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Abstract—In modern multi-/many-core HPC systems, the in-
creasing number of processor cores presents new challenges in
managing parallel compute workloads across multiple nodes.
One crucial aspect that significantly impacts the startup phase
of parallel MPI jobs is the methodology used for connection
establishment. In this paper, we investigate the limitations of
existing all-to-all connection establishment designs in-depth, iden-
tify the primary sources of performance overhead, and propose
an optimized all-to-all connection establishment design. This
is done through an enforced ordering rank-by-rank scheme
that significantly cuts down on the data exchange overhead
via PMI. To address the increasing overheads associated with
queue pair creation and synchronization, we explore multi-
thread parallelism and incorporate CPU affinity awareness into
our design. We implement our proposed design in the state-of-
the-art MVAPICH2 MPI library and conduct extensive experi-
ments on two emerging architectures. Through a comprehensive
performance evaluation of these architectures, we demonstrate
the efficacy of our optimized all-to-all connection establishment
design. Our microbenchmark results reveal up to 20 times faster
MPI Init time, while evaluations with application kernels exhibit
a 31% improvement in throughput.

Index Terms—Multi-/Many-core, HPC, MPI, Job Startup,
Connection Establishment, InfiniBand, RDMA

I. INTRODUCTION

Modern High-Performance Computing (HPC) clusters have
witnessed unprecedented advancements with the emergence of
multi-/many-core processors and high-bandwidth, low-latency
networking technologies. These rapidly developing technolo-
gies provide scientists and engineers with the ability to allocate
an ever-increasing number of compute nodes and processor
cores for their HPC workloads.

To effectively orchestrate the increasing number of compute
resources, which include CPU, GPU, DPU, and more, pro-
gramming models like Message Passing Interface (MPI) [1]
are commonly employed. MPI is one of the most popular pro-
gramming models for writing parallel applications in cluster
computing area. MPI libraries provide basic communication
support for a parallel computing job. In particular, several
convenient point-to-point and collective communication oper-
ations are provided. High performance MPI implementations

*This research is supported in part by NSF grants #1818253, #1854828,
#1931537, #2007991, #2018627, #2311830, #2312927, and XRAC grant
#NCR-130002.

are closely tied to the underlying network dynamics and try
to leverage the best communication performance on the given
interconnect.

To launch a parallel MPI job, the MPI program must first
invoke MPI Init to initialize the MPI execution environment.
During the initialization process, the MPI library firstly identi-
fies each process (as MPI rank), and then establishes connec-
tions between them. State-of-the-art interconnect technologies
such as InfiniBand, allow a process to use Direct Memory
Access (DMA) to read or write data directly to or from
other processes’ application memory, bypassing the need for
the intervention of operating system. These connections allow
MPI processes to communicate and exchange data throughout
the execution of the parallel program. There are two major
connection establishment approaches commonly used in MPI:
on-demand connection establishment and all-to-all connection
establishment [2].

In all-to-all connection establishment, connections are
made between all MPI ranks/processes, typically during the
MPI Init phase. As the example shown in Figure 1, rank
0 needs to build connections to all other ranks from rank
1 to rank N and store the connection information in local
process. Same process is required for each rank. This design
is advantageous in scenarios where frequent and structured
communication between all ranks is expected, as it allows for
efficient communication patterns and can minimize communi-
cation overhead during the program execution.

On the other hand, on-demand connection establishment
involves establishing connections dynamically during program
execution as needed. This approach is suitable when commu-
nication occurs sporadically or in a selective manner, such as
broadcast collective communication, as it potentially reduces
the overhead associated with establishing connections that may
not be immediately required. One of the major limitation
of on-demand connection establishment is that if the pro-
gram ends up establishing nearly all-to-all connections during
program execution, which is a common scenario in many
applications, it can result in significant increased execution
time compared to establishing the connection during MPI Init
phase. In contrast, the all-to-all connection is established
during the MPI Init phase. This allows for a more efficient
setup of communication infrastructure, and reduces the overall
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communication overhead.

Fig. 1. Steps showing all-to-all connection establishment between all ranks

According to the usage trends of the various HPC systems
observed by the US National Science Foundation (NSF) [3]
funded Extreme Science and Engineering Discovery Environ-
ment (XSEDE) [4] project, the total consumed CPU hours
and a significant majority of HPC jobs and are attributed to
one or no more than 8 nodes. These trends are shown in
Figure 3(a) and Figure 3(b). Considering the most popular job

Fig. 2. Steps showing on-demand connection establishment between all ranks

size, we tackle the limitation of existing all-to-all connection
establishment approach by proposing an optimized design to
mitigate the bottlenecks of the existing all-to-all connection
establishment design.
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(b) Job Sizes
Fig. 3. Number of submitted jobs and total CPU hours consumed by jobs of
different sizes over past three years in XSEDE clusters.

