
RL-ARNE: A Reinforcement Learning Algorithm for Computing Average Reward

Nash Equilibrium of Nonzero-Sum Stochastic Games

Dinuka Sahabandu, Shana Moothedath, Member, IEEE, Joey Allen,
Linda Bushnell, Fellow, IEEE, Wenke Lee, Fellow, IEEE, and Radha Poovendran, Fellow, IEEE

Abstract—Stochastic games model the strategic interactions between

two or more players that occur in a sequence of stages. In this paper

we focus on computing the average reward Nash equilibrium (ARNE) of

a nonzero-sum stochastic game when the transition probabilities of the

game and reward structure of the players are unknown. We note that

the current state-of-the-art reinforcement learning (RL) algorithms that

compute the ARNE of nonzero-sum stochastic games requires solving a

matrix game corresponding to each state of the game at every iteration of

the algorithm, which is PPAD
1
-complete and incurs a memory complexity

that is exponential in the number of players. In this paper, we use

temporal difference error minimization and stochastic approximation

to develop a scalable RL algorithm to compute an ARNE of nonzero-

sum stochastic games. We prove the convergence of our algorithm to an

ARNE. We evaluate the performance of our algorithm using an attacker-

defender game modeled on a real-world ransomware dataset.

Index Terms—Stochastic games, Average reward Nash equilibrium,

Reinforcement learning

I. INTRODUCTION

Stochastic games introduced by Shapley generalize Markov de-
cision processes to model the strategic interactions between two or
more players that occur in a sequence of stages [1]. Dynamic nature
of stochastic games enables the modeling of competitive market
scenarios in economics [2], competition within and between species
for resources in evolutionary biology [3], resilience of cyber-physical
systems in engineering [4], and secure networks under adversarial
interventions in computer science [5].

Study of stochastic games is often focused on finding a set of Nash
Equilibrium (NE) [6] policies for the players such that no player
is able to increase their respective payoffs by unilaterally deviating
from their NE policies. The payoffs of a stochastic game are usually
evaluated under discounted or limiting average payoff [7], [8]. In
games with discounted payoff, the future rewards of the players are
scaled down by a factor between zero and one, and existence of
an NE is always guaranteed [9]. Limiting average payoff on the
other hand considers the time-average of the rewards received by the
players [8]. The existence of an NE under limiting average payoff
criteria for a general stochastic game is an open problem. When
an NE exists, value iteration, policy iteration, and linear/nonlinear
programming based approaches are proposed in the literature to find
an NE [7], [10]. These approaches, however, require the knowledge
of transition and the reward structures of the game. Further, these
solution approaches are only guaranteed to find an exact NE for

D. Sahabandu, L. Bushnell, and R. Poovendran are with the Department
of Electrical and Computer Engineering, University of Washington, Seattle,
WA 98195, USA. {sdinuka, lb2, rp3}@uw.edu.

S. Moothedath is with the Department of Electrical and Computer Engi-
neering, Iowa State University, IA 50011 USA. mshana@iastate.edu.

J. Allen and W. Lee are with the College of Computing, Georgia Institute
of Technology, Atlanta, GA 30332 USA. jallen309@gatech.edu,
wenke@cc.gatech.edu.

This work was supported by ONR grant N00014-16-1-2710 P00002,
DARPA grant FA8650-15-C-7556, and NSF grant 2229876 and was supported
in part by funds provided by DHS, and by IBM. Any opinions, findings, and
conclusions or recommendations expressed in this material are those of the
author(s) and do not necessarily reflect the views of the NSF or its federal
agency and industry partners.

1Polynomial Parity Arguments on Directed graphs.

special classes of stochastic games, such as zero-sum games, where
rewards of the players sum up to zero in all the game states [7].

Multi-agent reinforcement learning (MARL) algorithms have been
proposed in the literature to obtain NE policies of stochastic games
when the transition probabilities of the game and reward structure
of the players are unknown. MARL algorithms can be grouped
into three categories based on the objectives of the players [11].
(i) Cooperative games where players coordinate to achieve a common
goal. (ii) Competitive games where players compete against each
other, and for any set of strategies the sum of the rewards to all
players is zero (referred to as zero-sum stochastic games). (iii) Mixed
games where each player tries to maximize its individual payoff
function and the rewards of the players may not necessarily add up
to zero (referred to as nonzero-sum stochastic games). In this paper
we focus on MARL algorithms for mixed games.

The authors of [12], [13] introduced a Q-learning algorithm (Nash-
R) to learn an NE of average reward stochastic games. Nash-R was
empirically shown to find an NE of a nonzero-sum game by ensuring
the players always use the same NE value for updating their Q-
values. However, the convergence guarantee of Nash-R assumes that
the game has a unique NE value, which is often not satisfied by
most of the games that model real-world applications [7]. Nash-R
also requires solving a matrix game corresponding to each state of
the game at every iteration of the algorithm which is PPAD1-complete
[14], [15] and incurs an exponential memory complexity in number
of players [12], [13]. Q-learning algorithms proposed in [16], [17]
for discounted stochastic games require solving matrix games and
similar conditions as in Nash-R for the convergence.

References in [18], [19], [20] developed actor-critic algorithms
to enhance the scalability of MARL algorithms for nonzero-sum
discounted stochastic games. Later [21], [22], [23] introduced ef-
ficient MARL algorithms for NE in zero-sum stochastic games,
but these are not suited for the nonzero-sum games we explore
here. In this work our goal is to develop a scalable algorithm to
compute average reward NE of nonzero-sum stochastic games when
the transition structure of the game is unknown. Though we employ
a multi-time scale, TD error minimization method similar to [18], our
work diverges by focusing on average reward stochastic games and
presents distinct convergence proofs, underscoring key differences in
approach and analysis. Our contributions are as follows.

• We provide a reinforcement learning algorithm, RL-ARNE, that
learns an average reward Nash equilibrium (ARNE) of nonzero-
sum stochastic games using TD error minimization.

• We prove the convergence of RL-ARNE algorithm to an ARNE
of the game using stochastic approximation.

• We evaluate the performance of RL-ARNE algorithm via an
attacker-defender game grounded on ransomware attack data
obtained from Refinable Attack INvestigation (RAIN) [24].

Organization of the Paper: Section II presents definitions and
existing results. Section III presents an RL algorithm to compute
an ARNE of nonzero-sum stochastic games. Section IV provides
evaluation of the proposed algorithm using an attacker-defender game
grounded on a real-world dataset. Section V presents the conclusions.

This article has been accepted for publication in IEEE Transactions on Automatic Control. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TAC.2024.3403693

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on July 17,2024 at 23:11:08 UTC from IEEE Xplore. Restrictions apply.

