

1 RESEARCH ARTICLE

2 RUNNING HEAD: NFAT5 osmoregulation of tilapia *myo*-inositol biosynthesis

3 **Transcriptional up-regulation of the *myo*-Inositol
4 biosynthesis pathway is enhanced by NFAT5 in hyper-
5 osmotically stressed tilapia cells**

6 Jens Hamar,¹ Avner Cnaani,² Dietmar Kültz¹

7 ¹Department of Animal Sciences and Genome Center, University of California Davis, Davis, California,
8 United States

9 ²Department of Poultry and Aquaculture, Institute of Animal Sciences, Agricultural Research
10 Organization, Rishon LeZion, Israel

11 Correspondence: Dietmar Kültz (dkueltz@ucdavis.edu).

13

14 **ABSTRACT**

15 Euryhaline fish experience variable osmotic environments requiring physiological adjustments to
16 tolerate elevated salinity. Mozambique tilapia (*Oreochromis mossambicus*) possess one of the highest
17 salinity tolerance limits of any fish. In tilapia and other euryhaline fish species the *myo*-inositol
18 biosynthesis (MIB) pathway enzymes, *myo*-inositol phosphate synthase (MIPS) and inositol
19 monophosphatase 1 (IMPA1.1), are among the most upregulated mRNAs and proteins indicating the
20 high importance of this pathway for hyper-osmotic (HO) stress tolerance. These abundance changes
21 must be precluded by HO perception and signaling mechanism activation to regulate the expression of
22 *MIPS* and *IMPA1.1* genes. In previous work using a *O. mossambicus* cell line (OmB), a reoccurring
23 osmosensitive enhancer element (OSRE1) in both *MIPS* and *IMPA1.1* was shown to transcriptionally
24 upregulate these enzymes in response to HO stress. The OSRE1 core consensus (5'-GGAAA-3') matches
25 the core binding sequence of the predominant mammalian HO response transcription factor, nuclear
26 factor of activated T-cells (NFAT5). HO challenged OmB cells showed an increase in *NFAT5* mRNA
27 suggesting NFAT5 may contribute to MIB pathway regulation in euryhaline fish. Ectopic expression of
28 wild-type NFAT5 induced an *IMPA1.1* promoter-driven reporter by 5.1-fold ($p < 0.01$). Moreover,
29 expression of dominant negative NFAT5 in HO media resulted in a 47% suppression of the reporter
30 signal ($p < 0.005$). Furthermore, reductions of IMPA1.1 (37-49%) and MIPS (6-37%) mRNA abundance
31 were observed in HO challenged NFAT5 knockout cells relative to control cells. Collectively, these
32 multiple lines of experimental evidence establish NFAT5 as a tilapia transcription factor contributing to
33 HO induced activation of the MIB pathway.

34 **NEW & NOTEWORTHY**

35 In our study we use a multi-pronged synthetic biology approach to demonstrate that the fish homolog of
36 the predominant mammalian osmotic stress transcription factor NFAT5 also contributes to the
37 activation of hyperosmolality inducible genes in cells of extremely euryhaline fish. However, in addition

38 to NFAT5 the presence of other strong osmotically inducible signaling mechanisms is required for full
39 activation of osmoregulated tilapia genes.

40 **Keywords:** NFAT5; Hyperosmolality; CRISPR/Cas9; dominant negative mutant; tilapia; synthetic biology

43 INTRODUCTION

44 Euryhaline fish acclimate to altered osmotic conditions by regulating their extracellular osmolality and,
45 during severe salinity stress, activation of intracellular enzymes that promote accumulation of
46 compatible organic osmolytes (1). Having one of the widest ranges of salinity tolerance of all fish,
47 *Oreochromis mossambicus* represent an ideal species to study these mechanisms. Physiological stress
48 responses include sensors (the proteins or other molecules that perceive the stress condition),
49 intermediate signal transducers (the molecules that relay the stress signal from the sensors to the
50 effectors), and effector elements (the molecules that mediate the molecular changes allowing
51 persistence during the stress condition). Accumulation of inert intracellular compatible osmolytes such
52 as *myo*-inositol (MI), represents a primary response to relieve osmotic stress caused by extracellular
53 osmolality increases (2–5). Enzymes of the *myo*-inositol biosynthesis (MIB) pathway have been
54 identified as primary proteins that increase in abundance during hyper-osmotic stress in multiple fish
55 species, including tilapia (*Oreochromis* spp.) (3, 6) and European eel (*Anguilla anguilla*) (7). In a tilapia
56 cell line derived from *O. mossambicus* brain tissue (OmB) treated with hyper-osmotic (HO) media, MIB
57 enzyme transcriptional upregulation paralleled that seen in whole animals subjected to HO challenge
58 (8), demonstrating the utility of this model for investigating this pathway. The considerable abundance
59 changes of the MIB pathway enzymes in salinity-stressed cells of tilapia and several species of
60 euryhaline fish illustrates that the regulation of this pathway is a key event for the HO stress response in
61 euryhaline fish. HO induced upregulation of the MIB pathway enzymes requires regulatory enhancer
62 elements that respond to HO conditions. In OmB cells, an osmotic responsive enhancer element
63 (OSRE1) recurs in many locations of the *MIPS* and *IMPA1.1* promoters and was found to be primarily
64 responsible for transcriptional upregulation of these enzymes in HO media (9). Cloning of these OSRE1
65 enhancers into a minimal promoter expression vector also resulted in strong HO induction of a reporter
66 gene.

67 The conserved OSRE1 core sequence of 5'-GGAAA-3' represents the core recognition sequence of the
68 Rel homology domain (RHD) (10–13) included in transcription factors commonly associated with cellular
69 stress response signaling, including the nuclear factor of activated T-cell (NFAT) (14) and NF- κ B protein
70 families (15, 16). Of the transcription factors belonging to these Rel protein families, NFAT5 is the
71 strongest candidate as an OSRE1 interacting partner since this transcription factor has a well-established
72 role as the primary transcriptional activator of HO responsive genes in mammalian cells (17–20). HO
73 activation of NFAT5 in mammals is achieved by multiple mechanisms, including a localization change
74 (21, 22), post-translational modification (23–25), and increased NFAT5 mRNA abundance (17, 21, 26–
75 29). NFAT5 mRNA abundance increases were also observed in multiple tissues of Atlantic Salmon
76 (*Salmo salar*) exposed to HO challenge (30), suggesting this role is phylogenetically conserved across
77 lower and higher vertebrates.

78 Effective strategies to establish causal interactions between specific transcription factors and DNA
79 regulatory elements in effector genes include *cis*-element reporter gene expression in combination with
80 either *trans*-factor overexpression (23, 31) or *trans*-factor dominant negative mutant expression (32,
81 33). A third approach is to generate gene knock-out (KO) animals or cell lines, e.g., by CRISPR/Cas9 gene
82 editing, which is an efficient method for establishing causality between signal transducers and effector
83 mechanisms (34, 35). Disruption of any genetic locus encoding the protein of interest in tilapia cells can
84 be proficiently achieved using a plasmid-based CRISPR/Cas9 system customized for *O. mossambicus* cells
85 (36). In mammalian models NFAT5 KO is usually lethal at early stages of development (37, 38) but
86 NFAT5 KO cell lines are viable, capable of proliferation, and have been used for mechanistic studies of
87 NFAT5 interactions (39–41).

88 Using the tilapia OmB cell line, the objective of this study was to investigate the role of tilapia NFAT5 for
89 transcriptional HO induction of genes that encode MIB pathway enzymes. This study tested the
90 hypothesis that NFAT5 is necessary for full induction of MIB pathway genes during HO stress.

91 MATERIALS AND METHODS

92 Cell lines and maintenance

93 *O. mossambicus* OmB wild-type (wt) cells and the engineered Cas9 expressing transgenic OmB cells
94 (Cas9-OmB1) were propagated and maintained according to standard OmB cell culture conditions and
95 protocols as documented in previous reports (8, 36) unless otherwise specified.

96 Primer design and sequence analysis

97 All primer design, sequence alignments, and other amino acid/DNA sequence analysis were performed
98 using Geneious Prime software (Version 11.0.3, Biomatters Inc, <https://www.geneious.com>). All
99 alignments were performed as global alignments with free end gaps.

100 *O. mossambicus* NFAT5 mRNA quantitation

101 To characterize isoform-specific *O. mossambicus* NFAT5 mRNA sequences and abundances, OmB cells
102 were exposed to acute HO treatment (media adjusted to 650 mOsm/kg using NaCl) or basal iso-osmotic
103 (IO) control media (315 mOsm/kg) for 6 hours followed by RNA extraction using Invitrogen PureLink RNA
104 Mini Kit (cat# 12183018A). A Qiagen One-step RT-PCR kit (cat# 210210) and gene specific primer pairs
105 for amplicons 1-4 listed in Table 1 were used for cDNA synthesis and PCR amplification of four different
106 regions of the *O. mossambicus* NFAT5 cds. Primers were designed using the XM_005467029 NFAT5
107 isoform sequence from the *O. niloticus* (taxid: 8128) reference genome. Agarose gel electrophoresis
108 was performed for *O. mossambicus* amplicons 1-4 from both HO and IO treatments.

109 In a separate experiment, osmotic treatments (HO and IO) and RNA isolation were performed as
110 described above on six replicate 10 cm plates of OmB cells per treatment. Directly after harvesting cells,
111 RNA isolation and cDNA synthesis were performed using Invitrogen Superscript IV (cat.# 18090010)
112 according to manufacturer protocol using 200 ng of template RNA and a 50:50 mix of Oligo-dT and
113 random hexamer primers. Quantitative PCR was performed on 10x dilutions of each cDNA using
114 Promega GoTaq qPCR Master Mix (cat# A6001) on an Applied Biosystems QuantStudio 3 Real-Time PCR
115 system using qPCR primer pairs for *NFAT5* and both β -actin and 18s rRNA as reference genes (RG) as
116 listed in Table 1. The primer pair targeting NFAT5 was designed to flank a 1035 bp intron using *O.*

117 *niloticus* (taxid: 8128) NFAT5 genomic sequence (gene ID # LOC100691255). The RG primer pair
118 sequences were obtained from a previous study (8).

119 [Sequencing and characterization of *O. mossambicus* NFAT5](#)

120 Using RNA from the HO treated cells, Invitrogen Superscript III (cat.# 18080-044) was used for cDNA
121 synthesis of longer sections of the *O. mossambicus* NFAT5 cds using gene specific primers (NFATX12_R1
122 for the 5' end of the mRNA transcript and NFATX13_R1 for the 3' end). The cDNA reactions were
123 treated with New England Biolabs RNase H (cat.# M0297S) followed by PCR amplification to generate
124 amplicons 5 and 6 (for primer pairs see Table 1). Amplicons 8 and 9 were PCR amplified from amplicon 6
125 as template DNA. DNA sequences for amplicons 1-4, 8, and 9 were obtained from the UC Davis core
126 Sanger sequencing facility (amplicons 8 and 9 were cloned into pBluescript II SK+ first, then sequenced
127 from the plasmid). These sequences were assembled into the complete cds using Geneious software
128 and submitted to the NCBI database.

129 *In silico* translation was performed on the constructed *O. mossambicus* NFAT5 cds followed by aa
130 alignment with known functional NFAT5 domains in mammals to identify critical functional domains.
131 These known domains included the nuclear export signal (NES) (22), auxiliary export domain (AED) (42),
132 nuclear localization signal (NLS) (43), DNA binding Rel homology domain (RHD) (32), and transcriptional
133 activation domains (AD1, AD2, and AD3) (23).

134 [Construction of reporter and ectopic expression vectors](#)

135 An IMPA1.1-EGFP reporter vector was constructed by PCR amplification of a 2700 bp fragment of the
136 *IMPA1.1* promoter. The region of *O. mossambicus* genomic DNA starting at the endogenous start codon
137 on the 3' end and extending to 1065 bp 5' of the predicted TSS (1635 bp between TSS and start codon
138 consisting of exon 1, intron 1, exon 2, intron 2 and the first 36 bp of exon 3) was cloned upstream of the
139 EGFP cds in an EGFP_SV40PA base vector reported previously (36). To confirm HO induced activity of
140 the reporter, two 3.5 cm wells of a plate with 85% confluent OmB cells were transfected with 1 µg of
141 IMPA1.1-EGFP vector. Medium was replaced with either IO (315 mOsm/kg) or HO (650 mOsm/kg)
142 media 24 hours after transfection. Tile scan imaging of the center 10% of each well was performed 24
143 hours after application of osmotic treatments using a Leica DMi8 inverted microscope with a GFP filter.

144 To reduce overall plasmid size of the other vectors used in this study, additional truncated recombinant
145 promoters were designed. OmAP(I-)2 and OmEF1a(I-)2 promoters were produced by using their full-
146 length versions (OmBAct and OmEF1a) as PCR templates (36). A reverse primer spanning the 3' end of
147 exon 1 and the 5' end of exon 2 was used for this purpose. This cloning strategy effectively removed
148 intron 1 but maintained the same 5' UTR and the endogenous start codon. Moreover, the Kozak
149 sequence was retained but modified to include a NotI restriction site to provide more cloning options.
150 OmEF1a(I-)2 was cloned into a reporter vector (OmEF1a(I-)2RFP containing the dtomato red fluorescent
151 protein (RFP) cds. This plasmid was used for co-transfection with IMPA1.1-EGFP reporter plasmids to
152 normalize for differences in transfection efficiency and cell density between wells. Another promoter
153 (CMVIE-OmAP(I-)2) was constructed for expression of dominant negative proteins by cloning the
154 cytomegalovirus immediate early enhancer (CMVIE ~300 bp) upstream of the OmAP(I-)2 promoter to
155 improve expression strength. This cloning strategy of fusing interspecies promoters has been
156 demonstrated to be effective (44, 45), including for fish (46).