In the this paper, we revisit the existing all-to-all connection
establishment design and analyze its limitations and primary
sources of performance overhead. Based on this analysis,

we propose an optimized design that streamlines the all-to-
all connection establishment to take advantage of charac-
teristics of the hardware behavior. Furthermore, we explore
enhancement of proposed design by incorporating thread-
level parallelism and CPU-affinity awareness into our opti-
mized design. Then we conduct a comprehensive performance
evaluation with micro-benchmarks and real applications, to
validate the efficacy of our proposed design and assess the
trade-offs between our design and existing on-demand design.
Notably, similar approaches to the proposed optimized all-to-
all connection design proposed by this paper will be applicable
to other connection-oriented transport protocols available on
other HPC networks, such as Omni-Path Express, Omni-Path,
Slingshot, etc.

To the best of our knowledge, this is the first study
that presents an optimized design of all-to-all connec-
tion establishment in InfiniBand Remote Direct Memory
Access (RDMA) while leveraging thread-level parallelism
and CPU-affinity awareness. This approach sets a new
precedent in tackling the issue of performance overhead
in MPI implementations over InfiniBand RDMA.

II. MOTIVATIONS AND CHALLENGES

The motivation for an optimized RDMA all-to-all connec-
tion establishment design comes from the scalability limita-
tions of existing MPI startup designs. As job sizes or the
number of processes increase, existing designs struggle to
efficiently handle the growing number of connections, leading
to performance degradation.

For instance, Figure 4 presents an evaluation of MPI Init
execution time using the startup benchmark from OSU-
microbenchmark [5]. The benchmark assesses the performance
of MPI Init as job sizes increase. The figure demonstrates
an exponential increase in startup time, particularly evident
beyond 8 nodes and 448 processes. This steep rise in time
highlights the noncompetitive performance of existing all-to-
all connection startup design.
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Fig. 4. MPI Init execution time of All-to-all RDMA Connection Startup,
taken by osu init of OSU-Microbenchmark and run with up to 32 nodes
1792 processes on TACC Frontera

To tackle the limitation of current all-to-all MPI startup
designs, our approach involves conducting a program profiling
analysis to understand the primary cause of the high startup
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cost. Specifically, we perform program profiling for the 16-
node 896-process startup performance degradation shown in
Figure 4. We utilize the built-in run-time startup profiling op-
tion in MVAPICH2, a popular MPI library. From our profiling
analysis, we identify the three most costly types of operations:
Process information allocation, Queue pair creation or initial-
ization, and Data Exchange via PMI (Process Management
Interface). Figure 5 illustrates the breakdown of execution
time among these operations. Notably, we observe that in the
current all-to-all startup design, the data exchange operations
over PMI dominate the total execution time (83.5%). Smaller
and larger scale results follow the same trend here.

This finding underscores the significance of optimizing the
data exchange over PMI in order to reduce the overall startup
cost.

Another major limitation of the all-to-all connection es-
tablishment design is the maximum number of queue pairs
supported on Host Channel Adapters (HCA) devices. For
example, NVIDIA ConnectX-6 network adapters support up
to 131,072 queue pairs, and Broadcom RoCEv2 adapters
support 65,536 queue pairs. Although the maximum queue
pair count is expected to increase in future generations of
adapters, currently popular network adapters may not have
sufficient queue pairs to accommodate all-to-all connection
establishment when job size exceeds a few thousand pro-
cesses. Given the fundamental requirement of establishing
connections between every pair of processes in an all-to-all
communication pattern (at least N × (N − 1) connections,
where N represents the total number of processes), this paper
acknowledges the hardware limitation and does not specifically
address it. Instead, the focus of this paper will be on optimizing
the PMI data exchange process, while assuming that the
necessary number of queue pairs is available for the given
job size.
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Fig. 5. Total time percentage of different operations during all-to-all RDMA
connection startup, run with up to 16 nodes 56 PPN (Process Per Node) on
TACC Frontera

A. Challenges
To address the high cost of data exchange via PMI, our

approach focuses on reducing the time overhead and amount
of data associated with exchanging data between processes via
PMI. Referring to our initial investigation, there are two types
of information exchanged via PMI in all-to-all connection

establishment – HCA type and local ID (lid), Queue Pair
number (qp num). The HCA information is identical for the
same HCA, but the queue numbers vary and serve as unique
identifiers for queue pairs created by the same HCA. Given
that understanding, our first challenge is How we can minimize
the data, especially the queue pair numbers exchanged via
PMI for optimizing all-to-all connection establishment.

