N)
s MPI-xCCL: A Portable MPI Library over Collective

Communication Libraries for Various Accelerators

Chen-Chun Chen Kawthar Shafie

chen.10252@osu.edu Khorassani
The Ohio State University

Columbus, Ohio, USA
Columbus, Ohio, USA

Jinghan Yao
yao.877@osu.edu
The Ohio State University
Columbus, Ohio, USA

ABSTRACT

The evolution of high-performance computing toward diverse accel-
erators, including NVIDIA, AMD, Intel GPUs, and Habana Gaudi Ac-
celerators, demands a user-friendly and efficient utilization of these
technologies. While both GPU-aware MPI libraries and vendor-
specific communication libraries cater to communication require-
ments, trade-offs emerge based on library selection across various
message sizes. Thus, prioritizing usability, we propose MPI-xCCL,
a Message Passing Interface-based runtime with cross-accelerator
support for efficient, portable, scalable, and optimized communica-
tion performance. MPI-xCCL incorporates vendor-specific libraries
with GPU-aware MPI runtimes ensuring multi-accelerator compati-
bility while adhering to MPI standards. The proposed hybrid designs
leverage the benefits of MPI and xCCL algorithms and transparently
to the end user. We evaluated our designs on various HPC systems
using OSU Micro-Benchmarks, and Deep Learning frameworks
TensorFlow with Horovod. On NVIDIA-GPU-enabled ThetaGPU,
our designs outperformed Open MPI by 4.6x. On emerging Habana
Gaudi-based systems, MPI-xCCL was also able to deliver similar
performance as vendor-provided communication runtimes.

KEYWORDS
NCCL, RCCL, HCCL, MSCCL, xCCL, GPU, MPI

ACM Reference Format:

Chen-Chun Chen, Kawthar Shafie Khorassani, Pouya Kousha, Qinghua
Zhou, Jinghan Yao, Hari Subramoni, and Dhabaleswar K. Panda. 2023. MPI-
xCCL: A Portable MPI Library over Collective Communication Libraries
for Various Accelerators. In Workshops of The International Conference on
High Performance Computing, Network, Storage, and Analysis (SC-W 2023),
November 12-17, 2023, Denver, CO, USA. ACM, New York, NY, USA, 8 pages.
https://doi.org/10.1145/3624062.3624153

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

SC-W 2023, November 12—17, 2023, Denver, CO, USA

© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0785-8/23/11...$15.00
https://doi.org/10.1145/3624062.3624153

847

shafiekhorassani.1@osu.edu The Ohio State University

The Ohio State University

Hari Subramoni
subramoni.1@osu.edu
The Ohio State University
Columbus, Ohio, USA

Pouya Kousha
kousha.2@osu.edu

Qinghua Zhou
zhou.2595@osu.edu
The Ohio State University

Columbus, Ohio, USA Columbus, Ohio, USA

Dhabaleswar K. Panda

panda@cse.ohio-state.edu

The Ohio State University
Columbus, Ohio, USA

1 INTRODUCTION

The High-Performance Computing (HPC) landscape has signifi-
cantly evolved over recent years to accommodate a diverse set of
accelerators, driven by the growing demand for high computing
power in scientific, big data, and deep learning applications. As
this demand intensifies, it necessitates the support for various ac-
celerators deployed on HPC systems, particularly in the context
of communication runtime for efficient workload scalability on
supercomputing systems. Message Passing Interface (MPI) is the
defacto communication paradigm used in HPC systems to enable
communication across processes, modern GPUs [5, 18, 20], and new
network interconnect [17].

To cater to diverse accelerators, the MPI runtime must be ex-
tended to integrate the APIs and software designed to harness the
capabilities of specific hardware. For instance, NVIDIA GPUs re-
quire the MPI runtime to support CUDA-aware communication,
while AMD GPUs necessitate ROCm-aware communication run-
time. These GPU-aware MPI libraries facilitate direct GPU-to-GPU
data transfers, yet their implementation demands substantial do-
main expertise and extensive effort, often falling short of optimal
performance across all message sizes. Therefore, GPU vendors offer
vendor-specific communication libraries to attain superior collec-
tive communication performance, particularly tailored for deep
learning (DL) applications. It inspires the MPI library to harness
the capabilities of vendor-specific libraries and incorporate their
features into the current designs. As the number of accelerators
and vendor-specific APIs expands, the need for a well-defined layer
that leverages the underlying APIs and vendor-specific commu-
nication support becomes crucial. This layer can be incorporated
within the MPI library to establish a unified software framework
that effectively exploits the various hardware options available
through utilizing specific communication libraries. By streamlin-
ing communication and simplifying the integration process, this
unified approach enhances the efficiency and adaptability of high-
performance computing systems in today’s rapidly evolving tech-
nological landscape.

Currently, application developers are often responsible for port-
ing or updating their codes to utilize accelerator-specific commu-
nication APIs. This requires extensive knowledge and can lead to
decreased productivity and potential inconsistencies across vari-
ous hardware platforms. To mitigate these challenges, a unified

https://doi.org/10.1145/3624062.3624153
https://doi.org/10.1145/3624062.3624153
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3624062.3624153&domain=pdf&date_stamp=2023-11-12

SC-W 2023, November 12-17, 2023, Denver, CO, USA

1000

—— MPI Allgather
—— RCCL Allgather

—— MPI Allreduce
—— NCCL Allreduce

800

600

Latency (us)
Latency (us)

400

200

216 64 256 1K 4K 16K 64K 256K 1M
Message Size (Bytes)

716 64 256 1K 4K 16K 64K 256K 1M
Message Size (Bytes)

(a) MPI Allreduce vs. NCCL ALlreduce (b) MPI Allgather vs. RCCL Allgather

Figure 1: Comparison of MPI and NCCL Allreduce latency
using 32 GPUs (4 nodes) on a DGX A100 system, and MPI
and RCCL Allreduce latency using 8 GPUs (4 nodes) on an
AMD GPU system. The traditional MPI library is optimal for
small message communication, while vendor-provided xCCL
is more efficient for large message communication.

communication layer within the MPI library is proposed, which
allows developers to focus on optimizing their application codes
without mastering accelerator-specific APIs. By implementing this
approach, productivity can be increased, and consistent, efficient
exploitation of diverse hardware options can be ensured. Ultimately,
this contributes to the portability and adaptability of HPC applica-
tions in an evolving HPC landscape.

1.1 Motivation

In order to support various DL workloads, many GPU vendors have
provided specific support for communication needs through vendor-
specific communication libraries such as NCCL [13] (NVIDIA Col-
lective Communication Library) for NVIDIA GPUs and RCCL [2]
(ROCm Collective Communication Library) for AMD GPUs. Al-
though these communication libraries are not compliant with the
MPI standard and work independently through the particular ven-
dor, they provide an excessive amount of options at the commu-
nication layer in addition to GPU-aware MPI libraries from the
user’s perspective to select from for their communication needs.
These libraries are optimized to deliver exceptional communication
throughput for DL applications. Lu et al. [21] survey the differ-
ent vendor-specific communication libraries examine the features
and industry use cases of xCCLs, evaluate their performance, and
present key takeaways and observations. Consequently, with metic-
ulous fine-tuning by the vendors themselves, they exhibit superior
performance for larger message transfers. Figure 1 illustrates a
comparison between traditional MPI libraries and vendor-specific
libraries, NCCL and RCCL, on NVIDIA and AMD GPU systems. In
Figure 1(a), it’s evident that the MPI library achieves lower latencies
for smaller messages, while NCCL surpasses MPI Allreduce perfor-
mance beyond the 16 KB threshold. Similarly, on AMD systems in
figure 1(b), RCCL initially presents higher overheads up to 64 KB
but excels in outperforming MPI Allgather for larger messages. This
motivation propels us to seamlessly incorporate vendor-specific
libraries into the standard MPI runtime designs, enabling a hybrid
communication approach that harnesses the strengths of both for
optimal performance across all message sizes.