157 To generate a dominant negative (DN) NFAT5 cds (NFAT5DN) modeled after mammalian NFAT5DN (32),
158 a truncated NFAT5 cds was PCR amplified using a reverse primer (NFAT5trunc_R; 5'-
159 TTTAAGAAAGTTTTCCAATGATGAAGACC-3) designed 3' prime of the RHD but 5' of the AD1 and AD2
160 domains. This primer was paired with NFAT5_F1 forward primer to PCR amplify (from amplicon 5 as
161 template DNA) a 1332 bp truncated NFAT5 cds including the DNA binding and nuclear localization
162 domains but omitting the transcriptional activation domains. To generate a full wild-type NFAT5 cds
163 (NFAT5WT) the NFAT5DN sequence, amplicon 7 (PCR amplified from amplicon 5, spanning exon 7 to
164 exon 12), and the C-terminal fragments (amplicons 8 and 9 containing exons 12-13 sub-cloned from
165 pBluescript II SK+ plasmid) were assembled into a new plasmid using standard restriction enzyme
166 techniques. The NFAT5DN cds was cloned into a plasmid driven by the CMVIE-OmAP(I-2) promoter
167 generating the NFAT5DN vector. The full length wild-type (WT) cds was cloned into a plasmid driven by
168 the OmAP(I-2) promoter to generate the NFAT5WT vector. The first 1332 base pairs of Cas9 cds were
169 also cloned into a plasmid driven by the CMVIE-OmAP(I-2) promoter to be used as an overexpression
170 vector (OE) that controls for non-specific deleterious effects caused by ectopic protein expression (47).

171 EGFP/RFP Reporter Assays

172 For the NFAT5DN inhibition experiments, transfection reactions consisted of 1000 ng expression vector,
173 100 ng IMPA1.1-EGFP reporter, and 100 ng RFP normalizer plasmids. Three variations of expression
174 vector were used: 100% OE control vector, 50% OE control vector plus 50% NFAT5DN vector, and 100%
175 NFAT5DN vector. Four replicates of these plasmid combinations were used for each HO (650 mOsm/kg)
176 and IO (315 mOsm/kg) control treatments. Plasmid transfections of cells were performed using
177 Promega ViaFect (cat.# E4981) followed by 48 hour exposure to either HO or IO conditions after
178 transfection. Tile scan imaging of the center 10% of each well was performed 24 hours after HO and IO
179 treatments. For the NFAT5WT activation experiments, plasmid complexes were prepared consisting of
180 500 ng expression vector, 50 ng IMPA1.1-EGFP reporter, and 50 ng RFP normalizer plasmids. Two
181 variations of expression vector were used: 100% OE control vector, and 100% NFAT5WT vector. Two
182 replicates were used per treatment group with each replicate consisting of one 12-well plate of OmB
183 cells. Tile scan imaging was performed on the center 20% of each well 24 hours after transfection. All
184 images were generated using a 20X objective and both GFP (30 ms exposure) and TXR (20 ms exposure
185 for RFP) filters as composite tile scans using a Leica DMI8 inverted microscope. Total fluorescence
186 intensity per filter was quantified using the LASX Navigator analysis tool (Leica Application Suite X
187 Version 3.0.4 software). Reporter activity is expressed as relative fluorescence intensity (RFI = total
188 EGFP fluorescence intensity/ total RFP fluorescence intensity).

189 Generation of NFAT5 KO cell lines

190 Non-essential (NE) control KO lines, gRNA selection process, and methods for generation and
191 genotyping of KO cell lines were chosen and performed as described previously(48). The NFAT5 amino
192 acid sequences for *O. niloticus* (XP_005467085), *Oryzias latipes* (XP_011487371), and *Fundulus*
193 *heteroclitus* (XP_021177424.2) were aligned to find the most conserved regions within the first third of
194 the coding sequence that would have the highest probability of gene product disruption by CRISPR/Cas9
195 targeting. The corresponding nucleotide sequences of these regions were entered into the online
196 CRISPOR gRNA selection algorithm (49) to find candidate gRNAs with the highest predicted specificity
197 (lowest potential of off-target effects) and efficiency (highest potential to cleave target site) scores.
198 Based on these scores, eight gRNAs were selected for *in vivo* empirical testing of mutational efficiency.
199 Expression plasmids for each candidate gRNA were constructed and transfected into Cas9-OmB1 cells,

200 followed by hygromycin B selection, direct PCR of test amplicons including the gRNA targeted region,
201 Sanger sequencing, and INDEL% quantification of the resulting chromatogram using the online TIDE
202 mutational efficiency algorithm (50). The top three INDEL% scoring guides were used to repeat
203 CRISPR/Cas9 treatment of Cas9-Omb1 cells followed by low density seeding of hygromycin B selected
204 cells into 96-well plates. Selected wells were genotyped by direct PCR and Sanger sequencing of the
205 corresponding test amplicon followed by input of the chromatogram into the online DECODR algorithm
206 (51). Selected genotypes showing a maximum of two alleles all with 100% frameshift mutation were
207 propagated and genotyped again after multiple passages. One genotype for each gRNA was selected
208 based on maintenance of the original genotype and highest R² model fit for the DECOCDR algorithm was
209 selected for subsequent experiments.

210 Quantitative PCR of IMPA1.1 and MIPS in NFAT5 KO cells

211 The three NFAT5 KO lines and three NE control KO lines (NANOS3, MSTN T5, and TYR T1) from previous
212 work (52) were grown to ~90% confluence in 6 cm plates followed by acute replacement of media with
213 either 650 mOsm/kg HO or control 315 mOsm/kg IO media. Cell harvest and RNA isolation was
214 performed 24 hours after dosing followed by cDNA synthesis and quantitative PCR as described in the
215 previous section except: a 1000x dilution was used for 18s rRNA RG. The target gene primer pairs used
216 were IMPA1 and MIPS-250 from a previous study (8). For each combination (target gene, RG, and
217 osmotic treatment) the fold change between the NFAT5 KO and NE KO control groups was calculated
218 using the 2^{-ΔΔCT} method (53, 54).

219 Statistical Analysis

220 All statistical analyses were performed using Rstudio version 2021.09.1. One tailed Welch and two
221 sample t-tests were performed on all relative mRNA abundance comparisons and for determining the
222 effect of NFAT5WT activation on IMPA1.1-EGFP reporter induction. Linear regression was used to
223 model the effect of NFAT5DN inhibition on HO induction of the IMPA1.1-EGFP reporter. All quantitative
224 data is reported as means with variation represented as standard deviation (SD).

225 RESULTS

226 RT-PCR of NFAT5

227 Qualitative assessment of PCR amplicon images after gel electrophoresis of the different NFAT5 cds
228 segments yields consistently brighter bands from HO treated cells compared to IO controls across all
229 segments (Figure 1A). Quantitative PCR of NFAT5 mRNA abundance confirms these visual
230 approximations by yielding mean mRNA abundance values of 2.80E-03 (SD 9.59E-04) for IO and 1.07E-02
231 (SD 1.96E-03) for HO conditions and a statistically significant mean fold change of 3.87 (p value = 1.789e-
232 05) in HO treated cells relative to iso-osmotic treated controls (Figure 1B).

233 Characterization of HO induced NFAT5

234 The assembled *O. mossambicus* NFAT5 cds sequence from HO treated cells (NCBI accession #
235 MW075269.1) was aligned with the predicted *O. niloticus* NFAT5 isoform with all possible exons
236 (XM_005467029) to identify the exon splicing pattern and any sequence differences between these two
237 tilapia species (Figure 1C). When compared to the predicted *O. niloticus* NFAT5 isoform XM_005467029,
238 the predicted *O. mossambicus* HO induced NFAT5 transcript (MW075269.1) is missing exon 2 and
239 contains the shorter 65 bp version of exon 11 (Figure 1C). The mammalian NFAT5 domain aa sequences

240 aligned to the MW075269.1 predicted aa sequence with pairwise % identities of NES = 81.8, AED = 76.9,
241 NLS = 70.6, RHD = 82.2, AD2 = 32.1, and AD3 = 40.9. The AD1 domain was omitted from MW075269.1
242 along with exon 2 but aligned to *O. niloticus* NFAT5 isoform XP_005467085 with 60.7 pairwise %
243 identity. All domains aligned in the same relative position as previously reported for mammals (23,
244 55)(Figure 1D).

245 Construction and validation of reporter plasmids

246 Based on the *O. niloticus* reference genome, the selected regulatory *IMPA1.1* promoter region should
247 have been 4086 bp, however a 1386 bp section in the intron between exons 2 and 3 was omitted from
248 the region PCR amplified from *O. mossambicus* genomic DNA, resulting in the 2700 bp region that was
249 cloned into the EGFP_SV40 PA reporter vector (Figure 2A). HO responsiveness of the reporter vector
250 was qualitatively confirmed from tile scan images post transfection and HO treatment with notably
251 higher EGFP intensity of the HO treated cells (Figure 2B). The engineered OmEF1a(I-)2 promoter (Figure
252 2C) showed strong, stable RFP expression (Figure 2D).

253 Interaction between NFAT5DN or NFAT5WT with IMPA1.1 reporter

254 The engineered CMVIE-OmAP(I-)2 promoter (Figure 3A) was effective in producing sufficient NFAT5DN
255 quantities as HO RFI induction of the IMPA1.1-EGFP reporter decreased linearly with increasing
256 concentration of NFAT5DN (p-value = 0.00269) amounting to a 47% reduction from no NFAT5DN
257 present to the highest NFAT5DN concentration (Figure 3B): 0 µg NFAT5DN mean RFI = 1.068 (SD 0.210),
258 0.5 µg NFAT5DN mean RFI = 0.916 (SD 0.107), and 1 µg NFAT5DN mean RFI = 0.565 (SD 0.207). In IO
259 media, IMPA1.1-EGFP reporter the mean RFI in NFAT5WT transfected cells of 0.690 (SD 0.044) was
260 significantly greater (5.1 fold, p < 0.01) compared to the mean RFI of 0.140 (SD 0.018) in cells
261 transfected with the OE control vector (Figure 3C).

262 CRISPR/Cas9 gRNA design and testing

263 The interspecies NFAT5 aa sequence alignments identified the most highly conserved region as between
264 aa 320 and 450 of the *O. niloticus* NFAT5 protein (XP_005467085) (Figure 4A). This region corresponded
265 to exons 4 through 6 of the *O. niloticus* NFAT5 genomic sequence (gene ID # LOC100691255), in which
266 the candidate gRNAs were found by CRISPOR algorithm search (Figure 4B). The top eight selected
267 candidate gRNAs all yielded high MIT specificity (92 or greater) and Doench efficiency (45 or greater)
268 scores (Table 2). The three gRNAs with the highest TIDE mutational efficiency scores from *in vivo*
269 empirical testing were T3 (60.4%), T5 (51.9%), and T7 (56.1%).

270 Generation of NFAT5 KO clonal lines

271 All gRNA targets yielded at least one clonal genotype with 100% frameshift mutation that remained
272 constant from initial genotyping to the end of the experiment after multiple passages. The selected
273 clones for subsequent experiments all maintained a high R² DECODR model fit of 0.94 or greater
274 throughout the entire experiment (Figure 5).

275 IMPA1.1 and MIPS mRNA abundances in NFAT5 KO cells exposed to IO and HO conditions

276 Quantitative PCR was performed on the NFAT5 KO and NE KO control lines after 24 hours exposure to
277 HO challenge (650 mOsm/kg) or IO control (315 mOsm/kg) media with primer pairs targeting IMPA1.1
278 and MIPS transcripts and using both β-actin and 18s ribosomal RNA as RG. In IO control media, the
279 relative mean mRNA abundance values for each group were: NE KO control = 2.58E-04 (SD 1.25E-04)
280 and NFAT5KO = 4.10E-04 (SD 3.22E-04) for MIPS using β-actin RG, NE KO control = 3.39E-05 (SD 1.61E-

281 05) and NFAT5KO = 4.04E-05 (SD 2.16E-05) for MIPS using 18s RG, NE KO control = 4.67E-03 (SD 3.70E-
282 03) and NFAT5KO = 3.77E-03 (SD 3.37E-03) for IMPA1.1 using β -actin RG, NE KO control = 6.00E-04 (SD
283 4.75E-04) and NFAT5KO = 4.16E-04 (SD 4.12E-04) for IMPA1.1 using 18s RG. There was no significant
284 difference between NFAT5KO and NE KO controls in IO media for both MIPS mean mRNA relative
285 abundance (β -actin RG: 1.59 fold change, p-value= 0.7449 and 18s rRNA RG: 1.19 fold change, p-value= 0.6508) and IMPA1.1 mRNA relative abundance (β -actin RG: 0.81 fold change, p-value= 0.3845 and 18s
286 rRNA RG: 0.69 fold change, p-value= 0.3204) using either reference gene (Figure 6). In HO media, the
287 relative mean mRNA abundance values for each group were: NE KO control = 5.39E-03 (SD 2.53E-03)
288 and NFAT5KO = 5.09E-03 (SD 2.13E-03) for MIPS using β -actin RG, NE KO control = 3.93E-04 (SD 2.02E-
289 04) and NFAT5KO = 2.46E-04 (SD 7.59E-05) for MIPS using 18s RG, NE KO control = 1.772 (SD 0.545) and
290 NFAT5KO = 1.292 (SD 0.044) for IMPA1.1 using β -actin RG, NE KO control = 1.26E-01 (SD 2.41E-02) and
291 NFAT5KO = 6.41E-02 (SD 5.56E-03) for IMPA1.1 using 18s RG. For both reference genes, this yielded
292 reductions in MIPS mRNA abundance (β -actin RG: 0.94 fold change, p-value= 0.4404, Figure 6A, and 18s
293 rRNA RG: 0.63 fold change, p-value= 0.1677, Figure 6B) and IMPA1.1 mRNA abundance (β -actin RG: 0.73
294 fold change, p-value= 0.1331, Figure 6C, and 18s rRNA RG: 0.51 fold change, p-value= 0.02036, Figure
295 6D) in NFAT5KO cells relative to NE KO control lines.