To minimize the amount of data exchanged via PMI, we
investigate techniques such as data compression and efficient
data packaging. However, those techniques may create new
overheads. For instance, our proposed design increases queue
pair creation overhead, detailed discussion in the following
section IV-B. While addressing the high cost of data exchange
via PMI is crucial, it is equally important to carefully consider
the trade-offs of data exchange via PMI cost and the other
costs such as queue pair creation. Therefore, our second
challenge is How to utilize the system characteristics to bal-
ance different types of overhead in the all-to-all connection
establishment process.

While the all-to-all startup design establishes connections
in MPI Init step, the on-demand startup method establishes
connections during execution. Both all-to-all and on-demand
connection establishment designs have their own advantage in
different MPI communication patterns. As stated in section I
that a significant majority of parallel jobs involve no more
than 8 nodes. It is important to evaluate our optimized all-
to-all startup and on-demand startup with different MPI com-
munication patterns and applications. This brings us to the
third challenge: How can we select the best connection es-
tablishment approach to benefit the overall HPC application
performance.

B. Contributions
We analyze the existing all-to-all connection establishment

in-depth by program profiling, to identify that the most costly
operations are data exchange via PMI. By highlighting the
bottlenecks of existing design and leveraging an observed
system feature, we proposed an optimized design for all-to-all
connection establishment. Then we investigate the potential
enhancement of our proposed design by incorporating thread-
level parallelism and CPU-affinity awareness. This demon-
strates an additional layer of optimization to further improve
the performance and scalability of the proposed all-to-all
connection establishment design. We integrate our designs
in a popular MPI library MVAPICH2 and show the efficacy
of our proposed design through a systematical performance
evaluation. Our proposed optimized design is able to establish
all-to-all connection 20× faster.

To summarize, We list the following key contributions in
this paper:

• Analyze limitations of the current all-to-all connection
establishment design and the main reasons for the lack
of scalability.

• Propose an optimized all-to-all connection establishment
design with identified system features and hardware be-
havior.
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• Propose two enhancement approaches to improve MPI
startup and overall performance.

• Demonstrate the efficacy of the proposed design on real
systems using micro-benchmarks and applications. Our
optimized design outperforms state-of-art solutions by up
to 20× in alltoallv microbenchmark and up to 31% in
NPB NAS-FT, respectively.

• Evaluate our optimized all-to-all connection establish-
ment design with comparison to state-of-art on-demand
design and analyze the best use cases.

III. BACKGROUND

In this paper, we implement our optimized design based on
MVAPICH2 2.3.7 [6] for our experiments and performance
evaluations. However, our observations in this context are
quite general and they should be applicable to other high-
performance MPI libraries as well.

A. InfiniBand

InfiniBand [7] is a high-performance, multi-purpose net-
work architecture that provides features including high
throughput, low latency, quality of service, and failover. It is
commonly used in data centers, high-performance computing
(HPC) environments, and enterprise-level storage systems due
to its low latency and high bandwidth capabilities. A key com-
ponent of the InfiniBand architecture is the Queue Pair (QP).
Each QP consists of a pair of queues: one for sending and one
for receiving data. InfiniBand uses a different approach to the
classic network card approach, where the operating system
kernel manages data transmission. Instead, InfiniBand uses
Direct Memory Access (DMA) to read or write data directly
to or from the application’s memory, bypassing the need for
the operating system’s intervention. This approach minimizes
latency and maximizes bandwidth. The process of creating a
QP involves allocating and initializing the queue pair within
the InfiniBand device. The queue pair then gets associated
with a specific protection domain that provides the necessary
security guarantees for the queue pair’s operation.

B. RC Connection Establishment

Reliable Connection (RC) and Unreliable Datagram (UD)
are two different types of transport services specified in the
InfiniBand architecture. RC is a connected mode of operation
that provides reliable, in-order delivery of packets. It sets up
a connection between two Queue Pairs (QPs) and guarantees
the delivery of packets without loss or errors. It accomplishes
this using acknowledgment packets (ACKs) and packet re-
transmission in case of packet loss. The communication is
point-to-point, i.e., between two QPs. Therefore, RC requires
a connection to be established before any data can be sent. This
process includes initializing Queue Pairs (QPs), transitioning
them through multiple states (INIT, RTR, RTS), and the
exchange of connection request and reply messages. The time
and computational resources required to accomplish these
steps contribute to the overhead of RC.

