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Geometric control theory is the application of differential geometry to the study of nonlinear dynamical systems. This
control theory permits an analytical study of nonlinear interactions between control inputs, such as symmetry breaking
or force and motion generation in unactuated directions. This paper studies the unsteady aerodynamics of a harmon-
ically pitching-plunging airfoil in a geometric control framework. The problem is formulated using the Beddoes-
Leishman model, a semi-empirical state space model that characterizes the unsteady lift and drag forces of a two-
dimensional airfoil. In combination with the averaging theorem, the application of a geometric control formulation to
the problem enables an analytical study of the nonlinear dynamics behind the unsteady aerodynamic forces. Results
show lift enhancement when oscillating near stall and thrust generation in the post-stall flight regime, with the mag-
nitude of these force generation mechanisms depending on the parameters of motion. These findings demonstrate the
potential of geometric control theory as a heuristic tool for the identification and discovery of unconventional phenom-
ena in unsteady flows.

I. INTRODUCTION

Recent developments in Micro-Air Vehicles (MAVs) have
spawned an interest in bio-inspired flapping wings. The as-
tonishing maneuverability and flight performance of insects
and small birds inspire new designs of more efficient and ro-
bust MAVs, but this adaptation of flapping flight to man-made
vehicles requires a good understanding of the dynamics of un-
steady flows, among many other challenges. In particular, it
is important to comprehend the mechanisms behind the gen-
eration of the aerodynamic forces in these unsteady regimes
and to predict the conditions in which these force generation
phenomena occur.

The study of unsteady aerodynamics traces back to the
1920s when Wagner1 formulated the time response of the lift
force experienced by an airfoil due to a step change in its angle
of attack. A decade later, Theodorsen2 provided an analytical
solution for the steady state lift response of a harmonically
pitching and plunging airfoil. Most of the studies that fol-
lowed, such as those of von Kármán and Sears3, Schwarz4,
and Küssner5, expanded on Theodorsen’s work, focusing on
the frequency response of the lift force in oscillating airfoils.
Similarly, in the 1930s, Garrick6,7 proposed a model based on
Theodorsen’s approach to calculate the thrust generated by a
flapping airfoil. These reputed classical theories, though re-
stricted to small angles of attack, provide an insight into the
several effects that contribute to the unsteady aerodynamic
forces, such as the bound circulation, the wake vortices, and
the added mass. However, they rely on a small disturbance
linear framework that does not permit the discovery of uncon-
ventional unsteady mechanisms.

Experimental observations have been pivotal in finding rich
unsteady dynamical behavior. Early studies in dynamic stall
reported an increase in the lift force past its steady value when
performing a dynamic maneuver near stall8–11. More recently,
computational and experimental efforts focused on the flow

characteristics and structures leading to this lift enhancement,
such as the contributions of the leading-edge vortex (LEV)
and the wake vorticity12–17. Similarly, experimental work
on oscillatory airfoils uncovered symmetry breaking mecha-
nisms. When oscillating an airfoil, the resulting lift and drag
forces are oscillatory, and their mean values may be expected
to match their steady counterparts. Nonetheless, there are
plenty of examples in the literature6,12–14,18–21 displaying an
increase or decrease in the mean lift and thrust when oscillat-
ing at a high enough frequency, revealing a force generation
mechanism due to an underlying symmetry breaking. A no-
table effort in this regard is that of Vandenberghe et al.22, who
studied a plunging airfoil in a still fluid. They observed that,
past a certain frequency, the airfoil moved spontaneously for-
ward, indicating the generation of a net thrust force.

Thus, most, if not all, of the known force generation mech-
anisms occurring in unsteady flows have been discovered
through smart experimental observations or computational
simulations. However, there are, to the authors’ knowledge,
no theoretical efforts that provide a framework for the system-
atic discovery of these phenomena. This scarcity of analytical
work may be attributed to a lack of appropriate analysis tools.
Unconventional unsteady aerodynamics mechanisms usually
rely on higher-order flow interactions, and a theoretical study
of these interactions requires mathematical tools that do not
neglect nonlinearities of the flow dynamics. We believe that
geometric control theory23–27 can bridge this gap and provide
a proper framework for the analysis and prediction of known
and yet-to-be-discovered unsteady phenomena.

Geometric control theory, a combination of differential ge-
ometry and control theory, was first developed in the 1970s
by Brockett23,24 and Sussmann25–27 with the purpose of study-
ing dynamical systems evolving on manifolds or curvy spaces.
Instead of neglecting nonlinearities, geometric control theory
thrives on them: it analyzes the nonlinear interactions occur-
ring within a system that may lead to the generation of forces
in unactuated directions. As such, geometric control theory
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Geometric control analysis of the unsteady aerodynamics of a pitching-plunging airfoil in dynamic stall 2

has been adopted in the analysis of nonlinear control sys-
tems. Its applicability ranges from nonlinear control and mo-
tion planning in robotics28,29, to spacecraft attitude dynamics
and control30–32, to, more recently, bio-inspired flight33–37.

The nonlinear framework of geometric control theory pro-
vides a heuristic formulation for the systematic discovery of
non-intuitive unsteady aerodynamics mechanisms. Our first
trials in this direction (i.e., applying geometric control tools
to unsteady aerodynamics) were encouraging38,39. We uti-
lized a previously developed reduced-order model (ROM)40 to
analyze the low-Reynolds aerodynamic loads over a pitching-
plunging airfoil in a geometric control framework, which led
to the discovery of unconventional lift enhancement and drag
reduction mechanisms induced by the pitching and plunging
motions.

Similarly, this work is along the same line of research:
studying the nonlinear behavior of the average lift and drag
forces over a harmonically oscillating airfoil using a geomet-
ric control framework. However, in contrast to our previous
effort39, we focus here more on the contributions of the LEV
during a harmonic dynamic stall maneuver. To achieve this
goal, we need an analytical ROM that accounts for (i) un-
steadiness and (ii) nonlinearity, in an (iii) efficient and com-
pact way, with particular emphasis on LEV contributions to
dynamic stall. As such, we found the Beddoes-Leishman
model41–43 to be a good candidate for such the sought ROM,
for it reasonably captures the unsteady nonlinear aerodynam-
ics of dynamic stall and is represented in a state-space form,
which is convenient for dynamical systems analysis, in gen-
eral, and geometric control and averaging, in particular.