297

298 DISCUSSION

299 Previous work with MIB pathway enzyme promoters suggested these enzymes are influenced by a
300 homolog of the mammalian HO stress regulator NFAT5(9). In addition, NFAT5 induction in response to
301 HO stress has been observed in all vertebrate classes investigated thus far, i.e., in mammals (56, 57),
302 amphibians (58), and fish(30). Conservation of this role from even earlier in phylogenetic history is
303 implied by HO responsiveness of NAFT5 from *Ciona robusta*, a primitive chordate , when expressed in a
304 human cell line (59). In mammalian models, extensive work has been done on the role of NFAT5 for HO
305 responsive gene expression, where NFAT5 accounts for the majority of HO induced transcriptional
306 changes (19, 56, 57, 60). Considering the phylogenetic conservation of HO responsive NFAT5 signaling,
307 we hypothesized that highly euryhaline fish species like *O. mossambicus* also possess this regulatory
308 mechanism. This study uses the tilapia OmB cell line model to provide insight in the role of NFAT5 for
309 osmotic stress signaling in *O. mossambicus* and other euryhaline fishes.

310 It is common for different gene suppression techniques to yield a different phenotype for the same
311 target gene (61). Therefore, applying multiple strategies yields the most robust results. Ectopic
312 expression of DN TFs, i.e., TFs in which the TAD is deleted but the DBD is maintained (33), is an effective
313 strategy to evaluate interactions with DNA regulatory elements and has been a critical tool in
314 deciphering the functions and interactions of other RHD transcription factors (32, 62, 63). However, DN
315 proteins require precise engineering in order to function as intended and thus when using a new DN
316 protein it may not be certain to what degree observations are due to endogenous interactions between
317 the proteins in question or the effectiveness of the DN design. We used characterization of the
318 predicted XM_005467029 aa sequence using domain information and validated NFATDN design from
319 mammalian studies (32) to maximize the potential for *O. mossambicus* NFAT5DN intended functionality.
320 Over-expression of TFs has been historically useful in elucidating protein function (31, 64). However, TFs
321 can bind to DNA non-specifically (65, 66) and abnormally high concentration can result in increased
322 global transcription (67, 68) leading to erroneous transcriptionally induced phenotypes. This potential

323 confounding factor was accounted for by normalization through co-transfection of the IMPA1.1-EGFP
324 reporter with the RFP vector which would also be affected by non-specific TF activity. CRISPR/Cas9
325 mediated editing is another efficient method for target gene disruption but careful interpretation of the
326 effect is required due to the potential of cellular changes not relevant to the phenotype in question
327 caused by unknown off target effects (69). Here, replication with multiple NFAT5 KO clones obtained
328 from different gRNAs was used to control for this potential pitfall. Collectively, these approaches can
329 provide compelling evidence in deciphering the interactions between NFAT5 and its target genes.

330 The capability of NFAT5 to induce the IMPA1.1 promoter was demonstrated by the statistically
331 significant induction of the IMPA1.1-EGFP reporter by NFAT5WT in IO conditions. The HO induced
332 upregulation of *NFAT5* mRNA abundance observed by qRT-PCR in tilapia OmB cells was also highly
333 significant, consistent with the typical response of HO exposed mammalian cells (17, 56, 70).
334 Collectively, this established high plausibility that NFAT5 is at least partially responsible for the HO
335 induced increase in IMPA1.1 mRNA abundance that is consistently observed in tilapia cells (3, 6, 8, 71).

336 Here we use dominant negative and gene KO approaches to establish causality between NFAT5 and MIB
337 enzyme regulation. The NFAT5DN and NFAT5KO results for HO regulation of IMPA1.1 are consistent
338 with each other and the result of NFAT5WT overexpression in cells exposed to IO. The continuity of
339 these results instills high confidence in the methodologies and the observed results. Collectively, our
340 results indicate that tilapia NFAT5 is partly responsible for *IMPA1.1* (37 – 49%) and *MIPS* (6 - 37%)
341 transcriptional induction during HO stress. Considering the magnitude at which these genes are HO
342 induced there is still a very substantial amount of HO induced gene activation present despite disrupted
343 NFAT5 signaling. This result suggests that in tilapia cells other osmo-responsive signaling networks are
344 strongly induced by the HO stress. Since *O. mossambicus* and other euryhaline fishes encounter osmotic
345 gradients in an aqueous ambient environment, and can sustain more rapid and extreme changes in
346 plasma osmolalities (3, 72, 73), a much wider range of tissues and cell types are subjected to a more
347 dynamic range of osmotic exposure. This may necessitate complementary signaling mechanisms to
348 account for these more diverse osmotic challenges.

349 The *MIPS* and *IMPA1.1* promoter regions contain a similar copy numbers of the OSRE1 enhancer (9), and
350 yet, a lesser relative impact of NFAT5KO on *MIPS* abundance was observed compared to *IMPA1.1*.
351 Although the consensus OSRE1 core was present in all of these *cis*-elements, the overall enhancer
352 sequence was highly variable. NFAT5 has the most stringent binding sequence of all the NFATs and its
353 binding affinity is highly affected by core adjacent sequence (74, 75). Consequently, the relative
354 influence NFAT5 has on transcription is dependent on the collective sequence dependent binding
355 affinity of all the OSRE1 elements present in the promoter. Although not generally associated with HO
356 signaling, the calcineurin regulated NFAT1-4 proteins are possible additional interacting partners with
357 OSRE1 as there is high overlap in binding sequence between all the NFATs and there have been other
358 accounts of calcineurin based NFAT signaling in response to HO stress. In immortalized murine renal
359 collecting duct cells calcineurin mediated regulation of aquaporin 2 expression was demonstrated in
360 response to HO stress (76). This response would require an increase of intracellular Ca^{2+} which is
361 commonly associated with hypo-osmotic response (1, 77), however, conflicting reports exist that it can
362 also be a HO response (78, 79). Like most promoters which contain many different *cis* elements
363 responsive to a variety of regulators, the *IMPA1.1* promoter contains several HO responsive regions
364 lacking an OSRE1 (9) representing potential *cis* elements that interact with parallel NFAT independent
365 HO signaling pathways. The ubiquitous c-Myc (80), osmotic stress transcription factor 1 (Ostf1) (81), and

366 CCAAT/enhancer binding protein (C/EBP) (82) are among other transcription factors associated with the
367 HO stress response in fish and may interact with NFAT5 to achieve full HO induction of MIB pathway
368 genes.

369 Despite the evidence supporting NFAT5 is only responsible for approximately half of HO induced
370 IMPA1.1 promoter activity, the effect size observed by ectopic NFAT5WT expression seems
371 comparatively low. HO treatment typically leads to IMPA1.1 mRNA abundances in excess of several
372 hundred-fold which is substantially higher than the 5.1-fold induction of the IMPA1.1-EGFP reporter by
373 NFAT5WT. The disparity seems even more striking when considering the NFAT5WT was expressed from
374 a β -actin promoter likely leading to NFAT5 levels in excess of what occurs naturally. This discrepancy
375 can be reconciled by the post translational regulation of NFAT5. Since NFAT5WT overexpression in this
376 study was performed in IO conditions, any localization or activity effects caused by HO conditions were
377 not represented in this result.

378 In mammalian models, subcellular distribution of NFAT5 is controlled by an N-terminal regulatory
379 domain (NTD) containing a N-terminal NES, followed by AD1 (23), the hypo-osmotic responsive AED
380 (42), and the potent HO responsive NLS (43). In basal IO conditions, mammalian NFAT5 has a
381 constitutive distribution throughout both the cytoplasm and the nucleus held in equilibrium by this
382 region (55, 75). HO conditions induce strong NFAT5 nuclear enrichment (42, 55, 83), which is mediated
383 by HO activation of the NLS (43). Considering the highly conserved N-terminal NFAT5 domain, the
384 mechanism of HO regulation of *O. mossambicus* NFAT5 is likely very similar to that observed in
385 mammalian models. In addition to nuclear localization, transcriptional activity is also highly HO induced
386 by multiple post translational modifications to the TADs (AD1, AD2, and AD3) and other accessory
387 modulating domains (23–25). In HO treated NFAT5 TADs isolated from the NTD, activity increases of
388 several magnitudes have been observed (23, 25). Interestingly, exon 2 which contains the AD1
389 activation domain is excised from the predominant HO induced NFAT5 isoform observed in this study.
390 Although weaker than the other NFAT5 ADs, mammalian AD1 has demonstrated intrinsic transcriptional
391 activity and an ability to synergistically enhance the activation strength of the other NFAT5 ADs up to
392 two-fold (23). Excision of exon 2 from the HO induced form of *O. mossambicus* NFAT5 seems
393 counterintuitive, especially considering the two nuclear export signals (NES and AED) flanking exon 2 are
394 still maintained in the transcript. Conformational change leading to increased activity of mammalian
395 NFAT5 in response to elevated ions has been reported (84). This conformational change might have a
396 suppressive effect on one or both export signals. Therefore, it is possible omission of exon 2 in the HO
397 induced NFAT5 isoform from this study results in a structural change that functionally replicates this
398 effect. Collectively, these considerations support that full *O. mossambicus* NFAT5 HO influence is a
399 combination of changes in NFAT5 abundance, localization, and activity.

400 [Perspectives and Significance](#)

401 Although a role of NFAT5 in fish salinity tolerance has been implicated, this study is the first to establish
402 causality between NFAT5 and HO induced differential gene expression in fish cells. The work described
403 here provides important new insights on the mechanisms of fish salinity tolerance, especially those
404 influenced by NFAT5. This work has produced new valuable tools and methodologies such as dominant
405 negative expression systems and NFAT5 KO cell lines to further evaluate the role of NFAT5 and other
406 complimentary regulators in HO tolerance and for other physiological functions of euryhaline fishes.

407 By accounting for weaknesses of each method and using a very comprehensive multifaceted approach
408 composed of distinct methods and numerous controls that all supported the same results, we have
409 accumulated solid support for the following conclusions: *O. mossambicus* NFAT5 mRNA abundance is
410 elevated during HO stress, specifically a predominant isoform that is missing the AD1 containing exon 2.
411 This isoform is able to localize to the nucleus and induce transcription in the absence of HO induction
412 indicating its capability for maintaining basal activity under IO conditions. In OmB cells, NFAT5 has a
413 clear role in the regulation of the highly HO transcriptionally induced *IMPA1.1* and *MIPS* genes.
414 Disruption of NFAT5 results in up to 49% and 37% reduction of HO induced mRNA abundance for
415 *IMPA1.1* and *MIPS*, respectively. This contribution of tilapia NFAT5 to HO target gene induction is less
416 than what is typically observed in mammalian models. Therefore, euryhaline fish such as tilapia must
417 have a more elaborate HO response signaling network with other strongly induced signaling pathways
418 that are activated jointly with NFAT5 signaling pathways during HO stress.

419 **DATA AVAILABILITY**

420 Raw data can be made available upon request.

421 **ACKNOWLEDGMENTS**

422 The authors thank Leah MacNiven for assisting with fluorescent imaging and Amber Yiao for help in
423 primer design of NFAT5 qRT-PCR primers.

424 **GRANTS**

425 National Science Foundation, Grant/Award Number: IOS- 2209383.
426 US-Israel Binational Agricultural Research and Development Fund, Grant/Award Number: IS-5358-21.

427 **DISCLOSURES**

428 The authors have no conflicts of interest to disclose.

429 **AUTHOR CONTRIBUTIONS**

430 J.H. and D.K. conceived and designed research, J.H. performed experiments, analyzed data, interpreted
431 results of experiments, prepared figures, and drafted manuscript. J.H., D.K., and A.C. edited and revised
432 manuscript. J.H., D.K., and A.C. approved final version of manuscript.

433 **REFERENCES**

- 434 1. **Kültz D.** The combinatorial nature of osmosensing in fishes. *Physiology (Bethesda)* 27: 259–275,
435 2012. doi: 10.1152/physiol.00014.2012.
- 436 2. **Bagnasco S, Balaban R, Fales HM, Yang YM, Burg M.** Predominant osmotically active organic
437 solutes in rat and rabbit renal medullas. *J Biol Chem* 261: 5872–5877, 1986.
- 438 3. **Gardell AM, Yang J, Sacchi R, Fangue NA, Hammock BD, Kültz D.** Tilapia (*Oreochromis*
439 *mossambicus*) brain cells respond to hyperosmotic challenge by inducing *myo*-inositol biosynthesis. *J Exp*
440 *Biol* 216: 4615–4625, 2013. doi: 10.1242/jeb.088906.

441 4. **Yancey PH, Clark ME, Hand SC, Bowlus RD, Somero GN.** Living with water stress: evolution of
442 osmolyte systems. *Science* 217: 1214–1222, 1982. doi: 10.1126/science.7112124.

443 5. **Michell RH.** Inositol derivatives: evolution and functions. *Nat Rev Mol Cell Biol* 9: 151–161, 2008.
444 doi: 10.1038/nrm2334.