IV. DESIGN

To address the challenges in section II, we propose an
optimized all-to-all MPI startup design. Our design consists of
3 major components – Firstly, we propose a rank-by-rank all-
to-all connection establishment method to significantly reduce
the large amount of time consumed by information exchange
over PMI. Secondly, we parallelize the queue pair creation step
with OpenMP to mitigate the additional overheads made by
the optimized all-to-all connection establishment. At last, we
optimize the CPU affinity to maximize the processor resource
utilization for MPI jobs.

A. Rank-by-rank All-to-all Connection Establishment

Fig. 6. Example: Steps of creating and allocating QPs to local rank for
establishing connection to other ranks

In section II, we have discussed that a large amount of time
is spent on exchanging queue pair, HCA local ID (lid), etc,
over PMI. In our investigations on different HPC systems, we
observe that the queue pair numbers return by ibv create qp
calls are mostly sequential as long as one process continues to
make create queue pair calls before any other process breaks
in between. This behavior enlighten us to enforce ordering
between different MPI ranks or processes in the same node,
so that one process can create all endpoints, and then the next
MPI rank or process will do it. This design will guarantee
some range of sequential queue pairs for each process to
establish connection to other processes. With guaranteed queue
pair ranges, a process only need to exchange the initial queue
pair information instead of all of them.

The Figure 6 depicts an example procedure of our proposed
sequential all-to-all connection establishment. When a local
process starts to establish connection to its target processes,
it begins by performing necessary initialization. Subsequently,
the process calls ibv create qp to create one queue pair for
each target process. To ensure synchronization, we implement
a local PMI barrier to the create queue pair loop, allowing
only one process making ibv create qp calls on each node
at any given time. The target processes count of created
queue pairs’ pointers will be stored in a local buffer called
qp pool. As Figure 6 showing, while the returned qp num’s
are consistently contiguous, there are instances where certain
qp num get skipped by HCA. To address this, we store all
the contiguous qp num values into a list called qp ranges,
and each entry consists of initial and tail qp num of each
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continuous list of qp num. Then the full qp range list are
exchanged to other processes over PMI, and local process can
retrieve sequential list of queue pair by qp num to establish
connection. Figure 7 shows the example of information ex-
changed between processes via PMI. The data exchange via
PMI consists of two primary step: First, hardware information
including architecture type and HCA type is exchanged to
identify if the connection can be established. Next, HCA local
ID and create queue pair numbers are exchanged in order to
establish actual connections.

Fig. 7. The proposed design exchanges following information between MPI
processes via PMI: 1. System architecure & HCA type 2. HCA LID 3. List
of qp num ranges PMI barriers are put between for synchronization

In Algorithm 1, we present the procedure of sequential all-
to-all connection establishment design in high level.

B. Parallelized Queue Pair Creation and Initialization
Despite the significant amount of time reduction in data

exchange over PMI achieved by sequential all-to-all connec-
tion establishment, the in-order queue pair creation itself can
be quite costly. Figure 8 shows that up to 78% of total
MPI Init execution time is consumed by queue pair creation
and initialization. This is primarily due to the restriction
that only one process can operate at a time, which becomes
especially problematic for emerging HPC systems with a large
number of cores per processor. To address this issue, we
parallelize the creating queue pair portion using OpenMP [8].

1 int qp_pool_size = GetMPIJobSize();
2 struct ibv_qp* qp_pool[qp_pool_size];
3 Initialize_attributes(qp_attr);
4

5 // Multi-threaded QP creation and initialization
6 #pragma omp parallel for num_threads(N)
7 for (int i=0; i<job_size; i++) {
8 qp_pool[i]=ibv_create_qp(..., &qp_attr);
9 ... ...

10 // modify qp to INIT state
11 ibv_modify_qp(qp_pool[i], ...);
12 }
13

14 // In case that qp_num out of order

Algorithm 1: Rank-by-rank All-to-all Connection Es-
tablishment

1 Function OptA2aConnEst(rank):
2 PrepareConnection(gid, hca, ...)
3 Initialize(local qp ranges, local qp pool)
4 foreach localprocess in node do
5 if localProcess == rank then
6 qp ptr = ParallelCreateQP (rank)
7 Push to(local qp pool, qp ptr)
8 Add to(local qp ranges, qp ptr → qp num)
9 PMI LOCAL BARRIER()

10 PushToPMI(HCAInfo, rank)
11 foreach tgtRank in AllRanks do
12 tgtHCAInfo = GetFromPMI(HCAInfo)
13 PushToPMI(qp ranges, rank)
14 foreach tgtRank in targetRanks do
15 qp ranges = GetFromPMI(HCAInfo) i =

tgtRank
16 foreach entry in qp ranges do
17 if entry.tail − entry.head ≤ tgtRank then
18 Connect(tgtRank, entry.head+ i)
19 break