In the present study, we apply the Beddoes-Leishman
model to a two-dimensional pitching and plunging airfoil and
put it in a form amenable to geometric control theory. The
model is then analyzed with a combination of mathematical
tools from the averaging theorem and geometric control theo-
ries to derive analytical expressions for the mean lift and drag
forces. Finally, these expressions are studied to uncover and
identify the causes behind lift and thrust enhancement mecha-
nisms. Thus, the main objective of this work is not to calculate
the values of the average lift and drag forces but to study their
qualitative behavior, which can then be further scrutinized
through experimental observations or computational simula-
tions.

The following list summarizes the contributions of the cur-
rent paper:

• Formulation of the Beddoes-Leishman model in a geo-
metric control framework.

• Geometric control analysis of dynamic stall.

• Analytical study of the averaged lift and drag forces in
dynamic stall.

• Presentation of a systematic approach to identify force
generation mechanisms due to symmetry breaking in
dynamic stall.

• Identification of the key parameters controlling these
mechanisms.

• Analysis of the fluid physics behind these mechanisms.

The article is structured as follows. Section II introduces
the necessary background on geometric control theory in the
analysis of nonlinear dynamical systems, and Section III re-
views the Beddoes-Leishman model of dynamic stall. Next,
Section IV formulates the problem of the pitching and plung-
ing airfoil in a geometric control framework. Finally, the re-
sults are presented in Section V, which applies the proposed
geometric control and averaging analysis to the Beddoes-
Leishman model. A discussion of the results is provided in
the same section.

II. GEOMETRIC CONTROL THEORY

Geometric control theory implements tools from differen-
tial geometry for the study of control systems. Developed
in the 1970s to analyze nonlinear systems, geometric con-
trol theory is concerned with dynamical systems evolving on
curvy spaces called manifolds. It was the need for an ap-
propriate mathematical tool to perform calculations on curved
domains that invoked a differential geometric formulation of
control theory44, effectively conceiving a geometric control
theory. Note that differential-geometric formulation of me-
chanics preceded the application to control theory by cen-
turies; it can be traced back to Jacobi (1842) and Darboux
(1889), see Dugas45. This section introduces some of the geo-
metric control concepts to be utilized in the study of unsteady
fluid dynamics.

A. Unconventional Force Generation

Consider the finite-dimensional, nonlinear, control-affine
system

ẋ(t) = f (x(t))+
m

∑
j=1

g j (x(t))u j(t), x ∈M
n, (1)

where x is a state vector evolving on an n−dimensional man-
ifold M

n, f is the drift vector field representing the uncon-
trolled dynamics of the system, and g j’s are the control vector
fields corresponding to the inputs u j’s. In a driftless system
(f = 0), one can move along the vector gk through direct actu-
ation by turning off all control inputs except for uk. Geometric
control theory allows for expanding the admissible directions
of motion by introducing the concept of anholonomy or geo-
metric phases, in which a specific manipulation of the avail-
able control inputs may generate forces and, consequently,
motion in a direction with no direct actuation24,46. These new
and additional directions of motion are determined through
Lie bracket operations between the control vectors (admissi-
ble directions of motion) of the system. The Lie bracket be-
tween the control vectors g j and gk is defined as

[g j,gk] =
∂gk

∂x
g j −

∂g j

∂x
gk. (2)
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Geometric control analysis of the unsteady aerodynamics of a pitching-plunging airfoil in dynamic stall 3

If the Lie product [g j,gk] is linearly independent of the two
vector fields g j and gk that generated it, the resulting Lie
bracket indicates a new direction of motion. That is, a spe-
cific manipulation of the control inputs u j and uk may lead to
net motion in an unactuated direction with no direct control
authority. The motion along [g j,gk] is accomplished with 90◦

phased square waves or sinusoidal control of the inputs u j and
uk

28.

B. Higher-Order Averaging of High-Amplitude
High-Frequency Periodically Forced Systems

Geometric control theory is interestingly combined with av-
eraging theory46,47 through the exploitation of chronological
calculus48 for the analysis of time-periodic systems. The com-
bination of these mathematical tools captures higher-order ef-
fects occurring in nonlinear systems that are usually neglected
by direct averaging49.

The formal definition of the averaging theorem considers
the nonlinear, time-periodic system written in the averaging-
canonical form49

ẋ= εX(x, t,ε), (3)

where ε is a small parameter such that 0 < ε << 1, and the
vector field X is T -periodic in t. The averaged system corre-
sponding to Eq. (3) is

¯̇x= εX̄ (x̄) , (4)

where X̄ (x̄) = 1
T

∫ T
0 X(x,τ,0)dτ , and the over-bar indicates

an averaged quantity.

Now, consider a nonlinear system subject to high-
amplitude, high-frequency, periodic forcing in the form

ẋ(t) = f(x(t))+
1

ε
G
(

x(t),
t

ε

)

, (5)

where the vector field G is T -periodic in its second argument
t. The averaging theorem cannot be directly applied to the
system in Eq. (5) because it is not in the averaging-canonical
form (3). Furthermore, the vector fields f and G are of dif-
ferent orders in ε . Proper averaging of this system requires a
more rigorous technique; the Variation of Constants formula
usually provides a remedy for this issue49–54. It allows decom-
posing the system (5), which is not directly amenable to the
averaging theorem into two different systems, each of which
is amenable to the form (3).

If f and G are continuously differentiable and G is a T -
periodic, zero-mean vector field, with the aid of the Variation
of Constants formula, the averaged dynamics of the system
(5) is written as29,36,48

˙̄x(t) = F̄ (x̄(t)) , (6)

where F̄ (x̄(t)) = 1
T

∫ T
0 F (x(t),τ)dτ , and F is the pullback

of f along the flow ΦG
t of the time-varying vector field G. For

a time-invariant vector f and a time-varying G, the pullback
vector field F (x(t), t) is obtained through an iteration of Lie
brackets between f and G

F (x(t), t) = f (x(t))+G (x(t), t) , (7)

where

G (x(t), t) =
∞

∑
k=1

∫ t

0
· · ·

∫ sk−1

0

(

adG(x(t),sk) . . .adG(x(t),s1)f (x(t))
)

dskds1, (8)

with adGf = [G,f ].

