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RUNNING HEAD: NFAT5 osmoregulation of tilapia myo-inositol biosynthesis

Transcriptional up-regulation of the myo-Inositol
biosynthesis pathway is enhanced by NFATS5 in hyper-
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ABSTRACT

Euryhaline fish experience variable osmotic environments requiring physiological adjustments to
tolerate elevated salinity. Mozambique tilapia (Oreochromis mossambicus) possess one of the highest
salinity tolerance limits of any fish. In tilapia and other euryhaline fish species the myo-inositol
biosynthesis (MIB) pathway enzymes, myo-inositol phosphate synthase (MIPS) and inositol
monophosphatase 1 (IMPA1.1), are among the most upregulated mRNAs and proteins indicating the
high importance of this pathway for hyper-osmotic (HO) stress tolerance. These abundance changes
must be precluded by HO perception and signaling mechanism activation to regulate the expression of
MIPS and IMPA1.1 genes. In previous work using a O. mossambicus cell line (OmB), a reoccurring
osmosensitive enhancer element (OSRE1) in both MIPS and IMPA1.1 was shown to transcriptionally
upregulate these enzymes in response to HO stress. The OSRE1 core consensus (5-GGAAA-3’) matches
the core binding sequence of the predominant mammalian HO response transcription factor, nuclear
factor of activated T-cells (NFAT5). HO challenged OmB cells showed an increase in NFAT5 mRNA
suggesting NFAT5 may contribute to MIB pathway regulation in euryhaline fish. Ectopic expression of
wild-type NFAT5 induced an IMPA1.1 promoter-driven reporter by 5.1-fold (p < 0.01). Moreover,
expression of dominant negative NFAT5 in HO media resulted in a 47% suppression of the reporter
signal (p<0.005). Furthermore, reductions of IMPA1.1 (37-49%) and MIPS (6-37%) mRNA abundance
were observed in HO challenged NFATS knockout cells relative to control cells. Collectively, these
multiple lines of experimental evidence establish NFATS5 as a tilapia transcription factor contributing to
HO induced activation of the MIB pathway.

NEW & NOTEWORTHY
In our study we use a multi-pronged synthetic biology approach to demonstrate that the fish homolog of
the predominant mammalian osmotic stress transcription factor NFATS5 also contributes to the

activation of hyperosmolality inducible genes in cells of extremely euryhaline fish. However, in addition
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to NFATS the presence of other strong osmotically inducible signaling mechanisms is required for full
activation of osmoregulated tilapia genes.

Keywords: NFAT5; Hyperosmolality; CRISPR/Cas9; dominant negative mutant; tilapia; synthetic biology

INTRODUCTION

Euryhaline fish acclimate to altered osmotic conditions by regulating their extracellular osmolality and,
during severe salinity stress, activation of intracellular enzymes that promote accumulation of
compatible organic osmolytes (1). Having one of the widest ranges of salinity tolerance of all fish,
Oreochromis mossambicus represent an ideal species to study these mechanisms. Physiological stress
responses include sensors (the proteins or other molecules that perceive the stress condition),
intermediate signal transducers (the molecules that relay the stress signal from the sensors to the
effectors), and effector elements (the molecules that mediate the molecular changes allowing
persistence during the stress condition). Accumulation of inert intracellular compatible osmolytes such
as myo-inositol (Ml), represents a primary response to relieve osmotic stress caused by extracellular
osmolality increases (2-5). Enzymes of the myo-inositol biosynthesis (MIB) pathway have been
identified as primary proteins that increase in abundance during hyper-osmotic stress in multiple fish
species, including tilapia (Oreochromis spp.) (3, 6) and European eel (Anguilla anguilla) (7). In a tilapia
cell line derived from O. mossambicus brain tissue (OmB) treated with hyper-osmotic (HO) media, MIB
enzyme transcriptional upregulation paralleled that seen in whole animals subjected to HO challenge
(8), demonstrating the utility of this model for investigating this pathway. The considerable abundance
changes of the MIB pathway enzymes in salinity-stressed cells of tilapia and several species of
euryhaline fish illustrates that the regulation of this pathway is a key event for the HO stress response in
euryhaline fish. HO induced upregulation of the MIB pathway enzymes requires regulatory enhancer
elements that respond to HO conditions. In OmB cells, an osmotic responsive enhancer element
(OSRE1) recurs in many locations of the MIPS and IMPA1.1 promoters and was found to be primarily
responsible for transcriptional upregulation of these enzymes in HO media (9). Cloning of these OSRE1
enhancers into a minimal promoter expression vector also resulted in strong HO induction of a reporter
gene.

The conserved OSRE1 core sequence of 5’-GGAAA-3’ represents the core recognition sequence of the
Rel homology domain (RHD) (10-13) included in transcription factors commonly associated with cellular
stress response signaling, including the nuclear factor of activated T-cell (NFAT) (14) and NF-kB protein
families (15, 16). Of the transcription factors belonging to these Rel protein families, NFATS is the
strongest candidate as an OSRE1 interacting partner since this transcription factor has a well-established
role as the primary transcriptional activator of HO responsive genes in mammalian cells (17-20). HO
activation of NFATS5 in mammals is achieved by multiple mechanisms, including a localization change
(21, 22), post-translational modification (23—25), and increased NFAT5 mRNA abundance (17, 21, 26—
29). NFAT5 mRNA abundance increases were also observed in multiple tissues of Atlantic Salmon
(Salmo salar) exposed to HO challenge (30), suggesting this role is phylogenetically conserved across
lower and higher vertebrates.
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Effective strategies to establish causal interactions between specific transcription factors and DNA
regulatory elements in effector genes include cis-element reporter gene expression in combination with
either trans-factor overexpression (23, 31) or trans-factor dominant negative mutant expression (32,
33). Athird approach is to generate gene knock-out (KO) animals or cell lines, e.g., by CRISPR/Cas9 gene
editing, which is an efficient method for establishing causality between signal transducers and effector
mechanisms (34, 35). Disruption of any genetic locus encoding the protein of interest in tilapia cells can
be proficiently achieved using a plasmid-based CRISPR/Cas9 system customized for O. mossambicus cells
(36). In mammalian models NFATS5 KO is usually lethal at early stages of development (37, 38) but
NFATS KO cell lines are viable, capable of proliferation, and have been used for mechanistic studies of
NFATS interactions (39—41).

