllReduce with GPU-based compression and
accelerate the distributed DL training. This paper tackles
the second challenge: How to co-design and optimize the
GPU-based compression at the collective level along with
the communication patterns of advanced AllReduce algo-
rithms for distributed DNN training?

D. Contributions

This paper makes the following main contributions:
1) Analyze the shortcomings of using the naive Point-to-

Point compression in the Ring and Recursive-Doubling
AllReduce algorithms. We point out optimization oppor-
tunities for optimizing the compression at the collective
level for AllReduce. (Section III-B)

2) Optimize the data flow of AllReduce by co-designing
compression operations with the communication pattern
of the Ring and Recursive-Doubling algorithms. This is
to remove redundant compression operations in the naive
point-to-point compression solution and enable overlap-
ping compression/decompression kernels with send and
receive operations.(Section III-C, III-D, III-E, III-F)

3) Evaluate the communication latency of compression-
enabled MPI Allreduce operations using the OSU Mi-
cro Benchmark (OMB) suite. Our proposed Recursive-
Doubling and Ring algorithms with compression support
achieve benefits of up to 75.3% and 85.5% respectively
compared to the baseline in a state-of-the-art MPI library
on modern GPU clusters. (Section IV)

4) Evaluate the performance benefits of the proposed de-
signs on the DDP training of representative DNN models
with PyTorch. With the proposed Ring and Recursive-
Doubling AllReduce with Collective-level compression
designs, the training time can be reduced by up to 32.3%
and 35.7% compared to the baseline, respectively (while
keeping similar convergent accuracy). (Section V)

5) To the best of our knowledge, this is the first work
that leverages the GPU-based compression technique
and optimizes the compression at the collective level
to accelerate AllReduce communication for DL training
performance. (Section VI)

2



II. BACKGROUND

In this section, we introduce the background knowledge in-
cluding GPU-Aware MPI libraries, MPI Allreduce algorithms
in MPI libraries, and GPU-based compression libraries.

A. GPU-Aware MPI libraries with GPUDirect technology

MPI libraries like MVAPICH2 [5] and OpenMPI [4] offer
direct support for passing GPU buffers to MPI primitives.
Applications using these GPU-Aware MPI libraries no longer
require explicit copying of GPU buffers to CPUs. These MPI
libraries have implemented various optimization strategies
including CUDA IPC (Inter-Process Communication), Pipelin-
ing, and GPUDirect RDMA [22], specifically for point-to-
point GPU-based communication. NVIDIA GPUDirect tech-
nology [29] enables Peer-to-Peer access, allowing data to be
directly shared between GPUs on the same PCIe bus or via the
advanced NVLink interconnect. The RDMA (Remote Direct
Memory Access) facilitates extended memory access between
GPUs and other PCIe devices. With the optimization schemes,
the communication performance of GPU data transfer is
significantly accelerated across various communication paths.

B. Algorithms for AllReduce Operation

The AllReduce operation allows multiple processing units
to exchange data and combine them into a global result using
a specified operator. Many advanced Allreduce schemes have
been developed such as Baidu Ring [11], NCCL Ring [12] and
double binary tree algorithm [13], Link-Efficient NVGroup
algorithm [14], etc. The selection of suitable AllReduce al-
gorithms can be based on factors such as message sizes, the
number of processes, and the system configuration.

In state-of-the-art MPI libraries [4], [5] and NVIDIA’s
Collective Communication Library (NCCL) [12], Ring and
Recursive-Doubleing algorithms [30] are often selected for
large message transfer in AllReduce Communication.

C. General-purpose GPU-based Compression Libraries

The performance of compression algorithms MPC [25],
nvComp [31], ZFP [26], SZ [32] has significantly improved
thanks to the advanced computing power of GPUs, surpassing
CPU-based algorithms. Existing lossless GPU-based compres-
sion libraries like MPC [25] are often hindered by a low
compression ratio when applied to generic data. A recent
study [33] has shown that for certain HPC applications, lossy
compression algorithms with higher compression ratios have
been utilized, as opposed to lossless compression libraries.
The ZFP [26] library offers numerous interfaces that can
accommodate multi-dimensional scientific data and different
compression modes. The cuZFP, implemented with CUDA,
enables lossy compression with a fixed compression rate. In
this mode, a d-dimensional array of values is divided into
4d blocks. The fixed compression rate mode guarantees the
expected compression ratio regardless of the sparsity of the
data.

III. PROPOSED COLLECTIVE-LEVEL ONLINE
COMPRESSION DESIGNS FOR ALLREDUCE

COMMUNICATION

In this section, we will first review the existing AllReduce
algorithms and pick up the appropriate algorithms for the DL
workloads. We also analyze the limitations of using naive
point-to-point compression solutions in these algorithms. Then
we propose new compression designs at the collective level to
further improve the performance of AllReduce operation.

A. Existing Allreduce algorithms
The Ring-based AllReduce algorithm [30] establishes a

logical ring structure, facilitating the exchange of data between
each process and its adjacent neighbors. Each rank partitions
the data into N (the total number of processes) multiple
chunks. Then each rank sends the chunks to its right neighbor
rank, receive the data chunk from its left neighbor rank and
run a reduction operation to aggregate the received data chunk
with the corresponding chunk in its own data buffer. Finally,
each rank receives the reduction of chunks across other ranks.
Since the element-wise reduction operation is expensive, state-
of-art GPU-Aware MPI libraries [4], [5] have developed GPU
reduction kernels [34] to accelerate the performance of reduc-
tion. Nevertheless, the Ring algorithm may not always be the
optimal solution when the size of each data chunk becomes
much smaller for smaller message sizes or more processes.

On the other hand, in the Recursive-Doubling algorithm,
specific pairs of processes exchange messages with each other
in a pairwise manner. The Recursive-Doubling algorithm with
a reduction kernel has been proven to achieve good perfor-
mance [34] since fewer data exchanges are needed across the
rank. The whole data on each rank is aggregated with the data
on other ranks without partitioning it into multiple chunks.

In this paper, we pick up the Ring and Recursive-Doubling
algorithms with GPU reduction kernel in the state-of-the-art
GPU-Aware MPI libraries to study the impact of applying
compression for AllReduce communication.

B. Limitations of using naive Point-to-Point Compression
Although the naive point-to-point compression solution [24]

has proven to be an effective way to reduce the size of
transferred data through the network, directly applying it to
the Ring and Recursive-Doubling AllReduce algorithms may
not achieve optimal performance. Because these collectives
are usually layered on top of Point-to-Point operations, such
compression inside the point-to-point may lose visibility into
what the higher-level collective algorithm wants to achieve.

1) Limitations in Ring algorithm: During the Ring AllRe-
duce operation, the data chunks present in the send buffer
of each rank will be moved to the receive buffer of all the
other ranks. When using a basic point-to-point compression
method, every send and receive operation involves performing
compression on the sender’s side and decompression on the
receiver’s side. Upon receiving compressed data from its left
neighbor rank, each rank will decompress the data within
the MPI Irecv operation. However, when the next MPI Isend

3



sends this data to its right neighbor, compression will still be
initiated. Since the received data is already compressed, such
compression operation becomes redundant for exchanging the
final aggregated results in the second phase of Ring algorithm.

In addition, the original non-blocking MPI Isend and
MPI Irecv operations often offer opportunities for overlap.
However, when compression is introduced, each send or re-
ceive operation needs to wait for the completion of inside com-
pression/decompression which causes the delay of subsequent
send or receive operations Consequently, the compression
kernel within one send operation cannot overlap with the
compression kernels in other send/receive operations.

2) Limitations in Recursive-Doubling algorithm: In the
existing Recursive-Doubling AllReduce algorithm, each pair
of two GPUs exchange data between each other. On each
rank, the reduction operation follows the receive operation to
aggregate the received data with the data on its own GPU.

Applying the naive point-to-point compression to the
recursive-doubling algorithm incurs similar limitations. In
the original recursive-doubling algorithm, the non-blocking
MPI Isend and MPI Irecv operation between two processes
could achieve some overlapping. Similarly, these non-blocking
send and receive operations will be blocked by the point-
to-point compression/decompression solution. These compres-
sion/decompression overheads can not be reduced by overlap-
ping with the send/receive operations.