For example, the application of the Variation of Constants
formula to the nonlinear system (1), with oscillatory inputs
u j = ωU j cos(ωt) at high enough frequency ω , leads to the
averaged dynamics33,36,49

˙̄x= f (x̄)−
m

∑
j,k=1

U jUk

4
[g j, [f ,gk]] (x̄) . (9)

Thus, high-frequency zero-mean oscillations can modify the
averaged dynamics of a system, as shown by the last term in
Eq. (9), and induce net motion. This contribution is com-
pletely ignored when performing direct averaging and only
appears when accounting for the higher-order effects of non-
linear systems.

III. BEDDOES-LEISHMAN MODEL

The application of geometric control theory to the study of
unsteady flows requires a special formulation of the aerody-
namic problem as a dynamical system55; i.e, in the form of Eq.
(1). Clearly, brute-force application of Navier-Stokes’ equa-
tions is inappropriate here, so a reduced-order model (ROM)
is needed. This ROM has to be rich enough to capture the
main physical attributes of unsteady flows, but it also needs to
be compact and efficient to allow geometric control analysis
of the flow dynamics. The semi-empirical Beddoes-Leismann
model41–43 for dynamic stall reasonably satisfies these re-
quirements.

Initially developed to perform aeroelastic analysis on rotor
aircraft, the Beddoes-Leishman model41–43 provides the un-
steady lift, drag, and pitching moment of a two-dimensional
airfoil undergoing a dynamic stall maneuver. The model con-
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Geometric control analysis of the unsteady aerodynamics of a pitching-plunging airfoil in dynamic stall 4

sists of four sets of first-order ordinary differential equations
(ODE’s) representing different aspects of unsteady flows: (i)
attached flow, (ii) dynamic stall onset, (iii) trailing edge sepa-
ration, and (iv) leading-edge vortex effects. The dynamics of
the system are coupled such that the output of one set is the in-
put of the next one, and so on, allowing for an easy transition
in the calculations from attached flow to static stall, and then
to dynamic stall. Compressibility effects are also included.

A. Attached Flow

The first aspect of the flow to be characterized is the aerody-
namic response when the flow is fully attached to the airfoil.
The formulation derives from aerodynamic indicial response
functions (e.g., Wagner’s1), generalized for non-zero, sub-
sonic Mach numbers to include compressibility effects. The
resulting system employs four aerodynamic states to charac-
terize the force response41–43:

ẋ1−4 =Ax1−4 +B

{

αT

q

}

, (10)

C
p
N =Cx1−4 +D

{

αT

q

}

, (11)

where x1−4 is the vector containing the four states associ-
ated with the attached-flow formulation, C

p
N is the normal

force coefficient under attached flow conditions, and q =
2α̇b
U

is the non-dimensional pitch rate. The matrices A =
diag(a11 a22 a33 a44), B, C, and D are dependent on the
Mach number M and the characteristics of the airfoil. That is,
the attached flow dynamical system (10, 11) has two inputs:
the angle of attack αeff and the pitch rate q; and one output:
the normal force coefficient C

p
N . To include the effect of the

plunging velocity ḣ on the angle of attack seen by the airfoil,
we adopt the concept of total angle of attack αT , defined as

αT (t) = α(t)+ arctan
ḣ

U
,

The first two states of Eq. (10) are associated with the cir-
culatory response of the airfoil and the other two with the non-
circulatory response. As such, the normal force coefficient C

p
N

includes both contributions. The circulatory component of the
normal coefficient under attached flow conditions is defined as

CC
N(t) =CNα αE(t), (12)

where CNα is the curve slope of the normal force coefficient in
the linear regime, and αE is the effective angle of attack:

αE(t) = β 2

(

U

b

)

(A1b1x1 +A2b2x2) , (13)

where A1, A2, b1, and b2 are constants associated with the air-
foil indicial response, and β =

√
1−M2 is the compressibility

factor.

The original formulation of Beddoes and Leishman41–43 in-
cludes four more states (x5−8) to characterize the dynamics
of the pitching moment associated with the attached flow re-
sponse. Since moment calculation is outside the scope of this
study, these states have been excluded. Nevertheless, in the
following sections, we opt to maintain the original number-
ing of the Beddoes-Leishmann model for the remaining states,
which, unfortunately, creates a gap in the numbering system
of this paper.

B. Stall Onset

A critical aspect of dynamic stall modeling is the pro-
posed criterion for leading-edge separation. In the Beddoes-
Leishman model, leading-edge separation onset is associ-
ated with the attainment of a critical leading-edge pressure,
or equivalently, the critical normal force coefficient CN1

41.
The literature includes other successful criteria, such as the
Leading-Edge Suction Parameter (LESP) criterion, proposed
by Ramesh, Gopalarathnam, and their colleagues56–58. In
contrast to the LESP criterion, the Beddoes-Leihsman model
assumes lag between the moment when the attached-flow
leading-edge pressure (or normal force) reaches a critical
value and the onset of leading-edge separation; a first-order
lag is assumed:

ẋ9 =−
x9

TP

+
CP

N(t)

TP

, (14)

C′
N(t) = x9, (15)

where x9 is an internal aerodynamic state variable that rep-
resents the first-order lag, and TP is the corresponding time
constant that is determined empirically. The output coefficient
C′

N(t), which is a lagged (filtered) version of the attached-flow
normal force coefficient, dictates the dynamic stall criterion:
leading-edge separation begins when C′

N(t) exceeds a critical
value denoted by CN1 .

C. Trailing Edge Separation

The effect of trailing edge separation on the aerodynamic
forces is modeled using Kirchhoff’s theory41,42:

CN =CNα

(

1+
√

f ′

2

)2

α, (16)

where f ′ ∈ [0,1] represents the location of the steady sepa-
ration point normalized by the airfoil chord; f ≃ 1 implies
separation near the trailing edge (i.e., attached flow). Its vari-
ation with the angle of attack is modeled through the empirical
relations41

f ′ =







1−0.3exp
(

α−α1
S1

)

if α < α1

0.04+0.66exp
(

α1−α
S2

)

if α > α1

, (17)

T
hi

s 
is

 th
e 

au
th

or
’s

 p
ee

r 
re

vi
ew

ed
, a

cc
ep

te
d 

m
an

us
cr

ip
t. 

H
ow

ev
er

, t
he

 o
nl

in
e 

ve
rs

io
n 

of
 r

ec
or

d 
w

ill
 b

e 
di

ffe
re

nt
 fr

om
 th

is
 v

er
si

on
 o

nc
e 

it 
ha

s 
be

en
 c

op
ye

di
te

d 
an

d 
ty

pe
se

t.