445 6. **Sacchi R, Li J, Villarreal F, Gardell AM, Kültz D.** Salinity-induced regulation of the *myo*-inositol
446 biosynthesis pathway in tilapia gill epithelium. *J Exp Biol* 216: 4626–4638, 2013. doi:
447 10.1242/jeb.093823.

448 7. **Kalujnaia S, Gellatly SA, Hazon N, Villasenor A, Yancey PH, Cramb G.** Seawater acclimation and
449 inositol monophosphatase isoform expression in the European eel (*Anguilla anguilla*) and Nile tilapia
450 (*Oreochromis niloticus*). *Am J Physiol Regul Integr Comp Physiol* 305: R369-384, 2013. doi:
451 10.1152/ajpregu.00044.2013.

452 8. **Gardell AM, Qin Q, Rice RH, Li J, Kültz D.** Derivation and osmotolerance characterization of
453 three immortalized tilapia (*Oreochromis mossambicus*) cell lines. *PLoS One* 9: e95919, 2014. doi:
454 10.1371/journal.pone.0095919.

455 9. **Wang X, Kültz D.** Osmolality/salinity-responsive enhancers (OSREs) control induction of
456 osmoprotective genes in euryhaline fish. *Proc Natl Acad Sci U S A* 114: E2729–E2738, 2017. doi:
457 10.1073/pnas.1614712114.

458 10. **Senger K, Armstrong GW, Rowell WJ, Kwan JM, Markstein M, Levine M.** Immunity regulatory
459 DNAs share common organizational features in *Drosophila*. *Mol Cell* 13: 19–32, 2004. doi:
460 10.1016/s1097-2765(03)00500-8.

461 11. **Kunsch C, Ruben SM, Rosen CA.** Selection of optimal kappa B/Rel DNA-binding motifs:
462 interaction of both subunits of NF-kappa B with DNA is required for transcriptional activation. *Mol Cell
463 Biol* 12: 4412–4421, 1992. doi: 10.1128/mcb.12.10.4412-4421.1992.

464 12. **Ghosh S, May MJ, Kopp EB.** NF-kappa B and Rel proteins: evolutionarily conserved mediators of
465 immune responses. *Annu Rev Immunol* 16: 225–260, 1998. doi: 10.1146/annurev.immunol.16.1.225.

466 13. **Northrop JP, Ho SN, Chen L, Thomas DJ, Timmerman LA, Nolan GP, Admon A, Crabtree GR.** NF-
467 AT components define a family of transcription factors targeted in T-cell activation. *Nature* 369: 497–
468 502, 1994. doi: 10.1038/369497a0.

469 14. **Rao A, Luo C, Hogan PG.** Transcription factors of the NFAT family: regulation and function. *Annu
470 Rev Immunol* 15: 707–747, 1997. doi: 10.1146/annurev.immunol.15.1.707.

471 15. **Chen Y-Q, Sengchanthalangsy LL, Hackett A, Ghosh G.** NF- κ B p65 (RelA) homodimer uses
472 distinct mechanisms to recognize DNA targets. *Structure* 8: 419–428, 2000. doi: 10.1016/S0969-
473 2126(00)00123-4.

474 16. **Ghosh G, Duyne GV, Ghosh S, Sigler PB.** Structure of NF- κ B p50 homodimer bound to a κ B site.
475 *Nature* 373: 303–310, 1995. doi: 10.1038/373303a0.

476 17. **Kino T, Takatori H, Manoli I, Wang Y, Tiulpakov A, Blackman MR, Su YA, Chrousos GP, DeCerney AH, Segars JH.** Brx mediates the response of lymphocytes to osmotic stress through the activation of NFAT5. *Sci Signal* 2: ra5, 2009. doi: 10.1126/scisignal.2000081.

477 18. **Woo SK, Lee SD, Na KY, Park WK, Kwon HM.** TonEBP/NFAT5 stimulates transcription of HSP70 in response to hypertonicity. *Mol Cell Biol* 22: 5753–5760, 2002. doi: 10.1128/MCB.22.16.5753-5760.2002.

478 19. **López-Rodríguez C, Antos CL, Shelton JM, Richardson JA, Lin F, Novobrantseva TI, Bronson RT, Igashira P, Rao A, Olson EN.** Loss of NFAT5 results in renal atrophy and lack of tonicity-responsive gene expression. *Proc Natl Acad Sci U S A* 101: 2392–2397, 2004. doi: 10.1073/pnas.0308703100.

479 20. **Ito T, Fujio Y, Hirata M, Takatani T, Matsuda T, Muraoka S, Takahashi K, Azuma J.** Expression of taurine transporter is regulated through the TonE (tonicity-responsive element)/TonEBP (TonE-binding protein) pathway and contributes to cytoprotection in HepG2 cells. *Biochem J* 382: 177–182, 2004. doi: 10.1042/BJ20031838.

480 21. **Woo SK, Dahl SC, Handler JS, Kwon HM.** Bidirectional regulation of tonicity-responsive enhancer binding protein in response to changes in tonicity. *Am J Physiol Renal Physiol* 278: F1006-1012, 2000. doi: 10.1152/ajprenal.2000.278.6.F1006.

481 22. **Tong EHY, Guo J-J, Huang A-L, Liu H, Hu C-D, Chung SSM, Ko BCB.** Regulation of nucleocytoplasmic trafficking of transcription factor OREBP/TonEBP/NFAT5. *J Biol Chem* 281: 23870–23879, 2006. doi: 10.1074/jbc.M602556200.

482 23. **Lee SD, Colla E, Sheen MR, Na KY, Kwon HM.** Multiple domains of TonEBP cooperate to stimulate transcription in response to hypertonicity. *J Biol Chem* 278: 47571–47577, 2003. doi: 10.1074/jbc.M308795200.

483 24. **Choi SY, Lee-Kwon W, Kwon HM.** The evolving role of TonEBP as an immunometabolic stress protein. *Nat Rev Nephrol* 16: 352–364, 2020. doi: 10.1038/s41581-020-0261-1.

484 25. **Ferraris JD, Williams CK, Persaud P, Zhang Z, Chen Y, Burg MB.** Activity of the TonEBP/OREBP transactivation domain varies directly with extracellular NaCl concentration. *Proc Natl Acad Sci U S A* 99: 739–744, 2002. doi: 10.1073/pnas.241637298.

485 26. **Ko BCB, Turck CW, Lee KWY, Yang Y, Chung SSM.** Purification, Identification, and Characterization of an Osmotic Response Element Binding Protein. *Biochem Biophys Res Commun* 270: 52–61, 2000. doi: 10.1006/bbrc.2000.2376.

486 27. **Navarro P, Chiong M, Volkwein K, Moraga F, Ocaranza MP, Jalil JE, Lim SW, Kim J-A, Kwon HM, Lavandero S.** Osmotically-induced genes are controlled by the transcription factor TonEBP in cultured cardiomyocytes. *Biochem Biophys Res Commun* 372: 326–330, 2008. doi: 10.1016/j.bbrc.2008.05.067.

487 28. **Tsai T-T, Guttapalli A, Agrawal A, Albert TJ, Shapiro IM, Risbud MV.** MEK/ERK signaling controls osmoregulation of nucleus pulposus cells of the intervertebral disc by transactivation of TonEBP/OREBP. *J Bone Miner Res* 22: 965–974, 2007. doi: 10.1359/jbmr.070322.

512 29. **Lee JH, Kim M, Im YS, Choi W, Byeon SH, Lee HK.** NFAT5 induction and its role in hyperosmolar
513 stressed human limbal epithelial cells. *Invest Ophthalmol Vis Sci* 49: 1827–1835, 2008. doi:
514 10.1167/iovs.07-1142.

515 30. **Lorgen M, Jorgensen EH, Jordan WC, Martin SAM, Hazlerigg DG.** NFAT5 genes are part of the
516 osmotic regulatory system in Atlantic salmon (*Salmo salar*). *Mar Genomics* 31: 25–31, 2017. doi:
517 10.1016/j.margen.2016.06.004.

518 31. **Prelich G.** Gene overexpression: uses, mechanisms, and interpretation. *Genetics* 190: 841–854,
519 2012. doi: 10.1534/genetics.111.136911.

520 32. **Miyakawa H, Woo SK, Dahl SC, Handler JS, Kwon HM.** Tonicity-responsive enhancer binding
521 protein, a rel-like protein that stimulates transcription in response to hypertonicity. *Proc Natl Acad Sci U
522 S A* 96: 2538–2542, 1999. doi: 10.1073/pnas.96.5.2538.

523 33. **Brown PH, Alani R, Preis LH, Szabo E, Birrer MJ.** Suppression of oncogene-induced
524 transformation by a deletion mutant of c-jun. *Oncogene* 8: 877–886, 1993.

525 34. **Cortez JT, Montauti E, Shifrut E, Gatchalian J, Zhang Y, Shaked O, Xu Y, Roth TL, Simeonov DR,
526 Zhang Y, Chen S, Li Z, Woo JM, Ho J, Vogel IA, Prator GY, Zhang B, Lee Y, Sun Z, Ifergan I, Van Gool F,
527 Hargreaves DC, Bluestone JA, Marson A, Fang D.** CRISPR screen in regulatory T cells reveals modulators
528 of Foxp3. *Nature* 582: 416–420, 2020. doi: 10.1038/s41586-020-2246-4.

529 35. **de Almeida M, Hinterndorfer M, Brunner H, Grishkovskaya I, Singh K, Schleiffer A, Jude J,
530 Deswal S, Kalis R, Vunjak M, Lendl T, Imre R, Roitinger E, Neumann T, Kandolf S, Schutzbier M,
531 Mechtler K, Versteeg GA, Haselbach D, Zuber J.** AKIRIN2 controls the nuclear import of proteasomes in
532 vertebrates. *Nature* 599: 491–496, 2021. doi: 10.1038/s41586-021-04035-8.

533 36. **Hamar J, Kültz D.** An efficient vector-based CRISPR/Cas9 system in an *Oreochromis mossambicus*
534 cell line using endogenous promoters. *Sci Rep* 11: 7854, 2021. doi: 10.1038/s41598-021-87068-3.

535 37. **Mak MC, Lam KM, Chan PK, Lau YB, Tang WH, Yeung PKK, Ko BCB, Chung SMS, Chung SK.**
536 Embryonic Lethality in Mice Lacking the Nuclear Factor of Activated T Cells 5 Protein Due to Impaired
537 Cardiac Development and Function. *PLOS ONE* 6: e19186, 2011. doi: 10.1371/journal.pone.0019186.

538 38. **Go WY, Liu X, Roti MA, Liu F, Ho SN.** NFAT5/TonEBP mutant mice define osmotic stress as a
539 critical feature of the lymphoid microenvironment. *Proc Natl Acad Sci U S A* 101: 10673–10678, 2004.
540 doi: 10.1073/pnas.0403139101.

541 39. **Chernyakov D, Groß A, Fischer A, Bornkessel N, Schultheiss C, Gerloff D, Edemir B.** Loss of
542 RANBP3L leads to transformation of renal epithelial cells towards a renal clear cell carcinoma like
543 phenotype. *J Exp Clin Cancer Res* 40: 226, 2021. doi: 10.1186/s13046-021-01982-y.

544 40. **Kim G-N, Hah Y-S, Seong H, Yoo W-S, Choi M-Y, Cho H-Y, Yun SP, Kim S-J.** The Role of Nuclear
545 Factor of Activated T Cells 5 in Hyperosmotic Stress-Exposed Human Lens Epithelial Cells. *Int J Mol Sci*
546 22, 2021. doi: 10.3390/ijms22126296.

547 41. **Kang K, Huang L, Li Q, Liao X, Dang Q, Yang Y, Luo J, Zeng Y, Li L, Gou D.** An improved Tet-on
548 system in microRNA overexpression and CRISPR/Cas9-mediated gene editing. *J Anim Sci Biotechnol* 10:
549 43, 2019. doi: 10.1186/s40104-019-0354-5.

550 42. **Xu S, Wong CCL, Tong EHY, Chung SSM, Yates JR III, Yin Y, Ko BCB.** Phosphorylation by Casein
551 Kinase 1 Regulates Tonicity-induced Osmotic Response Element-binding Protein/Tonicity Enhancer-
552 binding Protein Nucleocytoplasmic Trafficking *. *J Biol Chem* 283: 17624–17634, 2008. doi:
553 10.1074/jbc.M800281200.

554 43. **Kwon MS, Lee SD, Kim J-A, Colla E, Choi YJ, Suh P-G, Kwon HM.** Novel nuclear localization signal
555 regulated by ambient tonicity in vertebrates. *J Biol Chem* 283: 22400–22409, 2008. doi:
556 10.1074/jbc.M710550200.

557 44. **Zúñiga RA, Gutiérrez-González M, Collazo N, Sotelo PH, Ribeiro CH, Altamirano C, Lorenzo C,
558 Aguillón JC, Molina MC.** Development of a new promoter to avoid the silencing of genes in the
559 production of recombinant antibodies in chinese hamster ovary cells. *J of Biol Eng* 13: 59, 2019. doi:
560 10.1186/s13036-019-0187-y.

561 45. **Hitoshi N, Ken-ichi Y, Jun-ichi M.** Efficient selection for high-expression transfectants with a
562 novel eukaryotic vector. *Gene* 108: 193–199, 1991. doi: 10.1016/0378-1119(91)90434-D.

563 46. **Su J, Zhu Z, Xiong F, Wang Y.** Hybrid Cytomegalovirus-U6 Promoter-based Plasmid Vectors
564 Improve Efficiency of RNA Interference in Zebrafish. *Mar Biotechnol* 10: 511–517, 2008. doi:
565 10.1007/s10126-008-9087-8.