Furthermore, in both algorithms, the decompression kernel
inside the receive operation is usually launched into a different
CUDA stream other than that for the following reduction op-
eration. Explicit stream synchronization must be added before
the reduction operation, which introduces extra overheads.

To tackle the limitation of using point-to-point compression
for MPI Allreduce, we redesign both the Ring and Recursive-
Doubling MPI Allreduce and algorithms with collective-level
online compression in a state-of-the-art MPI library to accel-
erate the communication of GPU data.

C. Overview of Ring-based Allreduce Communication with
Collective-level Online Compression

Figure 2 shows the data flow in the Ring MPI Allreduce
operation with Collective-level compression. In this example,
4 GPUs have data A, B, C, and D on their own buffers
respectively. These data will be aggregated for all the GPUs.
Each GPU partitions the data into N (N=4) chunks. There
are two phases in this algorithm. In the first phase, the data
chunk with the same index on each GPU will be aggregated
together and stored in the corresponding GPU. For example,
data chunk A0, B0, C0, D0 will be aggregated into GPU0.

Each GPU transfers data chunks with different indices to its
logical right rank at each iteration and receives data chunks
from the logical left rank. For example, in the first iteration,
A3 on GPU0 is compressed using a compression kernel and
sent to GPU1 using MPI Isend while D2 is compressed on
GPU3 and sent to GPU0. Once GPU1 receives the A3’, it
will first launch the decompression kernel to restore the data
followed by a reduction kernel to aggregate A3 and B3. The

Fig. 2: Data flow of Ring-based MPI Allreduce with
Collective-level online compression.

result of (A3+B3) is compressed and then transferred to GPU2.
In the next iteration, the received compressed (A2+B2)’ will
be decompressed first and aggregated with D2 (This process
is skipped in the figure). The result (A2+B2+D2) is then
compressed to (A2+B2+D2)’ and sent to GPU2. In the next it-
eration, GPU1 receives the (A1+C1+D1)’ and repeats the same
procedure to get the aggregated result of (A1+B1+C1+D1).
Similar procedures are executed on other GPUs.

In the second phase, the aggregated results of different
chunks on each GPU (e.g., (A0+B0+C0+D0) on GPU0) need
to be transferred to all the other GPUs. They will only be
compressed once in this phase. Once other GPUs receive
these compressed data chunks with aggregated results, the
MPI Isend is posted immediately to directly send the received
compressed data chunk to the logical right rank. A following
decompression kernel is immediately launched on a non-
default CUDA stream to restore the data. Since no reduction
operation is involved in this phase, these decompression ker-
nels launched on multiple CUDA streams for different received
data chunks can have opportunities to overlap.

Figure 3 depicts the detailed operations inside the GPU0

4



A2+D2 A3

(C1+
D1)’

sendbuf

recvbuf

tmp_recvbuf
GPU0

(A2+
D2)’

A0 A1

A

C1+D1

MPI_Isend
(To GPU1)

MPI_Irecv
(From GPU3)

A2 A3

D2’

sendbuf

recvbuf

tmp_recvbuf
GPU0

A3’

A0 A1

A

D2

MPI_Isend
(To GPU1)

MPI_Irecv
(From GPU3)

Decompress

Reduction Compress
(Local 
copy)

sendbuf

recvbuf

tmp_recvbuf
GPU0

A0+B0+
C0+D0

A

(A0+B0+
C0+D0)’

MPI_Isend
(To GPU1)

MPI_Irecv
(From GPU3)

Compress

(A3+B3+
C3+D3)’

Decompress

sendbuf

recvbuf

tmp_recvbuf
GPU0

A0+B0+
C0+D0

A

MPI_Irecv
(From GPU3)

MPI_Isend
(To GPU1)

A3+B3+
C3+D3

A3+B3+
C3+D3

(A2+B2+
C2+D2)’

(A3+B3+
C3+D3)’

A2+B2+
C2+D2

Fig. 3: Detailed operations inside GPU of Ring MPI Allreduce
with Collective-level online compression.

of the Ring MPI Allreduce with Collective-level online com-
pression. First, data is copied from the send buffer sendbuf
to the local receive buffer recvbuf directly using a Device to
Device cudaMemcpy. A pre-allocated temporary receive buffer
tmp recvbuf on GPU stores the intermediate compressed
data and the decompressed data. When data chunk A3 is
compressed on a non-default CUDA stream, an MPI Irecv
operation is posted for receiving compressed data D2’ from
GPU3. The compression kernel has the opportunity to overlap
with the receive operation. Once the compression kernel is
completed, the compressed A3’ is sent out to GPU1 by
MPI Isend. At the same time, a decompression kernel is
launched immediately on a non-default CUDA stream for
D2’ after the receive operation for D2’ is finished. The
following reduction kernel is launched on the same CUDA
stream without the need to add stream synchronization before
the reduction operation. These decompression and reduction
kernels have opportunities to overlap with the MPI Isend
operation to hide partial of the computing overheads. In the
next iteration, the compression kernel is launched on this
same CUDA stream for the previous reduction to generate the
result (A2+D2)’. GPU0 repeats the same procedure to receive
compressed (C1+D1)’ and send out the (A2+D2)’.

In the second phase(shown in the lower two subfigures),
we achieve similar overlap. We will not wait for the com-
pletion of MPI Isend and decompression kernel to start the
next iteration. In the next iteration, MPI Isend directly sends
out the previously received compressed (A3+B3+C3+D3)’ to
GPU1. In the naive point-to-point compression solution, there
is redundant compression to regenerate the (A3+B3+C3+D3)’
from (A3+B3+C3+D3). The decompression kernel follows the
receive operation to restore the (A2+B2+C2+D2)’ and has
opportunities to overlap with the decompression kernel in the
previous iteration. After all the iterations, we add wait for all
the decompression kernels and MPI Isend operations.

D. Algorithm of Ring-based Allreduce Communication with
Collective-level Online Compression

Algorithm 1: Collective-level Online Compression Design for
Ring MPI Allreduce

Input : Send buffer S, Data size M , Control parameters A,
Preallocated GPU buffer S tmp, R tmp, Send Request
Array Sreq, Receive Request Array Rreq, Reduction
Operation Op, GPU counts N

Output: Receive buffer R, Compressed data size B

1 for i = 0 to N � 2 do
2 si = (rank � i+N)%N ; //send index

3 ri = (rank � i� 1 +N)%N ; //receive index

4 if i == 0 then
5 (B,R tmpsi)=zfp compress coll(Rsi, A, Streamsi);

6 MPI Irecv(R tmpri, B, left, Rreqi, ...); //Receive from left
7 if i == 0 then
8 cudaStreamSynchronize(Streamsi);

9 else
10 cudaStreamSynchronize(Streamri);
11 (B,R tmpsi)=zfp compress coll(Rri, A, Streamsi);
12 cudaStreamSynchronize(Streamsi);

13 MPI Isend(R tmpsi, B, right, Sreqi, ...); // Send to right
14 Wait for Rreqi;
15 S tmpri = zfp decompress coll(R tmpri, B, A,

Streamri);
16 Rri = reduction coll(S tmpri, Rri, M , Op, Streamri);

17 ri = (rank + 1)%N ; //receive index

18 cudaStreamSynchronize(Streamri);//Wait for last reduction kernel
19 Wait for all Sreqi;
20 for i = 0 to N � 2 do
21 si = (rank � i+ 1 +N)%N ; //send index

22 ri = (rank � i+N)%N ; //receive index

23 if i == 0 then
24 (B,R tmpsi)=zfp compress coll(Rsi, A, Streamsi);

25 MPI Irecv(R tmpri, B, left, Rreqi, ...); //Receive from left
26 if i == 0 then
27 cudaStreamSynchronize(Streamsi);

28 MPI Isend(R tmpsi, B, right, Sreqi, ...); // Send to right
29 Wait for Rreqi;
30 Rri = zfp decompress coll(R tmpri, B, A, Streamri);

31 for i = 0 to N � 2 do
32 cudaStreamSynchronize(Streamri);

33 Wait for all Sreqi;

Algorithm 1 is a high-level overview of the Ring-based
AllReduce with Collective-level online compression. We lever-
age the ZFP compression library for compression/decom-
pression. We use runtime control parameters to specify
the compression-related parameters. The wrapper functions
zfp compress coll and zfp decompress coll calls ZFP
APIs to execute the compression and decompression kernels,
respectively. The two for loops correspond to the two phases
in the Ring algorithm. On each rank, the compression/decom-
pression kernels are launched on multiple non-default CUDA
streams (Line 5,11,15,24,30). The reduction kernel is launched
on the same stream of decompression (Line 16). In the first
phase, we wait for all the send requests after all the iterations
(Line 19). Similarly, we move the wait after all the iterations
in the second phase (Line 33). The cudaStreamSynchronize is
launched (Line 32) for the completion of all the decompression
kernels after the iterations so that decompression will not block
the send or receive operations.