Integrating vendor-specific libraries into traditional designs is a
challenge. With the emergence of new architectures and the evolu-
tion of the communication libraries built on top of them, we need to
expand and offer a unified communication interface that caters to

848

Chen, et al.

various vendors/communication libraries, including NVIDIA GPUs,
AMD GPUs, and Habana Gaudi accelerators, significantly simplify-
ing the user experience and improving the overall performance.

1.2 Proposed Solution

In this paper, we introduce and evaluate MPI-xCCL (xCCL in short),
a unified, portable communication interface that supports vari-
ous vendor accelerators, enabling users and developers to dynami-
cally leverage the best features from diverse implementations in an
application-transparent manner.

From the user perspective, the proposed xCCL offers several
advantages: 1) it allows users to utilize different Collective Commu-
nication Libraries (CCLs) across architectures without modifying
their code, relying on standard MPI APIs; 2) it manages the com-
plexities of underlying CCL APIs and logic, such as stream handling
for each architecture; 3) it supports automatic error handling, e.g.,
falling back to traditional MPI communication if the datatype is
not supported in CCL; 4) it includes common MPI non-blocking
collective operations, whereas NCCL only supports five built-in
collective operations, requiring users to implement others them-
selves; 5) the xCCL design optimizes performance across a wide
range of message sizes by selecting the most suitable backend with
the hybrid designs; and 6) it treats CCLs as plug-ins, allowing users
to take advantage of the same features and functionalities provided
by pure CCLs, even when the underlying CCL version is upgraded.

For developers, XCCL offers 7) a unified layer for implementing
collective operations, eliminating the need to customize algorithms
and functions for each new CCL; and 8) a scalable design that can
be easily extended to support upcoming architectures and CCLs,
such as oneCCL. By employing xCCL, users can focus on their
code without worrying about the underlying details, while develop-
ers can streamline the implementation and extension of collective
operations across diverse architectures.

MPI-xCCL provides support for communication in a manner
that encompasses various vendors, including NVIDIA GPUs, AMD
GPUs, and Habana Gaudi accelerators, by exploiting the various
vendor-specific supports available combined into one interface
referred to as an xCCL MPI Runtime. This refers to an MPI runtime
built over the underlying xCCL libraries and APIs, allowing the
MPI calls to exploit the underlying vendor-provided communication
APIs. We propose hybrid designs that capitalize on the advantages
of both MPI and xCCL algorithms across various message sizes.
To the best of our knowledge, this is the first work that has
unified support for all different accelerators within MPI. This
is also the first work to address communication-level support
over the new Habana Gaudi accelerators.

1.3 Contributions
In this work, we make the following key contributions:

e Propose an interface for GPU-aware MPI libraries over x-
Collective Communication Libraries (MPI-xCCL) and APIs
(i.e. NCCL [13], RCCL [2], HCCL [9], MSCCL [10], etc.).

e Propose hybrid designs that leverage the benefits of MPI and
xCCL algorithms across a range of message sizes.

e Provide a comprehensive performance evaluation of xCCL-
based MPI over NVIDIA GPUs using NCCL and MSCCL APIs,

MPI-xCCL: A Portable MPI Library over Collective Communication Libraries for Various Accelerators

Applications

MPI Middleware

XCCL Abstraction Layer

‘Collectwes Communicat\cn‘ ‘ Point-to-point Communication ‘

]
’

Figure 2: We propose an xCCL Abstraction Layer in MPI that
abstracts the common operations in an xCCL runtime. The
abstraction design makes it easy to interface with vendor-
specific backend implementations while also maintaining
MPI standard compliance through being integrated within
an MPI communication middleware.

‘Reduce Operation Support‘ ‘ Communicator Maintenance ‘

‘Synchronizat\on‘ ‘Dalatype Suppon‘ ‘Device Buffer Idenlify‘

xCCL
APIs

NCCL/MSCCL APIs RCCLAPIs HCCLAPIs

4 A4 4
Accelerators | NVIDIAGPUs | [AMD GPUs | [Habana HPUs|

AMD GPUs using RCCL APIs and Habana Gaudi accelerators
using HCCL APIs.

e Develop GPU-aware MPI support over Habana Gaudi Accel-
erators using the HCCL backend.

e Implement Habana Accelerator buffer support for OSU
Micro-Benchmarks using Synapse Al Software Suite APIs.

2 BACKGROUND

2.1 Vendor-specific Collective Communication
Libraries

As DL models grow and distributed training becomes essential,
collective communication in frameworks gains importance. Ven-
dors create communication libraries for their products, like NCCL.
NCCL focuses on quick communication between NVIDIA GPUs in
dense multi-GPU setups like DGX, especially for DL. On the AMD
side, RCCL is a stand-alone for AMD GPUs, dependent on HIP (Het-
erogeneous Interface for Portability) runtime and ROCm stack. The
Habana Collective Communications Library (HCCL) is Habana’s
implementation of standard routines with an NCCL-compatible
API. HCCL targets Habana Gaudi accelerators, built on Gaudi’s
RoCE V2 RDMA NICs, enabling efficient intra-node and inter-node
communication. The Microsoft Collective Communication Library
(MSCCL) is an inter-accelerator communication framework for
Microsoft Azure, facilitating custom collective communication al-
gorithms across accelerators. MSCCL provides programmability
and profiling, enhancing GPU-aware MPI communication. These
vendor-specific CCLs enable multi-GPU and multi-node communi-
cation, scaling DL training for advanced models.

2.2 GPU-Aware MPI

MPI is a widely used communication scheme that enables commu-
nication among distributed processes via messages. However, with
exclusive computing devices such as GPUs on modern cluster nodes,
directly accessing data residing in device memory becomes a chal-
lenge. Traditional MPI processes cannot access GPU buffers directly,
and staging data to the host memory for further communication
introduces significant overhead.

849

SC-W 2023, November 12-17, 2023, Denver, CO, USA

To address this challenge, CUDA-aware MPI was introduced,
which enables the direct transfer of data between GPUs using Uni-
fied Virtual Addressing (UVA) and Unified Memory (UM) features.
With UVA, the GPU buffer can be directly sent to intra-node peer
GPUs or the network adapter without copying data through host
memory, bypassing the staging phase and reducing overhead.

3 DESIGN

3.1 Designing an xCCL Abstraction Layer for
GPU-aware MPI Library

Starting from NVIDIA, the accelerator vendors have implemented
and provided their own libraries to optimize the performance of
their devices and intra/inter-node connections. This has resulted in
a proliferation of communication APIs that are often specific to each
vendor’s architecture and programming environment. However,
given the success of the NCCL library, other vendors such as AMD,
Habana, and Microsoft have proposed similar communication APIs
with compatible functionalities. For example, the API of "Reduce” in
NCCL is ncclReduce, and HCCL changes it to hcclReduce. RCCL
and MSCCL just use the same ncclReduce. Hence, we proposed a
unified xCCL abstraction layer to prevent duplicated efforts.