II. FORMAL DEFINITIONS AND EXISTING RESULTS

Stochastic Games: A stochastic game G is defined as a tuple <
K,S,A,P,r >, where K denotes the number of players, S represents
the state space, A :=A1⇥ . . . ,⇥AK denotes the action space, P des-
ignates the transition probability kernel, and r represents the reward
functions. Here S and A are finite spaces. Let Ak := [s2SAk(s) be
the action space of each player k 2 {1, . . . ,K}, where Ak(s) denotes
the set of actions allowed for player k at state s2 S. Let pppk be the set
of stationary policies corresponding to player k2 {1, . . . ,K}. A policy
pk 2 pppk is said to be a deterministic stationary policy if pk 2 {0,1}|Ak |

and said to be a stochastic stationary policy if pk 2 [0,1]|Ak |. Let
P(s0|s,a1, . . . ,aK) be the probability of transitioning from state s 2 S

to a state s0 2 S under set of actions (a1, . . . ,aK), where ak 2Ak(s)
denotes the action chosen by player k at the state s. Further let
rk(s,a1, . . . ,aK ,s0) be the reward received by the player k when state
of G transitions from states s to s0 under set of actions (a1, . . . ,aK).
Average Reward Payoff Structure: Let p = (p1, . . . ,pK). Define
rk(s,p) to be the average reward payoff of player k when the game
starts at an arbitrary state s2 S and the players follow their respective
policies p . Let st and at

k be the state of game at time t and the action
of player k at time t, respectively. Then rk(s,p) is defined as

rk(s,p) = liminf
T!•

1
T +1

T

Â
t=0

Es,p [rk(st ,at
1, . . . ,a

t
K)], (1)

where the term Es,p [rk(st ,at
1, . . . ,a

t
K)] denotes the expected reward

at time t when the game starts from a state s and the players draw a
set of actions (at

1, . . . ,a
t
K) at current state st based on their respective

policies from p . All the players in G aim to maximize their individual
payoff values in Eqn. (1). Let �k be the opponents of a player k 2
{1, . . . ,K} (i.e., �k := {1, . . . ,K}\k). Then let p�k := {p1, . . . ,pK}\
pk denotes a set of stationary policies of the opponents of player k.
Equilibrium of G under average reward criteria is given below.

Definition II.1 (ARNE). A set of stationary policies p⇤ =
(p⇤1 , . . . ,p⇤K) forms an ARNE of G if and only if rk(s,p⇤k ,p

⇤
�k) �

rk(s,pk,p⇤�k), for all s 2 S,pk 2 pppk and k 2 {1, . . . ,K}.

A policy p⇤ = (p⇤1 , . . . ,p⇤K) is referred to as an ARNE of G. When
all the players follow ARNE policy, no player k can increase its
payoff by unilaterally deviating from its respective ARNE policy p⇤k .
Unichain Stochastic Games: Let P(p) be the transition probability
structure of G induced by a set of deterministic policies p . Stochastic
games that satisfy Assumption II.2-(a) are referred to as unichain.

Assumption II.2. (a) For each deterministic policy set p , induced
Markov chain P(p) consists of one recurrent class of states. (b) There
exists a state s0 such that for every deterministic p , s0 is visited with
a nonzero probability within the first m stages for some integer m.

Figure 1: Induced
MC with recurrent
and transient states.

Assumption II.2-(a) imposes a structural con-
straint on the Markov chain (MC) induced by
deterministic stationary policy set. Any G that
also satisfies Assumption II.2-(b) will contain
only one recurrent class in P(p) for any given
stochastic policy set p [25]. MC with a single
recurrent class need not necessarily contain all

s 2 S. There may exist some transient states in P(p). Figure 1 shows
an example instance of P(p) induced by p . It distinguishes between
the recurrent class (in blue) and transient states (in green), with
directional arrows representing possible transitions and probabilities.

Let Rl and T denote a set of states in the lth recurrent class of P(p)
for l 2 {1, . . . ,L}, and a set of transient states in P(p), respectively,
where L denote the number of recurrent classes. Proposition II.3 gives
results on the average reward values of the states in each Rl and T.

Proposition II.3 ([7], Section 3.2). The following statements are true
for any induced MC P(p) of G.

1) For l 2 {1, . . . ,L} and for all s 2 Rl , rk(s,p) = r l
k, where each

r l
k denotes a real-valued constant.

2) rk(s,p) =
L
Â

l=1
ql(s)r l

k, if s 2 T, where ql(s) is the probability of

reaching a state in lth recurrent class from s.

1) in Proposition II.3 implies that the average reward payoff of
player k takes the same value r l

k for each state in the lth recurrent
class. 2) suggests that the average reward payoff of a transient state
is a convex combination of the average payoffs corresponding to L
recurrent classes r1

k , . . . ,r
L
k . Proposition II.3 shows that for any G,

the average reward payoffs corresponding to each state solely depends
on the average reward payoffs of the recurrent classes in P(p).
ARNE in Unichain Stochastic Games: Existence of an ARNE
for nonzero-sum stochastic games is open. However, the existence of
ARNE is shown for some special classes of stochastic games [7].

Proposition II.4 ([8], Theorem 2). There exists an ARNE for a
stochastic game that satisfies Assumption II.2.

Let pk 2 pppk be expressed as pk = [pk(s)]s2S, where pk(s) =
[pk(s,ak)]ak2Ak(s). Further let ā := (a1, . . . ,aK) and a�k :=
ā\ak. Define P(s0|s,ak,p�k) = Â

a�k2A�k(s)
P(s0|s, ā)p�k(s,a�k), where

P(s0|s, ā) is the probability of transitioning to a state s0

from state s under action set ā. Also let rk(s,ak,p�k) =
Â

s02S

Â
a�k2A�k(s)

P(s0|s, ā)rk(s, ā,s0)p�k(s,a�k), where rk(s, ā,s0) is the

reward for player k under action set ā when a state transitions from
s to s0. Let Ws,ak

k,p�k
and D(p) be defined as follows:

Ws,ak
k,p�k

=rk + vk(s)� rk(s,ak,p�k)� Â
s02S

P(s0|s,ak,p�k)vk(s0),(2)

D(p) = Â
k2{D,A}

Â
s2S

Â
ak2Ak(s)

Ws,ak
k,p�k

pk(s,ak), (3)

where vk(s) is the “value” of the game for player k at state s
and rk denotes the average reward value of player k independent
of initial state of the game. Ws,ak

k,p�k
denotes the Temporal Difference

(TD) error associated with player k at state s when taking action
ak. TD error represents the difference between the predicted future
rewards and the actual rewards obtained. TD error is used to update
the value function and the policy in RL algorithms. A high TD error
indicates that the predictions are significantly different from the actual
outcomes, suggesting that the player’s model of the environment
needs substantial updating. A low TD error suggests that the player’s
predictions are accurate. The term D(p) represents the total TD error,
which sums the TD error over all states and actions for all players.
Necessary and sufficient conditions for characterizing an ARNE of a
stochastic game that satisfies Assumption II.2 is given below.

Proposition II.5 ([8], Theorem 4). Under Assumption II.2, a set of
stochastic policies p = (p1, . . . ,pK) forms an ARNE in G if and only
if p satisfies the following for all s 2 S,ak 2 Ak(s),k 2 {1, . . . ,K}.

Ws,ak
k,p�k

� 0, (4a) D(p) = 0, (4b)

Â
ak2Ak(s)

pk(s,ak) = 1, pk(s,ak)� 0. (4c)

Stochastic Approximation Algorithms: Let h : Rmz !Rmz be a
continuous function of a set of parameters z 2Rmz . Then Stochastic
Approximation (SA) algorithms solve a set of equations of the form
h(z) = 0 based on the noisy measurements of h(z).

zn+1 = zn +d n
z [h(z

n)+wn
z], for n� 0. (5)

This article has been accepted for publication in IEEE Transactions on Automatic Control. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TAC.2024.3403693

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on July 17,2024 at 23:11:08 UTC from IEEE Xplore. Restrictions apply.

Here, n denotes the iteration index and zn denote the estimation of
z at nth iteration of the algorithm. The terms wn

z and d n
z represent the

zero mean measurement noise associated with zn and the step-size of
the algorithm, respectively. Note that the stationary points of Eqn. (5)
coincide with the solutions of h(z) = 0 when the noise term wn

z is
zero. Convergence analysis of SA algorithms requires investigating
their associated Ordinary Differential Equations (ODEs). The ODE
form of the SA algorithm in Eqn. (5) is given by ż = h(z).