566 47. **Moriya H.** Quantitative nature of overexpression experiments. *Mol Biol Cell* 26: 3932–3939,
567 2015. doi: 10.1091/mbc.E15-07-0512.

568 48. **Hamar J, Cnaani A, Kültz D.** Effects of CRISPR/Cas9 targeting of the myo-inositol biosynthesis
569 pathway on hyper-osmotic tolerance of tilapia cells. *Genomics* 116: 110833, 2024. doi:
570 10.1016/j.ygeno.2024.110833.

571 49. **Concordet J-P, Haeussler M.** CRISPOR: intuitive guide selection for CRISPR/Cas9 genome editing
572 experiments and screens. *Nucleic Acids Res* 46: W242–W245, 2018. doi: 10.1093/nar/gky354.

573 50. **Brinkman EK, Chen T, Amendola M, van Steensel B.** Easy quantitative assessment of genome
574 editing by sequence trace decomposition. *Nucleic Acids Res* 42: e168, 2014. doi: 10.1093/nar/gku936.

575 51. **Blo K, Kanchana R, Bialk P, Banas K, Zhang Z, Yoo B-C, Kmiec EB.** Deconvolution of Complex
576 DNA Repair (DECODR): Establishing a Novel Deconvolution Algorithm for Comprehensive Analysis of
577 CRISPR-Edited Sanger Sequencing Data. *CRISPR J* 4: 120–131, 2021. doi: 10.1089/crispr.2020.0022.

578 52. **Hamar J, Cnaani A, Kültz D.** Effects of CRISPR/Cas9 targeting of the myo-inositol biosynthesis
579 pathway on hyper-osmotic tolerance of tilapia cells. *Genomics* Submitted, in review, [date unknown].

580 53. **Livak KJ, Schmittgen TD.** Analysis of Relative Gene Expression Data Using Real-Time Quantitative
581 PCR and the 2- $\Delta\Delta CT$ Method. *Methods* 25: 402–408, 2001. doi: 10.1006/meth.2001.1262.

582 54. **Schmittgen TD, Livak KJ.** Analyzing real-time PCR data by the comparative CT method. *Nat
583 Protoc* 3: 1101–1108, 2008. doi: 10.1038/nprot.2008.73.

584 55. **Cheung CY, Huang T-T, Chow N, Zhang S, Zhao Y, Chau MP, Chan WC, Wong CCL, Boassa D,
585 Phan S, Ellisman MH, Yates JR, Xu S, Yu Z, Zhang Y, Zhang R, Ng LL, Ko BCB.** Unconventional tonicity-

586 regulated nuclear trafficking of NFAT5 mediated by KPNB1, XPOT and RUVBL2. *J Cell Sci* 135, 2022. doi:
587 10.1242/jcs.259280.

588 56. **Cheung CYK, Ko BCB.** NFAT5 in cellular adaptation to hypertonic stress – regulations and
589 functional significance. *J Mol Signal* 8, 2013. doi: 10.1186/1750-2187-8-5.

590 57. **Kwon MS, Lim SW, Kwon HM.** Hypertonic Stress in the Kidney: A Necessary Evil. *Physiology* 24:
591 186–191, 2009. doi: 10.1152/physiol.00005.2009.

592 58. **Li J, Wang X, Lan T, Lu Y, Hong M, Ding L, Wang L.** CDK5/NFAT5-Regulated Transporters Involved
593 in Osmoregulation in *Fejervarya cancrivora*. *Biology (Basel)* 11, 2022. doi: 10.3390/biology11060858.

594 59. **He M, Wei J, Li Y, Dong B.** Nuclear Factor of Activated T Cells-5 Regulates Notochord
595 Lumenogenesis in Chordate Larval Development. *Int J Mol Sci* 23, 2022. doi: 10.3390/ijms232214407.

596 60. **Chernyakov D, Fischer A, Brandau M, Petrillo F, Fenton RA, Edemir B.** The nuclear factor of
597 activated T cells 5 (NFAT5) contributes to the renal corticomedullary differences in gene expression. *Sci
598 Rep* 12: 20304, 2022. doi: 10.1038/s41598-022-24237-y.

599 61. **Kok FO, Shin M, Ni C-W, Gupta A, Grosse AS, van Impel A, Kirchmaier BC, Peterson-Maduro J,
600 Kourkoulis G, Male I, DeSantis DF, Sheppard-Tindell S, Ebarasi L, Betsholtz C, Schulte-Merker S, Wolfe
601 SA, Lawson ND.** Reverse genetic screening reveals poor correlation between morpholino-induced and
602 mutant phenotypes in zebrafish. *Dev Cell* 32: 97–108, 2015. doi: 10.1016/j.devcel.2014.11.018.

603 62. **Anrather J, Csizmadia V, Brostjan C, Soares MP, Bach FH, Winkler H.** Inhibition of bovine
604 endothelial cell activation in vitro by regulated expression of a transdominant inhibitor of NF- κ B. *J
605 Clin Invest* 99: 763–772, 1997. doi: 10.1172/JCI119222.

606 63. **Macián F, García-Rodríguez C, Rao A.** Gene expression elicited by NFAT in the presence or
607 absence of cooperative recruitment of Fos and Jun. *EMBO J* 19: 4783–4795, 2000. doi:
608 10.1093/emboj/19.17.4783.

609 64. **Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, Yamanaka S.** Induction of
610 Pluripotent Stem Cells from Adult Human Fibroblasts by Defined Factors. *Cell* 131: 861–872, 2007. doi:
611 10.1016/j.cell.2007.11.019.

612 65. **Baughman HER, Narang D, Chen W, Villagrán Suárez AC, Lee J, Bachochin MJ, Gunther TR,
613 Wolynes PG, Komives EA.** An intrinsically disordered transcription activation domain increases the DNA
614 binding affinity and reduces the specificity of NF κ B p50/RelA. *J Biol Chem* 298: 102349, 2022. doi:
615 10.1016/j.jbc.2022.102349.

616 66. **Afek A, Schipper JL, Horton J, Gordân R, Lukatsky DB.** Protein–DNA binding in the absence of
617 specific base-pair recognition. *Proc Natl Acad Sci U S A* 111: 17140–17145, 2014. doi:
618 10.1073/pnas.1410569111.

619 67. **Lin CY, Lovén J, Rahl PB, Paraná RM, Burge CB, Bradner JE, Lee TI, Young RA.** Transcriptional
620 amplification in tumor cells with elevated c-Myc. *Cell* 151: 56–67, 2012. doi: 10.1016/j.cell.2012.08.026.

621 68. **Banks CAS, Lee ZT, Boanca G, Lakshminarasimhan M, Groppe BD, Wen Z, Hattem GL, Seidel**
622 **CW, Florens L, Washburn MP.** Controlling for gene expression changes in transcription factor protein
623 networks. *Mol Cell Proteomics* 13: 1510–1522, 2014. doi: 10.1074/mcp.M113.033902.

624 69. **Kimberland ML, Hou W, Alfonso-Pecchio A, Wilson S, Rao Y, Zhang S, Lu Q.** Strategies for
625 controlling CRISPR/Cas9 off-target effects and biological variations in mammalian genome editing
626 experiments. *J Biotech* 284: 91–101, 2018. doi: 10.1016/j.jbiotec.2018.08.007.

627 70. **Cai Q, Ferraris JD, Burg MB.** High NaCl increases TonEBP/OREBP mRNA and protein by stabilizing
628 its mRNA. *Am J Physiol Renal Physiol* 289: F803-807, 2005. doi: 10.1152/ajprenal.00448.2004.

629 71. **Sacchi R, Gardell AM, Chang N, Kültz D.** Osmotic regulation and tissue localization of the myo-
630 inositol biosynthesis pathway in tilapia (*Oreochromis mossambicus*) larvae. *J Exp Zool A Ecol Genet*
631 *Physiol* 321: 457–466, 2014. doi: 10.1002/jez.1878.

632 72. **Lema SC, Carvalho PG, Egelston JN, Kelly JT, McCormick SD.** Dynamics of Gene Expression
633 Responses for Ion Transport Proteins and Aquaporins in the Gill of a Euryhaline Pupfish during
634 Freshwater and High-Salinity Acclimation. *Physiol Biochem Zool* 91: 1148–1171, 2018. doi:
635 10.1086/700432.

636 73. **Yamaguchi Y, Breves JP, Haws MC, Lerner DT, Grau EG, Seale AP.** Acute salinity tolerance and
637 the control of two prolactins and their receptors in the Nile tilapia (*Oreochromis niloticus*) and
638 Mozambique tilapia (*O. mossambicus*): A comparative study. *Gen Comp Endocrinol* 257: 168–176, 2018.
639 doi: 10.1016/j.ygcen.2017.06.018.

640 74. **Esensten JH, Tsytsykova AV, Lopez-Rodriguez C, Ligeiro FA, Rao A, Goldfeld AE.** NFAT5 binds to
641 the TNF promoter distinctly from NFATp, c, 3 and 4, and activates TNF transcription during hypertonic
642 stress alone. *Nucleic Acids Res* 33: 3845–3854, 2005. doi: 10.1093/nar/gki701.

643 75. **Lopez-Rodríguez C, Aramburu J, Rakeman AS, Rao A.** NFAT5, a constitutively nuclear NFAT
644 protein that does not cooperate with Fos and Jun. *Proc Natl Acad Sci U S A* 96: 7214–7219, 1999. doi:
645 10.1073/pnas.96.13.7214.

646 76. **Li S-Z, McDill BW, Kovach PA, Ding L, Go WY, Ho SN, Chen F.** Calcineurin-NFATc signaling
647 pathway regulates AQP2 expression in response to calcium signals and osmotic stress. *Am J Physiol Cell*
648 *Physiol* 292: C1606-1616, 2007. doi: 10.1152/ajpcell.00588.2005.

649 77. **Raat NJ, van Os CH, Bindels RJ.** Effects of osmotic perturbation on $[Ca^{2+}]_i$ and pH_i in rabbit
650 proximal tubular cells in primary culture. *Am J Physiol* 269: F205-211, 1995. doi:
651 10.1152/ajprenal.1995.269.2.F205.

652 78. **Erickson GR, Alexopoulos LG, Guilak F.** Hyper-osmotic stress induces volume change and
653 calcium transients in chondrocytes by transmembrane, phospholipid, and G-protein pathways. *J*
654 *Biomech* 34: 1527–1535, 2001. doi: 10.1016/S0021-9290(01)00156-7.

655 79. **Apostol S, Ursu D, Lehmann-Horn F, Melzer W.** Local calcium signals induced by hyper-osmotic
656 stress in mammalian skeletal muscle cells. *J Muscle Res Cell Motil* 30: 97–109, 2009. doi:
657 10.1007/s10974-009-9179-8.

658 80. **Ma A, Cui W, Wang X, Zhang W, Liu Z, Zhang J, Zhao T.** Osmoregulation by the myo-inositol
659 biosynthesis pathway in turbot *Scophthalmus maximus* and its regulation by anabolite and c-Myc. *Comp*
660 *Biochem Physiol A Mol Integr Physiol* 242: 110636, 2020. doi: 10.1016/j.cbpa.2019.110636.

661 81. **Fiol DF, Chan SY, Kültz D.** Regulation of osmotic stress transcription factor 1 (Ostf1) in
662 tilapia(*Oreochromis mossambicus*) gill epithelium during salinity stress. *J Exp Biol* 209: 3257–3265, 2006.
663 doi: 10.1242/jeb.02352.

664 82. **Wong MK-S, Ozaki H, Suzuki Y, Iwasaki W, Takei Y.** Discovery of osmotic sensitive transcription
665 factors in fish intestine via a transcriptomic approach. *BMC Genom* 15: 1134, 2014. doi: 10.1186/1471-
666 2164-15-1134.

667 83. **Herbelet S, De Vlieghere E, Gonçalves A, De Paepe B, Schmidt K, Nys E, Weynants L, Weis J,**
668 **Van Peer G, Vandesompele J, Schmidt J, De Wever O, De Bleecker JL.** Localization and Expression of
669 Nuclear Factor of Activated T-Cells 5 in Myoblasts Exposed to Pro-inflammatory Cytokines or
670 Hyperosmolar Stress and in Biopsies from Myositis Patients. *Front Physiol* 9: 126, 2018. doi:
671 10.3389/fphys.2018.00126.

672 84. **Kumar R, DuMond JF, Khan SH, Thompson EB, He Y, Burg MB, Ferraris JD.** NFAT5, which
673 protects against hypertonicity, is activated by that stress via structuring of its intrinsically disordered
674 domain. *Proc Natl Acad Sci U S A* 117: 20292–20297, 2020. doi: 10.1073/pnas.1911680117.