Using the tilapia OmB cell line, the objective of this study was to investigate the role of tilapia NFATS for
transcriptional HO induction of genes that encode MIB pathway enzymes. This study tested the
hypothesis that NFATS is necessary for full induction of MIB pathway genes during HO stress.

MATERIALS AND METHODS

Cell lines and maintenance

0. mossambicus OmB wild-type (wt) cells and the engineered Cas9 expressing transgenic OmB cells
(Cas9-OmB1) were propagated and maintained according to standard OmB cell culture conditions and
protocols as documented in previous reports (8, 36) unless otherwise specified.

Primer design and sequence analysis

All primer design, sequence alignments, and other amino acid/DNA sequence analysis were performed
using Geneious Prime software (Version 11.0.3, Biomatters Inc, https://www.geneious.com). All
alignments were performed as global alignments with free end gaps.

0. mossambicus NFAT5 mRNA quantitation

To characterize isoform-specific 0. mossambicus NFAT5 mRNA sequences and abundances, OmB cells
were exposed to acute HO treatment (media adjusted to 650 mOsm/kg using NaCl) or basal iso-osmotic
(10) control media (315 mOsm/kg) for 6 hours followed by RNA extraction using Invitrogen PureLink RNA
Mini Kit (cat# 12183018A). A Qiagen One-step RT-PCR kit (cat# 210210) and gene specific primer pairs
for amplicons 1-4 listed in Table 1 were used for cDNA synthesis and PCR amplification of four different
regions of the O. mossambicus NFATS5 cds. Primers were designed using the XM_005467029 NFAT5
isoform sequence from the O. niloticus (taxid: 8128) reference genome. Agarose gel electrophoresis
was performed for O. mossambicus amplicons 1-4 from both HO and IO treatments.

In a separate experiment, osmotic treatments (HO and 10) and RNA isolation were performed as
described above on six replicate 10 cm plates of OmB cells per treatment. Directly after harvesting cells,
RNA isolation and cDNA synthesis were performed using Invitrogen Superscript IV (cat.# 18090010)
according to manufacturer protocol using 200 ng of template RNA and a 50:50 mix of Oligo-dT and
random hexamer primers. Quantitative PCR was performed on 10x dilutions of each cDNA using
Promega GoTaqg gPCR Master Mix (cat# A6001) on an Applied Biosystems QuantStudio 3 Real-Time PCR
system using qPCR primer pairs for NFAT5 and both B-actin and 18s rRNA as reference genes (RG) as
listed in Table 1. The primer pair targeting NFAT5 was designed to flank a 1035 bp intron using O.
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niloticus (taxid: 8128) NFAT5 genomic sequence (gene ID # LOC100691255). The RG primer pair
sequences were obtained from a previous study (8).

Sequencing and characterization of O. mossambicus NFAT5

Using RNA from the HO treated cells, Invitrogen Superscript lll (cat.# 18080-044) was used for cDNA
synthesis of longer sections of the O. mossambicus NFATS cds using gene specific primers (NFATX12_R1
for the 5’ end of the mRNA transcript and NFATX13_R1 for the 3’ end). The cDNA reactions were
treated with New England Biolabs RNAse H (cat.# M0297S) followed by PCR amplification to generate
amplicons 5 and 6 (for primer pairs see Table 1). Amplicons 8 and 9 were PCR amplified from amplicon 6
as template DNA. DNA sequences for amplicons 1-4, 8, and 9 were obtained from the UC Davis core
Sanger sequencing facility (amplicons 8 and 9 were cloned into pBluescript Il SK+ first, then sequenced
from the plasmid). These sequences were assembled into the complete cds using Geneious software
and submitted to the NCBI database.

In silico translation was performed on the constructed O. mossambicus NFAT5 cds followed by aa
alignment with known functional NFAT5 domains in mammals to identify critical functional domains.
These known domains included the nuclear export signal (NES) (22), auxiliary export domain (AED) (42),
nuclear localization signal (NLS) (43), DNA binding Rel homology domain (RHD) (32), and transcriptional
activation domains (AD1, AD2, and AD3) (23).

Construction of reporter and ectopic expression vectors

An IMPA1.1-EGFP reporter vector was constructed by PCR amplification of a 2700 bp fragment of the
IMPA1.1 promoter. The region of O. mossambicus genomic DNA starting at the endogenous start codon
on the 3’ end and extending to 1065 bp 5’ of the predicted TSS (1635 bp between TSS and start codon
consisting of exon 1, intron 1, exon 2, intron 2 and the first 36 bp of exon 3) was cloned upstream of the
EGFP cds in an EGFP_SV40PA base vector reported previously (36). To confirm HO induced activity of
the reporter, two 3.5 cm wells of a plate with 85% confluent OmB cells were transfected with 1 pg of
IMPA1.1-EGFP vector. Medium was replaced with either 10 (315 mOsm/kg) or HO (650 mOsm/kg)
media 24 hours after transfection. Tile scan imaging of the center 10% of each well was performed 24
hours after application of osmotic treatments using a Leica DMi8 inverted microscope with a GFP filter.