Additionally, the following assumptions on step-size d n
z are re-

quired to guarantee the convergence of an SA algorithm.

Assumption II.6. d n
z satisfies,

•
Â

n=0
d n

z = • and
•
Â

n=0
(d n

z)
2 < •.

Few examples of d n
z that satisfy the conditions given in Assump-

tion II.6 are d n
z = 1/n and d n

z = 1/n log(n). A convergence result that
holds for a more general class of SA algorithms is given below.

Proposition II.7 ([26], [27]). Consider an SA algorithm in the
following form defined over a set of parameters z 2 Rmz and a
continuous function h : Rmz !Rmz .

zn+1 = Q(zn +d n
z [h(z

n)+wn
z +kn]), for n� 0, (6)

where Q is a projection operator that projects each zn iterates onto a
compact and convex set L2Rmz and kn denotes a bounded random
sequence. Let the ODE associated with the iterate in Eqn. (6) is

ż = Q̄(h(z)), (7)

where Q̄(h(z)) = lim
h!0

Q(z+hh(z))�z
h and Q̄ denotes a projection oper-

ator that restricts the evolution of ODE in Eqn. (7) to the set L. Let
the nonempty compact set Z denotes a set of asymptotically stable
equilibrium points of Eqn. (7). Then zn converges almost surely to a
point in Z as n! • given the following conditions are satisfied.

1) d n
z satisfies the conditions in Assumption II.6.

2) lim
n!•

✓
sup
n̄>n

����
n̄
Â

l=n
d n

z wn
z

����

◆
= 0 almost surely.

3) lim
n!•

kn = 0 almost surely.

Consider a class of SA algorithms that consist of two interdepen-
dent iterates that update on two different time scales (i.e., step-sizes
of two iterates are different in the order of magnitude). Let x 2Rmx

and y 2 Rmy and n � 0. Then the iterates given in the following
equations portray a format of such two-time scale SA algorithm.

xn+1 = xn +d n
x [f (x

n,yn)+wn
x], yn+1 = yn +d n

y [g(x
n,yn)+wn

y]. (8)

The following proposition provides a convergence result related to
the aforementioned two-time scale SA algorithm.

Proposition II.8 ([28], Chapter 6). Consider xn and yn iterates given
in (8). Then, given the iterates in (8) are bounded, {(xt ,yt)} converges
to (y(y⇤),y⇤) almost surely under the following conditions.

(I) f : Rmx+my !Rmx and g : Rmx+my !Rmy are Lipschitz.
(II) Iterates xn and yn are bounded.

(III) Let y : y! x. For all y2Rmy , ẋ = f (x,y) has an asymptotically
stable critical point y(y) such that function y is Lipschitz.

(IV) ẏ = g(y(y),y) has a global asymptotically stable critical point.
(V) Let x n be an increasing s -field defined by x n :=

s(xn, . . . ,x0,yn, . . . ,y0,wn�1
x , . . . ,w0

x ,wn�1
y , . . . ,w0

y). Further
let kx and ky be two positive constants. Then wn

x and
wn

y are two noise sequences that satisfy, E[wn
x |x n] = 0,

E[wn
y |x n] = 0, E[k wn

x k2 |x n]  kx(1+ k xn k + k yn k), and
E[k wn

y k2 |x n] ky(1+ k xn k+ k yn k).
(VI) d n

x and d n
y satisfy Assumption II.6. Additionally, lim

n!•
sup d n

y
d n

x
= 0.

III. DESIGN AND ANALYSIS OF RL-ARNE ALGORITHM

In this section we present a RL algorithm for learning an ARNE
of a nonzero-sum stochastic games and analyze its convergence. For
brevity we present the algorithm and its convergence results with
respect to two players D and A.

A. RL-ARNE: RL Algorithm for Computing ARNE
Algorithm III.1 presents the pseudocode of RL-ARNE, a stochastic

approximation-based algorithm with multiple time scales that com-
putes an ARNE of a nonzero-sum stochastic game. The necessary
and sufficient condition given in Proposition II.5 is used to find an
ARNE policy pair (p?

D ,p?
A) in Algorithm III.1.

Algorithm III.1 RL-ARNE Algorithm
1: Input: State space (S), Rewards (rD, rA), Max. iterations (I >> 0)
2: Output: ARNE policies, (p?

D ,p?
A) (ppp I

D,ppp I
A)

3: Initialization: n 0, v0
k 0, r0

k 0, e0
k 0, p0

k pppk for
k 2 {D,A} and s s0.

4: while n 6 I do

5: Draw aD = d from pn
D (s) and aA = a from pn

A (s)
6: Reveal the next state s0 according to P

7: Observe the rewards rD(s,d,a,s0) and rA(s,d,a,s0)
8: for k 2 {D,A} do

9: vn+1
k (s) = vn

k(s)+d n
v [rk(s,d,a,s0)�rn

k + vn
k(s
0)� vn

k(s)]
10: rn+1

k = rn
k +d n

r

h
nrn

k +rk(s,d,a,s0)
n+1 �rn

k

i

11: en+1
k (s,ak) = en

k (s,ak) + d n
e
⇥

Âk2{D,A}(rk(s,d,a,s0) �
rn

k + vn
k(s
0)� vn

k(s))� en
k (s,ak)

⇤

12: pn+1
k (s,ak)=G(pn

k (s,ak)� d n
p

q
pn

k (s,ak)
��rk(s,d,a,s0)�

rn
k + vn

k(s
0)� vn

k(s)
��sgn(�en

k (s,ak)))
13: end for

14: Update the state of the game: s s0

15: n n+1
16: end while

Using SA, iterates in lines 9 and 10 compute the value functions
vn

k(s), at each state s 2 S, and average rewards rn
k of D and A

corresponding to policy pair (pn
D ,pn

A), respectively. The iterates,
en

k (s,ak) in line 11 and pn
k (s,ak) in line 12, are chosen such that

Algorithm III.1 converges to an ARNE of the game. We present
below the outline of our approach.

In Theorem III.14 we prove that all the policies (pD,pA) such that
Ws,ak

k,p�k
< 0 forms an unstable equilibrium point of the ODE associated

with the iterates pn
k (s,ak). Hence, Algorithm III.1 will not converge

to such policies. Consider a policy pair (pD,pA) such that Ws,ak
k,p�k
� 0.

Note that, by Eqn. (3), such a policy pair satisfies D(p) � 0. When
D(p)> 0, Algorithm III.1 updates the policies of players in a descent
direction of D(p) to achieve ARNE (i.e., D(p) = 0).

Let the gradient of D(p) w.r.t policies pD and pA be ∂D(p)
∂p , where

p = (pD,pA). Then for each k 2 {D,A}, s 2 S, and ak 2 Ak(s),
∂D(p)

∂pk(s,ak)
= Â

k̄2{D,A}
Ws,ak

k̄,p�k
represents each component of ∂D(p)

∂p . The

computation of ∂D(p)
∂pk(s,ak)

requires the values of P which is unknown
in our game model. Therefore the iterate en

k (s,ak) in line 11 of Algo-
rithm III.1 estimates ∂D(p)

∂pk(s,ak)
using SA. Convergence of �en

k (s,ak)

to ∂D(p)
∂pk(s,ak)

is proved in Theorem III.9.
Additionally, in line 12 of Algorithm III.1, the map G projects

the policies to probability simplex defined by condition (4c) in
Proposition II.5. Here, | · | denotes the absolute value. The function
sgn(c) denotes the continuous version of the standard sign function
(e.g., sgn(c) = tanh(cc) for any constant c> 1). Lemma III.11 shows
that the policy iterates in line 12 update in a valid descent direction

This article has been accepted for publication in IEEE Transactions on Automatic Control. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TAC.2024.3403693

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on July 17,2024 at 23:11:08 UTC from IEEE Xplore. Restrictions apply.

of D(p) and Theorem III.13 proves the convergence. Theorem III.14
then shows that the converged policies indeed form an ARNE.