675

676 **FIGURE LEGENDS**

677 **Figure 1.** Characterization of NFAT5 mRNA isoform abundance patterns and sequences in isosmotic (IO)
678 and hyperosmotic (HO) conditions. A: Agarose gel electrophoresis of different RT-PCR amplified regions
679 of the NFAT5 cds from both IO and HO treatments showing greater abundance in all amplicons for HO
680 treatments. Multiple bands of similar intensity from amplicon 4 indicate the presence of two variants of
681 exon 11. A notably weaker intensity of amplicon 2 relative to amplicon 1 indicates that exon 2 is missing
682 from most transcripts. A yellow arrow depicts the expected band for each amplicon. B: NFAT5 mRNA
683 abundance relative to β -actin reference gene in IO and HO conditions (two sample *t* test, $n = 6$, *** $P \leq$
684 0.001) displayed as box whisker plots in which the top and bottom boundaries represent the 1st and 3rd
685 quartiles of the data, the median of each group is indicated by a solid horizontal bar, vertical lines
686 represent highest and lowest data points excluding the outliers, the mean of each group is indicated by
687 a dashed line, and individual data points are indicated by open circles except outliers which are solid
688 black. C: Assembled sequence of HO induced *O. mossambicus* NFAT5 transcript (MW075269.1) aligned
689 with the predicted *O. niloticus* NFAT5 sequence containing all possible exons (XM_005467029).
690 MW075269.1 is missing exon 2 and a 65 bp section of exon 11. Location of primers used to generate
691 amplicons 1-4 in 1A also included. D: Critical protein domains identified in mammalian NFAT5 mapped
692 to the *O. mossambicus* MW075269.1 cds based on alignment of individual domain amino acid sequence
693 to predicted MW075269.1 amino acid sequence. Designed primer locations for PCR amplification of
694 truncated NFAT5 cds for use as dominant negative mutant in subsequent experiments are indicated in
695 green.

696 **Figure 2.** Construction and validation of the IMPA1.1-EGFP reporter. A: vector map of the IMPA1.1-EGFP
697 reporter showing the boundaries of the IMPA1.1 regulatory region from 1065 5' of the transcription

698 start site (TSS) to the endogenous start codon of exon 3 (*1386 bp omitted by the PCR reaction). B:
699 Validation of IMPA1.1-EGFP reporter showing strongly increased fluorescence after 24 hour HO
700 treatment relative to IO controls. C: Engineered EF1a(I-)2 promoter from endogenous *O. mossambicus*
701 OmEF1a showing inclusion of 5' UTR within the first two exons but deletion of the first intron and
702 modified Kozak sequence to generate NotI restriction. D: Functional validation of EF1a(I-)2 promoter
703 expressing RFP showing strong fluorescence.

704 **Figure 3.** Interactions between different NFAT5 versions and the IMPA1.1 promoter. A: CMVIE-
705 OmAP(I-)2 promoter engineered from endogenous *O. mossambicus* OmBact for NFAT5DN expression
706 showing inclusion of 5' UTR within the first two exons but deletion of the first intron, modified Kozak
707 sequence to generate NotI restriction site, and inclusion of the cytomegalovirus immediate early
708 enhancer (CMVIE) at the 5' end. B&C: effect of different NFAT5 variants on relative fluorescence
709 intensity (RFI) of the IMPA1.1 EGFP reporter displayed as box whisker plots as described in Figure 1. B:
710 Suppression of HO induced RFI with increasing NFAT5DN (t test of regression slope , n = 4, **P ≤ 0.01).
711 No data dispersion was observed in the IO condition as values of all replicates were measured to be
712 close to zero. C: Induction of RFI by NFAT5WT in IO conditions (two sample t test, n = 2, **P ≤ 0.01).
713 Mean and median values are overlapping in this data set.

714 **Figure 4.** Selection of target regions for development of NFAT5 KO cell lines. A: amino acid (aa)
715 sequence alignment of predicted NFAT5 proteins from three fish species (*Oreochromis niloticus*, *Oryzias*
716 *latipes*, and *Fundulus heteroclitus*) to identify highly conserved regions assumed to be essential
717 sequence for gRNA targeting. The corresponding nucleotide sequence of the conserved (boxed) region
718 was loaded into the CRISPOR gRNA selection algorithm. B: NFAT5 genomic locations corresponding to
719 conserved aa sequence region and selected gRNAs from the CRISPOR output for *in vivo* empirical
720 testing. Includes locations of the primer pairs used to generate test amplicons for mutational efficiency
721 quantification and genotyping.

722 **Figure 5.** Genotype sequence output from DECODR algorithm analysis of test amplicon chromatograms
723 from both initial screening process (Init.) and at the end of the experiment after multiple passages (post)
724 on the selected clonal NFAT5 KO cell line for each gRNA (clone ID). For each INDEL (insertion/deletion
725 mutation) the net bp change (INDEL ID), precise allele sequence at the targeted site relative to the wild-
726 type sequence, the predicted relative frequency of each allele (Freq %), and the R2 model fit of each
727 chromatogram input to the DECODR algorithm are shown.

728 **Figure 6.** Relative mRNA abundance of MIPS (A&B) and IMPA1.1 (C&D) genes quantified by qRT-PCR in
729 NFAT5 KO cells lines compared to NE KO controls in both IO and HO conditions normalized using both β -
730 actin and 18s rRNA as reference genes. Relative mRNA abundance of MIPS and IMPA1.1 transcripts are
731 displayed as $(2^{-\Delta Ct})$ (53, 54) in box whisker plots as described in Figure 1. For all trials A-D, two sample t
732 test, n = 3, *P ≤ 0.05.

733 TABLES

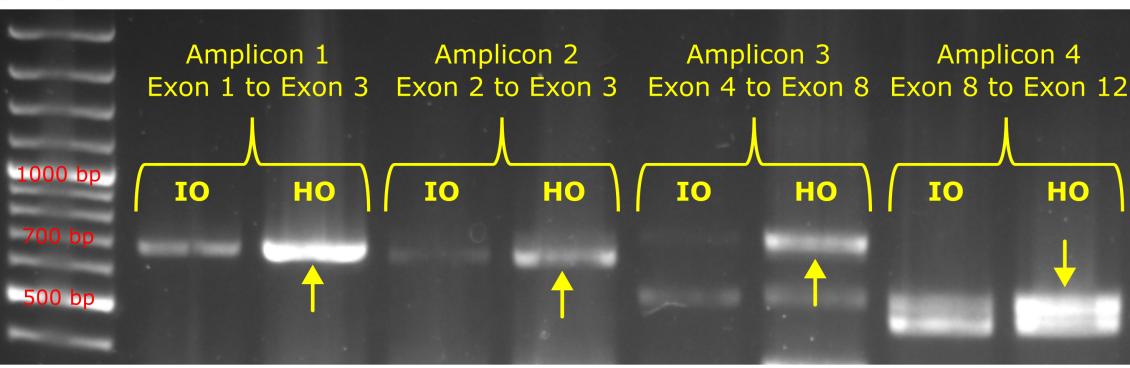
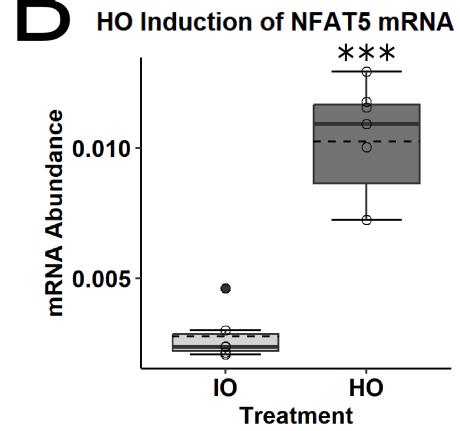
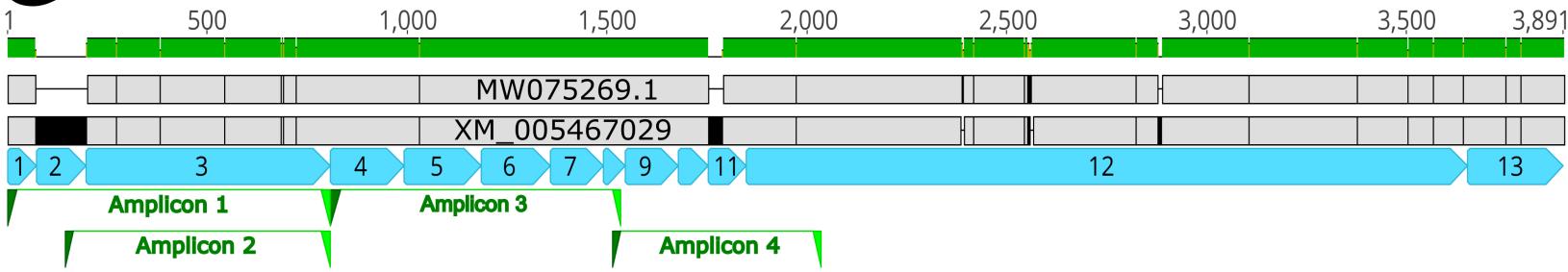
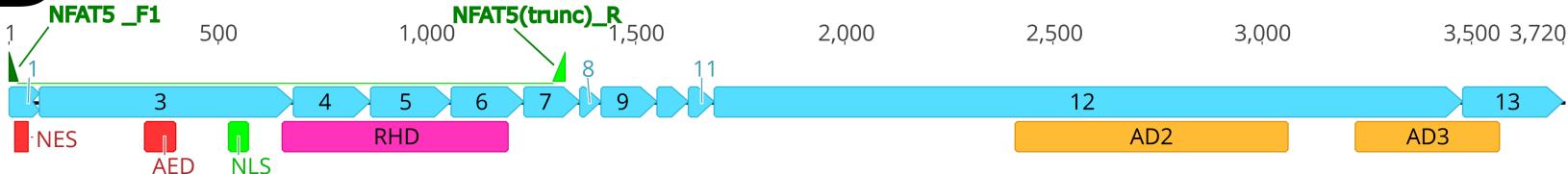
734

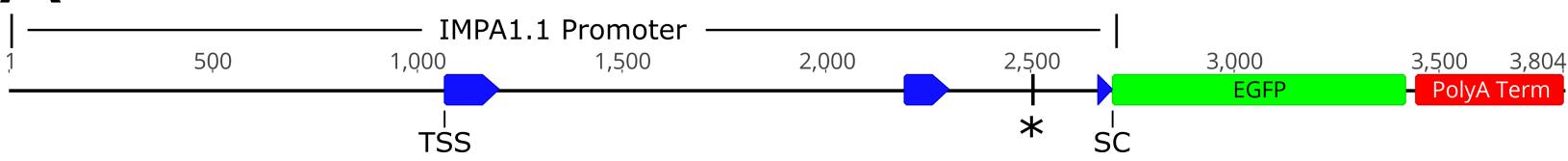
<i>O. mossambicus</i> NFAT5 cds Sequence Assembly				
Amplicon	Forward Primer ID	Reverse Primer ID	Forward Primer Sequence (5'-3')	Reverse Prim

1	NFAT5_F1	NFAT5X3_R1	ATGCCCTCTGACTTTATCTCCC	CTTCCTTATGTCCCTCC
2	NFAT5X2_F3	NFAT5X3_R1	GTCAAAAGAGCGGCGGAGA	CTTCCTTATGTCCCTCC
3	NFAT5X4_F1	NFAT5X8_R1	TCTGATGAACCTAGGACTACTAATC	GCTCCATGTCAATTCTCC
4	NFAT5X8_F1	NFAT5X12_R1	GGCTGAAATTGACATGGAGC	GCCCGCAACAATGTCC
5	NFAT5_F1	NFAT5X12_R1	ATGCCCTCTGACTTTATCTCCC	GCCCGCAACAATGTCC
6	NFAT5X12_F1	NFAT5X13_R1	AGACTGGTGATCTGCGTCCA	TTAGTAGGAACGAGATC
7	NFAT5X7_F3	NFAT5X12(XbaI)_R1	CCCCCAAGCTTGGTCTCAGAGGAGGTCTTCATC	CCCCCTCTAGAGCCCCG
8	NFAT5X12_F1b	NFAT5X12_R4	CCCCCCTCGAGAGACTGGTGATCTGCGTCCA	TGTTGAGGCTGAGATC
9	NFAT5X12_F7b	NFAT5X13_R2b	CCCCCCTCGAGATTTCAGACCCAGATCTCCC	CCCCCCTCAGATTAGTC