5



E. Overview of Recursive-Doubling Allreduce Communication
with Collective-level Online Compression

Figure 4 depicts the data flow in the Recursive-Doubling
MPI AllReduce operation with Collective-level compression.
For simplicity, we show the example of 4 GPUs. In the
following section, Algorithm 2 explains the case that the total
number of GPUs is non-power of 2. The whole data on each
rank will be compressed. Each pair of GPUs exchange the
compressed data. For example, data A is compressed to A’
on GPU0 and sent to GPU1 by MPI Isend. GPU0 also posts
MPI Irecv to receive data B’ from GPU1. The pair of GPU2
and GPU3 follow the same flow to exchange data C and D.

A’
GPU0 GPU1 GPU2 GPU3

GPU0 GPU1 GPU2 GPU3

A

B’ C’ D’

A’
GPU0 GPU1 GPU2 GPU3

B’

C’

D’

B C D

GPU0 GPU1 GPU2 GPU3
B

A

A

B

C

D

D

C

(C+D)’

GPU0 GPU1 GPU2 GPU3
C+D

A+B

(C+D)’

C+D

A+B
A+B

C+D
A+B

C+D

(C+D)’

(A+B)’ (A+B)’

(C+D)’ (A+B)’ (A+B)’

(C+D)’(C+D)’

B’

(A+B)’(A+B)’

A’ D’ C’

Compression ReductionDecompression MPI_Isend/Irecv

Fig. 4: Data flow of Recursive-Doubling MPI Allreduce with
Collective-level online compression.

Once GPU0 receives the B’ from GPU1, a decompression
kernel is launched on a non-default CUDA stream to restore
the compressed B’ to B. The following reduction kernel is
launched on the same CUDA stream to aggregate B with A.
Then we launch the compression kernel to generate the com-
pressed (A+B)’, which executes on the same CUDA stream
as the reduction kernel so that no explicit synchronization
is needed between them. Once the compression kernel is
completed, MPI Isend is posted to send (A+B)’ to GPU2.
Then we wait for the completion of the receive operation
for (C+D)’ and launch the decompression kernel on a non-
default CUDA stream to restore (C+D)’ to C+D followed by
a reduction kernel on the same CUDA stream. Finally, we wait
for the last reduction kernel and all the send operations. The
flow on GPU1, GPU2, and GPU3 are similar.

Figure 5 depicts the detailed operations inside GPU0 of
the Recursive-Doubling MPI Allreduce with Collective-level
online compression. The pre-allocate temporary send buffer
tmp sendbuf and temporary receive buffer tmp recvbuf
on GPU is used to send out the compressed data and store
the received data. Similar to the Ring algorithm, the receive
operation for B’ is not blocked by the compression kernel.

Once compression is finished, MPI Isend operation is posted
to send out the compressed data A’. In naive point-to-point
compression, the MPI Irecv operation for B’ can only be is-
sued after the completion of compression. Once B’ is received,
a decompression kernel is launched immediately on a non-
default CUDA stream to store data B’ to B. A following reduc-
tion kernel is launched on the same CUDA stream to aggregate
B with A in the recvbuf . We do not wait for the completion of
the reduction kernel and MPI Isend operation to post the next
MPI Irev to receive the data from GPU2. During this period,
the compression kernel is launched to generate (A+B)’. This
compression kernel has the opportunity to overlap with the
MPI Irev operation. Next, when the MPI Isend is posted to
send out the (A+B)’, the decompression kernel restoring the
(C+D)’ and reduction kernel aggregating (C+D) with (A+B)
will have the opportunity to overlap with the send operation.

sendbuf

recvbuf

tmp_sendbuf
GPU0

A

A

A’

MPI_Isend
(To GPU1)

MPI_Irecv
(From GPU1)

tmp_recvbuf

B

B’
Compress Decompress

Reduction

(Local 
copy)

sendbuf

recvbuf

tmp_sendbuf
GPU0

A+B

A

(A+B)’

MPI_Isend
(To GPU2)

MPI_Irecv
(From GPU2)

tmp_recvbuf

C+D

(C+D)’
Compress Decompress

Reduction

Fig. 5: Detailed operations inside GPU of Recursive-Doubling
MPI Allreduce with Collective-level online compression.

F. Algorithm of Recursive-Doubling Allreduce Communica-
tion with Collective-level Online Compression

Algorithm 2 is a high-level overview of the Recursive-
Doubling AllReduce with Collective-level online compression.
We also use the same wrapper functions zfp compress coll
and zfp decompress coll. The nearest lower power of 2
is first calculated based on the GPU counts N (Line 1). If
there are remainder processes (rem > 0), all even-numbered
processes of rank (< 2 ⇥ rem) compress and send data
to rank + 1 (Line 6). The odd-numbered process of rank
(< 2 ⇥ rem) receives the compressed data(Line 9), run
decompression and reduction(Line 10). After a nice power-
of-two recursive-doubling exchange data of the remaining
processes, the odd-numbered process of rank (< 2 ⇥ rem)
sends the compressed result to rank � 1 (Line 45). Similar
to the Ring algorithm, we launch the reduction kernel to the
same stream for decompression (Line 10, 34). We wait for
all the send requests after the while loop for all the iterations
(Line 39).

IV. MICROBENCHMARK RESULTS AND ANALYSIS

We run experiments on four GPU clusters: Frontera Liquid
[35] on the Texas Advanced Computing Center (TACC) Fron-
tera supercomputer, Pitzer [17] on the Ohio Supercomputer
Center, Lassen [36] Supercomputer of the Lawrence Liver-
more National Laboratory and MRI cluster. Pitzer is equipped
with Dual or Quad NVIDIA V100 GPUs and Infiniband
EDR(one way 100 Gb/s) between nodes. Frontera Liquid is

6



equipped with NVIDIA Quadro RTX 5000 GPUs. Lassen is
equipped with Quad NVIDIA V100 GPUs and Infiniband
EDR between nodes. More technical details can be found
on their official websites. MRI is an in-house cluster where
each A100 node is fitted with dual-socket AMD Milan 7713
processors (64 cores) and 2 NVIDIA A100 GPUs. The nodes
are interconnected using Mellanox ConnectX-6 HDR (200
Gb/s).
Algorithm 2: Collective-level Online Compression Design for
Recursive-Doubling MPI Allreduce

Input : Send buffer S, Data size M , Control parameters A,
Preallocated GPU buffer S tmp, R tmp, Send Request
Array Sreq, Receive Request Array Rreq, Reduction
Operation Op, GPU counts N , current rank rank

Output: Receive buffer R, Compressed data size B

1 pof2 = 2blog2(N)c;
2 rem = N - pof2;
3 newrank = 0;
4 if rank < 2⇥ rem then
5 if rank % 2 == 0 then
6 Run compression and send compressed data to rank+1;
7 newrank = -1;

8 else
9 Receive compressed data from rank-1;

10 Run decompression and reduction with its own data;
11 newrank = rank / 2;

12 else
13 newrank = rank - rem;