The value function iterates in line 9 and the gradient estimate
iterates in line 11 of Algorithm III.1 update in a same faster time
scale d n

v and d n
e , respectively. Policy iterates in line 12 update in a

slower time scale d n
p . Average reward payoff iterates in line 10 update

in an intermediate time scale d n
r . Hence the step-sizes of the proposed

algorithm are chosen such that d n
v = d n

e � d n
r � d n

p . The step-sizes
must also satisfy the conditions in Assumption II.6. It is necessary to
satisfy these conditions to ensure the convergence. Similar conditions
on step sizes have been imposed to prove the convergence of the
multi-time scale RL algorithms presented in [18] and [25]. Due to
time scale separation, iterations in relatively faster time scales see
iterations in relatively slower times scales as quasi-static while the
latter sees former as nearly equilibrated (Chapter 6 of [28]).
Remark III.1. Algorithm III.1 must be trained offline due to the
information exchange that is required at line 11 of the algorithm.
Here, players are required to exchange the information about
their respective temporal difference error estimates, f̃k(rn

k ,v
n
k) =

rk(s,d,a,s0)� rn
k + vn

k(s
0)� vn

k(s), as the iterates on each player’s
gradient estimation includes the term Âk2{D,A} f̃k(rn

k ,v
n
k). Since the

algorithm is trained offline and the policies found at the end of
the training only depend on their respective actions, players do not
require any information exchange on their respective actions when
they execute their learned policies in real-time.

Proposition III.2. Let K, A, and S denote the number of players,
the maximum cardinality of the action space of any player, and
the cardinality of state space. Algorithm III.1 has per iteration
computation and memory complexity of O(KA) and O(KSA).

Proof. RL-ARNE requires O(K) multiplications for the value and
average reward updates (lines 9-10 of Algorithm III.1), and O(KA)
multiplications for the gradient and policy updates (lines 11-12).
Thus, per iteration computation complexity is O(KA). The memory
required for the RL-ARNE is O(KS) for the value updates, O(K) for
the average reward updates, and O(KSA) for the gradient and policy
updates. Thus, memory complexity is O(KSA).

B. Convergence Proof of the RL-ARNE Algorithm
We rewrite iterations in lines 9-10 as Eqns. (9)-(10) to show the

convergence of value and average reward payoff iterates.

vn+1
k (s) = vn

k(s)+d n
v [F(vn

k ,r
n
k)(s)� vn

k(s)+wn
v]. (9)

rn+1
k = rn

k +d n
r [G(rn

k)�rn
k +wn

r]. (10)

For brevity we use p(s,d,a) = pD(s,d)pA(s,a) and p to denote
(pD,pA). Let P(s0|s,p) = Â

d2AD(s)
Â

a2AA(s)
p(s,d,a)P(s0|s,d,a). Two

function maps F(vn
k)(s) and G(rn

k) are defined as

F(vn
k ,r

n
k)(s) = Â

s02S

P(s0|s,p)[rk(s,d,a,s0)�rn
k + vn

k(s
0)], (11)

G(rn
k) = Â

s02S

P(s0|s,p)
hnrn

k + rk(s,d,a,s0)
n+1

i
. (12)

The zero mean noise parameters wn
v and wn

r are defined as

wn
v = rk(s,d,a,s0)�rn

k + vn
k(s
0)�F(vn

k ,r
n
k)(s), (13)

wn
r =

nrn
k + rk(s,d,a,s0)

n+1
�G(rn

k). (14)

Let vk = [vk(s)]s2S. Then the ODE associated with the iterates
given in Eqn. (9) corresponding to all s 2 S and the ODE associated
with the iterate in Eqn. (10) are as follows.

v̇k = f (vk,rk) and ṙk = g(rk), (15)

where f : R|S|!R|S| is such that f (vk,rk) = F(vk,rk)� vk, where
F(vk,rk) = [F(vk,rk)(s)]s2S and g : R ! R is defined as g(rk) =
G(rk)�rk. We note that, in Algorithm III.1, value function iterates
(vn

k(s)) runs in a relatively faster time scale compared to the average
reward iterates (rn

k). As a consequence, vn
k(s) iterates see rn

k as quasi-
static. Hence, for brevity, in the proofs of Lemma III.3, Lemma III.6,
and Theorem III.8 we represent f (vk,rk) and F(vn

k ,r
n
k)(s) as f (vk)

and F(vn
k)(s), respectively.

A set of lemmas that are used to prove the convergence of
the iterates in lines 9 and 10 of Algorithm III.1 are given below.
Lemma III.3 presents a property of the ODEs in Eqn. (15).

Lemma III.3. Consider the ODEs v̇k = f (vk,rk) and ṙk = g(rk).
Then the functions f (vk,rk) and g(rk) are Lipschitz.

Proof. First we show f (vk) is Lipschitz. Consider two distinct value
vectors vk and v̄k. Then,

k f (vk)� f (v̄k)k1 =k [F(vk)�F(v̄k)]� [vk� v̄k]k1

k F(vk)�F(v̄k)k1+ k vk� v̄kk1

= Â
s2S

���F(vk)(s)�F(v̄k)(s)
���+k vk� v̄kk1. (16)

Â
s2S

���F(vk)(s)�F(v̄k)(s)
���= Â

s2S

����� Âs02S

P(s0|s,p)[vk(s0)� v̄k(s0)]

�����

 Â
s2S

Â
s02S

P(s0|s,p)
��vk(s0)� v̄k(s0)

��

 Â
s2S

Â
s02S

��vk(s0)� v̄k(s0)
��= Â

s2S

k vk� v̄kk1 = |S| k vk� v̄kk1.

The inequalities above follow from the triangle inequality and ob-
serving the fact that max{P(s0|s,p)}= 1. Then from Eqn. (16),

k f (vk)� f (v̄k)k1  (|S|+1) k vk� v̄kk1.

Hence f (vk) is Lipschitz. Next we prove g(rk) is Lipschitz. Let rk
and r̄k be two distinct average payoff values. Then,

|g(rk)�g(r̄k)|=
����

n
n+1

[rk� r̄k]� [rk� r̄k]

����= |rk� r̄k| .

Therefore g(rk) is Lipschitz.

Lemma III.6 shows the map F(vn
k) = [F(vn

k)(s)]s2S is a pseudo-
contraction w.r.t some weighted sup-norm. The definitions of
weighted sup-norm and pseudo-contraction are given below.

Definition III.4. Let ||b||e denote the weighted sup-norm of a vector
b2Rmb w.r.t vector e 2Rmb . Then, ||b||e = maxq=1,...,n

|b(q)|
e(q) , where

|b(q)| represent the absolute value of the qth entry of vector b.

Definition III.5 (Pseudo contraction). Let c, c̄2Rmc . Then a function
f : Rmc !Rmc is said to be a pseudo contraction w.r.t the vector
g 2Rmc if and only if,

k f(c)�f(c̄) kg h k c� c̄ kg , where 0 h < 1.

Lemma III.6. Consider F(vn
k ,r

n
k)(s) defined in Eqn. (11). Then the

function map F(vn
k ,r

n
k) = [F(vn

k ,r
n
k)(s)]s2S is a pseudo-contraction

w.r.t some weighted sup-norm.