To reduce overall plasmid size of the other vectors used in this study, additional truncated recombinant
promoters were designed. OmAP(I-)2 and OmEF1a(l-)2 promoters were produced by using their full-
length versions (OmBAct and OmEF1a) as PCR templates (36). A reverse primer spanning the 3’ end of
exon 1 and the 5’ end of exon 2 was used for this purpose. This cloning strategy effectively removed
intron 1 but maintained the same 5’ UTR and the endogenous start codon. Moreover, the Kozak
sequence was retained but modified to include a Notl restriction site to provide more cloning options.
OmEF1a(l-)2 was cloned into a reporter vector (OmEF1a(l-)2RFP containing the dtomato red fluorescent
protein (RFP) cds. This plasmid was used for co-transfection with IMPA1.1-EGFP reporter plasmids to
normalize for differences in transfection efficiency and cell density between wells. Another promoter
(CMVIE-OmAP(I-)2) was constructed for expression of dominant negative proteins by cloning the
cytomegalovirus immediate early enhancer (CMVIE ~300 bp) upstream of the OmAP(l-)2 promoter to
improve expression strength. This cloning strategy of fusing interspecies promoters has been
demonstrated to be effective (44, 45), including for fish (46).
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To generate a dominant negative (DN) NFATS5 cds (NFAT5DN) modeled after mammalian NFAT5DN (32),
a truncated NFATS5 cds was PCR amplified using a reverse primer (NFAT5trunc_R; 5’-
TTTAAGAAAGTTTTTTCCAATGATGAAGACC-3) designed 3’ prime of the RHD but 5’ of the AD1 and AD2
domains. This primer was paired with NFAT5_F1 forward primer to PCR amplify (from amplicon 5 as
template DNA) a 1332 bp truncated NFATS5 cds including the DNA binding and nuclear localization
domains but omitting the transcriptional activation domains. To generate a full wild-type NFATS5 cds
(NFAT5WT) the NFAT5DN sequence, amplicon 7 (PCR amplified from amplicon 5, spanning exon 7 to
exon 12), and the C-terminal fragments (amplicons 8 and 9 containing exons 12-13 sub-cloned from
pBluescript Il SK+ plasmid) were assembled into a new plasmid using standard restriction enzyme
techniques. The NFATSDN cds was cloned into a plasmid driven by the CMVIE-OmAP(I-)2 promoter
generating the NFAT5DN vector. The full length wild-type (WT) cds was cloned into a plasmid driven by
the OmAP(I-)2 promoter to generate the NFATSWT vector. The first 1332 base pairs of Cas9 cds were
also cloned into a plasmid driven by the CMVIE-OmAP(I-)2 promoter to be used as an overexpression
vector (OE) that controls for non-specific deleterious effects caused by ectopic protein expression (47).

EGFP/RFP Reporter Assays

For the NFATSDN inhibition experiments, transfection reactions consisted of 1000 ng expression vector,
100 ng IMPA1.1-EGFP reporter, and 100 ng RFP normalizer plasmids. Three variations of expression
vector were used: 100% OE control vector, 50% OE control vector plus 50% NFAT5DN vector, and 100%
NFAT5DN vector. Four replicates of these plasmid combinations were used for each HO (650 mOsm/kg)
and 10 (315 mOsm/kg) control treatments. Plasmid transfections of cells were performed using
Promega ViaFect (cat.# E4981) followed by 48 hour exposure to either HO or 10 conditions after
transfection. Tile scan imaging of the center 10% of each well was performed 24 hours after HO and 10
treatments. For the NFATS5WT activation experiments, plasmid complexes were prepared consisting of
500 ng expression vector, 50 ng IMPA1.1-EGFP reporter, and 50 ng RFP normalizer plasmids. Two
variations of expression vector were used: 100% OE control vector, and 100% NFATSWT vector. Two
replicates were used per treatment group with each replicate consisting of one 12-well plate of OmB
cells. Tile scan imaging was performed on the center 20% of each well 24 hours after transfection. All
images were generated using a 20X objective and both GFP (30 ms exposure) and TXR (20 ms exposure
for RFP) filters as composite tile scans using a Leica DMi8 inverted microscope. Total fluorescence
intensity per filter was quantified using the LASX Navigator analysis tool (Leica Application Suite X
Version 3.0.4 software). Reporter activity is expressed as relative fluorescence intensity (RFI = total
EGFP fluorescence intensity/ total RFP fluorescence intensity).

Generation of NFAT5 KO cell lines

Non-essential (NE) control KO lines, gRNA selection process, and methods for generation and
genotyping of KO cell lines were chosen and performed as described previously(48). The NFAT5 amino
acid sequences for O. niloticus (XP_005467085), Oryzias latipes (XP_011487371), and Fundulus
heteroclitus (XP_021177424.2) were aligned to find the most conserved regions within the first third of
the coding sequence that would have the highest probability of gene product disruption by CRISPR/Cas9
targeting. The corresponding nucleotide sequences of these regions were entered into the online
CRISPOR gRNA selection algorithm (49) to find candidate gRNAs with the highest predicted specificity
(lowest potential of off-target effects) and efficiency (highest potential to cleave target site) scores.
Based on these scores, eight gRNAs were selected for in vivo empirical testing of mutational efficiency.
Expression plasmids for each candidate gRNA were constructed and transfected into Cas9-OmB1 cells,
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followed by hygromycin B selection, direct PCR of test amplicons including the gRNA targeted region,
Sanger sequencing, and INDEL% quantification of the resulting chromatogram using the online TIDE
mutational efficiency algorithm (50). The top three INDEL% scoring guides were used to repeat
CRISPR/Cas9 treatment of Cas9-OmB1 cells followed by low density seeding of hygromycin B selected
cells into 96-well plates. Selected wells were genotyped by direct PCR and Sanger sequencing of the
corresponding test amplicon followed by input of the chromatogram into the online DECODR algorithm
(51). Selected genotypes showing a maximum of two alleles all with 100% frameshift mutation were
propagated and genotyped again after multiple passages. One genotype for each gRNA was selected
based on maintenance of the original genotype and highest R model fit for the DECOCDR algorithm was
selected for subsequent experiments.

Quantitative PCR of IMPA1.1 and MIPS in NFATS5 KO cells

The three NFATS KO lines and three NE control KO lines (NANOS3, MSTN T5, and TYR T1) from previous
work (52) were grown to ~90% confluency in 6 cm plates followed by acute replacement of media with
either 650 mOsm/kg HO or control 315 mOsm/kg 10 media. Cell harvest and RNA isolation was
performed 24 hours after dosing followed by cDNA synthesis and quantitative PCR as described in the
previous section except: a 1000x dilution was used for 18s rRNA RG. The target gene primer pairs used
were IMPA1 and MIPS-250 from a previous study (8). For each combination (target gene, RG, and
osmotic treatment) the fold change between the NFAT5 KO and NE KO control groups was calculated
using the 22 method (53, 54).