14 if newrank! = �1 then
15 mask = 0x1;
16 while mask < pof2 do
17 newdst = newrank �mask;
18 dst = (newdst < rem) ? newdst * 2 + 1 : newdst + rem;
19 if mask == 0x1 then
20 (B,S tmp)=zfp compress coll(S, A, Streamdst);

21 mask2 = mask << 1;
22 newdst2 = newrank �mask2;
23 dst2 = (newdst2 < rem) ? newdst2 * 2 + 1 : newdst2 +

rem;
24 MPI Irecv(R tmp, B, dst, Rreqdst, ...);
25 if mask > 0x1 then
26 cudaStreamSynchronize(Streamrdst);
27 (B,S tmp)=zfp compress coll(R, A, Streamdst);
28 cudaStreamSynchronize(Streamdst);

29 else
30 cudaStreamSynchronize(Streamdst);

31 MPI Isend(S tmp, B, dst, Sreqdst, ...);
32 Wait for Rreqdst;
33 R tmp2 = zfp decompress coll(R tmp, B, A,

Streamrdst2);
34 R = reduction coll(R tmp2, R, M , Op, Streamrdst2);
35 mask <<= 1;

36 newdst2 = newrank �mask2;
37 dst2=(newdst2 < rem)? newdst2*2 + 1:newdst2 + rem;
38 cudaStreamSynchronize(Streamrdst2); // Wait for last

reduction
39 Wait for all Sreqdst;

40 if rank < 2⇥ rem then
41 if rank % 2 == 0 then
42 Receive compressed data from rank+1;
43 Run decompression;

44 else
45 Run compression and send compressed data to rank-1;

A. MPI Allreduce Communication Latency

We run the OSU Micro-Benchmark suite (OMB) to evaluate
the AllReduce communication latency of GPU data. Figure 6,
7 and 8 show the AllReduce communication latency of GPU-
resident data with sizes from 512KB to 128MB on Pitzer,
MRI, and Frontera Liquid systems. Figure 9 shows results
for message sizes up to 512MB on the Lassen system. We
do not show smaller message sizes since we focus on the
large GPU data transfer in AllReduce as shown in Figure 1.
For smaller message sizes (e.g., < 512KB), the inherited
overheads of compression/decompression kernels may exceed
the communication benefits of reduced data size. This has been
studied in the paper [24]. “RD” means the basic Recursive-
Doubling AllReduce algorithm without compression. ”Ring”
is for the Ring algorithm. ”RD+ZFP” and ”Ring+ZFP” stand
for our proposed designs with collective-level compression
using ZFP algorithm. The ”Baseline” corresponds to default
algorithms automatically selected by the MPI library based on
the different message sizes and architecture of the system.

Figure 6 shows the AllReduce communication latency on
the Pitzer system. The proposed Recursive-Doubling AllRe-
duce with collective-level compression can achieve benefits
from 512KB to 128MB compared to the basic Recursive-
Doubling. For the Ring algorithm, the proposed compression
design achieves benefits starting from 512KB, 1MB, and 2MB
on 4, 8, and 16 GPUs respectively. For a lower rate number,
ZFP compresses the floating point data to fewer bits, therefore
such a configuration will achieve more communication benefits
of the reduced data size. For smaller message ranges (e.g.,
512KB to 2MB), the overheads of compression operations
are more critical. Since Recursive-Doubling requires fewer
data transmission and thus fewer compression operations, the
RD+ZFP achieves better performance than the Ring+ZFP. For
larger message ranges (e.g., 4MB to 128MB), the proposed
Ring algorithm with compression archives better performance
than Recursive-Doubling with compression, especially on
more GPUs(e.g., 8, 16 GPUs).

Compared to the basic RD algorithm, RD+ZFP reduces
the communication latency on 4 GPUs by 17.5% (512KB)
to 47.7% (32MB) with rate:16 and by 39.7% (512KB) to
70.6% (128MB) with rate:8. On 8 GPUs, the latency reduces
by 12.0% (512KB) to 47.2% (32MB) with rate:16 and by
36.4% (512KB) to 70.8% (64MB) with rate:8. On 16 GPUs,
the latency reduces by 30.1% (512KB) to 51.2% (64MB) with
rate:16 and by 49.6% (512KB) to 73.1% (64MB) with rate:8.
Compared to the basic Ring algorithm, the Ring+ZFP reduces
the communication latency on 4 GPUs by 16.1% (512KB) to
63.7% (8MB) with rate:16 and by 26.8% (512KB) to 80.4%
(64MB) with rate:8. On 8 GPUs, the latency reduces by 37.0%
(2MB) to 58.8% (32MB) with rate:16 and by 50.3% (2MB) to
80.4% (32MB) with rate:8. On 16 GPUs, the latency reduces
by 7.1% (2MB) to 61.0% (32MB) with rate:16 and by 15.8%
(2MB) to 81.2% (64MB) with rate:8.

Compared to the baseline algorithm, RD+ZFP reduces the
communication latency by 9.6% (512KB on 8 GPUs) to 55.7%

7



0.1

1

10

100

1000

51
2K 1M 2M 4M 8M 16

M
32

M
64

M
12

8M

La
te

nc
y(

m
s)

Message size (Bytes)

Baseline
RD
Ring
RD+ZFP(rate:16)
RD+ZFP(rate:8)
Ring+ZFP(rate:16)
Ring+ZFP(rate:8)

(a) Pitzer: 4 GPUs (2nodes, 2ppn)

0.1

1

10

100

1000

51
2K 1M 2M 4M 8M 16

M
32

M
64

M
12

8M

La
te

nc
y(

m
s)

Message size (Bytes)

Baseline
RD
Ring
RD+ZFP(rate:16)
RD+ZFP(rate:8)
Ring+ZFP(rate:16)
Ring+ZFP(rate:8)

(b) Pitzer: 8 GPUs (4nodes, 2ppn)

0.1

1

10

100

1000

51
2K 1M 2M 4M 8M 16

M
32

M
64

M
12

8M

La
te

nc
y(

m
s)

Message size (Bytes)

Baseline
RD
Ring
RD+ZFP(rate:16)
RD+ZFP(rate:8)
Ring+ZFP(rate:16)
Ring+ZFP(rate:8)

(c) Pitzer: 16 GPUs (8nodes, 2ppn)

Fig. 6: Latency of MPI Allreduce on Pitzer system (V100 GPUs).

0.1

1

10

100

1000

51
2K 1M 2M 4M 8M 16

M
32

M
64

M
12

8M

La
te

nc
y(

m
s)

Message size (Bytes)

Baseline
RD
Ring
RD+ZFP(rate:16)
RD+ZFP(rate:8)
Ring+ZFP(rate:16)
Ring+ZFP(rate:8)

(a) MRI: 4 GPUs (2nodes, 2ppn)

0.1

1

10

100

1000

51
2K 1M 2M 4M 8M 16

M
32

M
64

M
12

8M

La
te

nc
y(

m
s)

Message size (Bytes)

Baseline
RD
Ring
RD+ZFP(rate:16)
RD+ZFP(rate:8)
Ring+ZFP(rate:16)
Ring+ZFP(rate:8)

(b) MRI: 8 GPUs (4nodes, 2ppn)

0.1

1

10

100

1000

51
2K 1M 2M 4M 8M 16

M
32

M
64

M
12

8M

La
te

nc
y(

m
s)

Message size (Bytes)

Baseline
RD
Ring
RD+ZFP(rate:16)
RD+ZFP(rate:8)
Ring+ZFP(rate:16)
Ring+ZFP(rate:8)

(c) MRI: 16 GPUs (8nodes, 2ppn)

Fig. 7: Latency of MPI Allreduce on MRI system (A100 GPUs).