20 else
21 i -= entry.tail − entry.head+ 1

22 AllocateRDMABuffer(rank, ...)
23 EnableAllQueuePairConnections(rank, ...)
24 Cleanup(local qp ranges, local qp pool)
25 return
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Fig. 8. Profiling the percentage of time spent on queue pair creation
and initialization vs. other operation in MPI Init with sequential all-to-all
connection establishment, run with up to 16 nodes 56 PPN on TACC Frontera

15 Sort_by_qp_num(qp_pool, qp_pool_size);

Listing 1. Multi-threaded QP Creation

The pseudo-code in Listing 1 presents the high-level imple-
mentation of parallelized queue pair creation and initialization.
The queue pair create and modify (to INIT state) calls are
wrapped in an OpenMP for loop, which iterates through all
processes in MPI COMM WORLD. In case that qp nums are
returned out-of-order by ibv create qp in different threads,
qp pool will be sorted after this parallel for loop.

To explore the optimal number of OpenMP threads for
multi-threaded queue pair creation, we conducted experiments,

45

Authorized licensed use limited to: The Ohio State University. Downloaded on July 19,2024 at 17:00:14 UTC from IEEE Xplore.  Restrictions apply. 



varying the number of nodes (#Nodes) and processes per node
(PPN) on TACC Frontera with up to 16 compute nodes. We
compare the time consumed by the multi-threaded proposed
all-to-all connection design, varying from 1 to 28 (maximum
number of cores in each CPU on TACC Frontera) threads.
The results in Figure 9 indicate that 8 to 16 OpenMP threads
yield the best performance for our multi-thread design. When
compared to the serial version of the sequential all-to-all con-
nection establishment described in section IV-A, our optimized
approach demonstrates a significant reduction of up to 75% in
the queue pair creation and initialization time.
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Fig. 9. Comparing performance of multi-threaded QP creation & initialization
with different number of OpenMP threads, run with up to 16 nodes 896
processes on TACC Frontera

C. Enhanced Affinity-aware All-to-all Startup

The multi-threaded design we discussed in section IV-B uti-
lizes the multi-thread parallelism on multi/many-core systems
like TACC Frontera to accelerate the queue pair creation step
in our proposed sequential all-to-all connection establishment
design. However, modern MPI libraries typically incorpo-
rate some built-in CPU pinning policies to bind processor
cores to their processes. For example, OpenMPI has cpu-
pinning options like map-by-socket or -by-l3cache option,
and MVAPICH2 has run-time CPU binding policy to map
processes linearly or by each NUMA domain. Many of the
communication algorithms, including topology-aware collec-
tive algorithms, rely on this CPU pinning. In a scenario where
an MPI job fully occupies a compute node, each processor
core is pinned to a specific process. Consequently, our multi-
threaded queue pair creation approach would not be able to
take advantage of parallelism across multiple cores. Disabling
the CPU pinning step is a straightforward solution, but it
would prevent MPI libraries from leveraging their built-in
communication algorithms. In our multi-threaded optimized
all-to-all connection establishment design, we address this
challenge by configuring affinity after the inter-node startup
step.

V. PERFORMANCE EVALUATION

To demonstrate the efficacy of the proposed rank-by-rank
all-to-all connection establishment design, and identify the

suitable use cases for this design, we conduct a comprehensive
evaluation at both the micro-benchmark level and application
level. All the experiments are executed with a maximum
of 16 compute nodes since a significant majority of the
HPC workloads involve no more than 8 nodes, as we show
in Figure 3(b). Within this scale, we observe remarkable
improvements when comparing our optimized design to the
existing all-to-all connection establishment approach, which
is pervasively employed in this scale. For completeness, we
also evaluate the state-of-the-art on-demand design, providing
a more comprehensive view of the connection establishment
performance across different approaches within this scale. The
evaluation is conducted using the latest HDR-100G or HDR-
200G adapters, and we anticipate similar behavior on older
generation adapters like EDR, FDR, QDR, etc.

A. Experimental Setup
We evaluated our designs on two different state-of-the-

art architectures. Texas Advanced Supercomputing Center
(TACC) Frontera [9] system and Lonestar6 [10] system.
TACC Frontera system is configured with dual-socket Intel
Xeon Platinum 8280 Cascade Lake CPU, while Lonestar6
system employs dual-socket AMD EPYC 7763 processor.
Each compute node of Frontera consists of 56 physical cores,
while each node on the Lonestar6 consists of 128 physical
cores. We use the MVAPICH2-2.3.7 MPI library for all our
evaluations including OSU-Microbenchmark (OMB) v5.9 for
micro-benchmark evaluation. Each OMB test was run for 1
iteration after MPI Init and the average of 5 is reported. For
application-level evaluation, we use NPB-3.4.2 [11] and 3D-
stencil [12] application kernels.