O. mossambicus NFAT5 mRNA quantitative RT-PCR

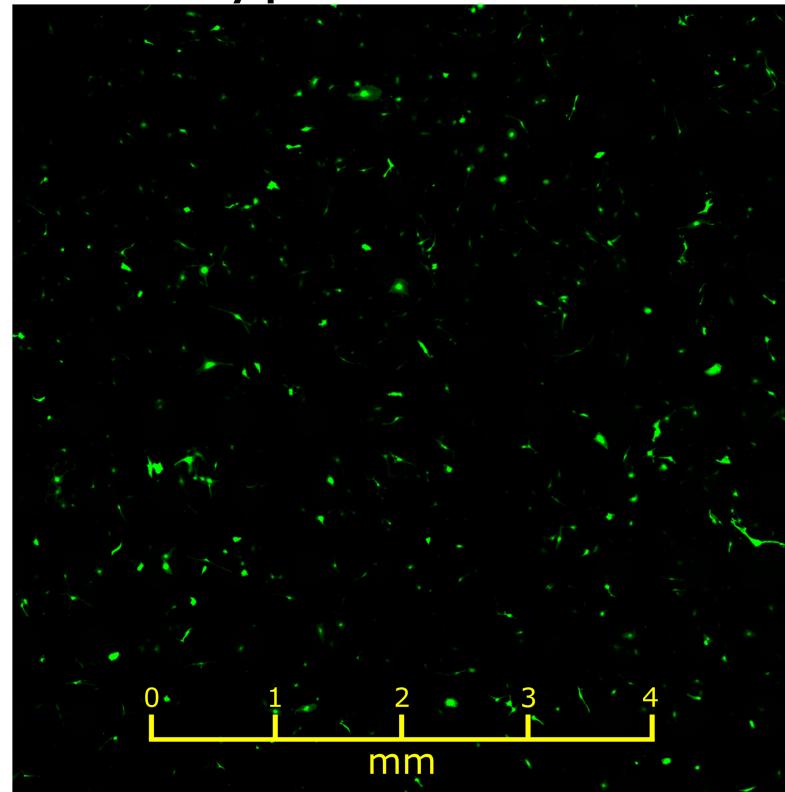
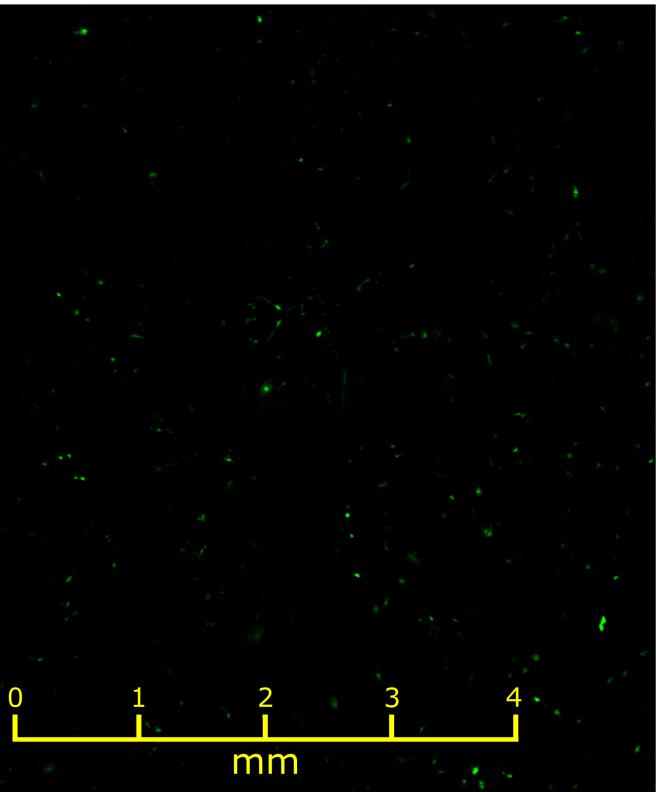
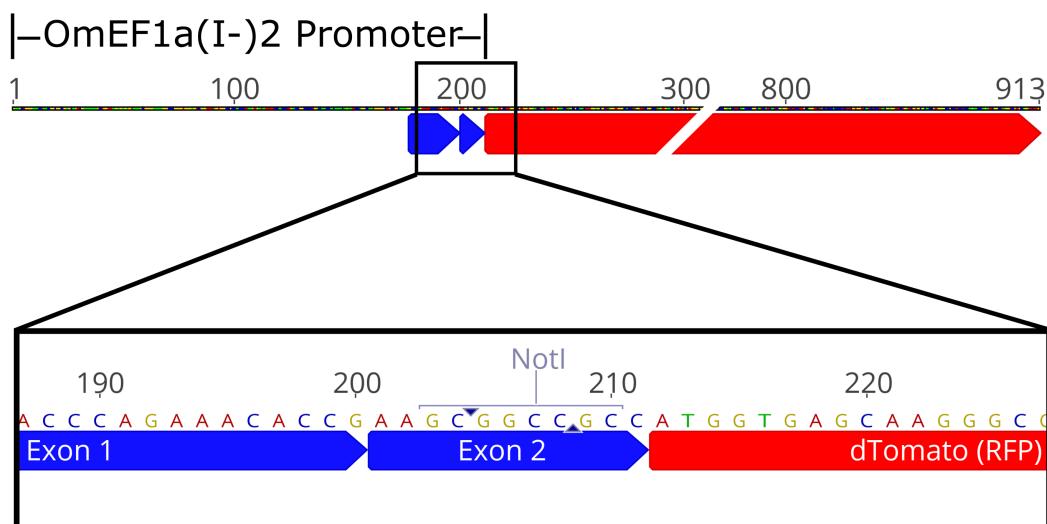
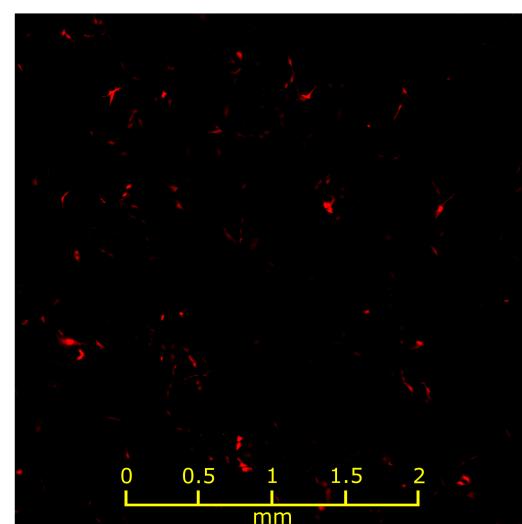
Target Gene	Accession Number	Dilution	Forward Primer Sequence (5'-3')	Reverse Primer
NFAT5	NC031965	1:10	GAAGATCCTCGTCCAGCCTG	GCCAACGAACACCTGC
β-actin	AB037865	1:10	CCACAGCCGAGAGGGAAAT	CCCATCTCCTGCTCGA
18s Rrna	AF497908	1:10	CGATGCTTCTAGTGAGTGT	ACGACGGTATCTGATC

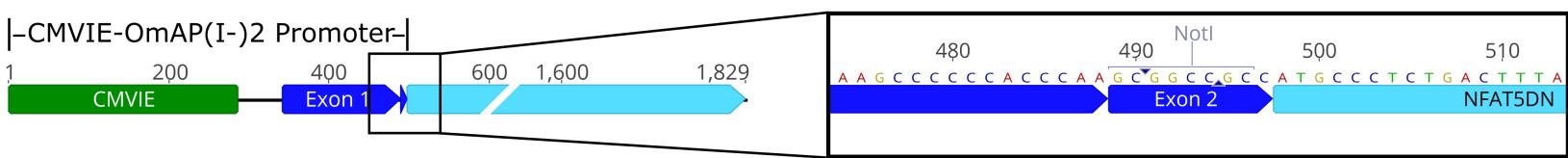
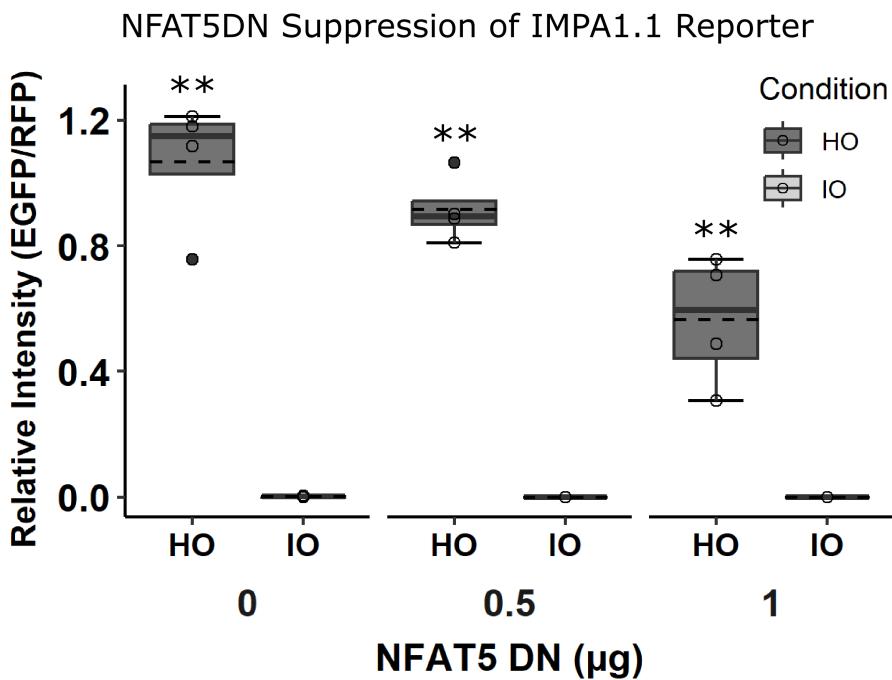
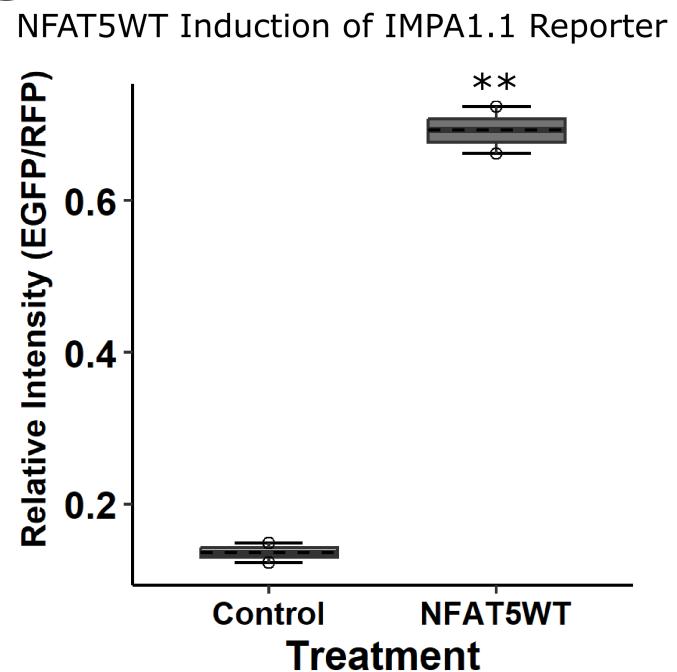




735 **Table 1.** Primer pair sequence information associated with; RT-PCR generated amplicons used in
736 sequencing and cloning of the HO induced *O. mossambicus* NFAT5 cds (MW075269.1), and qRT-PCR
737 quantification of NFAT5 mRNA in IO and HO conditions.


738

Target	gRNA	Test Amplicon (Primers and Length)			MIT Spec. Score	Doer Effici
		#	Sequence	Forward Primer	Reverse Primer	Size (bp)
T1	GTGAAGGACCGCACTCAGC	GCTGCAGCTCTGATGAACCT	CCTTAGAGCTTGGTCCCCG	722	95	
T2	GGAAAGCCCTGCTGAGTG	GCTGCAGCTCTGATGAACCT	CCTTAGAGCTTGGTCCCCG	722	92	
T3	GTTGCGACCAGTAACCTGC	CAGCAGATCTACCAGGAGCG	CCTTGCTGGTAATTCTGCA	667	94	
T4	GCAACACCAACAGCCTGCA	CAGCAGATCTACCAGGAGCG	CCTTGCTGGTAATTCTGCA	667	90	
T5	GCAAGGAGGTTGATATTGA	CAGCAGATCTACCAGGAGCG	CCTTGCTGGTAATTCTGCA	667	92	
T6	GCTCCGCAACGCTGATGTAG	TCCAAGCTCAACATGACCC	GCCCTAACCGTCTTCCTGT	738	97	
T7	GATGTAGAGGCTGCATTG	TCCAAGCTCAACATGACCC	GCCCTAACCGTCTTCCTGT	738	98	
T8	GACTGAACCCTGGACG	TCCAAGCTCAACATGACCC	GCCCTAACCGTCTTCCTGT	738	95	

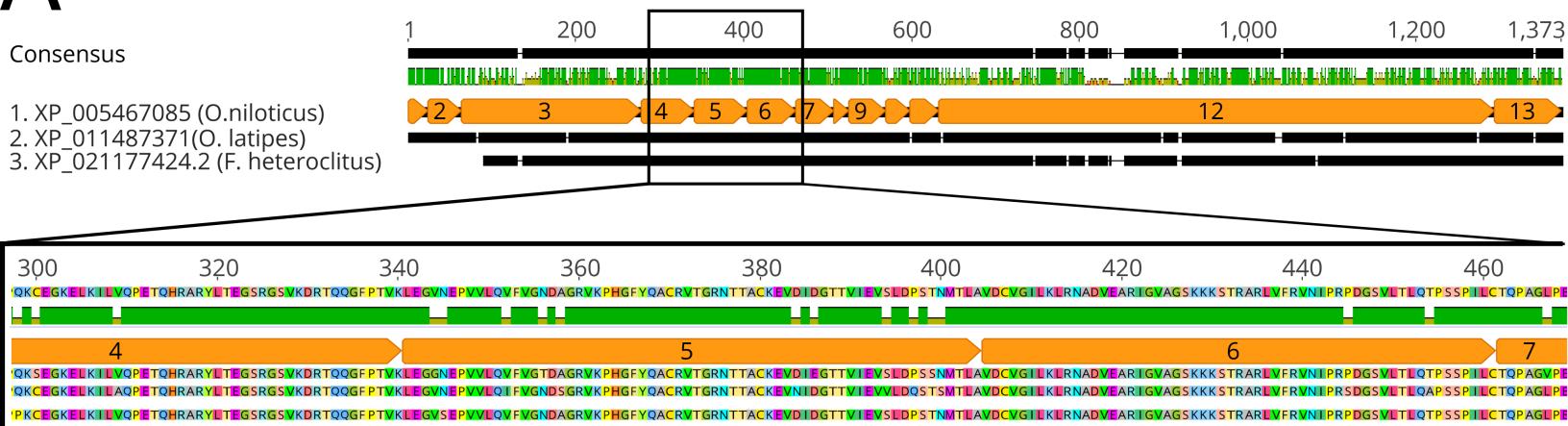
739 **Table 2.** Candidate gRNA sequences selected for *in vivo* empirical testing of mutational efficiency
740 including test amplicon sizes with associated primer pairs, CRISPOR MIT specificity scores, predicted
741 efficiency (Doench) and *in vivo* empirically tested efficiency (TIDE INDEL%).