P
L

E
A

S
E

 C
IT

E
 T

H
IS

 A
R

T
IC

L
E

 A
S

 D
O

I:
 1

0
.1

0
6
3
/5

.0
1
9
0
4
4
9



Geometric control analysis of the unsteady aerodynamics of a pitching-plunging airfoil in dynamic stall 5

where α1 is the angle at which the steady flow separates at
70% of the chord, and S1 and S2 are empiric constants utilized
to characterize static stall. Note that the angle of attack in Eq.
(17) should be replaced with the total angle of attack defined
earlier, which accounts for both pitching and plunging.

Consistent with the philosophy of the model, Beddoes and
Leishman assumed a first-order lag in trailing edge separation:

ẋ10 =−
x10

Tf

+
f ′
(

x9
CNα

)

Tf

, (18)

f ′′(t) = x10, (19)

where f ′′ is the effective separation point given by the state
x10, and Tf is an empirical time constant. The effective separa-
tion point then determines the normal force coefficient under
trailing edge separation conditions according to the Kirchhoff
theory:

C
f
N(t) =CNα

(

1+
√

f ′′

2

)2

αE(t), (20)

Similarly, the force in the tangential direction (positive in the
left direction), or chord force, also depends on the effective
separation point as

CC(t) = ηCNα α2
E

√

f ′′, (21)

where η is an empirical parameter that provides room for
modeled viscous effects.

D. Dynamic Stall

The dynamic stall phenomenon is characterized by the
formation of a vortex near the leading edge of the
airfoil8–10,16,17,59. The vortex grows in size and strength until
it separates from the leading edge and convects downstream.
According to the Beddoes-Leisman model, vortex detachment
occurs when the absolute value of C′

N(t) exceeds CN1
41,42. At

this point, the non-dimensional counter τv is triggered and
marches uniformly by the non-dimensional time Ut/b). Si-
multaneously, the LEV continues to grow during this phase
until the instant τv = 2Tvl , where 2Tvl is another empirical time
constant that represents the time taken by the LEV to reach the
trailing edge. At this moment, the contribution of the LEV to
the lift force vanishes.

The vortex contribution to the normal force coefficient is
given by the internal aerodynamic state variable x11, or Cv

N(t),
and is modeled as follows:

ẋ11 =−
x11

Tv

+
Ċv

Tv

, (22)

Cv
N(t) = x11, (23)

FIG. 1: Schematic diagram of a two-dimensional
pitching-plunging airfoil in a free stream.

where

Cv =











CC
N

[

1−
(

1+
√

f ′′

2

)2
]

for τv ≤ 2Tvl

0 for τv > 2Tvl

, (24)

CC
N is the attached-flow circulatory normal-force coefficient,

and the time constants Tv and Tvl are determined empirically.

E. Total Aerodynamic Response

The total normal force coefficient of an airfoil under dy-
namic stall conditions is the sum of the normal force coeffi-
cients due to the LEV Cv

N , the separated-flow contribution C
f
N ,

and the added-mass (non-circulatory) contribution C
p
N −CC

N :

CN(t) =C
f
N(t)+Cv

N(t)+C
p
N(t)−CC

N(t), (25)

The lift and drag coefficients can then be obtained by project-
ing the normal and tangential (chordwise) force coefficients in
the directions normal and tangential to the flow, respectively:

CL(t) =CN(t)cosα(t)+CC(t)sinα(t)

CD(t) =CN(t)sinα(t)−CC(t)cosα(t)
. (26)

IV. PROBLEM DEFINITION

This section poses the fluid mechanics problem under study.
Consider a two-dimensional, pitching-plunging airfoil in a
free stream flow with velocity U , as shown in Fig. 1. The
pitching angle α and the plunging displacement h follow the
harmonic motion:

α(t) = α∗−Aα cos(ωt) and h(t) =−Hbcos(ωt +φ) ,
(27)

where ω is the frequency of oscillation, α∗ is the mean pitch-
ing angle, Aα is the amplitude of the pitching motion, H is
the amplitude of the plunging displacement normalized by the
half-chord b, and φ is the phase difference between both mo-
tions. The pitching axis is taken at the quarter-chord of the
airfoil in this study.

The application of geometric control theory to the study of
the Beddoes-Leishman model requires a reformulation of the
model as a nonlinear, control-affine system in the following
way:

ẋ(t) = f(x(t))+gα(x(t))α̈(t)+gh(x(t))ḧ(t), (28)
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Geometric control analysis of the unsteady aerodynamics of a pitching-plunging airfoil in dynamic stall 6

y(t) = [CL(t) CD(t)]
T , (29)

where x(t) is the vector containing the states of the system,
y(t) is the output of the system, and f is the drift vector field.
The input vector fields gα and gh are the control vectors as-
sociated with the pitching and plunging inputs. The control
inputs of the system are α̈ and ḧ, the pitching and plunging
accelerations, respectively. The definition of a proper dynam-
ical system requires direct dependence only on the inputs, not
on their derivatives. Since the accelerations appear (in the
non-circulatory terms), if α and h, or α̇ and ḣ were chosen as
inputs, their derivatives would appear in the dynamical model.
Therefore, we chose the accelerations to be the inputs to the
dynamic model (28) to ensure a proper dynamical representa-
tion:

uα = α̈ = ω2Aα cos(ωt)

uh = ḧ = ω2Hbcos(ωt +φ) . (30)

This study is concerned with the average unsteady lift and
drag forces on an airfoil in a high-velocity free stream subject

to high-frequency, small-amplitude oscillations at high angles
of attack. Given the different orders of magnitude involved in
the problem, it is adequate to define the following scaling:

Aα = O (ε) , H = O (ε) , ω = O

(

1

ε

)

U = O

(

1

ε

)

⇒ k =
ωb

U
= O (1) , (31)

with k being the reduced frequency. ε is a small parameter,
such that terms of higher order in ε may be neglected with
respect to those of lower order.