At a lower level, xCCL APIs map corresponding NVIDIA, AMD,
Habana, or Microsoft libraries under the xccl prefix, offering uni-
fied APIs for upper layers. In the high-level implementation, the
xCCL abstraction layer empowers MPI developers with a single
API to access third-party libraries, sidestepping the need to tailor
their algorithms for specific architectures and accelerators. This
adaptable approach aggregates existing APIs, extendable to future
communication libraries, enhancing productivity. With a unified
interface for communication libraries, the xCCL abstraction stream-
lines development, enabling a focus on optimizing algorithms and
applications rather than grappling with compatibility across li-
braries and hardware platforms.

Figure 2 illustrates the overview of our proposed xCCL Abstrac-
tion Layer designs. Besides creating an abstraction layer for xCCL
APIs, we can also design and implement the abstraction for helper
functions by using the same algorithm and the xCCL runtimes. For
example, we use the same algorithm to identify the buffer type.
With the xCCL abstraction layer, we do not need to re-implement
the functions to fit each different communication library API. At
the application layer, an MPI call is made. Within the MPI middle-
ware, the xCCL abstraction layer considers various factors relevant
to the scope, i.e., reduction operation support, datatype support,
device buffer checks, etc. and then calls the appropriate xCCL API
corresponding to the underlying accelerator.

3.2 Built-in Collective Communication
Functions

For some computing-involved and common collective commu-
nication, such as AllReduce and Broadcast, the vendors often
dedicate optimizations and provide specific APIs. For exam-
ple, ncclAllReduce is used by NCCL, RCCL, and MSCCL, and
hcclAllReduce is used by HCCL. Hence, in our implementation,
we just map these vendor APIs to our xCCL APIs and directly call
those. In this case, a unified API xcclAllReduce is created on top

SC-W 2023, November 12-17, 2023, Denver, CO, USA

Listing 1: Pseudo code of xCCL AlltoAllv designs.

/% Create XCCL communicator (xccl_comm) */
/% Convert MPI datatype to XCCL datatype (xccl_dt) =/
xcclGroupStart();
for (int r = o; r++) {
xccl_ret = xcclSend(((charx)sendbuf) + sdispls[r] * type_size,
xccl_dt, r, xccl_comm, xccl_stream);
xccl_ret = xcclRecv(((char*)recvbuf) + rdispls[r] * type_size,
xccl_dt, r, xccl_comm, xccl_stream);

r < comm_size;
sendcnts[r],

recvents[r],

}
xcclGroupEnd () ;
/* XCCL Stream Synchronization */

of either ncc1AllReduce or

hcclAllReduce depending on the lower-level system and vendor
library. To further enhance the compatibility and functionality of
the xCCL Abstraction Layer, we will also implement a checking
mechanism for the supported datatype and reduce the operations
of the third-party libraries. This is particularly important since
more mature libraries, such as NCCL, support a wider range of
datatypes, especially those utilized by deep learning applications.
On the other hand, HCCL only supports float currently. In addi-
tion, even NCCL does not fully support all the datatypes that are
supported by MPI standards. For example, MPI standards support
MPI_DOUBLE_COMPLEX, which is widely utilized by FFT applications
like heFFTe, but NCCL has no such implementation.

3.3 Customized Send-recv-based Collective
Communication Functions

Currently, the CCL APIs only provide 5 collective communi-
cations mentioned in subsection 3.2. The other collective calls,
such as Gather, are simple send-recv-based communications. There
is no vendor-optimized built-in implementation, and users used
to have to implement it on their own by utilizing group calls
(ncclGroupStart and ncclGroupEnd) and point-to-point commu-
nications (ncclSend and ncclRecv) to implement other common
send-recv-based collective communication functions. To fully sup-
port these collective MPI operations, we implemented those func-
tions with our high-level xCCL APIs and provided hooks in MPI
runtimes. Users can simply call the standard MPI functions and
utilize the operations with a third-party collective communication
backend. Listing 1 shows an implementation example of AlltoAllv.

3.4 Hybrid Designs

To further improve the performance and adaptability of the xCCL
designs, we introduce hybrid designs that enable users to leverage
both vendor-optimized collective communication libraries and the
existing MPI implementations. In fact, modern MPI libraries utilize
different protocols and algorithms according to different conditions,
such as system architectures, MPI operations, and message sizes.
Tuning tables are maintained to keep track of the protocols or al-
gorithms that deliver optimal performance under corresponding
conditions. With the xCCL Abstraction Layer designs, each oper-
ation can be easily encapsulated into one of the MPI algorithms
and be called as one of the regular MPI implementations in the
tuning tables. In this work, we tune the tuning tables offline, and
during runtime, the hybrid designs select the most optimal solution
from the tuning tables. In summary, our hybrid design approach

850

Chen, et al.

Table 1: Systems hardware information (single node)

‘ System Component ‘ ThetaGPU(NVIDIA) ‘ MRI(AMD) ‘ Voyager(Habana) ‘
CPU AMD EPYC 7742 AMD EPYC 7713 | Intel Xeon Gold 6336Y
Memory 1TB DDR4 256 GB DDR4 512 GB DDR4
Sockets 2 2 2
Core/sockets 64 64 24
Accelerator/ 8 NVIDIA 2 AMD 8 Habana
Node DGX A100 GPUs MI100 GPUs Gaudi Processors
Device Memory/
GPU(HPU) 40GB HBM2 32 GB HDM2 32 GB HDM2

improves performance, compatibility, and adaptability for a wide
range of communication patterns and hardware configurations.

4 EVALUATION
4.1 Experimental Setup

To evaluate our proposed designs over different backends of col-
lective communication libraries, we conducted the evaluations for
NVIDIA GPU systems on ThetaGPU at Argonne Leadership Com-
puting Facility (ALCF), AMD GPU systems on an in-house cluster
named MRI, and Habana Gaudi Processor systems on Voyager at
San Diego Supercomputer Center (SDSC). Table 1 describes the
details of a single node of each system. ThetaGPU has comprised 24
NVIDIA DGX A100 nodes. Each node is equipped with 8 NVIDIA
A100 Tensor Core GPUs that are connected with the second genera-
tion NVIDIA NVSwitch, and is connected with Mellanox ConnectX-
6 VPTHDR. MRI is an in-house cluster, and each node is equipped
with 2 AMD MI100 GPUs and connected with Mellanox ConnectX-
6 HDR. Voyager is designed to support research in science and
engineering, especially for artificial intelligence computing,. It is
famous for being equipped with the Habana Gaudi training and
first-generation Habana inference processors and connected with a
400 Gbps interconnect from Arista.

OSU Micro-Benchmarks (OMB) [3] suite supports CUDA and
ROCm device buffers, so we can directly use OMB (v7.2) to evaluate
our designs on NVIDIA and AMD systems. However, there is no
support for Habana device buffer allocation and evaluation, so we
implemented a modified OMB suite based on version 7.0.