Proof. Consider two distinct value functions vn
k and v̄n

k . Then,

k F(vn
k)(s)�F(v̄n

k)(s)k1 =k Â
s02S

P(s0|s,p)[vn
k(s
0)� v̄n

k(s
0)]k1

= k Â
s02S

Â
d2AD(s), a2AA(s)

p(s,d,a)P(s0|s,d,a)[vn
k(s
0)� v̄n

k(s
0)]k1

 Â
d2AD(s), a2AA(s)

p(s,d,a) Â
s02S

P(s0|s,d,a) k vn
k(s
0)� v̄n

k(s
0)k1. (17)

This article has been accepted for publication in IEEE Transactions on Automatic Control. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TAC.2024.3403693

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on July 17,2024 at 23:11:08 UTC from IEEE Xplore. Restrictions apply.

Eqn. (17) follows from triangle inequality. To find an upper bound
for the term P(s0|s,d,a) in Eqn. (17), we construct a Stochastic
Shortest Path Problem (SSPP) with the same state space and transition
probability structure as in the game, and a player whose action set
is given by AD⇥AA. Further set the rewards corresponding to all
the state transition in SSPP to be �1. Then by Proposition 2.2
in [29], Âs02S P(s0|s,d,a)e(s0)  he(s) holds for all s 2 S and
(d,a) 2 AD(s)⇥AA(s), where e 2 [0,1]|S| and 0  h < 1. Rewrite
Eqn. (17) as |F(vn

k)(s)�F(v̄n
k)(s)|

 Â
d2AD(s), a2AA(s)

p(s,d,a) Â
s02S

P(s0|s,d,a)e(s0)
|vn

k(s
0)� v̄n

k(s
0)|

e(s0)

 Â
d2AD(s) ,a2AA(s)

p(s,d,a) Â
s02S

P(s0|s,d,a)e(s0) k vn
k � v̄n

kke

 Â
d2AD(s), a2AA(s)

p(s,d,a)he(s) k vn
k � v̄n

kke = he(s) k vn
k � v̄n

kke .

k F(vn
k)�F(v̄n

k)ke  h k vn
k � v̄n

kke .

Below we prove boundedness of Algorithm III.1 iterates.

Lemma III.7. Consider the RL-ARNE algorithm presented in Algo-
rithm III.1. Then, the iterates vn

k(s) and rn
k , for s2 S and k 2 {D,A},

in Eqn.(9) and Eqn.(10) are bounded.

Proof. Recall Eqns. (9) and (10). We know d n
r ⌧ d n

v . In order to
prove the result we first show the errors introduced in the slow iterates
vn

k(s) by the transient errors of the fast iterates rn
k approach to zero

as n!•. For a positive integer D, with slight abuse of notation, we
let vn+D

k (s) to denote the value function at the iterate n computed by
replacing rn

k at Eqn.(9) with rn+D
k . As a consequence, an error

Err(v;r) = vn+D
k (s)� vn

k(s) = d n
v (rn

k �rn+D
k), (18)

is introduced in vn
k(s) iterates, where the term rn

k � rn+D
k captures

the transient errors of the fast iterate rn
k . It has been shown that

rn
k � rn+D

k = O(d n
r) in [25], [30]. Then, from Eqn. (18) we get

Err(v;r) = O(d n
v d n

r). This proves that Err(v;r)! 0 when n! •
as d n

v ,d n
r ⌧ 1 and d n

r ! 0 at a faster rate compared to d n
v due to

d n
r ⌧ d n

v , when n! •. Similarly, since d n
p ⌧ d n

v and d n
p ⌧ d n

r , we
can show Err(v;p), Err(r;p)! 0 as n! •. Therefore, the error
introduced in the slow iterates due to the transient errors of the fast
iterates are asymptotically bounded.

Lemma III.6 proved that F(vn
k) is a pseudo-contraction w.r.t some

weighted sup-norm. By choosing step-size, d n
v to satisfy Assump-

tion II.6 and observing that the noise parameter, wn
v is zero mean

with bounded variance, all the conditions in Theorem 1 in [31] hold
for the game. Hence, by Theorem 1 in [31], the iterates vn

k(s) in
Eqn. (9) are bounded for all s 2 S.

Finally, we show the boundedness of the rn
k iterates. From Propo-

sition II.3, for a fixed policy pair (pD,pA) and n >> 0, the average
reward payoff values rn

k depend only on the rewards due to the
state transitions that occur within the recurrent classes of induced
MC. Recall that under Assumption II.2 the induced Markov chain,
P(pD,pA), contains only a single recurrent class. Let S1 be the set of
states in the recurrent class of P(pD,pA). Then there exists a unique
stationary distribution p for P(pD,pA) restricted to states in S1. Thus
for n >> 0 and each k 2 {D,A},

rn
k = Â

s2S1

p(s)rk(s,p), (19)

where p(s) is the probability of being at state s 2 S1 and rk(s,p)=
Â

d2AD(s), a2AA(s)
p(s,d)p(s,a) Â

s02S

P(s0|s,d,a)r(s,d,a,s0) is the expected

reward at the state s 2 S1 for player k 2 {D,A}. Since S1 has finite
cardinality and the rewards rks are finite for the game, rn

k converges

to a globally asymptotically stable critical point given in Eqn. (19)
and rn

k iterates are bounded.

Theorem III.8 proves the convergence of the iterates vn
k(s) and rn

k .

Theorem III.8. Consider the RL-ARNE algorithm presented in
Algorithm III.1. Then the iterates vn

k(s), for all s 2 S, and rn
k for

k 2 {D,A} in Eqn. (9) and Eqn. (10) converge.

Proof. By Proposition II.8, an SA-based algorithm converges under
the conditions (I)-(VI). Lemma III.3 and Lemma III.7 showed that
conditions (I) and (II) in Proposition II.8 are satisfied, respectively.

To show that condition (III) is satisfied, we first show that there
exists a Lipschitz function yk(rk) that characterizes the critical points
of v̇k = f (vk,rk) in Eqn. (15). Note that vk is a critical point of v̇k =
f (vk,rk) if and only if vk =F(vk,rk). Let |S| be the cardinality of the
state space associated with the game. Let 1|S|⇥1 and I|S|⇥|S| denote all
ones vector with length |S| and |S|⇥ |S| identity matrix, respectively.
Then using Eqn. (11), we get vk = r̄�rk1|S|⇥1 +P(pD,pA)vk, which
can be rewritten as

⇥
I|S|⇥|S|�P(pD,pA)

⇤
vk = r̄�rk1|S|⇥1, (20)

where r̄ is a length |S| vector whose entries are given by
Â

s02S

P(s0|s,p)rk(s,d,a,s0). The set of linear equations defined in

Eqn. (20) has infinite number of solutions under Assumption II.2
[7], [29]. Let J = I|S|⇥|S|�P(pD,pA). Then for an arbitrary vector
w , we define yk(rk) = J

+
⇥
r̄�rk1|S|⇥1

⇤
+
⇥
I|S|⇥|S|�J

+
J
⇤
w , where

J
+ denotes the generalized inverse [32] of J. Consider two distinct

rk and r̄k with a fixed w .

k yk(rk)�yk(r̄k)k1 = k J
+(r̄k�rk)1|S|⇥1k1

k J
+k1 k (rk� r̄k)1|S|⇥1k1 = |S| k J

+k1 k rk� r̄kk1.