Statistical Analysis

All statistical analyses were performed using Rstudio version 2021.09.1. One tailed Welch and two
sample t-tests were performed on all relative mRNA abundance comparisons and for determining the
effect of NFATSWT activation on IMPA1.1-EGFP reporter induction. Linear regression was used to
model the effect of NFATS5DN inhibition on HO induction of the IMPA1.1-EGFP reporter. All quantitative
data is reported as means with variation represented as standard deviation (SD).

RESULTS
RT-PCR of NFATS

Qualitative assessment of PCR amplicon images after gel electrophoresis of the different NFAT5 cds
segments yields consistently brighter bands from HO treated cells compared to 10 controls across all
segments (Figure 1A). Quantitative PCR of NFAT5 mRNA abundance confirms these visual
approximations by yielding mean mRNA abundance values of 2.80E-03 (SD 9.59E-04) for 10 and 1.07E-02
(SD 1.96E-03) for HO conditions and a statistically significant mean fold change of 3.87 (p value = 1.789%e-
05) in HO treated cells relative to iso-osmotic treated controls (Figure 1B).

Characterization of HO induced NFAT5

The assembled O. mossambicus NFAT5 cds sequence from HO treated cells (NCBI accession #
MW075269.1) was aligned with the predicted O. niloticus NFAT5 isoform with all possible exons
(XM_005467029) to identify the exon splicing pattern and any sequence differences between these two
tilapia species (Figure 1C). When compared to the predicted O. niloticus NFAT5 isoform XM_005467029,
the predicted O. mossambicus HO induced NFATS5 transcript (MW075269.1) is missing exon 2 and
contains the shorter 65 bp version of exon 11 (Figure 1C). The mammalian NFAT5 domain aa sequences
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aligned to the MW075269.1 predicted aa sequence with pairwise % identities of NES = 81.8, AED = 76.9,
NLS = 70.6, RHD = 82.2, AD2 =32.1, and AD3 = 40.9. The AD1 domain was omitted from MWO075269.1
along with exon 2 but aligned to O. niloticus NFATS5 isoform XP_005467085 with 60.7 pairwise %
identity. All domains aligned in the same relative position as previously reported for mammals (23,
55)(Figure 1D).

Construction and validation of reporter plasmids

Based on the O. niloticus reference genome, the selected regulatory IMPA1.1 promoter region should
have been 4086 bp, however a 1386 bp section in the intron between exons 2 and 3 was omitted from
the region PCR amplified from 0. mossambicus genomic DNA, resulting in the 2700 bp region that was
cloned into the EFGP_SV40 PA reporter vector (Figure 2A). HO responsiveness of the reporter vector
was qualitatively confirmed from tile scan images post transfection and HO treatment with notably
higher EGFP intensity of the HO treated cells (Figure 2B). The engineered OmEF1a(l-)2 promoter (Figure
2C) showed strong, stable RFP expression (Figure 2D).

Interaction between NFAT5DN or NFATSWT with IMPA1L.1 reporter

The engineered CMVIE-OmAP(I-)2 promoter (Figure 3A) was effective in producing sufficient NFATSDN
guantities as HO RFl induction of the IMPA1.1-EGFP reporter decreased linearly with increasing
concentration of NFAT5DN (p-value = 0.00269) amounting to a 47% reduction from no NFATS5DN
present to the highest NFATS5DN concentration (Figure 3B): 0 ug NFATS5DN mean RFI = 1.068 (SD 0.210),
0.5 ug NFATSDN mean RFI = 0.916 (SD 0.107), and 1 pg NFAT5SDN mean RFI = 0.565 (SD 0.207). In 10
media, IMPA1.1-EGFP reporter the mean RFI in NFATSWT transfected cells of 0.690 (SD 0.044) was
significantly greater (5.1 fold, p < 0.01) compared to the mean RFI of 0.140 (SD 0.018) in cells
transfected with the OE control vector (Figure 3C).

CRISPR/Cas9 gRNA design and testing

The interspecies NFAT5 aa sequence alignments identified the most highly conserved region as between
aa 320 and 450 of the O. niloticus NFAT5 protein (XP_005467085) (Figure 4A). This region corresponded
to exons 4 through 6 of the O. niloticus NFAT5 genomic sequence (gene ID # LOC100691255), in which
the candidate gRNAs were found by CRISPOR algorithm search (Figure 4B). The top eight selected
candidate gRNAs all yielded high MIT specificity (92 or greater) and Doench efficiency (45 or greater)
scores (Table 2). The three gRNAs with the highest TIDE mutational efficiency scores from in vivo
empirical testing were T3 (60.4%), T5 (51.9%), and T7 (56.1%).

Generation of NFAT5 KO clonal lines

All gRNA targets yielded at least one clonal genotype with 100% frameshift mutation that remained
constant from initial genotyping to the end of the experiment after multiple passages. The selected
clones for subsequent experiments all maintained a high R* DECODR model fit of 0.94 or greater
throughout the entire experiment (Figure 5).