0.1

1

10

100

1000

51
2K 1M 2M 4M 8M 16

M
32

M
64

M
12

8M

La
te

nc
y(

m
s)

Message size (Bytes)

Baseline
RD
Ring
RD+ZFP(rate:16)
RD+ZFP(rate:8)
Ring+ZFP(rate:16)
Ring+ZFP(rate:8)

(a) Frontera: 16 GPUs (4nodes, 4ppn)

0.1

1

10

100

1000

51
2K 1M 2M 4M 8M 16

M
32

M
64

M
12

8M

La
te

nc
y(

m
s)

Message size (Bytes)

Baseline
RD
Ring
RD+ZFP(rate:16)
RD+ZFP(rate:8)
Ring+ZFP(rate:16)
Ring+ZFP(rate:8)

(b) Frontera: 32 GPUs (8nodes, 4ppn)

0.1

1

10

100

1000

51
2K 1M 2M 4M 8M 16

M
32

M
64

M
12

8M

La
te

nc
y(

m
s)

Message size (Bytes)

Baseline
RD
Ring
RD+ZFP(rate:16)
RD+ZFP(rate:8)
Ring+ZFP(rate:16)
Ring+ZFP(rate:8)

(c) Frontera: 64 GPUs (16nodes,4ppn)

Fig. 8: Latency of MPI Allreduce on Frontera Liquid system (RTX5000 GPUs).

(64MB on 16 GPUs) with rate:16 and by 34.7% (512KB on
8 GPUs) to 75.5% (64MB on 16 GPUs) with rate:8. The
Ring+ZFP reduces the latency by 13.3% (1MB on 8 GPUs) to
67.5% (64MB on 16 GPUs) with rate:16 and by 14.6% (1MB
on 8 GPUs) to 85.3% (64MB on 16 GPUs) with rate:8.

Figure 7 shows the AllReduce communication latency on
the MRI system. We observe similar trends with the pro-
posed designs. The Recursive-Doubling AllReduce with the
proposed compression design can achieve benefits for almost
all message sizes from 512KB to 128MB compared to the
basic Recursive-Doubling, except for some message sizes with
a ZFP compression rate of 16. The Ring algorithm with

the proposed compression design achieves benefits compared
to the basic ring algorithm starting from 4MB, 8MB, and
16MB on 4, 8, and 16 GPUs respectively. The difference we
observed on the MRI system is probably due to the faster
HDR interconnect compared to the EDR interconnect on the
Pitzer system. Similarly, we observe that Recursive-Doubling
algorithm with compression achieves better performance than
the Ring algorithm with compression for smaller message
ranges (e.g., 512KB to 1MB) as we discussed in Figure 6. The
Ring algorithm with compression is better for larger messages
(e.g., 4MB to 128MB on 8GPUs, 8MB to 128MB on 16 GPUs,
and 16M to 128MB on 32 GPUs).

8



0.1

1

10

100

1000

51
2K 1M 2M 4M 8M 16
M

32
M

64
M

12
8M

25
6M

51
2M

La
te

nc
y(

m
s)

Message size (Bytes)

Baseline
RD
Ring
RD+ZFP(rate:16)
RD+ZFP(rate:8)
Ring+ZFP(rate:16)
Ring+ZFP(rate:8)

(a) Lassen: 64 GPUs (16nodes, 4ppn)

0.1

1

10

100

1000

10000

51
2K 1M 2M 4M 8M 16
M

32
M

64
M

12
8M

25
6M

51
2M

La
te

nc
y(

m
s)

Message size (Bytes)

Baseline
RD
Ring
RD+ZFP(rate:16)
RD+ZFP(rate:8)
Ring+ZFP(rate:16)
Ring+ZFP(rate:8)

(b) Lassen: 128 GPUs (32nodes, 4ppn)

0.1

1

10

100

1000

10000

51
2K 1M 2M 4M 8M 16
M

32
M

64
M

12
8M

25
6M

51
2M

La
te

nc
y(

m
s)

Message size (Bytes)

Baseline
RD
Ring
RD+ZFP(rate:16)
RD+ZFP(rate:8)
Ring+ZFP(rate:16)
Ring+ZFP(rate:8)

(c) Lassen: 256 GPUs (64nodes,4ppn)

Fig. 9: Latency of MPI Allreduce on Lassen system (V100 GPUs).

Compared to the basic RD algorithm, RD+ZFP reduces
the communication latency on 4 GPUs by 23.7% (512KB)
to 57.8% (32MB) with rate:16 and by 21.5% (2MB) to 74.0%
(64MB) with rate:8. On 8 GPUs, the latency reduces by
7.7% (2MB) to 55.4% (32MB) with rate:16 and by 38.9%
(512KB) to 77.4% (32MB) with rate:8. On 16 GPUs, the
latency reduces by 14.2% (1MB) to 46.6% (128MB) with
rate:16 and by 16.9% (4MB) to 72.7% (64MB) with rate:8.
Compared to the basic Ring algorithm, the Ring+ZFP reduces
the communication latency on 4 GPUs by 4.7% (4MB) to
58.1% (32MB) with rate:16 and by 34.8% (512KB) to 77.3%
(64MB) with rate:8. On 8 GPUs, the latency reduces by 17.5%
(1MB) to 60.1% (64MB) with rate:16 and by 24.9% (512KB)
to 80.1% (128MB) with rate:8. On 16 GPUs, the latency
reduces by 16.5% (32MB) to 54.7% (64MB) with rate:16 and
by 7.4% (1MB) to 74.0% (128MB) with rate:8.

Compared to the baseline algorithm, the RD+ZFP reduces
the latency by 6.3% (16MB on 4 GPUs) to 24.5% (1MB on 8
GPUs) with rate:16 and by 5.4% (8MB on 16 GPUs) to 59.7%
(64MB on 8 GPUs) with rate:8. The Ring+ZFP reduces the
latency by 9.8% (512KB on 4 GPUs) to 74.0% (128MB on
8 GPUs) with rate:16 and by 10.9% (16MB on 16 GPUs) to
82.6% (128MB on 8 GPUs) with rate:8.

Figure 8 shows the AllReduce communication latency on
the Frontera-Liquid system. The proposed Recursive-Doubling
AllReduce design can achieve benefits for almost all mes-
sage sizes compared to the basic Recursive-Doubling. The
proposed Ring algorithm with compression achieves benefits
starting from 2MB, 4MB, and 8MB on 16, 32, and 64
GPUs respectively, compared to the basic ring algorithm. Note
that, for the ring algorithm, each data chunk is only 128KB
for these message sizes. Similarly, the proposed Recursive-
Doubling with compression achieves better performance in
smaller ranges (e.g., 512KB to 4MB) as we discussed in
Figure 6. The Ring algorithm with compression is better for
larger messages (e.g., 8MB to 128MB).

Compared to the basic RD algorithm, RD+ZFP reduces the
latency on 16 GPUs by 25.2% (1MB) to 48.7% (64MB) with
rate:16 and by 50.8% (1MB) to 73.0% (128MB) with rate:8.
On 32 GPUs, the latency reduces by 25.4% (1MB) to 51.3%
(16MB) with rate:16 and by 53.2% (1MB) to 74.1% (64MB)

with rate:8. On 64 GPUs, the latency reduces by 25.5% (1MB)
to 50.0% (16MB) with rate:16 and by 52.9% (1MB) to 74.2%
(64MB) with rate:8. Compared to the basic Ring algorithm, the
Ring+ZFP reduces the latency on 16 GPUs by 10.0% (2MB) to
45.2% (128MB) with rate:16 and by 11.5% (2MB) to 69.7%
(128MB) with rate:8. On 32 GPUs, the latency reduces by
6.1% (4MB) to 45.3% (128MB) with rate:16 and by 8.8%
(4MB) to 69.6% (128MB) with rate:8. On 64 GPUs, the
latency reduces by 30.6% (16MB) to 41.3% (128MB) with
rate:16 and by 7.2% (8MB) to 58.2% (32MB) with rate:8.

Compared to the baseline algorithm, the RD+ZFP reduces
the latency by 13.1% (4MB on 64 GPUs) to 61.2% (512KB on
64 GPUs) with rate:16 and by 12.9% (64MB on 16 GPUs) to
66.5% (1MB on 64 GPUs) with rate:8. The Ring+ZFP reduces
the latency by 21.5% (2MB on 32 GPUs) to 75.4% (128MB
on 64 GPUs) with rate:16 and by 29.3% (2MB on 32 GPUs)
to 85.0% (128MB on 32 GPUs) rate:8.