V. GEOMETRIC CONTROL AVERAGING ANALYSIS

The Beddoes-Leishman model is reformulated in a geomet-
ric control framework, i.e., in the form of Eq. (28). The re-
sulting system of the Beddoes-Leishman model for a pitching-
plunging airfoil is thus amenable to geometric control theory:

d

dt































x1

x2

x3

x4

x9

x10

x11

α
α̇
ḣ































=









































−b1

(

β 2U
b

)

x1 +αT + q
2

−b2

(

β 2U
b

)

x2 +αT + q
2

a33x3 +αT

a44x4 +q
U/b

TP

[

CNα αE + 1
M
(4a33x3 +a44x4)− x9 +

4αT
M

+ q
M

]

U/b

Tf

[

−x10 + f ′
(

x9
CNα

)]

U/b

Tv

[

−x11 +Ċv

]

α̇
0
0









































+































0
0
0
0
0
0
0
0
1
0































α̈ +































0
0
0
0
0
0
0
0
0
1































ḧ, (32)

with the system (32) being equivalent to

ẋ= f(x)+gα(x)uα +gh(x)uh,

where x= [x1,x2,x3,x4,x9,x10,x11,α, α̇, ḣ] is the state vector,
and the control inputs uα and uh are the pitching and plunging
accelerations α̈ and ḧ, respectively. As previously mentioned,
the output equation comprises the lift and drag force coeffi-
cients:

y(t) = [CL(t) CD(t)]
T .

Plugging in the definitions of the inputs from Eq. (30) and re-
ferring to the scaling in Eq. (31), the dynamical system takes

the form

ẋ= f(x) (33)

+
1

ε

[

Aα ω2gα(x)cos(ωt)+Hbω2gh(x)cos(ωt +φ)
]

.

As a high-frequency, high-amplitude, time-periodic system,
Eq. (34) is not amenable to direct averaging49. Besides, since
the cosine signal has zero mean, the typical averaging proce-
dure would neglect the effect of the pitching-plunging oscilla-
tions. Thus, a more rigorous averaging technique is required,
such as the one presented in section II B, which is particularly
fitting for this problem.

The application of the Variation of Constants formula to the
system in Eq. (32) leads to the average dynamics:
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Geometric control analysis of the unsteady aerodynamics of a pitching-plunging airfoil in dynamic stall 7

d

dt































x1

x2

x3

x4

x9

x10

x11

α

α̇

ḣ































=









































−b1

(

β 2U
b

)

x1 +αT + q
2

−b2

(

β 2U
b

)

x2 +αT + q
2

a33x3 +αT

a44x4 +q
U/b

TP

[

CNα αE + 1
M
(4a33x3 +a44x4)− x9 +

4αT
M

+ q
M

]

U/b

Tf

[

−x10 + f ′
(

x9
CNα

)]

U/b

Tv

[

−x11 +Ċv

]

α̇
0
0






























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



+




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




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



G1(x)
G2(x)
G3(x)

0
G5(x)

0
G7(x)

0
0
0































+O
(

ε3
)

(34)

where Gi denotes the ith component of the vector G , which
depends on the states of the system. The indicated entries are
the only components of G that do not vanish after performing
the proposed averaging analysis. In addition, as indicated in
Eq. (8), the pullback consists of an infinite series of iterated
Lie Brackets. In the current analysis, the series is truncated
after O

(

ε2
)

.

The averaging theorem relates the properties of a nonlinear
time-periodic system, such as Eq. (32), to those of its aver-
age dynamics. In other words, the stability of some periodic
orbit solution of the original nonlinear dynamical system may
be inferred from the stability properties of the corresponding
equilibrium points of the averaged system in Eq. (34). Its
equilibrium is obtained by setting the left-hand side to zero,
and solving for the fixed point x∗ that satisfies the equation

0= f (x∗)+G (x∗) ,

The last two equations of the average dynamics in Eq. (34)
imply that the equilibrium of the states α̇ and ḣ is automati-
cally satisfied, and the α equation indicates that α̇∗ = 0. Tak-
ing the averaged plunging speed ḣ∗ to be zero (otherwise,
there will be a net drift upward or downward, which is non-

physical) but keeping α∗ at an arbitrary value to study the
effect of the mean angle of attack on the results, we obtain
the following equilibrium values for the internal aerodynamic
states:

x∗1 =
b

b1β 2U
(α∗−Hk sinφ)

x∗2 =
b

b2β 2U
(α∗−Hk sinφ)

x∗3 =−a−1
33 (α∗−Hk sinφ)

x∗4 = 0

x∗9 =CNα (α
∗−Hk sinφ)

x∗10 = f ′ (α∗−Hk sinφ) = x∗0

x∗11 = Ċ∗
v

. (35)

The equilibrium x∗ of the average dynamics affects the av-
erage value of the lift and drag force coefficients. However,
since the force coefficients are not linearly dependent on the
states, their average is not simply CL (x

∗) and CD (x∗). In-
stead, each state is approximated with the first order expres-
sion xi(t) = x∗i +Axi

cos(ωt +φi), and substituted into a multi-
variable Taylor series expansion of the lift and drag coeffi-
cients around x∗:

ym =
∞

∑
n1=0

· · ·
∞

∑
nd=0

(x1 − x∗1)
n1 . . .

(

xd − x∗d
)nd

n1! . . .nd!

(

∂ n1+···+nd ym

∂x
n1
1 . . .∂x

nd

d

)

(x∗)

= ym (x∗)+
n+5

∑
i=1

∂ym (x∗)

∂xi

(xi − x∗i )+
1

2!

n+5

∑
i=1

n+5

∑
q=1

∂ 2ym (x∗)

∂xi∂xq

(xi − x∗i )
(

xq − x∗q
)

+ . . . , (36)

where ym(x),m ∈ (CL,CD). Finally, the average of the force
coefficients over a cycle of motion of the inputs is

ym =
1

T

∫ T

0
ym(t)dt (37)

A. Average lift coefficient

The average unsteady lift coefficient over one cycle of mo-
tion is found to be
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Geometric control analysis of the unsteady aerodynamics of a pitching-plunging airfoil in dynamic stall 8
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(a) Steady lift coefficient vs. angle of attack.
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(b) Steady drag coefficient vs. angle of attack.

FIG. 2: Steady lift and drag coefficients as a function of the angle of attack for a NACA 0012 airfoil at Re = 5 ·105.

CL =
CNα

2
(α∗−Hk sinφ)

[

(

1+
√

x∗0
)2

2
cosα∗+2η (α∗−Hk sinφ)

√

x∗0 sinα∗

]

+ Ċ∗
v cosα∗−

A2
α

4

{

CNα α∗

2

[

(

1+
√

x∗0
)2

2
cosα∗+2ηα∗√x∗0 sinα∗

]

+Ċ∗
v cosα∗+

8sinα∗

M

}

+
2Aα Hk

M
sinα∗ sinφ +O

(

ε3
)

, (38)

with the infinite series being truncated at the order O
(

ε2
)

.
The average lift coefficient is a function of the mean angle of
attack α∗, the motion parameters (reduced frequency k and
pitching and plunging amplitudes Aα and H, respectively),
and the airfoil characteristics. There is also a dependency on
the equilibrium values of the average dynamics of the states
x∗10 = x∗0 and x∗11 = Ċ∗

v , listed in Eq. (35). The equilibrium state
x∗10 is the point of steady separation evaluated at an equivalent
angle of attack (α∗−Hbk sinφ), and it can be directly calcu-
lated using Eq. (17).