IMPA1.1 and MIPS mRNA abundances in NFATS5 KO cells exposed to IO and HO conditions
Quantitative PCR was performed on the NFAT5 KO and NE KO control lines after 24 hours exposure to
HO challenge (650 mOsm/kg) or 10 control (315 mOsm/kg) media with primer pairs targeting IMPA1.1
and MIPS transcripts and using both B-actin and 18s ribosomal RNA as RG. In 10 control media, the
relative mean mRNA abundance values for each group were: NE KO control = 2.58E-04 (SD 1.25E-04)
and NFAT5KO = 4.10E-04 (SD 3.22E-04) for MIPS using B-actin RG, NE KO control = 3.39E-05 (SD 1.61E-
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05) and NFAT5KO = 4.04E-05 (SD 2.16E-05) for MIPS using 18s RG, NE KO control = 4.67E-03 (SD 3.70E-
03) and NFAT5KO = 3.77E-03 (SD 3.37E-03) for IMPA1.1 using B-actin RG, NE KO control = 6.00E-04 (SD
4.75E-04) and NFAT5KO = 4.16E-04 (SD 4.12E-04) for IMPA1.1 using 18s RG. There was no significant
difference between NFAT5KO and NE KO controls in IO media for both MIPS mean mRNA relative
abundance (B-actin RG: 1.59 fold change, p-value= 0.7449 and 18s rRNA RG: 1.19 fold change, p-value=
0.6508) and IMPA1.1 mRNA relative abundance (B-actin RG: 0.81 fold change, p-value= 0.3845 and 18s
rRNA RG: 0.69 fold change, p-value= 0.3204) using either reference gene (Figure 6). In HO media, the
relative mean mRNA abundance values for each group were: NE KO control = 5.39E-03 (SD 2.53E-03)
and NFAT5KO = 5.09E-03 (SD 2.13E-03) for MIPS using B-actin RG, NE KO control = 3.93E-04 (SD 2.02E-
04) and NFAT5KO = 2.46E-04 (SD 7.59E-05) for MIPS using 18s RG, NE KO control = 1.772 (SD 0.545) and
NFAT5KO = 1.292 (SD 0.044) for IMPA1.1 using B-actin RG, NE KO control = 1.26E-01 (SD 2.41E-02) and
NFAT5KO = 6.41E-02 (SD 5.56E-03) for IMPA1.1 using 18s RG. For both reference genes, this yielded
reductions in MIPS mRNA abundance (B-actin RG: 0.94 fold change, p-value= 0.4404, Figure 6A, and 18s
rRNA RG: 0.63 fold change, p-value= 0.1677, Figure 6B) and IMPA1.1 mRNA abundance (B-actin RG: 0.73
fold change, p-value= 0.1331, Figure 6C, and 18s rRNA RG: 0.51 fold change, p-value= 0.02036, Figure
6D) in NFAT5KO cells relative to NE KO control lines.

DISCUSSION

Previous work with MIB pathway enzyme promoters suggested these enzymes are influenced by a
homolog of the mammalian HO stress regulator NFAT5(9). In addition, NFATS5 induction in response to
HO stress has been observed in all vertebrate classes investigated thus far, i.e., in mammals (56, 57),
amphibians (58), and fish(30). Conservation of this role from even earlier in phylogenetic history is
implied by HO responsiveness of NAFT5 from Ciona robusta, a primitive chordate , when expressed in a
human cell line (59). In mammalian models, extensive work has been done on the role of NFAT5 for HO
responsive gene expression, where NFAT5 accounts for the majority of HO induced transcriptional
changes (19, 56, 57, 60). Considering the phylogenetic conservation of HO responsive NFATS5 signaling,
we hypothesized that highly euryhaline fish species like O. mossambicus also possess this regulatory
mechanism. This study uses the tilapia OmB cell line model to provide insight in the role of NFATS5 for
osmotic stress signaling in O. mossambicus and other euryhaline fishes.

It is common for different gene suppression techniques to yield a different phenotype for the same
target gene (61). Therefore, applying multiple strategies yields the most robust results. Ectopic
expression of DN TFs, i.e., TFs in which the TAD is deleted but the DBD is maintained (33), is an effective
strategy to evaluate interactions with DNA regulatory elements and has been a critical tool in
deciphering the functions and interactions of other RHD transcription factors (32, 62, 63). However, DN
proteins require precise engineering in order to function as intended and thus when using a new DN
protein it may not be certain to what degree observations are due to endogenous interactions between
the proteins in question or the effectiveness of the DN design. We used characterization of the
predicted XM_005467029 aa sequence using domain information and validated NFATDN design from
mammalian studies (32) to maximize the potential for O. mossambicus NFAT5DN intended functionality.
Over-expression of TFs has been historically useful in elucidating protein function (31, 64). However, TFs
can bind to DNA non-specifically (65, 66) and abnormally high concentration can result in increased
global transcription (67, 68) leading to erroneous transcriptionally induced phenotypes. This potential
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confounding factor was accounted for by normalization through co-transfection of the IMPA1.1-EGFP
reporter with the RFP vector which would also be affected by non-specific TF activity. CRISPR/Cas9
mediated editing is another efficient method for target gene disruption but careful interpretation of the
effect is required due to the potential of cellular changes not relevant to the phenotype in question
caused by unknown off target effects (69). Here, replication with multiple NFAT5 KO clones obtained
from different gRNAs was used to control for this potential pitfall. Collectively, these approaches can
provide compelling evidence in deciphering the interactions between NFAT5 and its target genes.

The capability of NFATS5 to induce the IMPAL.1 promoter was demonstrated by the statistically
significant induction of the IMPA1.1-EGFP reporter by NFATSWT in 10 conditions. The HO induced
upregulation of NFAT5 mRNA abundance observed by qRT-PCR in tilapia OmB cells was also highly
significant, consistent with the typical response of HO exposed mammalian cells (17, 56, 70).
Collectively, this established high plausibility that NFATS is at least partially responsible for the HO
induced increase in IMPA1.1 mRNA abundance that is consistently observed in tilapia cells (3, 6, 8, 71).

Here we use dominant negative and gene KO approaches to establish causality between NFAT5 and MIB
enzyme regulation. The NFAT5DN and NFAT5KO results for HO regulation of IMPA1.1 are consistent
with each other and the result of NFATSWT overexpression in cells exposed to 10. The continuity of
these results instills high confidence in the methodologies and the observed results. Collectively, our
results indicate that tilapia NFATS5 is partly responsible for IMPA1.1 (37 —49%) and MIPS (6 - 37%)
transcriptional induction during HO stress. Considering the magnitude at which these genes are HO
induced there is still a very substantial amount of HO induced gene activation present despite disrupted
NFATS signaling. This result suggests that in tilapia cells other osmo-responsive signaling networks are
strongly induced by the HO stress. Since O. mossambicus and other euryhaline fishes encounter osmotic
gradients in an agueous ambient environment, and can sustain more rapid and extreme changes in
plasma osmolalities (3, 72, 73), a much wider range of tissues and cell types are subjected to a more
dynamic range of osmotic exposure. This may necessitate complementary signaling mechanisms to
account for these more diverse osmotic challenges.