TABLE I
HARDWARE SPECIFICATION OF DIFFERENT TESTED CLUSTERS

Specification Frontera Lonestar

Processor Family Intel Cascade Lake AMD EPYC
Processor Model Xeon Platinum 8280 EPYC 7763
Clock Speed 2.7 GHz 2.45 GHz
Sockets 2 2
Cores Per socket 28 64
NUMA nodes 2 2
#Cores Per NUMA 28 64
RAM (DDR4) 192 GB 256 GB
Interconnect IB-HDR(100G) IB-HDR(200G)

B. Microbenchmark Results
In this section, we present a comprehensive performance

evaluation of our proposed optimized all-to-all connection
establishment design, as described in Section IV. To vali-
date the efficacy of our design, we compare its performance
against state-of-the-art on-demand and all-to-all connection
establishment designs integrated into the latest MVAPICH2
MPI library.

To evaluate the performance of these connection estab-
lishment designs across various communication patterns, we
execute all the MPI collective tests in OMB and particu-
larly choose three typical collective benchmarks: osu alltoallv,
osu allreduce, and osu bcast. These benchmarks show the
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behavior of different connection establishment designs under
these three typical communication patterns. The results are
shown from Figure 10 to 13.

During the execution of the collective benchmarks, we
collect two types of measurements: the real execution time,
measured using the Linux time command, and the communi-
cation time, measured by the benchmarks for a single iteration.
We chose not to use the osu init benchmark for measuring
the performance of the on-demand design. The reason for
this is that the on-demand design may require establishing
connections after the MPI Init function is called, which cannot
be accurately measured by the osu init benchmark alone. By
collecting both the real execution time and the communication
time, we obtain a comprehensive understanding of the overall
execution performance as well as the specific communication
overhead incurred by the connection establishment designs.
This allows us to assess the effectiveness of our proposed opti-
mized all-to-all connection establishment design and compare
it to the existing on-demand and all-to-all designs.

1) Performance Evaluation of Connection Establishment:
Figure 10 shows the time consumed to establish connections
by the three designs. We observe in Figure 10(a) that our
optimized all-to-all connection establishment design is up to
20× faster than the existing all-to-all design, and reduces
8% connection establishment time comparing to on-demand
design on 16 nodes 892 processes scale. The connection
establishment time of existing all-to-all design exponentially
steeply increases while the scale grows larger than or equal to
8 nodes 448 processes. As we discussed in Figure 4, the steep
increase is primarily caused by the exponential growth in data
exchange via PMI. Similarly, in Figure 10(b) and 10(c), both
our optimized all-to-all connection establishment approach
and the existing all-to-all design remain the same behavior
during the connection establishment process. As a result, their
performance follows the same trend as Figure 10(a). The
proposed design is faster than the existing all-to-all design by
a factor of 21× in the Allreduce and Broadcast benchmark.

To validate the adaptability of our proposed design across
different architectures, we conduct similar experiments and
evaluations as Figure 10 on the TACC Lonestart6 system.
The results are shown in Figure 12. One thing to be noted
for Lonestar6 is that each of the compute nodes contains
128 physical cores. While the maximum queue pair number
on each node is 131072 (= 8 × 128 × 128), so we will
exhaust the queue pair limitation with 8 or more than 8
nodes. Therefore on Lonestar, we conduct experiments with
scale up to 4 nodes 512 processes. The optimized all-to-all
connection establishment design is faster than the existing all-
to-all design by a factor of 2.3× in Alltoallv benchmark, 2.5×
in Allreduce benchmark, and 2.4× in Broadcast benchmark.
On the other hand, the existing all-to-all and on-demand
connection establishment design follow the same trend as what
we observed in our tests on TACC Frontera.

2) Performance Evaluation of Communication Latency:
In addition to evaluating the specific connection establish-
ment time presented in Figure 10 and 12, we analyze the

communication time of a single iteration of MPI collective
communication operations after MPI Init step. The results are
shown in Figure 11 and 13. As we mentioned earlier, the
on-demand startup design may need to establish connections
after the MPI Init step. This feature is demonstrated by the
Alltoallv benchmark result shown in Figure 12(a). The first it-
eration of MPI Alltoall operation of on-demand design spends
448× longer communication time than all-to-all connection
design on 16 nodes 896 processes scale. The huge gap here
is attributed to the costly communication establishment of on-
demand startup design during the execution time. On the other
hand, our proposed design has almost no side effect communi-
cation operations after MPI Init step, which leads to the close
communication latency of our proposed design and existing
all-to-all design. However, for the communication patterns
with lower complexity or requirement of connection numbers,
such as Allreduce and Bcast with results shown in Figure 12(b)
and 12(c), we are not able to see huge communication latency
difference. It is worth noting that the communication latency
degradation of on-demand design in Figure 12(c) is attributed
to the MPI Bcast algorithm adjustment after a certain job
size, which requires additional connections and leads to the
performance overhead.