The equilibrium state x∗11 = Ċ∗
v represents the mean value of

the time derivative of Eq. (24), which is obtained by numer-
ical simulation of the Beddoes-Leishman model at different
combinations of Aα , H, and k. These data are then used to
mathematically represent the relation Ċ∗

v = Ċ∗
v (α

∗,Aα ,H,k)
in a smooth way.

The analytical expression of the average lift coefficient in
Eq. (38) permits a distillation of the role of each variable
in the generation of lift. In fact, one might expect the aver-
age lift coefficient CL to be equal to the steady lift coefficient
evaluated at the mean angle of attack α∗. However, Eq. (38)
uncovers more complex force dynamics due to the oscillatory
motion of the airfoil. The first line of the equation is simply
the expression of the lift coefficient given by the Beddoes-
Leishman model evaluated at the equilibrium points of the av-
eraged dynamics; the first term in brackets is the projection

of the normal force coefficient given by Kirchhoff’s model in
the direction perpendicular to the free stream, and the second
term in brackets is the projection of the chord force. Both
expressions account for the effect of trailing edge separation.
In fact, these two terms in the first line present the average
lift coefficient if direct averaging were to be performed on the
system without accounting for higher-order effects. Roughly
speaking, a deviation of CL from this term may indicate lift
enhancement or deficiency and, in essence, the appearance of
the symmetry breaking phenomenon. In the following discus-
sion, the two terms in the first line are referred to as the effects
of the normal and the tangential forces, respectively.

The second line in Eq. (38) lists two contributions. The
first one indicates a clear dependence of the average lift force
on the strength of the leading-edge vortex represented by Ċ∗

v ,
which is one of the key parameters capturing dynamic stall in
the Beddoes-Leishman model. As such, this term implies that
the circulation of the leading-edge vortex, which only forms in
unsteady conditions, generates a net resulting force even when
the airfoil motion is harmonic with zero-mean, and plays a
role in breaking symmetry and shifting the average lift force
from the steady value. However, given its high dependence
on the mean angle of attack and the motion parameters, its
contribution to CL can be positive or negative depending on
the flight conditions, inducing either lift enhancement or defi-
ciency, respectively.
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Geometric control analysis of the unsteady aerodynamics of a pitching-plunging airfoil in dynamic stall 9
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(a) Normalized terms of CL at Mach M = 0.3.
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(b) Added mass term at different Mach numbers.

FIG. 3: Terms of the average lift coefficient CL minus the same terms for static conditions normalized by the maximum Ċ∗
v vs.

mean angle of attack α∗ for a pitching amplitude of Aα = 5◦ and a reduced frequency of k = 0.5 (NACA 0012 airfoil,
Re = 5 ·105, H = 0).

The second contribution groups all the terms that depend
explicitly on the pitching motion. The first and second terms
are the projections of the normal and the chord forces in the di-
rection perpendicular to the free stream, and they account for
the effect of trailing edge separation. Given their positive na-
ture, the role of these terms through the pitching motion is to
decrease the average lift coefficient. However, the third term
in brackets lists the contribution of the leading-edge vortex
due to the pitching motion, and it may take positive or neg-
ative values. As such, it may generate a force that increases
or decreases CL as a function of the angle of attack and the
flight conditions. Lastly, the fourth term in brackets represents
the effect of the Mach number on the average lift coefficient,
which hints at a decrease in the lift force that is attenuated as
the Mach number increases. Due to its non-circulatory nature,
this term can also be understood as an expression of the added
mass effects.

Finally, the third and last line in Eq. (38) reveals the ef-
fect of the interaction between the pitching and plunging mo-
tions. The contribution of this combination is unimportant
when both movements are in phase. However, the expres-
sion suggests a lift enhancement mechanism when the pitch-
ing motion lags behind the plunging displacement and lift de-
ficiency when the motion is otherwise. This interactive mech-
anism diminishes as compressibility effects become more im-
portant.

Eq. (38) does not contain any terms that depend solely and
directly on the amplitude of the plunging motion, as some
terms do on Aα . Nonetheless, the influence of the plung-
ing speed on the average lift coefficient occurs through the
leading-edge vortex Ċ∗

v , whose value is determined by Aα , H,
and k. Thus, the effect of the pitching and plunging motions
on the average lift coefficient is highly determined by their
influence on the rate of change of the leading-edge vortex

strength, which is one of the key parameters in the study of
dynamic stall behavior.

Before studying the effects of unsteadiness in the lift and
drag coefficients, it is necessary to understand their behavior
under steady conditions. Fig. 2 shows the steady CL and CD

as a function of the angle of attack for a NACA 0012 airfoil at
Re = 5 ·105. For this conventional airfoil, the steady lift coef-
ficient increases linearly at low angles of attack until we reach
the stall angle (approximately 15◦), where lift decreases again
until it reaches a minimum point at around 20◦. After this
trough, lift keeps increasing at a lower rate, reaching another
maximum at 42◦. On the other hand, at low angles of attack,
the drag coefficient increases slowly with α . However, there
is a sudden rise in CD,s at stall. At higher angles of attack, the
steady drag coefficient keeps increasing significantly.

Fig. 3a shows the value of each of the terms in Eq. (38)
when compared to their counterparts under steady conditions
for a NACA 0012 airfoil pitching with an amplitude of Aα =
5◦ at a reduced frequency of k = 0.5 and flight Mach num-
ber M = 0.3 for different mean angles of attack. To do this
comparison, the static values have been subtracted from the
corresponding terms in Eq. (38) and normalized by the max-
imum value of Ċ∗

v at the amplitude of study, Aα = 5◦. At
M = 0.3, the resulting unsteady lift coefficient seems to be
dominated by the added mass term (solid blue line), showing
the effects of the Mach number, whose magnitude increases
with the mean angle of attack. This contribution results in
a decrease in CL. The second most dominant contribution is
due to the leading-edge vortex through Ċ∗

v (solid orange line).
This term contributes positively to the average lift force when
oscillating about mean angles of attack close to the stall angle
(α∗ = 15◦). In contrast, in oscillations around a mean angle of
attack with a negative steady lift curve slope (α∗ = 15◦−20◦),
the leading-edge vortex has a negative impact on the average
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FIG. 4: Terms of the average lift coefficient CL minus the
same terms for static conditions normalized by the maximum

Ċ∗
v vs. mean angle of attack α∗ for a plunging motion of
effective amplitude Aα,e f f = arctanHk = 5◦, reduced

frequency of k = 0.5, and flight Mach number M = 0.3
(NACA 0012 airfoil, Re = 5 ·105, Aα = 0◦).