4.2 Micro-Benchmark Evaluation:
Point-to-point

In this section, we assess intra-node and inter-node point-to-point
communication. Figure 3 illustrates intra-node latency, bandwidth,
and bi-directional bandwidth, aggregating results from 4 distinct
xCCL backends. We depict 4 different xCCL backend results in 1
figure, but please note that there is no relationship between the 4
sets of numbers. NCCL exhibits mere 56 ps latency at 4MB, boasting
bandwidths of up to 137031 and 181204 MB/s for unidirectional
and bi-directional communication. In contrast, RCCL and HCCL
backends display latencies of up to 836 and 1651 ps, coupled with
bandwidths of 6351 and 3044 MB/s, less than 95% of NCCL’s band-
width. This disparity is attributed to the presence of NVLink on
ThetaGPU but PCle connections for MRI GPUs. On ThetaGPU,
MSCCL records a 100 ps latency at 4MB, yielding bandwidth and
bi-directional bandwidth of 112439 and 131859 MB/s, respectively.
Since MSCCL employs an earlier NCCL version (2.12.12) as a back-
end, its performance mirrors that of NCCL. Additionally, it’s note-
worthy that a constant overhead accompanies all 4 backends. The

MPI-xCCL: A Portable MPI Library over Collective Communication Libraries for Various Accelerators

SC-W 2023, November 12-17, 2023, Denver, CO, USA

—+— xCCL w/ NCCL 2.18.3
—=— xCCL w/ RCCL 2.16.5
—s— xCCLw/HCCL1.17.1
xCCL w/ MSCCL 0.7.3

—=— xCCL w/NCCL 2.18.3
—=— xCCL w/RCCL 2.16.5
—— xCCL w/HCCL 1.17.1

xCCL w/ MSCCL 0.7.3

Latency (us)

 ————

Latency (ps)
~
S
8

—_——————

—— xCCL w/ NCCL 2.18.3
—=— xCCL w/RCCL 2.16.5
—— xCCL w/HCCL1.17.1

XxCCL w/ MSCCL 0.7.3

—e— xCCL w/ NCCL 2.18.3
—e— xCCL w/RCCL 2.16.5
—s— xCCLw/HCCL1.17.1
XxCCL w/ MSCCL 0.7.3

‘—‘—’//

300

Latency (us)

100

4 8 16 32 64 128 256 512 1K 2K 4K

Message Size (Bytes) Message Size (Bytes)

(a) Small Message Point-to-Point Latency

8K 16K 32K 64K 128K256K512K 1M 2M 4M

(b) Large Message Point-to-Point Latency

(a) Small Message Point-to-Point Latency

8K 16K 32K 64K 128K256K512K 1M 2M 4M
Message Size (Bytes)

428 16 32 64 128 256 512 1K 2K 4K
Message Size (Bytes)

(b) Large Message Point-to-Point Latency

= xCCL w/ NCCL 2.18.3
105/ EEE xCCLw/RCCL2.16.5
= xCCL w/HCCL1.17.1
XxCCL w/ MSCCL 0.7.3

s xCCL w/NCCL 2.18.3

10° EEm xCCL w/ RCCL 2.16.5
mm xCCLw/HCCL1.17.1
xCCL w/ MSCCL 0.7.3

Bandwidth (MB/s)
g
Bandwidth (MB/s)

8K 16K 32K 64K 128K256K512K 1M 2M 4M
Message Size (Bytes)

8K 16K 32K 64K 128K256K512K 1M 2M 4M
Message Size (Bytes)

Bandwidth (MB/s)

mmm xCCL w/NCCL2.18.3
EEm xCCL w/ RCCL 2.16.5
m xCCLw/HCCL1.17.1

xCCL w/ MSCCL 0.7.3

mmm xCCL w/NCCL2.18.3
EEm xCCL w/ RCCL 2.16.5
B xCCL w/HCCL1.17.1

XCCL w/ MSCCL 0.7.3

Bandwidth (MB/s)

8K 16K 32K 64K 128K256K512K 1M 2M 4M
Message Size (Bytes)

8K 16K 32K 64K 128K256K512K 1M 2M 4M
Message Size (Bytes)

(c) Large Message Point-to-Point Bandwidth (d) Large Message Point-to-Point Bi- (c) Large Message Point-to-Point Bandwidth (d) Large Message Point-to-Point Bi-

(Higher is Better)

Figure 3: Intra-Node Point-to-Point Performance

launch overheads for NCCL, RCCL, HCCL, and MSCCL communi-
cations amount to 20, 25, 270, and 28 s, respectively.

Figure 4 shows the inter-node latency, bandwidth, and bi-
directional bandwidth. There is a similar trend compared to the
results of intra-node numbers. The overheads of latencies for NCCL,
RCCL, HCCL, and MSCCL at 4MB are 255, 579, 835, and 230 s,
respectively.

4.3 Micro-Benchmark Evaluation: Collective

We assess performance using proposed designs employing NCCL,
RCCL, HCCL, and MSCCL backends for MPI collective operations,
AllReduce, Reduce, Beast, and AlltoAll, via OMB. Our designs en-
compass hybrid approaches (labeled as "Proposed Hybrid xCCL")
and pure xCCL backends (noted as "Proposed xCCL w/ Pure .."). We
present 1 and 16-node results against pure NCCL and Open MPI +
UCX + UCC, and 1 and 2-node results against pure MSCCL and its
corresponding NCCL version performance. Pure NCCL and MSCCL
outcomes are extracted from OMB NCCL benchmarks (shown as
dashed lines). It’s important to note the absence of comparable
third-party benchmarks for RCCL and HCCL due to the unavailabil-
ity of corresponding benchmarks in OMB. Nevertheless, we display
1 and 8-node results for RCCL and 1 and 4-node results for HCCL.

Figure 5 displays common collective performance on 1 node.
Overall, the performance of proposed pure xCCL designs (blue
lines) mirrors that of original vendor-specific xCCL (dotted red
lines), highlighting minimal overhead in our implementation. No-
tably, the proposed hybrid xCCL (red lines) achieves even lower
small message latency. For instance, in Figure 5(e), Reduce latencies
shrink from 23 to 14 ps for small messages (<8KB). While no RCCL
or HCCL benchmarks exist for AMD and Habana architectures,
outcomes suggest our designs’ adaptability to new architectures. In
Figure 5(d), where MSCCL uses NCCL 2.12.12 as the backend, we
use pure NCCL 2.12.12 as the baseline. MSCCL outperforms NCCL
for medium messages (256B 256KB), and our performance mirrors
MSCCL, excelling for small messages (<64B) due to hybrid designs.
In NCCL evaluations, we also compared our results to Open MPI +

Directional Bandwidth (Higher is Better)

851

(Higher is Better)

Directional Bandwidth (Higher is Better)

Figure 4: Inter-Node Point-to-Point Performance

UCX + UCC, revealing our designs’ reduced overhead. Notably, our
designs excel by 1.1x in Allreduce (figure 5(a)) and a remarkable
2.8x in Alltoall (figure 5(m)) at the 4 KB level.

Figure 6 illustrates multi-node common collective performance
using NCCL, RCCL, HCCL, and MSCCL. Our observations parallel
those of the 1-node figures. Notably, the HCCL backend on Habana
systems exhibits more overhead than NCCL, RCCL, and MSCCL
backends on NVIDIA and AMD setups. For Allreduce, Reduce, and
Bcast, degradations manifest as step curves around 16 and 64 bytes,
reaching up to 7x to 12x. In NCCL evaluations, our designs consis-
tently outperform Open MPI + UCX + UCC for nearly all messages,
showcasing reduced latencies for small messages, evident in figures
6(a) (Allreduce) and 6(i) (Alltoall).

Comparing our xCCL designs and the pure collective communi-
cation libraries provided by the vendors, the curves of xCCL with
NCCL/MSCCL and Pure NCCL/MSCCL are almost overlapped, es-
pecially the NCCL part. In most cases, there is only +3% variation
between xCCL with NCCL and pure NCCL. These trends demon-
strate that there are minimal overheads in our implementations, and
the hybrid designs provide even better performance for small mes-
sages. Users can readily adopt our xCCL designs with traditional
MPI runtimes without experiencing degradation in performance.