The MIPS and IMPA1.1 promoter regions contain a similar copy numbers of the OSRE1 enhancer (9), and
yet, a lesser relative impact of NFAT5KO on MIPS abundance was observed compared to IMPA1.1.
Although the consensus OSRE1 core was present in all of these cis-elements, the overall enhancer
sequence was highly variable. NFAT5 has the most stringent binding sequence of all the NFATs and its
binding affinity is highly affected by core adjacent sequence (74, 75). Consequently, the relative
influence NFATS5 has on transcription is dependent on the collective sequence dependent binding
affinity of all the OSRE1 elements present in the promoter. Although not generally associated with HO
signaling, the calcineurin regulated NFAT1-4 proteins are possible additional interacting partners with
OSRE1 as there is high overlap in binding sequence between all the NFATs and there have been other
accounts of calcineurin based NFAT signaling in response to HO stress. In immortalized murine renal
collecting duct cells calcineurin mediated regulation of aquaporin 2 expression was demonstrated in
response to HO stress (76). This response would require an increase of intracellular Ca** which is
commonly associated with hypo-osmotic response (1, 77), however, conflicting reports exist that it can
also be a HO response (78, 79). Like most promoters which contain many different cis elements
responsive to a variety of regulators, the IMPA1.1 promoter contains several HO responsive regions
lacking an OSRE1 (9) representing potential cis elements that interact with parallel NFAT independent
HO signaling pathways. The ubiquitous c-Myc (80), osmotic stress transcription factor 1 (Ostf1) (81), and
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CCAAT/enhancer binding protein (C/EBP) (82) are among other transcription factors associated with the
HO stress response in fish and may interact with NFATS5 to achieve full HO induction of MIB pathway
genes.

Despite the evidence supporting NFATS is only responsible for approximately half of HO induced
IMPA1.1 promoter activity, the effect size observed by ectopic NFATSWT expression seems
comparatively low. HO treatment typically leads to IMPA1.1 mRNA abundances in excess of several
hundred-fold which is substantially higher than the 5.1-fold induction of the IMPA1.1-EGFP reporter by
NFATSWT. The disparity seems even more striking when considering the NFATSWT was expressed from
a B-actin promoter likely leading to NFATS5 levels in excess of what occurs naturally. This discrepancy
can be reconciled by the post translational regulation of NFAT5. Since NFAT5WT overexpression in this
study was performed in 10 conditions, any localization or activity effects caused by HO conditions were
not represented in this result.

In mammalian models, subcellular distribution of NFATS5 is controlled by an N-terminal regulatory
domain (NTD) containing a N-terminal NES, followed by AD1 (23), the hypo-osmotic responsive AED
(42), and the potent HO responsive NLS (43). In basal 10 conditions, mammalian NFAT5 has a
constitutive distribution throughout both the cytoplasm and the nucleus held in equilibrium by this
region (55, 75). HO conditions induce strong NFAT5 nuclear enrichment (42, 55, 83), which is mediated
by HO activation of the NLS (43). Considering the highly conserved N-terminal NFAT5 domain, the
mechanism of HO regulation of O. mossambicus NFATS is likely very similar to that observed in
mammalian models. In addition to nuclear localization, transcriptional activity is also highly HO induced
by multiple post translational modifications to the TADs (AD1, AD2, and AD3) and other accessory
modulating domains (23-25). In HO treated NFAT5 TADs isolated from the NTD, activity increases of
several magnitudes have been observed (23, 25). Interestingly, exon 2 which contains the AD1
activation domain is excised from the predominant HO induced NFATS5 isoform observed in this study.
Although weaker than the other NFAT5 ADs, mammalian AD1 has demonstrated intrinsic transcriptional
activity and an ability to synergistically enhance the activation strength of the other NFAT5 ADs up to
two-fold (23). Excision of exon 2 from the HO induced form of O. mossambicus NFAT5 seems
counterintuitive, especially considering the two nuclear export signals (NES and AED) flanking exon 2 are
still maintained in the transcript. Conformational change leading to increased activity of mammalian
NFATS in response to elevated ions has been reported (84). This conformational change might have a
suppressive effect on one or both export signals. Therefore, it is possible omission of exon 2 in the HO
induced NFATS5 isoform from this study results in a structural change that functionally replicates this
effect. Collectively, these considerations support that full 0. mossambicus NFAT5 HO influence is a
combination of changes in NFAT5 abundance, localization, and activity.

Perspectives and Significance

Although a role of NFATS5 in fish salinity tolerance has been implicated, this study is the first to establish
causality between NFAT5 and HO induced differential gene expression in fish cells. The work described
here provides important new insights on the mechanisms of fish salinity tolerance, especially those
influenced by NFAT5. This work has produced new valuable tools and methodologies such as dominant
negative expression systems and NFATS KO cell lines to further evaluate the role of NFAT5 and other
complimentary regulators in HO tolerance and for other physiological functions of euryhaline fishes.



407 By accounting for weaknesses of each method and using a very comprehensive multifaceted approach
408 composed of distinct methods and numerous controls that all supported the same results, we have
409 accumulated solid support for the following conclusions: O. mossambicus NFAT5 mRNA abundance is
410 elevated during HO stress, specifically a predominant isoform that is missing the AD1 containing exon 2.
411  This isoform is able to localize to the nucleus and induce transcription in the absence of HO induction
412 indicating its capability for maintaining basal activity under 10 conditions. In OmB cells, NFATS5 has a
413 clear role in the regulation of the highly HO transcriptionally induced IMPA1.1 and MIPS genes.