Hence, yk(rk) is Lipschitz. Next we show F(vn
k)(s) is a non-

expansive map to prove the convergence of the vn
k(s) iterates. Con-

sider two distinct vn
k and v̄n

k . Since P(s0|s,pD,pA) 1, from Eqn. (17),
k F(vn

k)(s)�F(v̄n
k)(s)k k vn

k(s
0)� v̄n

k(s
0)k. Thus F(vn

k)(s) is a non-
expansive map and hence from Theorem 2.2 in [33] iterates vn

k(s),
for all s 2 S and k 2 {D,A}, converge to an asymptotically stable
critical point given by yk(rk). Hence, condition (III) is verified.

Lemma III.7, showed that rn
k , for k2 {D,A}, converge to a globally

asymptotically stable critical point which implies that condition (IV)
is satisfied. From Eqns. (13) and (14), the noise measures have zero
mean. The variance of these noise measures are bounded by the
fineness of the rewards in the game and the boundedness of the
iterates vn

k(s) and rn
k . Thus condition (V) is satisfied. Finally, the

choice of step-sizes satisfies condition (VI). Therefore the results
follows by Proposition II.8.

Next theorem proves the convergence of gradient estimates.

Theorem III.9. Consider Ws,ak
k,p�k

and D(p) given in Eqns. (2) and (3),
respectively. Then gradient estimation iterate, en

k (s,ak) in line 11
corresponding to any k 2 {D,A}, s 2 S, and ak 2Ak(s), converge to
� ∂D(p)

∂pk(s,ak)
=� Â

k̄2{A,D}
Ws,ak

k̄,p�k
.

Proof. Rewrite gradient estimation in line 11 as follows.

en+1
k (s,ak)= en

k (s,ak)+d n
e
⇥
�Â
k̄2{D,A}

Ws,ak
k̄,p�k
� en

k (s,ak)+wn
e
⇤
, (21)

where wn
e = Â

k2{D,A}
W̄s

k + Â
k̄2{D,A}

Ws,ak
k̄,p�k

, and W̄s
k = rk(s,d,a,s0)�rn

k +

vn
k(s
0)� vn

k(s). Since E(wn
e) = 0, the ODE associated with Eqn. (21)

is given by, ėk(s,ak) =� Â
k̄2{D,A}

Ws,ak
k̄,p�k
� ek(s,ak).

This article has been accepted for publication in IEEE Transactions on Automatic Control. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TAC.2024.3403693

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on July 17,2024 at 23:11:08 UTC from IEEE Xplore. Restrictions apply.

We use Proposition II.7 to prove the convergence of gradient esti-
mation iterates, en

k (s,ak). Step-size d n
e is chosen such that condition

1) in Proposition II.7 is satisfied. Validity of condition 2) can be
shown as follows.

E

0

@ lim
n!•

0

@sup
n̄>n

�����

n̄

Â
l=n

d l
e wl

e

�����

2
1

A

1

A 4 lim
n!•

•
Â
l=n

(d l
e)

2E(|wl
e |2) = 0. (22)

Inequality in Eqn. (22) follows by Doob inequality [27]. Equality
in Eqn. (22) follows by choosing d n

e to satisfy Assumption II.6 and
observing E(|wl

e |2)< • as rk, vn
k , and rn

k are bounded in the game.
Comparing Eqn. (21) with Eqn. (6), k = 0 in Eqn. (21). Therefore,
from Proposition II.7, as n ! •, en

k (s,ak) ! � Â
k̄2{A,D}

Ws,ak
k̄,p�k

=

� ∂D(p)
∂pk(s,ak)

. This completes the proof showing the convergence of
gradient estimation iterates en

k (s,ak).

Next, we prove the convergence of the policy iterates. In order to
do so, we proceed in the following manner.

1) We rewrite the conditions in Prop II.5 that characterize ARNE of
the game as a non-linear optimization problem (Problem III.10).

2) Then we show the policies are updated in a valid decent
direction,

q
pn

k (s,ak)
��Ws,ak

k,p�k

��sgn
⇣

∂D(pn)
∂pn

k (s,ak)

⌘
, w.r.t the objective

function (TD error), D(p), of Problem III.10 (Lemma III.11).
3) Using steps 1) and 2), we characterize the stable and unstable

equilibrium points associated with the ODE corresponding to
the policy iterates in line 12 (Lemma III.12).

4) Invoking Prop II.7 we prove the convergence of policy iterates
to stable equilibrium points found in step 3) (Theorem III.13).

Below we elaborate steps 1)-4). The non-linear program below
characterizes an ARNE of the game (step 1).

Problem III.10. The necessary and sufficient conditions given in
Proposition II.5 that characterize the ARNE of the game can be
reformulated as the following non-linear program using Ws,ak

k,p�k
and

D(p) introduced in Eqns. (2) and (3).

min
v,r,p

D(p) s.t. Ws,ak
k,p�k

� 0; Â
ak2Ak(s)

pk(s,ak) = 1; pk(s,ak)� 0,

where v=(vD,vA), vk = [vk(s)]s2S, r =(rD,rA), p =(pD,pA), pk =
[pk(s)]s2S, pk(s) = [pk(s,ak)]ak2Ak(s), for k 2 {D,A}.

Lemma III.11 proves policy iterates are updated in a valid descent
direction w.r.t the objective function, D(p) (step 2).

Lemma III.11. Consider Ws,ak
k,p�k

, D(p) given in Eqs. (2), (3),
respectively. For any k 2 {D,A}, s 2 S, and ak 2 Ak(s), policy
iterate, pn

k (s,ak), in line 12 of Algorithm III.1 is updated in a valid
descent direction,

q
pn

k (s,ak)
��Ws,ak

k,p�k

��sgn
⇣

∂D(pn)
∂pn

k (s,ak)

⌘
, of D(p) when

Ws,ak
k,p�k

� 0 and D(p)> 0.

Proof. First we rewrite policy iteration in line 12 as follows.

pn+1
k (s,ak)=G

✓
pn

k (s,ak)�d n
p

✓q
pn

k (s,ak)
��Ws,ak

k,p�k

��sgn
✓

∂D(pn)

∂pn
k (s,ak)

◆
+wn

p

◆◆
, (23)

where wn
p =

q
pn

k (s,ak)
h��W̄s

k
���

��Ws,ak
k,p�k

��
i

sgn
⇣

∂D(pn)
∂pn

k (s,ak)

⌘
, and W̄s

k =

rk(s,d,a,s0)�rn
k +vn

k(s
0)�vn

k(s). Policy iterate updates in the slowest
time scale when compared to the other iterates. Thus, all the terms
except Ws,ak

k,p�k
in Eqn. (23) use the converged values of vk, rk, and

∂D(pn)
∂pn

k (s,ak)
w.r.t policy pn = (pn

D ,pn
A).

Consider a policy pn+1
k whose entries are same as pn

k except
the entry pn+1

k (s,ak) which is chosen as in Eqn. (23), for small
0 < d n

p << 1. Let p̄ = (pn+1
k ,pn

�k) and p̂ = (pn
k ,p

n
�k). Also note

that E(wn
p) = 0. Thus ignoring the term wn

p and using Taylor series
expansion yields,

D(p̄) = D(p̂)+d n
p

✓
�
q

pn
k (s,ak)

��Ws,ak
k,p�k

��
���

∂D(p̂)
∂pn

k (s,ak)

���
◆
+o(d n

p),

where o(d n
p) represents the higher order terms corresponding to d n

p .
We ignore o(d n

p) in the second equality above since the choice of d n
p

is small. Notice that the term d n
p

⇣
�
q

pn
k (s,ak)

��Ws,ak
k,p�k

��
��� ∂D(p̂)

∂pn
k (s,ak)

���
⌘

is
negative. Since D(p)> 0 for any p , we get D(p̄)< D(p̂). This proves
policies are updated in a valid descent direction.