The same set of communication latency evaluations is
also conducted on the Lonestar6 system. Figure 13(a) shows
that the first iteration MPI Alltoall communication latency
of the proposed all-to-all connection establishment design is
up to 162× lower than on-demand design with 4 nodes 512
processes scale. The MPI Allreduce requires less connection
establishment than MPI Alltoall on Lonestar6, therefore we
observe optimized and existing all-to-all design have up to
3.1× lower latency than on-demand design.

Observation: Based upon the analysis of the Micro-
benchmark results across two different systems, we are able
to identify the optimal use cases for our optimized all-to-
all connection establishment design. These use cases are
characterized by MPI jobs with a high level of complexity in
inter-process communication (e,g, MPI Alltoall), with a scale
that does not exceed than few thousand processes or exhaust
maximum queue pairs. On the other hand, for simple com-
munication patterns or extremely large job size, on-demand
connection establishment will be the optimal choice.

C. Application Results
To demonstrate the efficacy of our optimized connection-

establishment design on real application, we evaluate the
performance of the proposed design with two mini application
kernels to simulate the real use cases.

1) 3D-Stencil (Localized neighborhood communication
pattern): In every iteration data is received in a predefined pat-
tern and is used by the kernel to update the elements. 7 point
stencil is used in this benchmark which involves exchanging
data with six neighboring processes. To achieve this in every
iteration each process posts MPI Irecv for all the messages
it is expected to receive and then posts all of its MPI Isend
calls. It uses MPI Waitall to wait for the completion of all
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(a) Alltoallv (b) Allreduce (c) Bcast

Fig. 10. Total time consumed by different approaches to establish connections for several popular MPI collective primitives, run with up to 16 nodes 896
processes on TACC Frontera

(a) Alltoallv (b) Allreduce (c) Bcast

Fig. 11. Total time consumed by different approaches to establish connections for several popular MPI collective primitives, run with up to 4 nodes 512
processes on TACC Lonestar6

(a) Alltoallv (b) Allreduce (c) Bcast

Fig. 12. First iteration communication latency of several popular MPI collective primitives after different approaches of connection establishment, run with
up to 16 nodes 896 processes on TACC Frontera

(a) Alltoallv (b) Allreduce (c) Bcast

Fig. 13. First iteration communication latency of several popular MPI collective primitives after different approaches of connection establishment, run with
up to 4 nodes 512 processes on TACC Lonestar6
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the sends and receives and finally uses MPI Allreduce to
collect boundary information from the participating processes.
We run 3D-stencil with 10 iterations of communication with
measurement of program total execution time and average
communication latency of each process.

Figure 14(b) shows the total execution time of 3D-stencil
application on TACC Frontera with various scales up to 16
nodes 896 processes. One thing worth to be noted that the
vertical axis is in logscale. We observe that the existing all-to-
all connection establishment design ends up increased startup
overhead with 8 and more than 8 nodes. Our optimized all-to-
all connection establishment design is able to be 10× faster
than the existing design. Due to the communication pattern
of 3D-stencil, the on-demand connection establishment design
maintains advantage in all the scales as it selectively establish
necessary connections. Figure 14(b) shows the average com-
munication latency of those three design. Similar to the trends
we observed in micro-benchmark evaluation, they have close
communication latency as no additional connection needs to
be built by on-demand design.
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(b) Avg. Communication Latency

Fig. 14. Total execution time and average communication latency of 3D-
stencil application kernel, run with 10 iterations, varying scales up to 16
nodes 896 processes on TACC Frontera

2) NPB NAS-FT (Collective MPI communication pat-
tern): NAS parallel benchmarks [13] are developed for bench-
marking highly parallel systems with respect to computation,
communication, memory usage, etc. NAS-FT is A 3D partial
differential equation (PDE) solution using FFTs. This kernel
numerically solves a PDE using both forward and inverse
FFTs. Long-distance communication performance is rigor-
ously tested by this benchmark.