CL. Interestingly, the terms showing a direct dependence on
the pitching amplitude are negligible. This behavior is to be
expected because these terms are proportional to the square of
the pitching amplitude, and we focus here on small-amplitude
oscillations.

The added mass term presented in Eq. (38) is inversely pro-
portional to the Mach number. However, the other contribu-
tions in the equation do not present a dependence with M. Fig.
3b depicts the value of the added mass term in Eq. (38) for a
NACA 0012 airfoil pitching with an amplitude of Aα = 5◦ at a
reduced frequency of k = 0.5 for different mean angles of at-
tack and Mach numbers. The effect of this term is a reduction
in the average lift force, although its value is highly dependent
on M. At low Mach numbers, the added mass effects are sub-

stantial, making them the prevalent unsteady mechanism and
leading to an overall decrease in CL at all the studied angles
of attack. However, the negative contribution of the added
mass term diminishes as the Mach number increases. In fact,
at high free stream Mach numbers (M = 0.5,0.7), the positive
effect of Ċ∗

v , occurring when oscillating close to the stall an-
gle, counteracts the negative contribution of M, suggesting lift
enhancement in this regime. Since the added mass contribu-
tion decreases with M, the other terms in Eq. (38) showing a
direct dependence on the pitching amplitude acquire more im-
portance at higher Mach numbers, especially the component
of the normal force (dashed red line), which results in a de-
crease in lift with a maximum value when oscillating at mean
angles of attack slightly higher than the stall angle.

Fig. 4 shows the value of each of the terms in Eq. (38)
when compared to their steady counterparts for a NACA 0012
airfoil plunging at a reduced frequency of k = 0.5 and flight
Mach number M = 0.3 for different mean angles of attack.
The amplitude of the plunging motion is determined by the ef-
fective amplitude Aαeff = arctanHk = 5◦, such that the results
are comparable to those of the pitching motion. In this case,
the leading-edge vortex takes a major role in the enhancement
or reduction of the lift force. Similarly to the pitching case,
the Ċ∗

v term (solid orange line) suggests a positive contribution
to the average lift force at mean angles of attack close to the
stall angle but a decrease in CL when plunging at post-stall an-
gles of attack where the steady lift curve slope is negative. In
the pitching motion, however, the positive and negative con-
tributions of the leading-edge vortex to the lift force were of
similar magnitude; in the plunging motion, the negative effect
at post-stall is more pronounced than the positive one at stall.
The other terms of Eq. (38) are negligible in the studied cases.
Interestingly, no considerable dependence on the Mach num-
ber is observed in the case of plunging, in contrast to pitching.

B. Average drag coefficient

The average unsteady drag coefficient over one cycle of mo-
tion is derived to be

CD (α∗) =
CNα

2
(α∗−Hk sinφ)

[

(

1+
√

x∗0
)2

2
sinα∗−2η (α∗−Hk sinφ)

√

x∗0 cosα∗

]

+Ċ∗
v sinα∗−

A2
α

4

{

CNα α∗

2

[

(

1+
√

x∗0
)2

2
sinα∗−2ηα∗√x∗0 cosα∗

]

+Ċ∗
v sinα∗−

8cosα∗

M

}

−
2Aα Hk

M
cosα∗ sinφ +O

(

ε3
)

, (39)

with the infinite series being truncated at the order O
(

ε2
)

.

The average unsteady drag coefficient CD depends on the
mean angle of attack α∗, the motion parameters (Aα , H, and
k), the airfoil characteristics such as the slope of the normal
force curve CNα and the separation point x∗0, and the equilib-

rium value of the derivative of the vortex strength Ċ∗
v . Simi-

lar to the average lift coefficient, the first line in Eq. (39) is
simply the expression of the drag coefficient as given by the
Beddoes-Leishman model in Eq. (26) evaluated at the equilib-
rium points of the averaged dynamics. For instance, the first
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(a) Normalized terms of CD at Mach M = 0.3.
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(b) Added mass term at different Mach numbers.

FIG. 5: Terms of the average drag coefficient CD minus the same terms for static conditions normalized by the maximum Ċ∗
v vs.

mean angle of attack α∗ for a pitching amplitude of Aα = 5◦ and a reduced frequency of k = 0.5 (NACA 0012 airfoil,
Re = 5 ·105, H = 0).

and second terms represent the components of the normal and
tangential force coefficients, respectively, in the direction of
the free stream. Therefore, as it occurred with the lift coeffi-
cient, roughly speaking, a deviation of CD from this expres-
sion may entail drag reduction or augmentation as a result of
unsteady motion.

The first term in the second line of Eq. (39) shows the ef-
fect of the leading-edge vortex on the average drag coefficient.
However, since Ċ∗

v is highly dependent on the mean angle of
attack and the motion parameters, its net effect on the aver-
age drag force is intricate and needs some scrutiny, as demon-
strated in the discussions of Fig. 5, 6 below. The next term in
the second line (the bracketed terms) collects all the terms that
depend directly on the amplitude of the pitching motion Aα .
The last term in brackets notes the dependence of CD on the
Mach number through added mass effects, which decreases as
compressibility effects become more important. Interestingly,
some of the terms in brackets contribute to a reduction in the
drag force, hinting at a possible thrust generation mechanism.

Lastly, the final line of Eq. (39) shows the impact of the
combination of both pitching and plunging motions, which
also vanishes if both oscillations are in phase. Of particular
interest is the case when the plunging motion lags behind the
pitching oscillations; in this case, the interactive term becomes
negative, pointing to a possible drag reduction mechanism.
However, the effect of this interactive mechanism decreases
as the Mach number increases.