Notice that the ODE associated with Eqn. (23) is,

ṗk(s,ak)=Ḡ
✓
�
p

pk(s,ak)
��Ws,ak

k,p�k

��sgn
✓

∂D(p)
∂pk(s,ak)

◆◆
, (24)

where Ḡ is the continuous version of the projection operator G which
is defined analogous to the continuous projection operator in Eqn. (7).
Let P denotes the set of limit points associated with the system of
ODEs in Eqn. (24). Let the feasible set of Problem III.10 be

H = {p 2 L|Ws,ak
k,p�k
� 0, for all ak 2Ak(s), s2 S, k 2 {D,A}}, (25)

where the set L = {p|Âak2Ak(s) pk(s,ak) = 1,pk(s,ak) �
0, for all ak 2Ak(s), s 2 S}. The set P can be partitioned using the
set H as P = P1[P2, where P1 = P\H and P2 = P\P1. Using
these notations and steps 1) and 2), we characterize the stable and
unstable equilibrium points of the system of ODEs in Eqn. (24) in
Lemma III.11 (step 3).

Lemma III.12. The following statements are true for the set of
equilibrium policies p? of ODE in Eqn. (24).

1) All p? 2P1 form a set of stable equilibrium points.
2) All p? 2P2 form a set of unstable equilibrium points.

Proof. First we show statement 1) holds. Since the set P1 is in the
feasible set H of Problem III.10 defined in Eqn. (25), for any p? 2
P1, there exists some ak 2Ak(s), s 2 S that satisfy Ws,ak

k,p�k
� 0. Let

Bz (p?) = {p 2 L|kp�p?k < z}. Then, for any p 2 Bz (p?) \P1,
there exists a z > 0 such that Ws,ak

k,p�k
> 0 which yields ∂D(p)

∂pk(s,ak)
> 0.

This implies sgn
⇣

∂D(p)
∂pk(s,ak)

⌘
> 0.

Hence, Ḡ
⇣
�
p

pk(s,ak)
��Ws,ak

k,p�k

��sgn
⇣

∂D(p)
∂pk(s,ak)

⌘⌘
< 0 for any p 2

Bz (p?)\P1. This implies that pk(s,ak) will decrease when moving
away from p? 2 P1. This proves p? 2 P1 is an stable equilibrium
point of the system of ODEs given in Eqn. (24).

To show statement 2) is true, we first note that for any p? 2 P2,
there exists some ak 2Ak(s), s 2 S such that Ws,ak

k,p�k
< 0. Then, for

any p 2 Bz (p?)\P2, there exists a z > 0 such that Ws,ak
k,p�k

< 0 which

yields ∂D(p)
∂pk(s,ak)

< 0. This implies sgn
⇣

∂D(p)
∂pk(s,ak)

⌘
< 0. Therefore,

Ḡ
⇣
�
p

pk(s,ak)
��Ws,ak

k,p�k

��sgn
⇣

∂D(p)
∂pk(s,ak)

⌘⌘
> 0 for any p 2 Bz (p?) \

P2. This implies that pk(s,ak) will increase when moving away from
p? 2P2. This proves p? 2P2 is an unstable equilibrium point of the
system of ODEs in Eqn. (24) and completes the proof.

Theorem III.13 gives the convergence of the policy iterates to the
set of stable equilibrium points in step 3) (step 4).

Theorem III.13. The policy iterates pn
k (s,ak) for all ak 2Ak(s), s2

S, and k 2 {D, A} in Algorithm III.1 converge to a stable equilibrium
point p? = (p?

D ,p?
A) 2P1.

Proof. Recall wn
p =

q
pn

k (s,ak)
h��W̄s

k
���

��Ws,ak
k,p�k

��
i

sgn
⇣

∂D(pn)
∂pn

k (s,ak)

⌘
. We

invoke Proposition II.7 to prove the convergence of policy iterates,

This article has been accepted for publication in IEEE Transactions on Automatic Control. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TAC.2024.3403693

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on July 17,2024 at 23:11:08 UTC from IEEE Xplore. Restrictions apply.

pn
k (s,ak). Step-size d n

p is chosen such that condition 1) in Proposi-
tion II.7 is satisfied. Validity of condition 2) can be shown as follows.

E

0

@ lim
n!•

0

@sup
n̄>n

�����

n̄

Â
l=n

d l
p wl

p

�����

2
1

A

1

A 4 lim
n!•

•
Â
l=n

(d l
p)

2E(|wl
p |2) = 0. (26)

In Eqn. (26), inequality follows by Doob inequality [27] and equality
follows by choosing d n

p to satisfy Assumption II.6 and observing
E(|wl

p |2)< • as rk, vn
k , and rn

k are bounded in the game. Comparing
Eqs. (23) and (6), k = 0. Therefore, from Proposition II.7, as n!•,
the policy iterates pn

k (s,ak) for all ak 2Ak(s), s 2 S, and k 2 {D, A}
converge to a stable equilibrium point p? 2P1.

Next theorem proves the convergence of pn
k (s,ak) given in line 12

of Algorithm III.1, to an ARNE in the game.

Theorem III.14. Consider Ws,ak
k,p�k

and D(p) given in Eqns. (2)
and (3), respectively. A converged policy (p?

D ,p?
A) of Algorithm III.1

forms an ARNE in the game.

Proof. In the following, we show any converged policy p? = (p?
D ,p?

A)
returned by Algorithm III.1 will satisfy conditions (4a)-(4c) in
Proposition II.5 and thus p? forms an ARNE in the game.

Recall from Theorem III.13, the policy iterates pn
k (s,ak) for all

ak 2 Ak(s), s 2 S, and k 2 {D, A} converge to a stable equi-
librium point p? 2 P1. Also, recall P denotes the set of limit
points associated with the system of ODEs in Eqn. (24) and L =
{p|Âak2Ak(s) pk(s,ak) = 1,pk(s,ak) � 0, for all ak 2 Ak(s), s 2 S}.
Then, from the definition of the set P1, any converged p? will satisfy
conditions (4a) and (4c), since p? 2P1 =P\H yields p? 2H, where
H = {p 2 L|Ws,ak

k,p�k
� 0, for all ak 2Ak(s), s 2 S, k 2 {D,A}}.

Then it suffices to show any p? 2 P1 will yieldp
pk(s,ak)W

s,ak
k,p�k

= 0 since this proves condition (4b) in
Proposition II.5. We show this by contradiction arguments.
Note that Ḡ

⇣
�
p

pk(s,ak)
��Ws,ak

k,p�k

��sgn
⇣

∂D(p)
∂pk(s,ak)

⌘⌘
= 0 as p? forms

a set of equilibrium polices associated with the system of ODEs in
Eqn. (24). Suppose there exists a policy 0 < pk(s, āk)  1 for some
āk 2 Ak(s), s 2 S, and k 2 {D, A} such that

p
pk(s, āk)W

s,āk
k,p�k

6= 0.
Consider the following two cases.
Case I: pk(s, āk) = 1 and Ws,āk

k,p�k
6= 0. Recall F(vk,rk) =

[F(vk,rk)(s)]s2S and F(vk,rk)(s) = Â
s02S

P(s0|s,p)[rk(s,d,a,s0) �

rn
k + vk(s0)]. Then under Case I Âak2Ak(s) pk(s,ak)W

s,ak
k,p�k

=

pk(s, āk)W
s,āk
k,p�k

= 0, where the first equality is due to pk(s, āk) = 1
and the second equality is due to the convergence of the value iterates
to their true values (i.e., as n!•, vk!F(vk,rk)) which is proved in
Theorem III.8. Further, as pk(s, āk) = 1 this yields Ws,āk

k,p�k
= 0, which

contradicts the condition Ws,āk
k,p�k

6= 0 in Case I.
Case II: 0 < pk(s, āk) < 1 and Ws,āk

k,p�k
6= 0. Under this case we get

Ḡ
⇣
�
p

pk(s, āk)
��Ws,āk

k,p�k

��sgn
⇣

∂D(p)
∂pk(s,āk)

⌘⌘
=�

p
pk(s, āk)

��Ws,āk
k,p�k

��sgn
⇣

∂D(p)
∂pk(s,āk)

⌘
6= 0,

due to conditions given in the Case II and assuming sgn(·) 6= 0.
However this contradicts with our initial observation of
Ḡ
⇣
�
p

pk(s,ak)
��Ws,ak

k,p�k

��sgn
⇣

∂D(p)
∂pk(s,ak)

⌘⌘
= 0.