Figure 9 shows the AllReduce communication latency on
the Lassen system. The proposed Recursive-Doubling AllRe-
duce design can achieve benefits for almost all message sizes
(e.g., 1MB to 512MB) compared to the basic Recursive-
Doubling. The proposed Ring algorithm with compression
achieves benefits starting from 16MB, 32MB, and 16MB on
64, 128, and 256 GPUs respectively, compared to the basic
ring algorithm. For these message sizes, each data chunk
is only 256KB, 256KB, and 64KB respectively in the Ring
algorithm. Similarly, the proposed Recursive-Doubling with
compression achieves better performance in smaller ranges
(e.g., 512KB to 8MB) as we discussed in Figure 6. The Ring
algorithm with compression is better for larger messages (e.g.,
16MB to 512MB).

Compared to the basic RD algorithm, RD+ZFP reduces the
latency on 64 GPUs by 10.6% (1MB) to 43.1% (256MB)
with rate:16 and by 31.4% (1MB) to 69.3% (256MB) with
rate:8. On 128 GPUs, the latency reduces by 17.5% (1MB)
to 44.8% (512MB) with rate:16 and by 20.0% (512KB) to
70.9% (512MB) with rate:8. On 256 GPUs, the latency reduces
by 19.5% (512KB) to 47.6% (512MB) with rate:16 and by
37.0% (512KB) to 72.5% (512MB) with rate:8. Compared to
the basic Ring algorithm, the Ring+ZFP reduces the latency
on 64 GPUs by 19.0% (16MB) to 57.1% (128MB) with

9



0.1

1

10

100

51
2K 1M 2M 4M 8M 16

M
32

M
64

M
12

8M

La
te

nc
y(

m
s)

Message size (Bytes)

RD+ZFP-P2P(rate:16)

RD+ZFP-P2P(rate:8)

RD+ZFP(rate:16)

RD+ZFP(rate:8)

(a) Recursive-Doubling (4 GPUs)

0.1

1

10

100

51
2K 1M 2M 4M 8M 16

M
32

M
64

M
12

8M

La
te

nc
y(

m
s)

Message size (Bytes)

Ring+ZFP-P2P(rate:16)

Ring+ZFP-P2P(rate:8)

Ring+ZFP(rate:16)

Ring+ZFP(rate:8)

(b) Ring (4 GPUs)

0.1

1

10

100

51
2K 1M 2M 4M 8M 16

M
32

M
64

M
12

8M

La
te

nc
y(

m
s)

Message size (Bytes)

RD+ZFP-P2P(rate:16)

RD+ZFP-P2P(rate:8)

RD+ZFP(rate:16)

RD+ZFP(rate:8)

(c) Recursive-Doubling (8 GPUs)

0.1

1

10

100

51
2K 1M 2M 4M 8M 16

M
32

M
64

M
12

8M

La
te

nc
y(

m
s)

Message size (Bytes)

Ring+ZFP-P2P(rate:16)

Ring+ZFP-P2P(rate:8)

Ring+ZFP(rate:16)

Ring+ZFP(rate:8)

(d) Ring (8 GPUs)

Fig. 10: Compare with Point-to-Point compression for Ring and Recursive-Doubling MPI AllReduce on MRI system.

rate:16 and by 8.6% (16MB) to 74.3% (256MB) with rate:8.
On 128 GPUs, the latency reduces by 14.4% (32MB) to
54.9% (512MB) with rate:16 and by 20.5% (32MB) to 73.5%
(512MB) with rate:8. On 256 GPUs, the latency reduces by
29.6% (16MB) to 62.3% (512MB) with rate:16 and by 4.8%
(16MB) to 76.6% (512MB) with rate:8.

Compared to the baseline algorithm, the Ring+ZFP can
achieve benefits from 32MB to 512MB. Ring+ZFP reduces the
latency by 7.1% (512MB on 64 GPUs) to 47.6% (256MB on
256 GPUs) with rate:16 and by 4.0% (32MB on 128 GPUs) to
65.7% (256MB on 128 GPUs) with rate:8. Since the baseline
algorithm is much better than the basic RD algorithm for large
numbers of GPUs, the RD+ZFP gets performance benefits on
some small message sizes (e.g., 13.4% at 1MB on 128 GPUs,
29.5% at 2MB on 256 GPUs) with rate:8.

B. Compare with existing Point-to-Point Compression

In Figure 10 we compare the performance of the proposed
collective-level compression designs for Recursive-Doubling
and Ring AllReduce algorithms with naive point-to-point
compression with a postfix “P2P”. We turn on the point-to-
point compression in the MPI library by the runtime param-
eters. As discussed earlier, our collective-level compression
design addresses the limitation of using naive point-to-point
compression. For the performance of the Recursive-Doubling
AllReduce shown in Figures 10(a) and 10(c), the proposed
RD+ZFP achieves benefits by 5.2% (2MB on 8 GPUs) to
13.1% (64MB on 8 GPUs) with rate:16 and by 5.6% (2MB on
4GPUs) to 24.8% (64MB on 8 GPUs) with rate:8 compared to
RD+ZFP-P2P. For the Ring AllReduce shown in Figures 10(b)
and 10(d), the proposed Ring+ZFP achieves benefits by 11.9%
(128MB on 8 GPUs) to 64.5% (4MB on 4 GPUs) with rate:16
and by 10.0% (128MB on 4 GPUs) to 66.1% (16MB on 8
GPUs) with rate:8 compared to Ring+ZFP-P2P.

The proposed Ring AllReduce collective-level compression
design achieves more performance benefits mainly because we
cut down the redundant compression operations and archives
more opportunities to overlap the compression/decompression
kernels as discussed in the section III-C.

V. APPLICATION RESULTS AND ANALYSIS

This section evaluates the proposed Ring and Recursive-
Doubling AllReduce designs in the distributed DL training
with PyTorch. We use PyTorch (v1.13) with MPI as the

communication backend. We run PyTorch DDP [8] training
of Wide ResNet50 2 [37], ResNeXt101-32x8d [19], and Con-
vNeXt Base [20] on CIFAR10 [21] dataset. We turn on DDP
by adding a DistributedDataParallel wrapper. We use a
Batch Size(BS) of 128 and a Learning Rate(LR) of 0.001.

A. Training performance

Figure 11 shows the DDP training performance of three
DNN models with PyTorch on 4 GPUs (2 nodes), 8 GPUs
(4 nodes), and 16 GPUs (8 nodes) of the Pitzer system. We
report the average training time per epoch for the baseline
as well as the proposed designs with different compression
rates. For model Wide ResNet50 2, the proposed RD+ZFP
can reduce the training time by 15.2% (4 GPUs) to 20.6%
(8 GPUs) with rate:16 and by 5.9% (16 GPUs) to 32.3% (8
GPUs) with rate:8 compared to the baseline default algorithm.
The proposed Ring+ZFP reduces the training time by 8.4% (4
GPUs) to 20.2% (8 GPUs) with rate:16 and by 12.0% (16
GPUs) to 30.1% (8 GPUs) with rate:10. For ResNeXt101-
32x8d, the proposed RD+ZFP can reduce the training time
by 13.9% (8 GPUs) to 15.8 (16 GPUs) with rate:16 and
by 21.5% (8 GPUs) to 26.3% (16 GPUs) with rate:8. The
proposed Ring+ZFP reduces the training time by 8.5% (4
GPUs) to 21.4% (16 GPUs) with rate:16 and by 21.4% (4
GPUs) to 26.8% (16 GPUs) with rate:10. For ConvNeXt Base,
the proposed RD+ZFP can reduce the training time by 11.2%
(4 GPUs) to 17.4% (8 GPUs) with rate:16 and by 17.2%
(4 GPUs) to 29.4% (16 GPUs) with rate:8. The proposed
Ring+ZFP reduces the training time by 3.2% (4 GPUs) to
25.6% (16 GPUs) with rate:16 and by 15.4% (4 GPUs) to
35.7% (16 GPUs) with rate:10.