Figure 15(a) shows the total execution time of NAS-FT
(Class B) benchmark on TACC Frontera with up to 16

nodes 512 processes. The vertical axis is in log scale. We
observe similar performance trends as 3D-stencil and OMB.
Our proposed design exhibits 4.8% faster execution times
than the existing all-to-all connection establishment design.
Figure 15(b) shows the program throughput by total (billion)
operations of all processes per second. Different from 3D-
stencil, the dominant communication pattern in NAS-FT is
MPI Alltoall. Hence we observe up to 31% higher throughput
of the proposed all-to-all connection establishment design
compared to on-demand design.
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Fig. 15. Total execution time and throughput of total Billion of Operations
of NPB NAS-FT (Class-B) application kernel, varying scales up to 16 nodes
512 processes on TACC Frontera

Observation: The analysis of optimal use cases discussed at
the end of Section V-B is validated in application-level perfor-
mance evaluation. The optimal use cases for the optimized all-
to-all connection establishment are the MPI applications with a
high level of complexity in inter-process communication (e,g,
MPI Alltoall).

VI. RELATED WORK

Improving MPI over IB has seen significant contributions
from various researchers and in several MPI implementations.
Besides groundbreaking fundamental research on supporting
IB RDMA communication for MPI and optimizing RC and
UD communication support [14]–[17], a few notable re-
lated works are discussed here. A key contribution is the
MVAPICH-Aptus, a multi-transport MPI design that uses
both the RC and UD transports of IB to deliver scalability
and performance higher than that of a single-transport MPI
design [18]. The MVAPICH-Aptus design has shown a 12%
improvement over an RC-based design and 4% better than a
UD-based design for the SMG2000 application benchmark.
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For the molecular dynamics application NAMD, it showed a
10% improvement over an RC-only design.

Another significant contribution in this area is the work on
a high-performance UD-based MPI design over IB [19]. This
design addresses the issue of increasing memory requirements
in RC-based implementations as clusters continue to scale. The
connection-less UD transport eliminates the need to dedicate
memory for each pair of processes, making it an attractive
alternative. The design was implemented and compared with
the RC-based MVAPICH in terms of performance and resource
usage. The evaluation showed a 60% speedup and a seven-
fold reduction in memory for 4K processes for the SMG2000
benchmark. The design also estimated a 30 times reduction in
memory over MVAPICH at 16K processes when all connec-
tions are created.

The work from Chakraborty et al. [20], on the other
hand, focuses on the efficient implementation of the Pro-
cess Management Interface (PMI), which is crucial for
enabling fast start-up of MPI jobs. The authors propose
three extensions to the PMI specification: a blocking all-
gather collective (PMIX Allgather), a non-blocking all-
gather collective (PMIX Iallgather), and a non-blocking fence
(PMIX KVS Ifence). They design and evaluate several PMI
implementations to demonstrate how such extensions reduce
MPI start-up costs. In particular, when sufficient work can be
overlapped, these extensions allow for a constant initialization
cost of MPI jobs at different core counts. At 16,384 cores, the
designs lead to a speedup of 2.88 times over the state-of-the-
art start-up schemes.

In contrast to the existing works in the literature, our
study takes a unique approach to improving RDMA all-to-
all connection establishment for RC in MPI. While previous
works have focused on different related aspects, our work
delves deeper into the pervasive scheme of all-to-all con-
nection establishment design used in RC transports. Due to
its robust performance and reliability, we recognize that RC
is a default communication channel for most MPI over IB
jobs with small to medium message sizes (before running
out of QPs). Hence, optimizations for these workloads are
of paramount importance, and our work addresses this need
directly.

VII. CONCLUSION AND FUTURE WORK

In modern multi-/many-core HPC systems, the increasing
number of processor cores leads to new challenges in or-
chestrating parallel compute workloads across multiple nodes.
Among the various aspects that affect the startup phase of par-
allel MPI jobs, the communication establishment methodology
becomes a crucial factor that warrants in-depth investigation
and research. In this paper, we investigate the bottleneck
of existing state-of-the-art all-to-all connection establishment
designs, identify the primary source of performance over-
heads and propose an optimized process-by-process connec-
tion establishment design. Furthermore, we explore multi-
thread parallelism and incorporate CPU affinity awareness into
our proposed design to mitigate the side effects of increasing

QP creation and synchronization overheads. Finally, to demon-
strate the efficacy of our proposed design, we implement
it in a state-of-the-art MVAPICH2 MPI library and conduct
comprehensive experiments across two different emerging
architectures. Through a systematical performance evaluation
across two emerging HPC architectures, comparing to existing
all-to-all connection establishment design, we observe up to
20× faster MPI Init time in microbenchmarks level and 31%
throughput with NPB NAS-FT. In the future, we plan to extend
our optimized all-to-all connection establishment design to
other architectures (e.g., ARM) or network adapters (e.g.,
Broadcom RoCEv2).
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