414  Disruption of NFATS results in up to 49% and 37% reduction of HO induced mRNA abundance for

415 IMPA1.1 and MIPS, respectively. This contribution of tilapia NFATS to HO target gene induction is less
416  than what is typically observed in mammalian models. Therefore, euryhaline fish such as tilapia must
417 have a more elaborate HO response signaling network with other strongly induced signaling pathways
418  that are activated jointly with NFATS signaling pathways during HO stress.
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FIGURE LEGENDS

Figure 1. Characterization of NFAT5 mRNA isoform abundance patterns and sequences in isosmotic (10)
and hyperosmotic (HO) conditions. A: Agarose gel electrophoresis of different RT-PCR amplified regions
of the NFATS5 cds from both |0 and HO treatments showing greater abundance in all amplicons for HO
treatments. Multiple bands of similar intensity from amplicon 4 indicate the presence of two variants of
exon 11. A notably weaker intensity of amplicon 2 relative to amplicon 1 indicates that exon 2 is missing
from most transcripts. A yellow arrow depicts the expected band for each amplicon. B: NFAT5 mRNA
abundance relative to B-actin reference gene in 10 and HO conditions (two sample t test, n = 6, ***P <
0.001) displayed as box whisker plots in which the top and bottom boundaries represent the 1st and 3rd
quartiles of the data, the median of each group is indicated by a solid horizontal bar, vertical lines
represent highest and lowest data points excluding the outliers, the mean of each group is indicated by
a dashed line, and individual data points are indicated by open circles except outliers which are solid
black. C: Assembled sequence of HO induced O. mossambicus NFATS5 transcript (MWO075269.1) aligned
with the predicted O. niloticus NFATS5 sequence containing all possible exons (XM_005467029).
MWO075269.1 is missing exon 2 and a 65 bp section of exon 11. Location of primers used to generate
amplicons 1-4 in 1A also included. D: Critical protein domains identified in mammalian NFAT5 mapped
to the 0. mossambicus MW075269.1 cds based on alignment of individual domain amino acid sequence
to predicted MWO075269.1 amino acid sequence. Designed primer locations for PCR amplification of
truncated NFATS5 cds for use as dominant negative mutant in subsequent experiments are indicated in
green.

Figure 2. Construction and validation of the IMPA1.1-EGFP reporter. A: vector map of the IMPA1.1-EGFP
reporter showing the boundaries of the IMPA1.1 regulatory region from 1065 5' of the transcription
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start site (TSS) to the endogenous start codon of exon 3 (*1386 bp omitted by the PCR reaction). B:
Validation of IMPA1.1-EGFP reporter showing strongly increased fluorescence after 24 hour HO
treatment relative to |0 controls. C: Engineered EF1a(l-)2 promoter from endogenous O. mossambicus
OmEF1a showing inclusion of 5" UTR within the first two exons but deletion of the first intron and
modified Kozak sequence to generate Notl restriction. D: Functional validation of EF1a(l-)2 promoter
expressing RFP showing strong fluorescence.

Figure 3. Interactions between different NFATS versions and the IMPA1.1 promoter. A: CMVIE-
OmAP(I-)2 promoter engineered from endogenous 0. mossambicus OmBact for NFAT5DN expression
showing inclusion of 5" UTR within the first two exons but deletion of the first intron, modified Kozak
sequence to generate Notl restriction site, and inclusion of the cytomegalovirus immediate early
enhancer (CMVIE) at the 5’ end. B&C: effect of different NFAT5 variants on relative fluorescence
intensity (RFI) of the IMPA1.1 EGFP reporter displayed as box whisker plots as described in Figure 1. B:
Suppression of HO induced RFI with increasing NFAT5DN (t test of regression slope , n =4, **P < 0.01).
No data dispersion was observed in the |0 condition as values of all replicates were measured to be
close to zero. C: Induction of RFl by NFATSWT in 10 conditions (two sample t test, n = 2, **P < 0.01).
Mean and median values are overlapping in this data set.

Figure 4. Selection of target regions for development of NFAT5 KO cell lines. A: amino acid (aa)
sequence alignment of predicted NFAT5 proteins from three fish species (Oreochromis niloticus, Oryzias
latipes, and Fundulus heteroclitus) to identify highly conserved regions assumed to be essential
sequence for gRNA targeting. The corresponding nucleotide sequence of the conserved (boxed) region
was loaded into the CRISPOR gRNA selection algorithm. B: NFAT5 genomic locations corresponding to
conserved aa sequence region and selected gRNAs from the CRISPOR output for in vivo empirical
testing. Includes locations of the primer pairs used to generate test amplicons for mutational efficiency
guantification and genotyping.

Figure 5. Genotype sequence output from DECODR algorithm analysis of test amplicon chromatograms
from both initial screening process (Init.) and at the end of the experiment after multiple passages (post)
on the selected clonal NFATS KO cell line for each gRNA (clone ID). For each INDEL (insertion/deletion
mutation) the net bp change (INDEL ID), precise allele sequence at the targeted site relative to the wild-
type sequence, the predicted relative frequency of each allele (Freq %), and the R2 model fit of each
chromatogram input to the DECODR algorithm are shown.

Figure 6. Relative mRNA abundance of MIPS (A&B) and IMPA1.1 (C&D) genes quantified by qRT-PCR in
NFATS KO cells lines compared to NE KO controls in both 10 and HO conditions normalized using both (-
actin and 18s rRNA as reference genes. Relative mRNA abundance of MIPS and IMPA1.1 transcripts are
displayed as (2"2“)(53, 54) in box whisker plots as described in Figure 1. For all trials A-D, two sample t
test,n=3, *P < 0.05.