742

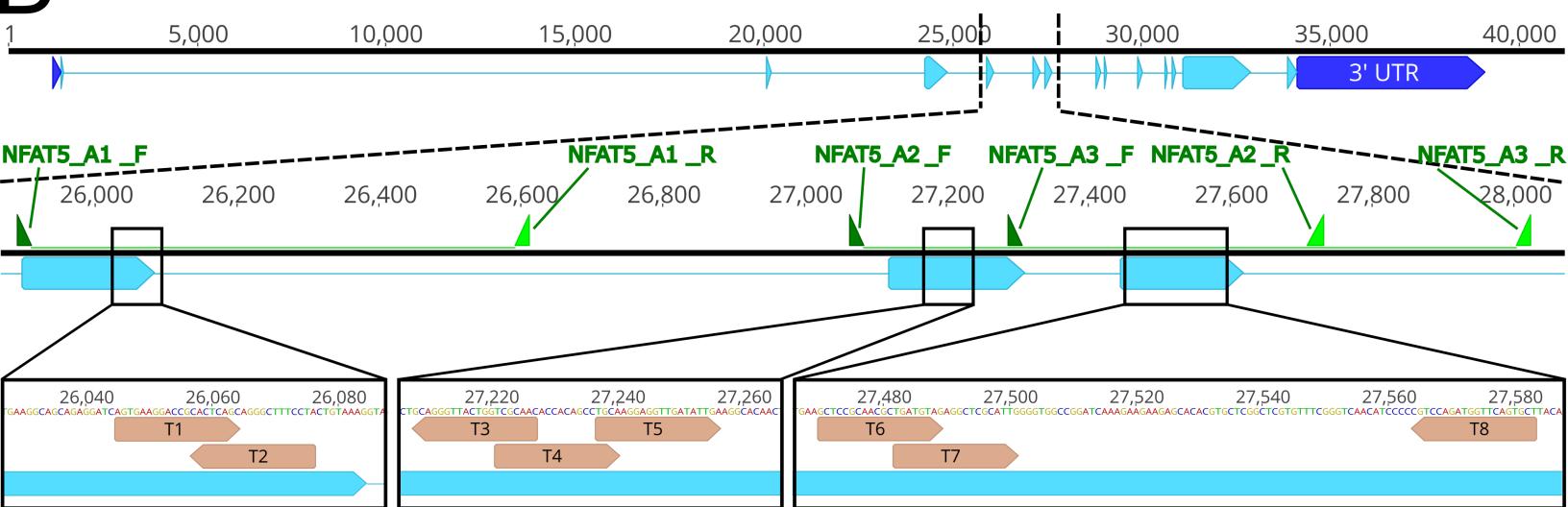



A**B****C****D**

A**B**

Iso-osmotic

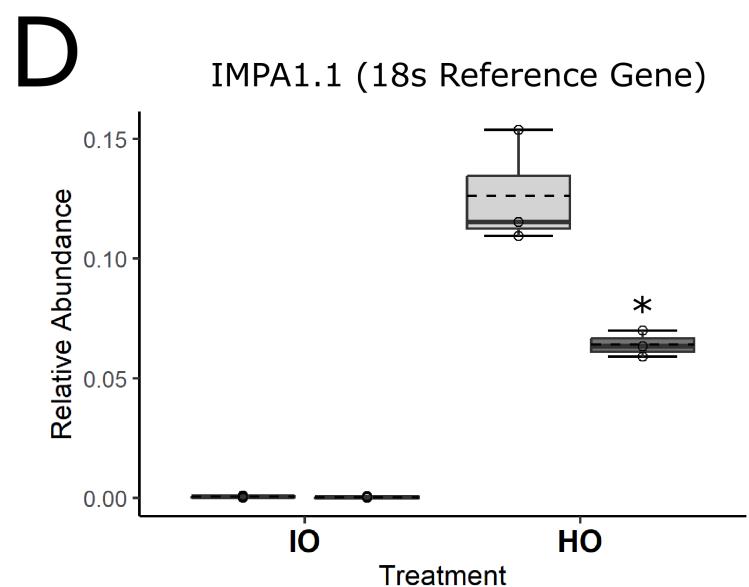
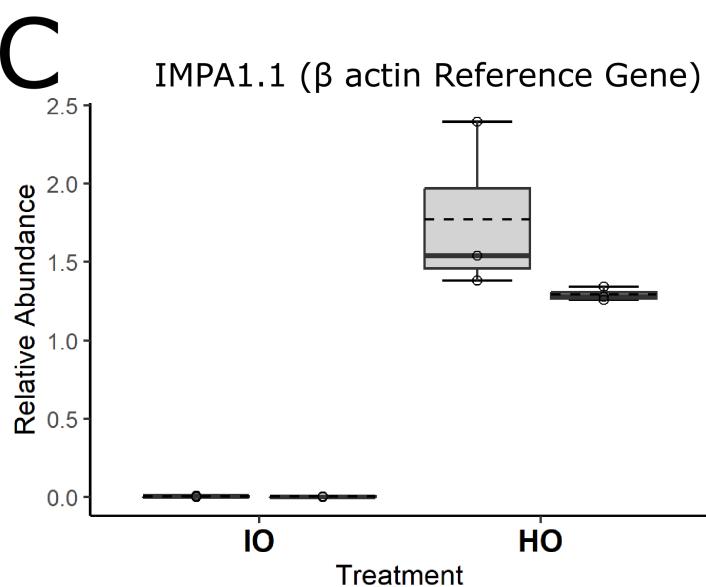
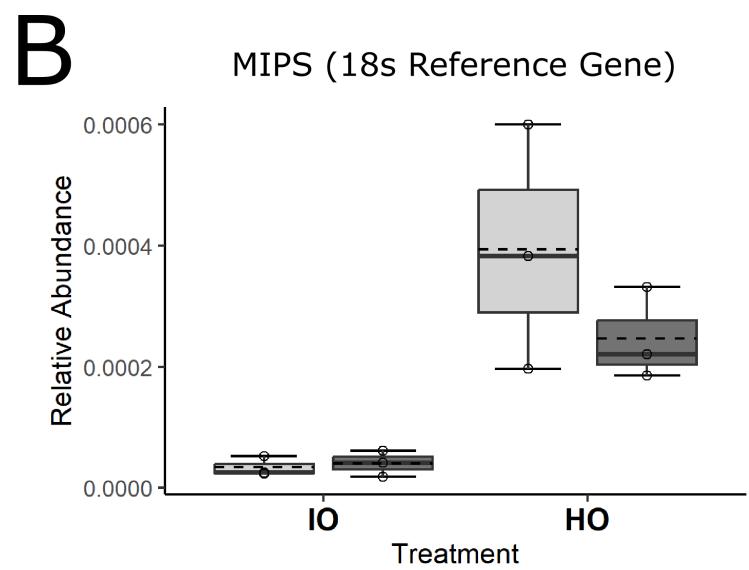
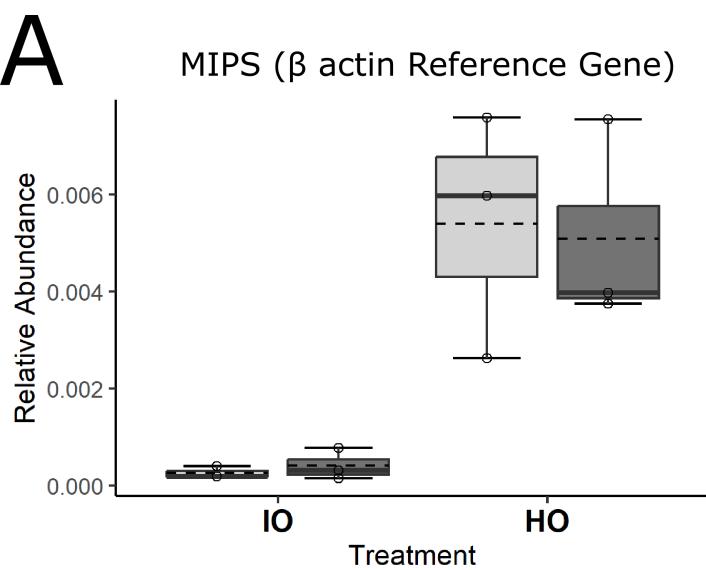

Hyper-osmotic

C**D**

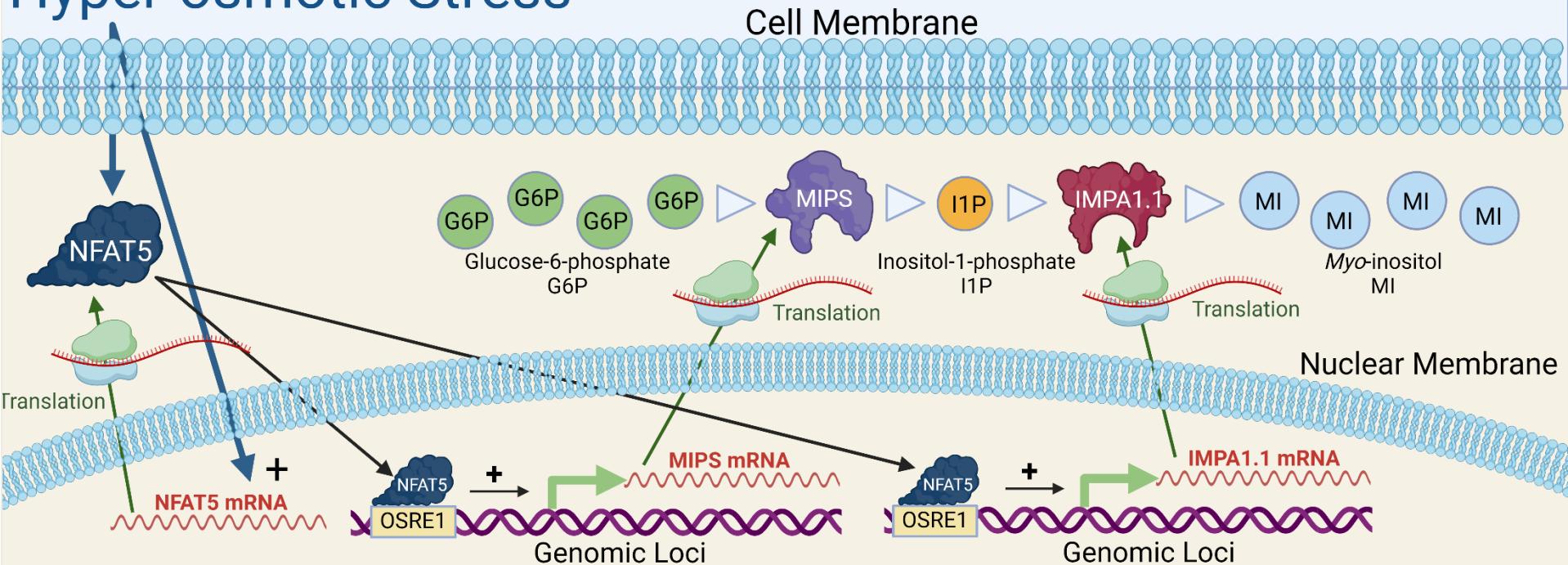

A**B****C**

A

NFAT5 Protein Alignment





B

NFAT5 Gene


Clone ID	INDEL IDs	Allele Sequence	Freq (%)	Model R ²
NFAT5 T3	WT	CATGGGTTTACCAAGCCTGCAGGGTTACTGGTCGCAACACCACAGCCTGCAAGGAGGTT		
Init.	-1	CATGGGTTTACCAAGCCTGCA-CTGTACTGGTCGCAACACCACAGCCTGCAAGGAGGTT	100.0	1.00
Post	-1	CATGGGTTTACCAAGCCTGCA-CTGTACTGGTCGCAACACCACAGCCTGCAAGGAGGTT	100.0	1.00
NFAT5 T5	WT	CTGGTCGCAACACCAACAGCCTGCAAGGAGGTTGATATTGAAGGCACAACGTGTTATCGAAG		
Init.	-1	CTGGTCGCAACACCAACAGCCTGCAAGGAGGTTGATA-TGAAGGCACAACGTGTTATCGAAG	67.1	0.98
	+1	CTGGTCGCAACACCAACAGCCTGCAAGGAGGTTGATA-TGAAGGCACAACGTGTTATCGAAG	32.9	
Post	-1	CTGGTCGCAACACCAACAGCCTGCAAGGAGGTTGATA-TGAAGGCACAACGTGTTATCGAAG	66.1	0.96
	+1	CTGGTCGCAACACCAACAGCCTGCAAGGAGGTTGATA-TGAAGGCACAACGTGTTATCGAAG	33.9	
NFAT5 T7	WT	GATCCTGAAGCTCCGCAACGC TGATGTAGAGGCTCGCATTGGGTGGCCGGATCAAAGAA		
Init.	-64	GATCCTGAA-----(-64)-----GCTCGGCTCG	57.1	0.95
	-1	GATCCTGAAGCTCCGCAACGCTGATGTAGAGGCTCGCA-TGGGGTGGCCGGATCAAAGAA	42.9	
Post	-64	GATCCTGAA-----(-64)-----GCTCGGCTCG	58.4	0.94
	-1	GATCCTGAAGCTCCGCAACGCTGATGTAGAGGCTCGCA-TGGGGTGGCCGGATCAAAGAA	41.6	

■ PAM ■ Target Sequence ■ Insertion - Deletion

Osmotic regulation of myo-inositol biosynthesis (MIB) by NFAT5

Hyper-osmotic Stress

Overexpression of wild-type NFAT5 activates while dominant negative and CRISPR/Cas9 targeting of NFAT5 suppress activation of MIB promoters identifying NFAT5 as a primary MIB regulator in osmotically stressed tilapia cells.