4.4 Application-Level Evaluation

This section evaluates the proposed xCCL designs at the appli-
cation level by DL application TensorFlow with Horovod on all
platforms. TensorFlow is a well-known deep-learning framework,
and Horovod provides a simple interface for distributed learning.
TensorFlow with Horovod on NVIDIA System: On an
NVIDIA system, we assess the performance of our proposed xCCL
using two distinct NCCL backends: the latest version and version
2.11.4, harmonizing with TensorFlow and Horovod versions on
ThetaGPU. We juxtapose our designs against pure NCCL 2.11.4,
Open MPI + UCX, and Open MPI + UCX + UCC. Figure 7 showcases
results for batch sizes 32, 64, and 128 on 1 node with 8 GPUs and
16 nodes with 128 GPUs. In Figure 7(a), our xCCL designs (with

SC-W 2023, November 12-17, 2023, Denver, CO, USA

Chen, et al.

—— Proposed Hybrid xCCL
—e— Proposed xCCL w/ Pure NCCL
~e Pure NCCL 2.18.3

UCC 1.2.0 w/ Open MPI+UCX

Latency (us)
IS
8

s NP S

—— Proposed Hybrid xCCL
—s— Proposed xCCL w/ Pure RCCL

Latency (us)
5 o
s 23
3 38

N
=1
]

—— Proposed xCCL w/ Pure HCCL 1.17.1

Latency (us)
© @ ©
S & 8

~
G

~
=)

—— Proposed Hybrid xCCL

—e— Proposed xCCL w/ Pure MSCCL.

= Pure MSCCL 0.7.3(NCCL 2.12.12)
Pure NCCL 2.12.12

@ ®
S S

Latency (us)

IS
S

4 16 64 256 1K 4K 16K 64K 256K 1M

Message Size (Bytes)

(a) Allreduce w/ NCCL (1 Node, 8 GPUs)

N
5}

4 16 64 256 1K 4K 16K 64K 256K 1M

Message Size (Bytes)

(b) Allreduce w/ RCCL (1 Node, 2 GPUs)

4 16 64 256 1K 4K 16K 64K 256K 1M

Message Size (Bytes)

(c) Allreduce w/ HCCL (1 Node, 8 HPUs)

64 256 1K 4K 16K 64K 256K 1M
Message Size (Bytes)

(d) Allreduce w/ MSCCL (1 Node, 8 GPUs)

—— Proposed Hybrid xCCL
—— Proposed xCCL w/ Pure NCCL
—e Pure NCCL2.18.3

UCC 1.2.0 w/ Open MPI+UCX

@
S

S
S

Latency (us)

N
S

sssssesses Uil

§00] — Proposed Hybrid xCCL
—— Proposed xCCL w/ Pure RCCL

Latency (us)

—e— Proposed xCCL w/ Pure HCCL 1.17.1

Latency (us)

—— Proposed Hybrid xCCL

—— Proposed xCCL w/ Pure MSCCL

~e Pure MSCCL 0.7.3(NCCL 2.12.12)
Pure NCCL 2.12.12

Latency (us)
-
o o o
3 3 8

IS
S

;};
|

47716 64 256 1K 4K 16K 64K 256K 1M
Message Size (Bytes)

(e) Reduce w/ NCCL (1 Node, 8 GPUs)

4 16 64 256 1K 4K 16K 64K 256K 1M

Message Size (Bytes)

(f) Reduce w/ RCCL (1 Node, 2 GPUs)

4 16 64 256 1K 4K 16K 64K 256K 1M

Message Size (Bytes)

(g) Reduce w/ HCCL (1 Node, 8 HPUs)

64 256 1K 4K 16K 64K 256K 1M
Message Size (Bytes)

(h) Reduce w/ MSCCL (1 Node, 8 GPUs)

801 —e— Proposed Hybrid xCCL.
—— Proposed xCCL w/ Pure NCCL
~e Pure NCCL 2.18.3

UCC 1.2.0 w/ Open MPI+UCX

o
S

Latency (us)

800 —— Proposed Hybrid xCCL
—— Proposed xCCL w/ Pure RCCL

Y
S o
s S

Latency (us)

N
S
S

o

601 —— Proposed xCCL w/ Pure HCCL 1.17.1

Latency (us)

100 == Proposed Hybrid xccL
—— Proposed xCCL w/ Pure MSCCL
—e Pure MSCCL 0.7.3(NCCL 2.12.12)
Pure NCCL 2.12.12

—

/‘:

40 /
20{ ot

Latency (us)
@
2

64 256 1K 4K 16K 64K 256K 1M
Message Size (Bytes)

(i) Beast w/ NCCL (1 Node, 8 GPUs)

4 16 64 256 1K 4K 16K 64K 256K 1M

Message Size (Bytes)

(j) Bcast w/ RCCL (1 Node, 2 GPUs)

4 16 64 256 1K 4K 16K 64K 256K 1M

Message Size (Bytes)

(k) Bcast w/ HCCL (1 Node, 8 HPUs)

4 16 64 256 1K 4K 16K 64K 256K 1M
Message Size (Bytes)

(I) Beast w/ MSCCL (1 Node, 8 GPUs)

Latency (us)

141 120 =
—— Proposed Hybrid xCCL 3001 —— proposed Hybrid xCCL 750 —— Proposed xCCL w/ Pure HCCL 1.17.1 —— Proposed Hybrid xCCL
1201 —e— Proposed xCCL w/ Pure NCCL |—*— Proposed xCCL w/ Pure RCCL 100 —— Proposed xCCL w/ Pure MSCCL
= Pure NCCL 2.18.3 ° 7725 z —e-. Pure MSCCL 0.7.3(NCCL 2.12.12)
UCC 1.2.0 w/ Open MPI+UCX 2200 2 ER Pure NCCL 2.12.12
> >700 >
80 2 e 2
2 267! 2 60 /
60 ® 100 T 675 T —_ {//
= S e =SS o
40 650 40
= 0 625
4 16 64 256 1K 4K 16K 64K 256K 1M 4 16 64 256 1K 4K 16K 64K 256K 1M 4 16 64 256 1K 4K 16K 64K 256K 1M 4 16 64 256 1K 4K 16K 64K 256K 1M

Message Size (Bytes) Message Size (Bytes)

(m) Alltoall w/ NCCL (1 Node, 8 GPUs) (n) Alltoall w/ RCCL (1 Node, 2 GPUs)

Message Size (Bytes) Message Size (Bytes)

(o) Alltoall w/ HCCL (1 Node, 8 HPUs) (p) Alltoall w/ MSCCL (1 Node, 8 GPUs)

Figure 5: Collective Performance on Single Node (Lower is Better).

NCCL 2.18.3 or 2.11.4) either match or surpass pure NCCL perfor-
mance. For instance, xCCL achieves 4850 img/sec compared to pure
NCCL’s 4050 img/sec at batch size 32. Conversely, traditional MPI
runtimes—Open MPI + UCX or advanced designs with UCC—yield
3450 or 4480 img/sec at a batch size of 128, 44% or 28% below our
designs. Figure 7(b) depicts xCCL’s 94600 img/sec throughput with
128 GPUs, 1.35x and 1.5x higher than Open MPI + UCX and UCC
with a batch size of 128. Notably, in multi-node evaluations, UCC un-
derperforms Open MPI + UCX by 10%. Figure 10 shows our xCCL’s
performance with the MSCCL backend, mirroring the NCCL trend,
with xCCL achieving 12300 img/sec at batch size 128 on 2 nodes.