TABLES

0. mossambicus NFATS5 cds Sequence Assembly

Forward
Amplicon Primer ID Reverse Primer ID Forward Primer Sequence (5'-3') Reverse Prin
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736
737

738

739
740
741

742

1 NFATS5_F1 NFAT5X3_R1 ATGCCCTCTGACTTTATCTCCC CTTCCTTTATGTCCTCC

2 NFAT5X2_F3 NFAT5X3_R1 GTCAAAAGAGCGGCGGAGA CTTCCTTTATGTCCTCC

3 NFAT5X4_F1 NFAT5X8_R1 TCTGATGAACCTAGGACTACTAATC GCTCCATGTCAATTTC

4 NFAT5X8 F1 NFAT5X12_R1 GGCTGAAATTGACATGGAGC GCCCGCAACAATGTCC

5 NFATS5_F1 NFAT5X12_R1 ATGCCCTCTGACTTTATCTCCC GCCCGCAACAATGTC(

6 NFAT5X12_F1 NFAT5X13_R1 AGACTGGTGATCTGCGTCCA TTAGTAGGAACGAGT

7 NFAT5X7_F3 NFAT5X12(Xbal)_R1 | CCCCCAAGCTTGGTCTCAGAGGAGGTCTTCATC | CCCCCTCTAGAGCCCG

8 NFAT5X12_F1b | NFAT5X12_R4 CCCCCCTCGAGAGACTGGTGATCTGCGTCCA TGTTGAGGCTGAGAT(

9 NFAT5X12 _F7b | NFAT5X13_R2b CCCCCCTCGAGATTTCAGACCCAGATCTCCC CCCCCCTCAGATTAGT

O. mossambicus NFAT5 mRNA guantitative RT-PCR
Target Accession

Gene Number Dilution Forward Primer Sequence (5'-3') Reverse Prir
NFAT5 NC031965 1:10 | GAAGATCCTCGTCCAGCCTG GCCAACGAACACCTG(
B-actin AB037865 1:10 | CCACAGCCGAGAGGGAAAT CCCATCTCCTGCTCGA
18s Rrna | AF497908 1:10 | CGATGCTCTTAGCTGAGTGT ACGACGGTATCTGATC

Table 1. Primer pair sequence information associated with; RT-PCR generated amplicons used in
sequencing and cloning of the HO induced O. mossambicus NFAT5 cds (MW075269.1), and gRT-PCR
qguantification of NFAT5 mRNA in 10 and HO conditions.

Target gRNA Test Amplicon (Primers and Length) Sl\glel—:. Doe
# Sequence Forward Primer Reverse Primer (StI)Z:) Score | Effici
T1 GTGAAGGACCGCACTCAGC | GCTGCAGCTCTGATGAACCT | CCTTAGAGCTTTGGTCCCCG 722 95
T2 GGAAAGCCCTGCTGAGTG GCTGCAGCTCTGATGAACCT | CCTTAGAGCTTTGGTCCCCG 722 92
T3 GTTGCGACCAGTAACCCTGC | CAGCAGATCTACCAGGAGCG | CCTTGCTGGGTAATTTTCTGCA | 667 94
T4 GCAACACCACAGCCTGCA CAGCAGATCTACCAGGAGCG | CCTTGCTGGGTAATTTTCTGCA | 667 90
T5 GCAAGGAGGTTGATATTGA | CAGCAGATCTACCAGGAGCG | CCTTGCTGGGTAATTTTCTGCA | 667 92
T6 GCTCCGCAACGCTGATGTAG | TCCAAGCTCCAACATGACCC | GCCCTAAGCGTCTTTCCTGT 738 97
T7 GATGTAGAGGCTCGCATTG | TCCAAGCTCCAACATGACCC | GCCCTAAGCGTCTTTCCTGT 738 98
T8 GACTGAACCATCTGGACG TCCAAGCTCCAACATGACCC | GCCCTAAGCGTCTTTCCTGT 738 95

Table 2. Candidate gRNA sequences selected for in vivo empirical testing of mutational efficiency

including test amplicon sizes with associated primer pairs, CRISPOR MIT specificity scores, predicted
efficiency (Doench) and in vivo empirically tested efficiency (TIDE INDEL%).
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Clone INDEL Allele Freq Model
ID IDs Sequence (%) R?

NFATS5 T3 WT CATGGGTTTTACCAAGCCT ACCACAGCCTGCAAGGAGGTT

Init. -1 CATGGGTTTTACCAAGCCTGCA-CTGTACTGGTCGCAACACCACAGCCTGCAAGGAGGTT 100.0 1.00

Post -1 CATGGGTTTTACCAAGCCTGCA-CTGTACTGGTCGCAACACCACAGCCTGCAAGGAGGTT 100.0 1.00

NFATS5 TS5 WT CTGGTCGCAACACCACAGCC AGGCACAACTGTTATCGAAG

Init. -1 CTGGTCGCAACACCACAGCCTGCAAGGAGGTTGATA-TGAAGGCACAACTGTTATCGAAG 67.1 0.98
+1 CTGGTCGCAACACCACAGCCTGCAAGGAGGTTGATATTTGAAGGCACAACTGTTATCGAA 32.9

Post -1 CTGGTCGCAACACCACAGCCTGCAAGGAGGTTGATA-TGAAGGCACAACTGTTATCGAAG 66.1 0.96
+1 CTGGTCGCAACACCACAGCCTGCAAGGAGGTTGATATTTGAAGGCACAACTGTTATCGAA 33.9

NFAT5 T7 WT GATCCTGAAGCTCCGCAACGC GGGTGGCCGGATCAAAGAA

Init. -64 GATCCTGAA-—=———=———=—————————— (=64) ————m e - GCTCGGCTCG 57.1 0.95
-1 GATCCTGAAGCTCCGCAACGCTGATGTAGAGGCTCGCA-TGGGGTGGCCGGATCAAAGAA 42 .9

Post -64 GATCCTGAA-—=———=———=—————————— (=64) ———mm e GCTCGGCTCG 58.4 0.94
-1 GATCCTGAAGCTCCGCAACGCTGATGTAGAGGCTCGCA-TGGGGTGGCCGGATCAAAGAA 41.6

B PAM Target Sequence M Insertion - Deletion
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Overexpression of wild-type NFATS activates while dominant negative and
CRISPR/Cas9 targeting of NFAT5 suppress activation of MIB promoters identifying
NFATS as a primary MIB regulator in osmotically stressed tilapia cells.
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