B. Training accuracy

We conduct experiments to study the impact of compression
errors on the gradient tensors. we verify the training accuracy
with different compression rates in the proposed Recursive-
Doubling and Ring AllReduce designs for all three DNN
models as shown in Figure 12. The accuracy is calculated by
comparing the model predictions with the ground truth labels.
In Figure 12(a) and 12(b), for both RD and Ring algorithms
with compression, although we observe deviations at early
epochs, the training of two models can converge to similar
accuracy as the baseline with a close convergence speed.
Figure 12(c) shows the training of ConvNeXt Base with

10



0

10

20

30

40

50

4 8 16

Tr
ai

ni
ng

 T
im

e/
 E

po
ch

 (s
)

GPUs

Wide_ResNet50_2
Baseline
RD+ZFP(rate:16)
RD+ZFP(rate:8)
Ring+ZFP(rate:16)
Ring+ZFP(rate:10)

(a) Wide ResNet50 2 (BS=128, LR=0.001)

0

10

20

30

40

50

60

70

4 8 16

Tr
ai

ni
ng

 T
im

e/
 E

po
ch

 (s
)

GPUs

ResNeXt101-32x8d
Baseline
RD+ZFP(rate:16)
RD+ZFP(rate:8)
Ring+ZFP(rate:16)
Ring+ZFP(rate:10)

(b) ResNeXt101-32x8d (BS=128, LR=0.001)

0
10
20
30
40
50
60
70
80

4 8 16

Tr
ai

ni
ng

 T
im

e/
 E

po
ch

 (s
)

GPUs

ConvNeXt_Base
Baseline
RD+ZFP(rate:16)
RD+ZFP(rate:8)
Ring+ZFP(rate:16)
Ring+ZFP(rate:10)

(c) ConvNext Base (BS=128, LR=0.001)

Fig. 11: DDP training performance with 4 nodes of 8 GPUs on Pitzer system.

0%

20%

40%

60%

80%

100%

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96 10
1

10
6

11
1

11
6

A
cc

ur
ac

y(
%

)

Epochs

Wide_ResNet50_2
Baseline RD+ZFP(rate:16)
RD+ZFP(rate:8) RD+ZFP(rate:6)
Ring+ZFP(rate:16) Ring+ZFP(rate:10)
Ring+ZFP(rate:8)

(a) Wide ResNet50 2

0%

20%

40%

60%

80%

100%
1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96 10
1

10
6

11
1

11
6

A
cc

ur
ac

y(
%

)

Epochs

ResNeXt101-32x8d
Baseline RD+ZFP(rate:16)
RD+ZFP(rate:8) RD+ZFP(rate:6)
Ring+ZFP(rate:16) Ring+ZFP(rate:10)
Ring+ZFP(rate:8)

(b) ResNeXt101-32x8d

0%

20%

40%

60%

80%

100%

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96 10
1

10
6

11
1

11
6

A
cc

ur
ac

y(
%

)

Epochs

ConvNeXt_Base
Baseline RD+ZFP(rate:16)
RD+ZFP(rate:8) RD+ZFP(rate:6)
Ring+ZFP(rate:16) Ring+ZFP(rate:10)
Ring+ZFP(rate:8)

(c) ConvNeXt Base

Fig. 12: DDP training accuracy with 4 nodes of 8 GPUs on Pitzer system.

the proposed designs with compression can achieve similar
training accuracy as the baseline from the very early epochs.
We also observe that the RD+ZFP can accept slightly lower
compression rates (e.g., 8) than rate 10 for Ring+ZFP. As
previously analyzed, the Recursive-Doubling Allreduce does
not split data into chunks, resulting in reduced compression
operations and the potential accumulation of fewer errors at
the same compression rate during data transmission. For even
lower compression rates (e.g., rate:6 for RD+ZFP or rate:8
for Ring+ZFP), we start to observe an obvious accuracy drop
probably due to the larger accumulated compression errors.

These results demonstrate that the compression approaches
with appropriate compression rates can speed up distributed
deep-learning training while maintaining training quality.

VI. RELATED WORK

For the distributed Deep Learning training, state-of-the-art
MPI libraries [4], [5] and NCCL (NVIDIA’s Collective Com-
munication Library) [12] Support AllReduce communication
across multiple GPUs and multiple nodes. Advanced Allreduce
schemes have been developed in the past few years, such
as Baidu Ring algorithm [11], NCCL Ring-based algorithm
[12] and double binary tree algorithm [13], Link-Efficient
NVGroup algorithm [14], etc. Recent studies explored the Gra-
dient Quantization such as QSGD [15] and Sparse AllReduce
[16] based on the sparsity of the gradient for distributed DL
training. The effectiveness of these solutions is contingent on
their compatibility with the specific SGD algorithms.

Advanced GPUs from vendors like NVIDIA [38], AMD
[39], and Intel [40] have greatly accelerated the computing
taskes. The advanced GPU-based lossless compression algo-
rithms (e.g., MPC [25], nvCOMP [31]) are much higher in
computing throughput compared to the CPU-based algorithms.
GPU-based lossy compression algorithms, such as cuSZ [41]
and ZFP [26], can typically provide a high compression ratio
and error-bounded performance in scientific applications, as
demonstrated in recent study [33]. A recent work [24] has
integrated MPC [25] and ZFP [26] into an MPI library to
achieve high performance communication of large GPU data.

Recent research proposed optimization strategies for using
compression in MPI Alltoall [27] and MPI Bcast communi-
cation [28]. Research [42] proposed collective operations with
cuSZ [41] compression library for scientific HPC application.

VII. CONCLUSION

In this paper, we propose two collective-level compression
schemes in the MPI library for efficient MPI AllReduce
communication of large GPU data, overcoming the limitations
of naive point-to-point compression.

In the benchmark level evaluation, the proposed Recursive-
Doubling and Ring AllReduce designs with compression
demonstrate up to 75.5% and 85.3% reduced communication
latency compared to the baseline. Compared to the exist-
ing point-to-point compression solution, the new Recursive-
Doubling and Ring AllReduce achieve up to 24.8% and
66.1% reduced latency compared to the naive point-to-point
compression, respectively. In the DDP training with PyTorch,

11



the proposed Recursive-Doubling and Ring AllReduce with
compression reduce the training time by up to 32.3% and
35.7% respectively compared to the baseline while keeping
a similar convergent training accuracy. Our approach, which
operates at the communication middleware level, does not
necessitate modifications to the applications.

As part of future work, we intend to design compression
schemes for other parallel strategies to accelerate the dis-
tributed training of larger DL models.

REFERENCES

[1] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin,
A. Desmaison, L. Antiga, and A. Lerer, “Automatic differentiation in
pytorch,” 2017.

[2] Martı́n Abadi and others, “Tensorflow: Large-scale machine learning on
heterogeneous distributed systems,” CoRR, vol. abs/1603.04467, 2016.
[Online]. Available: http://arxiv.org/abs/1603.04467

[3] “MPI-4 Standard Document,” https://www.mpi-forum.org/docs/mpi-
4.0/mpi40-report.pdf.

[4] Open MPI, “Open MPI: Open Source High Performance Computing,”
https://www.open-mpi.org/, 2004, Accessed: March 19, 2024.

[5] Network-Based Computing Laboratory, “MVAPICH: MPI over Infini-
Band, Omni-Path, Ethernet/iWARP, and RoCE,” http://mvapich.cse.ohio-
state.edu/, 2001, Accessed: March 19, 2024.

[6] A. Jain, A. A. Awan, A. M. Aljuhani, J. M. Hashmi, Q. G. Anthony,
H. Subramoni, D. K. Panda, R. Machiraju, and A. Parwani, “Gems:
Gpu-enabled memory-aware model-parallelism system for distributed
dnn training,” in Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis, ser. SC ’20.
IEEE Press, 2020.