TensorFlow with Horovod on AMD System: On an AMD
system, we evaluated the performance of our proposed xCCL com-
pared to pure RCCL 2.11.4. The results in figure 8(a) show that our
xCCL designs achieve a throughput of 3192 img/sec with a batch
size of 64 on 8 AMD GPUs, which is a 25% improvement over pure
RCCL. Additionally, figure 8(b) demonstrates a throughput of 7210
img/sec with a batch size of 128 on 16 AMD GPUs, which is a 20%
improvement over pure RCCL.

TensorFlow with Horovod on Habana System: We assess the
Habana system’s performance using the HCCL backend, leveraging
prebuilt Habana TensorFlow and Horovod within the container im-
age. In Habana TensorFlow, the communication layer in Horovod

852

is directly implemented via HCCL. To align with this, we adapt the
Horovod communication by substituting all hcc1Allreduce calls
with MPI_Allreduce operations. Figure 9 showcases performance
results on the Habana system for batch sizes 32, 64, and 128. Fig-
ure 9(a) illustrates single-node throughput, where xCCL delivers
5139 img/sec throughput with batch size 128, nearly matching pure
HCCL’s 4936 img/sec. In Figure 9(b), 4 nodes with 32 HPUs each
achieve a throughput of 11300 img/sec, with overhead under 1%,
for both xCCL and pure HCCL. This evaluation underscores the
effortless extension of our xCCL designs to new architectures and
collective communication libraries, exhibiting negligible overheads.

This evaluation demonstrates that our xCCL designs yield com-
parable or superior performance to pure NCCL, RCCL, HCCL, and
MSCCL at the application level. Users can enhance performance
without altering their implementation; they continue to utilize the
familiar MPI runtime. The proposed xCCL framework enables opti-
mal performance for DL and HPC applications using a single MPI
library and consistent settings. Notably, as a real-world instance,
we encountered errors with pure NCCL 2.18.3 on ThetaGPU and in-
vested substantial effort in testing different versions of TensorFlow,
Horovod, CUDA, and NCCL. Eventually, we identified a functional
version, 2.11.4. In contrast, our xCCL designs bypass such errors,

MPI-xCCL: A Portable MPI Library over Collective Communication Libraries for Various Accelerators

SC-W 2023, November 12-17, 2023, Denver, CO, USA

15007 —=— Proposed Hybrid xCCL
—— Proposed xCCL w/ Pure NCCL
~e Pure NCCL 2.18.3

1000 UCC 1.2.0 w/ Open MPI+UCX

Latency (us)

500

I aanl

—— Proposed Hybrid xCCL

1500 —e— Proposed xCCL w/ Pure RCCL

H
o
S
S

Latency (us)

o
<3
3

25001 —— Proposed xCCL w/ Pure HCCL 1.17.1

N
o
3
S

1500

Latency (us)

1000

o
S
S

—— Proposed Hybrid xCCL

—s— Proposed xCCL w/ Pure MSCCL
80 =* Pure MSCCL 0.7.3(NCCL 2.12.12)
Pure NCCL 2.12.12

Latency (us)

o
2 16 64 256 1K 4K 16K 64K 256K 1M
Message Size (Bytes)

4 16 64 256 1K 4K 16K 64K 256K 1M
Message Size (Bytes)

2 16 64 256 1K 4K 16K 64K 256K 1M
Message Size (Bytes)

64 256 1K 4K 16K 64K 256K
Message Size (Bytes)

(a) Allreduce w/ NCCL (16 Nodes, 128 GPUs) (b) Allreduce w/ RCCL (8 Nodes, 16 GPUs) (c) Allreduce w/ HCCL (4 Nodes, 32 HPUs) (d) Allreduce w/ MSCCL (2 Nodes, 16 GPUs)

—— Proposed Hybrid xCCL
—e— Proposed xCCL w/ Pure NCCL
~+ Pure NCCL2.18.3

UCC 1.2.0 w/ Open MPI+UCX

6000

N
S
3
S

Latency (us)

2000

0] e T T T

—e— Proposed Hybrid xCCL
—s— Proposed xCCL w/ Pure RCCL

Latency (us)

10001 —=— Proposed xCCL w/ Pure HCCL 1.17.1

Latency (us)

—e— Proposed Hybrid xCCL

—e— Proposed xCCL w/ Pure MSCCL

=+ Pure MSCCL 0.7.3(NCCL 2.12.12)
Pure NCCL 2.12.12

=
o
s

A

®
3

Latency (us)
o
3

27716 64 256 1K 4K 16K 64K 256K 1M
Message Size (Bytes)

(e) Reduce w/ NCCL (16 Nodes, 128 GPUs)

4 16 64 256 1K 4K 16K 64K 256K 1M

Message Size (Bytes)

(f) Reduce w/ RCCL (8 Nodes, 16 GPUs)

27716 64 256 1K 4K 16K 64K 256K 1M
Message Size (Bytes)

(g) Reduce w/ HCCL (4 Nodes, 32 HPUs)

4 16 64 256 1K 4K 16K 64K 256K 1M

Message Size (Bytes)

(h) Reduce w/ MSCCL (2 Nodes, 16 GPUs)

—e— Proposed Hybrid xCCL
—— Proposed xCCL w/ Pure NCCL
400{ == Pure NCCL2.18.3

2 UCC 1.2.0 w/ Open MPI+UCX

25001 o proposed Hybrid xCCL

=—— Proposed xCCL w/ Pure RCCL
2000 P !

1500
1000

Latency (us)

o
S
3

0

1250 —— Proposed xCCL w/ Pure HCCL 1.17.1

S|

-
[CRE =Y
S o S
S o S

Latency (us)

~
&
S

o

—— Proposed Hybrid xCCL
—— Proposed xCCL w/ Pure MSCCL
—e Pure MSCCL 0.7.3(NCCL 2.12.12)

Pure NCCL 2.12.12 p

H
o ® 9o
S 3 3o

Latency (us)

IS
S

W

N
=]

4 16 64 256 1K 4K 16K 64K 256K 1M

Message Size (Bytes)

(i) Bcast w/ NCCL (16 Nodes, 128 GPUs)

4 16 64 256 1K 4K 16K 64K 256K 1M
Message Size (Bytes)

(j) Bcast w/ RCCL (8 Nodes, 16 GPUs)

—— Proposed Hybrid xCCL
—e— Proposed xCCL w/ Pure NCCL
=+ Pure NCCL 2.18.3

UCC 1.2.0 w/ Open MPI+UCX

10000

7500

o
S
S
s

Latency (us)

2500

—— Proposed Hybrid xCCL

1500 | —— Proposed xCCL w/ Pure RCCL

H
o
S
3

Latency (us)

o
S
3

0 e el

4 16 64 256 1K 4K 16K 64K 256K 1M
Message Size (Bytes)

(k) Bcast w/ HCCL (4 Nodes, 32 HPUs)

le6

Latency (us)
o o &
> » o

o
=

)
N

—e— Proposed xCCL w/ Pure HCCL 1.17.1

4 16 64 256 1K 4K 16K 64K 256K 1M
Message Size (Bytes)

(I) Bcast w/ MSCCL (2 Nodes, 16 GPUs)

—— Proposed Hybrid xCCL

—e— Proposed xCCL w/ Pure MSCCL

=+ Pure MSCCL 0.7.3(NCCL 2.12.12)
Pure NCCL 2.12.12

Latency (us)
IS
S
3

e

2 16 64 256 1K 4K 16K 64K 256K 1M
Message Size (Bytes)

(m) Alltoall w/ NCCL (16 Nodes, 128 GPUs)

4 16 64 256 1K 4K 16K 64K 256K 1M
Message Size (Bytes)

(n) Alltoall w/ RCCL (8 Nodes, 16 GPUs)

2 16 64 256 1K 4K 16K 64K 256K 1M
Message Size (Bytes)

(o) Alltoall w/ HCCL (4 Nodes, 32 HPUs)

2 16 64 256 1K 4K 16K 64K 256K 1M
Message Size (Bytes)

(p) Alltoall w/ MSCCL (2 Nodes, 16 GPUs)

Figure 6: Collective Performance on Multiple Nodes (Lower is Better).

offering easy adaptation by simply adjusting the NCCL backend
through the corresponding library path setting.