As it occurred with CL, the average drag coefficient does
not contain any terms that depend solely and explicitly on
the plunging amplitude. However, the dependence of CD on
the plunging motion takes place through the average value of
the leading-edge vortex strength Ċ∗

v , which heavily depends
on the motion parameters Aα , H and k. Fig. 5a shows the
value of each of the terms in Eq. (39) in comparison to their

steady counterparts for a NACA 0012 airfoil pitching with an
amplitude of Aα = 5◦ at a reduced frequency of k = 0.5 and
flight Mach number M = 0.3 for different mean angles of at-
tack. Fig. 5b shows the added mass contribution of Eq. (39),
the only term to show dependence with M, at different Mach
numbers. As it occurred with the lift coefficient, the added
mass term (solid blue line in Fig. 5a) dominates over the oth-
ers. However, contrary to CL, even though this contribution
decreases with M, as seen in Fig. (5b), its effect is prevalent
even at the highest Mach numbers. This relevance implies an
increase of the drag force in all flight conditions, although this
increment is lower when pitching at higher angles of attack.
Nonetheless, Fig. 5a also shows a decrease in the drag force
due to a negative contribution of the leading-edge vortex de-
creasing the drag force when oscillating at angles of attack in
the post-stall regime. Similarly, the normal force contributes
negatively to CD as the airfoil pitches at higher α∗. However,
such effects are negligible when compared to the added mass
term.

Fig. 6 shows the value of each of the terms in Eq. (39)
when compared to the same terms under steady conditions
for a NACA 0012 airfoil plunging at a reduced frequency of
k = 0.5 and flight Mach number M = 0.3 with an effective am-
plitude of Aαeff = arctanHk = 5◦ for different mean angles of
attack. Similar to the lift coefficient, in the case of the plung-
ing motion, the leading-edge vortex seems to be the dominant
factor in controlling the average drag coefficient. In fact, the
depicted trends are similar to the lift case, which indicates that
lift and drag are just two components of the resultant aerody-
namic force. Drag increases right before stall and decreases
between the stall angle and the trough of the steady lift curve,
with the drag reduction being more pronounced than the in-
crease. As shown for CL, this increase and decline in the drag
coefficient is not considerably dependent on the Mach num-
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FIG. 6: Terms of the average drag coefficient CD minus the
same terms for static conditions normalized by the maximum
Ċ∗

v vs. mean angle of attack α∗ for a plunging motion with an
effective amplitude Aα,e f f = arctanHk = 5◦, reduced

frequency of k = 0.5, and flight Mach number M = 0.3
(NACA 0012 airfoil, Re = 5 ·105, Aα = 0◦).

ber. The rest of the terms in Eq. (39) are also negligible, as
they were for the lift coefficient.

VI. CONCLUSIONS

Proper analysis of unsteady fluid dynamics systems re-
quires special mathematical tools that account for the higher-
order effects due to nonlinear interactions between different
flow mechanisms. This paper demonstrates the potential of
geometric control theory as an analytical instrument for the
study of unsteady fluid dynamics problems.

This work starts by introducing the capacity of geometric
control theory to predict phenomena stemming from nonlin-
ear effects, such as the generation of forces or motion in un-
actuated directions, or the capture of symmetry breaking due
to high-frequency oscillatory controls. However, the appli-
cation of geometric control theory to fluid dynamics requires
the formulation of a reduced-order model that is able to cap-
ture the major physical aspects of unsteady flows. At the same
time, the model needs to be compact to permit a subsequent
analytical study of the results. The current paper focuses on
the Beddoes-Leishman model for dynamic stall, which com-
prises both characteristics. The model is applied to a two-
dimensional pitching and plunging airfoil performing low-
amplitude, high-frequency oscillations. With a combination
of geometric control theory and averaging, the current formu-
lation provides the average unsteady lift and drag forces on the
oscillating airfoil. The results are thus compared to the steady
values to assess any possible enhancement or attenuation in
the aerodynamic forces due to the unsteady motion.

The application of geometric control theory to a high-
frequency, low-amplitude pitching-plunging airfoil reveals
symmetry breaking in both lift and drag forces. Moreover,

the rate of change in the strength of the leading-edge vortex
is the main parameter governing these force generation mech-
anisms. The positive contribution of the vortex when oscil-
lating around stall leads to lift enhancement, or an increase
in the average lift force, when compared to its steady value.
When the oscillation occurs in the post-stall region, the nega-
tive rate of change in the vortex strength reduces the average
lift on the airfoil. Both pitching and plunging motions depict
the aforementioned results, with the enhancement/reduction
being controlled by the reduced frequency and the amplitude
of motion. However, compressibility also plays a major role
in pitching airfoils in this lift enhancement process. That is,
pitching oscillations need to occur at high Mach numbers to
induce substantial lift enhancement.

Although leading-edge vortex effects are observed in the
unsteady drag coefficient of pitching airfoils, their contri-
bution is negligible with respect to the added mass effects.
This Mach-dependent contribution, which is dominant over
the other effects, suggests an increase in the drag force due to
the pitching motion at all mean angles of attack. However, the
effect is mitigated at higher angles of attack and high Mach
numbers.

On the other hand, the leading-edge vortex dictates the in-
crement and reduction in the drag force of plunging airfoils.
The positive rate of change in the vortex strength at stall in-
creases the average drag force of a plunging airfoil when com-
pared to a steady wing. Nonetheless, in the post-stall regime,
the leading-edge vortex yields a significant reduction in drag.
In fact, the present analysis suggests the generation of a thrust
force that overcomes the aerodynamic drag, propelling the
airfoil forward. However, this thrust mechanism only occurs
when the airfoil is plunging above the stall angle.

The identification of the parameters governing the increase
and decrease in the aerodynamic forces of airfoils in unsteady
motion provides a better understanding of the higher-order in-
teractions occurring in unsteady flows. These results provide
practical knowledge to the relatively unexplored unsteady
flight regime, which offers significant potential for revolution-
ary concepts needed for the next generation of flying vehicles,
such as air taxis and drones. Flapping flight, helicopters, and
air taxis are inherently time-periodic systems that may read-
ily benefit from the conclusions presented in this work. The
cognizance of the mechanisms behind lift enhancement and
thrust production may provide substantial insight into these
time-periodic systems and, in turn, inspire more efficient, ro-
bust, and specialized aircraft. The present paper is one of the
first steps in this route, providing efficient analysis tools and
a framework that allows the investigation of unconventional
flying vehicles employing unsteady aerodynamic phenomena
for more efficient performance.
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