[7] A. Castelló, E. S. Quintana-Ortı́, and J. Duato, “Accelerating distributed
deep neural network training with pipelined mpi allreduce,” Cluster
Computing, vol. 24, no. 4, p. 3797–3813, dec 2021. [Online]. Available:
https://doi.org/10.1007/s10586-021-03370-9

[8] S. Li, Y. Zhao, R. Varma, O. Salpekar, P. Noordhuis, T. Li, A. Paszke,
J. Smith, B. Vaughan, P. Damania, and S. Chintala, “Pytorch distributed:
Experiences on accelerating data parallel training,” 2020. [Online].
Available: https://arxiv.org/abs/2006.15704

[9] M. Shoeybi, M. Patwary, R. Puri, P. LeGresley, J. Casper, and B. Catan-
zaro, “Megatron-lm: Training multi-billion parameter language models
using model parallelism,” 2020.

[10] Z. Li, S. Zhuang, S. Guo, D. Zhuo, H. Zhang, D. Song, and I. Sto-
ica, “Terapipe: Token-level pipeline parallelism for training large-scale
language models,” 2021.

[11] D. Amodei and Others, “Deep Speech 2: End-to-End Speech
Recognition in English and Mandarin,” CoRR, vol. abs/1512.02595,
2015. [Online]. Available: http://arxiv.org/abs/1512.02595

[12] NVIDIA, “NCCL2,” https://developer.nvidia.com/nccl, 2017, Accessed:
March 19, 2024.

[13] Sylvain Jeaugey, “Massively Scale Your Deep Learning Training with
NCCL 2.4,” https://devblogs.nvidia.com/massively-scale-deep-learning-
training-nccl-2-4/, Feb. 2019, Accessed: March 19, 2024.

[14] C.-H. Chu, P. Kousha, A. A. Awan, K. S. Khorassani, H. Subramoni,
and D. K. Panda, “NV-Group: Link-Efficient Reduction for Distributed
Deep Learning on Modern Dense GPU Systems,” in Proceedings of the
34th ACM International Conference on Supercomputing, 2020.

[15] D. Alistarh, D. Grubic, J. Li, R. Tomioka, and M. Vojnovic, “Qsgd:
Communication-efficient sgd via gradient quantization and encoding,”
2017.

[16] S. Li and T. Hoefler, “Near-optimal sparse allreduce for distributed
deep learning,” in Proceedings of the 27th ACM SIGPLAN Symposium
on Principles and Practice of Parallel Programming, ser. PPoPP ’22.
New York, NY, USA: Association for Computing Machinery, 2022, p.
135–149. [Online]. Available: https://doi.org/10.1145/3503221.3508399

[17] “Pitzer system - Ohio Supercomputer Center,”
https://www.osc.edu/resources/technical support/supercomputers/pitzer.

[18] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” arXiv preprint arXiv:1512.03385, 2015.

[19] S. Xie, R. Girshick, P. Dollár, Z. Tu, and K. He, “Aggregated
residual transformations for deep neural networks,” arXiv preprint
arXiv:1611.05431, 2016.

[20] Z. Liu, H. Mao, C.-Y. Wu, C. Feichtenhofer, T. Darrell, and S. Xie, “A
convnet for the 2020s,” 2022.

[21] A. Krizhevsky, “CIFAR10,” https://www.cs.toronto.edu/ kriz/cifar.html,
2010, Accessed: March 19, 2024.

[22] S. Potluri, K. Hamidouche, A. Venkatesh, D. Bureddy, and D. K. Panda,
“Efficient inter-node mpi communication using gpudirect rdma for
infiniband clusters with nvidia gpus,” in 42nd International Conference
on Parallel Processing (ICPP), 2013. IEEE, 2013, pp. 80–89.

[23] S. S. Sharkawi and G. A. Chochia, “Communication protocol optimiza-
tion for enhanced GPU performance,” IBM Journal of Research and
Development, vol. 64, no. 3/4, pp. 9:1–9:9, 2020.

[24] Q. Zhou, C. Chu, N. S. Kumar, P. Kousha, S. M. Ghazimirsaeed,
H. Subramoni, and D. K. Panda, “Designing high-performance mpi
libraries with on-the-fly compression for modern gpu clusters*,” in 2021
IEEE International Parallel and Distributed Processing Symposium
(IPDPS), 2021, pp. 444–453.

[25] A. Yang, H. Mukka, F. Hesaaraki, and M. Burtscher, “MPC: A Massively
Parallel Compression Algorithm for Scientific Data,” in IEEE Cluster
Conference, September 2015.

[26] P. Lindstrom, “Fixed-rate compressed floating-point arrays,” IEEE
Transactions on Visualization and Computer Graphics, vol. 20, 08 2014.

[27] Q. Zhou, P. Kousha, Q. Anthony, K. Shafie Khorassani, A. Shafi, H. Sub-
ramoni, and D. K. Panda, “Accelerating mpi all-to-all communication
with online compression on modern gpu clusters,” in High Performance
Computing, A.-L. Varbanescu, A. Bhatele, P. Luszczek, and B. Marc,
Eds. Cham: Springer International Publishing, 2022, pp. 3–25.

[28] Q. Zhou, Q. Anthony, A. Shafi, H. Subramoni, and D. K. D. Panda,
“Accelerating broadcast communication with gpu compression for deep
learning workloads,” in 2022 IEEE 29th International Conference on
High Performance Computing, Data, and Analytics (HiPC), 2022, pp.
22–31.

[29] NVIDIA, “NVIDIA GPUDirect,” https://developer.nvidia.com/gpudirect,
2011, Accessed: March 19, 2024.

[30] R. Thakur and W. D. Gropp, “Improving the performance of collective
operations in mpich,” in Recent Advances in Parallel Virtual Machine
and Message Passing Interface, J. Dongarra, D. Laforenza, and S. Or-
lando, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003, pp.
257–267.

[31] NVIDIA, “nvCOMP,” https://github.com/NVIDIA/nvcomp, 2020, Ac-
cessed: March 19, 2024.

[32] S. Di and F. Cappello, “Fast Error-bounded Lossy HPC Data Com-
pression with SZ,” in International Parallel and Distributed Processing
Symposium(IPDPS), 2016.

[33] S. Jin, P. Grosset, C. M. Biwer, J. Pulido, J. Tian, D. Tao, and J. P.
Ahrens, “Understanding gpu-based lossy compression for extreme-scale
cosmological simulations,” ArXiv, vol. abs/2004.00224, 2020.

[34] C.-H. Chu, K. Hamidouche, A. Venkatesh, A. A. Awan, and D. K. Panda,
“Cuda kernel based collective reduction operations on large-scale gpu
clusters,” in 2016 16th IEEE/ACM International Symposium on Cluster,
Cloud and Grid Computing (CCGrid), 2016, pp. 726–735.

[35] “Liquid Submerged System - Texas Advanced Computing Center, Fron-
tera - Specifications,” https://www.tacc.utexas.edu/systems/frontera.

[36] “Lassen - Livermore Computing center - Specifications,”
https://hpc.llnl.gov/hardware/platforms/lassen.

[37] S. Zagoruyko and N. Komodakis, “Wide residual networks,” 2017.
[38] NVIDIA, “NVIDIA H100 Tensor Core GPU,”

https://www.nvidia.com/en-us/data-center/h100, 2022, Accessed:
March 19, 2024.

[39] AMD, “MI200 Instinct Server Accelerators,”
https://www.amd.com/en/graphics/instinct-server-accelerators, 2021.

[40] Intel, “GAUDI2 Processor For Deep Learning Training And Inference
Workloads,” https://habana.ai/products/gaudi2/, 2021.

[41] J. Tian, S. Di, K. Zhao, C. Rivera, M. H. Fulp, R. Underwood,
S. Jin, X. Liang, J. Calhoun, D. Tao, and F. Cappello, “Cusz: An
efficient gpu-based error-bounded lossy compression framework for
scientific data,” in Proceedings of the ACM International Conference
on Parallel Architectures and Compilation Techniques, ser. PACT ’20.
New York, NY, USA: Association for Computing Machinery, 2020, p.
3–15. [Online]. Available: https://doi.org/10.1145/3410463.3414624

[42] J. Huang, S. Di, X. Yu, Y. Zhai, J. Liu, Y. Huang, K. Raffenetti,
H. Zhou, K. Zhao, Z. Chen, F. Cappello, Y. Guo, and R. Thakur, “gzccl:
Compression-accelerated collective communication framework for gpu
clusters,” 2023.

12