5 RELATED WORK

GPU-aware MPI has emerged as a critical aspect of HPC, with
libraries like MVAPICH?2 [12] and Open MPI [15] providing sup-
port for CUDA and ROCm [1] runtimes, besides, MPICH[11], Intel
MPI[8], IBM’s Spectrum MPI[7], and Cray MPICH[14] also pro-
vide support for accelerators. These libraries have their unique
features and capabilities. MVAPICH2 has been optimized for high-
performance networks, incorporating the NCCL [13] API and sup-
porting GPUDirect since the early research[20] to transfer data
between GPUs in InfiniBand clusters. Since then, multiple optimiza-
tion strategies[4, 16, 19, 22] have been proposed to significantly
accelerate the communication performance of GPU data transfer.
Recently added ROCm-aware MPI runtime [18] further extends
MVAPICH?2 support to AMD GPUs with ROCm. Open MPI is known
for its flexibility in supporting multiple networks and fabrics. In the
context of vendor-specific CCLs, NCCL [13] focuses on NVIDIA
GPUs, while RCCL [2] is designed for AMD GPUs. HCCL [9] is
Habana’s emulation layer of NCCL, included in the SynapseAI Soft-
ware library, providing the same collective communication primi-
tives and allowing for point-to-point communication. MSCCL [10]

853

is intended for Microsoft platforms and supports advanced features
such as multi-fabric support and RDMA.

Additionally, the Unified Collective Communication Library [6]
(UCC) has been introduced to offer a flexible and feature-rich API
for collective communication operations. UCC’s design emphasizes
scalability, nonblocking operations, flexible resource allocation,
and support for hardware collectives. It caters to various HPC,
AI/ML, and I/O workloads and supports a wide range of transports,
including UCX/UCP, SHARP, CUDA, NCCL [13], and RCCL [2].

6 CONCLUSION

To facilitate optimal communication-level performance for diverse
accelerators used in HPC and Deep Learning on supercomputers by
different vendors, comprehensive support within communication
libraries is crucial. Our paper introduces the xCCL communica-
tion runtime, seamlessly integrated with advanced GPU-aware
MPI runtimes, providing vendor-specific communication library
support. We establish an abstraction layer encompassing NCCL,
RCCL, HCCL, and MSCCL APIs. This allows the MPI runtime to
dynamically select hardware-specific API calls from various com-
munication libraries across vendors. Our performance evaluation
spans ThetaGPU, MRI, and Voyager clusters with NVIDIA GPUs,
AMD GPUgs, and Habana HPUs, respectively. We comprehensively

SC-W 2023, November 12-17, 2023, Denver, CO, USA

Throughput (image/sec)

Figure 7: Performance of TensorFlow with Horovod on NVIDIA

10000 mmm Proposed Hybrid xCCL w/ NCCL 2.18.3
mm Proposed Hybrid xCCL w/ NCCL 2.11.4
= Pure NCCL2.11.4

OpenMPI 4.1.5 + UCX 1.14.1

OpenMPI 4.1.5 + UCX 1.14.1 + UCC 1.2.0

mm Proposed Hybrid xCCL w/ NCCL 2.18.3
W Proposed Hybrid xCCL w/ NCCL 2.11.4
= Pure NCCL211.4

OpenMPI 4.1.5 + UCX 1.14.1

OpenMPI 4.1.5 + UCX 1.14.1 + UCC 1.2.0

150000

125000

100000

Throughput (image/sec)

128

128

64 64
Batch Size Batch Size

(a) 1 Node (8 GPUs) (b) 16 Nodes (128 GPUs)

System Using NCCL (Higher is Better).

Chen, et al.

5 3500 mmm Pure RCCL2.11.4

mmm Proposed Hybrid xCCL w/ RCCL 2.11.4 === Proposed Hybrid xCCL w/ RCCL 2.11.4

5 7000 mmm Pure RCCL2.11.4

32 32

64
Batch Size

64
Batch Size

(a) 4 Node (8 GPUs) (b) 8 Nodes (16 GPUs)

Figure 8: Performance of TensorFlow with Horovod on AMD

System Using RCCL (Higher is Better).

= Proposed Hybrid xCCL w/ HCCL 1.17.1
= Pure HCCL1.17.1

mmm Proposed Hybrid xCCL w/ HCCL 1.17.1
= Pure HCCL1.17.1

Throughput (image/sec)

64 64
Batch Size Batch Size

(a) 1 Node (8 HPUs) (b) 4 Nodes (32 HPUs)

7000 === Proposed Hybrid xCCL w/ MSCCL 0.7.3

Throughput (image/sec)

LY
s 3
8 3
38 38

mmm Proposed Hybrid xCCL w/ MSCCL 0.7.3
= Pure NCCL 2.12.12

)
Ea——
[N
S 3
S 3
3 3

- Pure NCCL 2.12.12

10000

Throughput (image/sec)

32

32

64 64
Batch Size Batch Size

(a) 1 Node (8 GPUs) (b) 2 Nodes (16 GPUs)

Figure 9: Performance of TensorFlow with Horovod on Habana Figure 10: Performance of TensorFlow with Horovod on

System Using HCCL (Higher is Better).

assess intra-node and inter-node communication and collective
operations across single and multiple GPU nodes using four com-
munication backends. At the application level, our designs achieved
substantial throughput gains over UCC and RCCL by 4.6x and 1.25x.
Remarkably, our work pioneers communication-level performance
evaluation for upcoming Habana Gaudi Processors. Future work
aims to extend support to additional hardware like Intel GPUs or
FPGAs and new vendor-specific libraries like oneCCL.

ACKNOWLEDGMENTS

This research is supported in part by NSF #1818253, #1854828,
#1931537, #2007991, #2018627, #2311830, #2312927, and XRAC grant
#NCR-130002.

REFERENCES

(1]
(2]
(3]

=

&

(9]

AMD. 2016. Radeon Open Compute Platform. https://rocmdocs.amd.com.
AMD. 2018. RCCL. https://github.com/ROCmSoftwarePlatform/rccl.

D. Bureddy, H. Wang, A. Venkatesh, S. Potluri, and D. K. Panda. 2012. OMB-GPU:
A Micro-benchmark Suite for Evaluating MPI Libraries on GPU Clusters. In
Proceedings of the 19th European Conference on Recent Advances in the Message
Passing Interface (EuroMPI) (Vienna, Austria). 110-120.

Chen-Chun Chen, Kawthar Shafie Khorassani, Quentin G. Anthony, Aamir Shafi,
Hari Subramoni, and Dhabaleswar K. Panda. 2022. Highly Efficient Alltoall and
Alltoallv Communication Algorithms for GPU Systems. In 2022 IEEE International
Parallel and Distributed Processing Symposium Workshops (IPDPSW). 24-33. https:
//doi.org/10.1109/IPDPSW55747.2022.00014

Chen-Chun Chen, Kawthar Shafie Khorassani, Goutham Kalikrishna Reddy
Kuncham, Rahul Vaidya, Mustafa Abduljabbar, Aamir Shafi, Hari Subramoni,
and Dhabaleswar K. Panda. 2023. Implementing and Optimizing a GPU-aware
MPI Library for Intel GPUs: Early Experiences. In 2023 IEEE/ACM 23rd Interna-
tional Symposium on Cluster, Cloud and Internet Computing (CCGrid). 131-140.
https://doi.org/10.1109/CCGrid57682.2023.00022

Github. 2023. Unified Collective Communication.
https://github.com/openucx/ucc. Accessed: September 26, 2023.

IBM. 2018. IBM Spectrum MPI: Accelerating high-performance application
parallelization. https://www.ibm.com/us-en/marketplace/spectrum-mpi.

Intel. 2004. Intel MPL https://www.intel.com/content/www/us/en/developer/
tools/oneapi/mpi-library.html.

Intel. 2021. HCCL. https://github.com/HabanaAlI/hccl_ofi_wrapper.

NVIDIA System Using MSCCL (Higher is Better).

854

ek
525

=
&

=
oot

=
&

-
)

[18

[19

[21

[22

Microsoft. 2016. MSCCL. https://github.com/microsoft/msccl.

MPICH. 1992. MPICH. https://developer.nvidia.com/nccl.

Network-Based Computing Laboratory. 2001. MVAPICH: MPI over InfiniBand,
Omni-Path, Ethernet/iWARP, and RoCE. http://mvapich.cse.ohio-state.edu/.
NVIDIA. 2017. NCCL2. https://developer.nvidia.com/nccl.

OLCF. 2021. HPE CRAY MPI - SPOCK WORKSHOP. https://www.olcf.ornl.gov/
wp-content/uploads/2021/04/HPE-Cray-MPIUpdate-nfr-presented.pdf.

Open MPL 2004. Open MPI: Open Source High Performance Computing. https:
//www.open-mpi.org/.

Sreeram Potluri, Khaled Hamidouche, Akshay Venkatesh, Devendar Bureddy,
and Dhabaleswar K Panda. 2013. Efficient Inter-node MPI Communication
Using GPUDirect RDMA for InfiniBand Clusters With NVIDIA GPUs. In 42nd
International Conference on Parallel Processing (ICPP), 2013. IEEE, 80-89.
Kawthar Shafie Khorassani, Chen Chun Chen, Bharath Ramesh, Aamir Shafi,
Hari Subramoni, and Dhabaleswar Panda. 2022. High Performance MPI over
the Slingshot Interconnect: Early Experiences. In Practice and Experience in
Advanced Research Computing (Boston, MA, USA) (PEARC °22). Association
for Computing Machinery, New York, NY, USA, Article 15, 7 pages. https:
//doi.org/10.1145/3491418.3530773

Kawthar Shafie Khorassani, Jahanzeb Hashmi, Ching-Hsiang Chu, Chen-Chun
Chen, Hari Subramoni, and Dhabaleswar K. Panda. 2021. Designing a ROCm-
Aware MPI Library for AMD GPUs: Early Experiences. In High Performance
Computing: 36th International Conference, ISC High Performance 2021, Virtual
Event, June 24 — July 2, 2021, Proceedings. Springer-Verlag, Berlin, Heidelberg,
118-136. https://doi.org/10.1007/978-3-030-78713-4_7

R. Shi, S. Potluri, K. Hamidouche, J. Perkins, M. Li, D. Rossetti, and D. K. Panda.
2014. Designing Efficient Small Message Transfer Mechanism for Inter-node MPI
Communication on InfiniBand GPU Clusters. In 2014 21st International Conference
on High Performance Computing (HiPC). 1-10.

Hao Wang, Sreeram Potluri, Devendar Bureddy, Carlos Rosales, and Dha-
baleswar K. Panda. 2014. GPU-Aware MPI on RDMA-Enabled Clusters: Design,
Implementation and Evaluation. IEEE Transactions on Parallel and Distributed
Systems 25, 10 (2014), 2595-2605. https://doi.org/10.1109/TPDS.2013.222

Adam Weingram, Yuke Li, Hao Qi, Darren Ng, Liuyao Dai, and Xiaoyi Lu. 2023.
xCCL: A Survey of Industry-Led Collective Communication Libraries for Deep
Learning. Journal of Computer Science and Technology 38, 1 (01 Feb 2023), 166-195.
https://doi.org/10.1007/s11390-023-2894-6

Q. Zhou, C. Chu, N. S. Kumar, P. Kousha, S. M. Ghazimirsaeed, H. Subramoni, and
D. K. Panda. 2021. Designing High-Performance MPI Libraries with On-the-fly
Compression for Modern GPU Clusters®. In 2021 IEEE International Parallel and
Distributed Processing Symposium (IPDPS). 444-453. https://doi.org/10.1109/
IPDPS49936.2021.00053

https://rocmdocs.amd.com
https://github.com/ROCmSoftwarePlatform/rccl
https://doi.org/10.1109/IPDPSW55747.2022.00014
https://doi.org/10.1109/IPDPSW55747.2022.00014
https://doi.org/10.1109/CCGrid57682.2023.00022
https://www.ibm.com/us-en/marketplace/spectrum-mpi
https://www.intel.com/content/www/us/en/developer/tools%20/oneapi/mpi-library.html
https://www.intel.com/content/www/us/en/developer/tools%20/oneapi/mpi-library.html
https://github.com/HabanaAI/hccl_ofi_wrapper
https://github.com/microsoft/msccl
https://developer.nvidia.com/nccl
http://mvapich.cse.ohio-state.edu/
https://developer.nvidia.com/nccl
https://www.olcf.ornl.gov/wp-content/uploads/2021/04/HPE-Cray-MPIUpdate-nfr-presented.pdf
https://www.olcf.ornl.gov/wp-content/uploads/2021/04/HPE-Cray-MPIUpdate-nfr-presented.pdf
https://www.open-mpi.org/
https://www.open-mpi.org/
https://doi.org/10.1145/3491418.3530773
https://doi.org/10.1145/3491418.3530773
https://doi.org/10.1007/978-3-030-78713-4_7
https://doi.org/10.1109/TPDS.2013.222
https://doi.org/10.1007/s11390-023-2894-6
https://doi.org/10.1109/IPDPS49936.2021.00053
https://doi.org/10.1109/IPDPS49936.2021.00053

	Abstract
	1 Introduction
	1.1 Motivation
	1.2 Proposed Solution
	1.3 Contributions

	2 Background
	2.1 Vendor-specific Collective Communication Libraries
	2.2 GPU-Aware MPI

	3 Design
	3.1 Designing an xCCL Abstraction Layer for GPU-aware MPI Library
	3.2 Built-in Collective Communication Functions
	3.3 Customized Send-recv-based Collective Communication Functions
	3.4 Hybrid Designs

	4 Evaluation
	4.1 Experimental Setup
	4.2 Micro-Benchmark Evaluation: Point-to-point
	4.3 Micro-Benchmark Evaluation: Collective
	4.4 Application-Level Evaluation

	5 Related Work
	6 Conclusion
	Acknowledgments
	References