Therefore, by contradiction, there does not exist any policy 0 <
pk(s, āk)  1 for some āk 2Ak(s), s 2 S, and k 2 {D, A} such thatp

pk(s, āk)W
s,āk
k,p�k

6= 0. This proves condition (4b) in Proposition II.5
holds. Since conditions (4a)-(4c) in Proposition II.5 hold, a converged
policy (p?

D ,p?
A) of Algorithm III.1 forms an ARNE in the game.

Remark III.15. RL-ARNE algorithm presented in Algorithm III.1
and the associated convergence proofs given in Section III-B extend to
K-player, non-zero sum, average reward unichain stochastic games.
Unichain property is a mild regularity assumption compared to other
regularity conditions such as ergodicity or irreducibility [34].

IV. SIMULATIONS

In this section we test Algorithm III.1 on a real-world attack
dataset of a ransomware attack by an advanced persistant threat
(APT). We collected the attack data using RAIN framework [24]
and modeled the interaction between APT and a dynamic information
flow tracking (DIFT)-based defense mechanism as a non-zero sum
average reward stochastic game. The dataset consists of system logs
with both benign and malicious information flows recorded in a Linux
computer threatened by a ransomware attack. We first obtained a
graphical representation of the dataset, referred as information flow
graph (IFG). Immediate conversion of the system logs resulted in an
IFG with 173 nodes and 2426 edges. We then performed a pruning
technique to obtain a pruned IFG consisting of 18 nodes and 29 edges.
Nodes in the IFG symbolize system locations, such as processes, files,
and network sockets. These nodes form the state space for the DIFT-
APT game. The action space for DIFT is focused on making decisions
about inspecting or bypassing an incoming information flow at a
specific system location. The action space for APT involves making
strategic choices about moving to an adjacent system location linked
via edges in the IFG or opting to cease the attack by discontinuing
the information flow. For more details about the pruning technique
and the DIFT-APT game model please refer to [35].

We used the following learning rates: d n
v = d n

e = 0.5 if n < 7000
and d n

v = d n
e = 1.6

k(s,n) , otherwise. dr = d n
p = 1, if n < 7000 and

dr = 1
1+t(n) log(t(n)) , d n

p = 1
t(n) , otherwise. The learning rates remain

constant until iteration 7000 and then start decaying. We observed that
setting learning rates in this fashion helps the finite time convergence
of the algorithm. Here, the term k(s,n) in d n

v and d n
e denotes the total

number of times a state s2 S is visited from 7000th iteration onwards
in Algorithm III.1. Hence, d n

v and d n
e depend on the iteration n and

the state visited at iteration n. The term t(n) = n�6999.
Let fT (p,r,v) = fD(p,rD,vD) + fA(p,rA,vA), where

p = (pD,pA), r = (rD,rA), v = (vD,vA). Here, fk(p,rk,vk),
for k 2 {D,A}, is given by fk(p,rk,vk) = Â

s2S

Â
ak2Ak(s)

⇣
rk +

vk(s)� rk(s,ak,p�k)� Â
s02S

P(s0|s,ak,p�k)vk(s0)
⌘

pk(s,ak). We refer

to fT (p,r,v), fD(p,rD,vD), and fA(p,rA,vA) as the total TD
error, defender’s TD error, and adversary’s TD error, respectively.
Then conditions in Proposition II.5 imply that a policy pair
forms an ARNE if and only if fD(p,rD,vD) = fA(p,rA,vA) = 0.
Consequently, at ARNE fT (p,r,v) = 0.

Figure 2a plots fT , fD, fA corresponding to the policies given
by Algorithm III.1 at iterations n = 1,500, . . . ,2.5⇥106. The figure
shows that fT , fD and fA converge close to 0 (⇡ 10�3) as n increases.
This suggests that RL-ARNE algorithm is converging to an ARNE
of the DIFT-APT game. Figure 2b illustrates the comparison of the
convergence trends for average reward values of DIFT and APT (rn

D
and rn

A) as implemented in Algorithm III.1 (RL-ARNE), against the
NashR algorithm [12], [13]. The outcomes demonstrate that rn

D and
rn

A achieved via RL-ARNE converge more rapidly and with lower
variance compared to those attained through the NashR.

Figure 2c presents a comparison of the average rewards for players
under converged policies from Algorithm III.1 (RL-ARNE policy)
versus the average reward values obtained using the NashR policy
and two distinct DIFT policies: i) the uniform policy and ii) the cut
policy. In the uniform policy scenario, DIFT selects actions across all
states following a uniform distribution. Under the cut policy, DIFT
conducts security analyses at bottleneck states within the pruned IFG
with a probability of one. It is important to note that the APT’s policy
remains consistent with the ARNE policy case for both the uniform
and cut policy scenarios. The results indicate that DIFT secures a
higher average reward utilizing the ARNE policy in comparison to

This article has been accepted for publication in IEEE Transactions on Automatic Control. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TAC.2024.3403693

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on July 17,2024 at 23:11:08 UTC from IEEE Xplore. Restrictions apply.

0 0.5 1 1.5 2 2.5

�200

0

200

Iteration n ⇥(106)

TD
er

ro
r

va
lu

es
fT (pn,rn,vn)

fD(pn,rn
D,v

n
D)

fA(pn,rn
A,v

n
A)

(a) (b)

Policy\Player DIFT APT

RL-ARNE 7.45 -9.06
NashR 6.24 -7.26

Uniform 5.48 -6.61
Cut 4.44 -5.87

(c)

Figure 2: (a) Plots of total TD error, fT (pn,rn,vn), DIFT’s TD error fD(pn,rn
D,v

n
D), and APT’s TD error fA(pn,rn

A,v
n
A) of Algorithm III.1 (RL-ARNE) for

ransomware attack. (b) Plots comparing the average rewards of DIFT (rn
D) and APT (rn

A) obtained from RL-ARNE and NashR [12], [13]. (c) Comparison
of the rD and rA obtained by the converged policies in RL-ARNE against rD and rA obtained by NashR and two other policies of DIFT. Uniform: Security
analysis at every state under a uniform distribution. Cut: Security analysis at bottleneck states in the pruned IFG with probability one.

the NashR, uniform, and cut policies. Additionally, under the ARNE
policy deployed by DIFT, APT receives a lower reward relative to
the rewards it garners under the other mentioned policies.

V. CONCLUSION

In this paper we studied a competitive multi-agent stochastic
decision making problem (nonzero-sum stochastic game) with incom-
plete and imperfect information structure. We proposed an RL-based
algorithm, RL-ARNE, to learn an Average Reward Nash Equilibrium
(ARNE) of the game. The proposed algorithm is a multiple-time
scale stochastic approximation algorithm. We proved the convergence
of RL-ARNE algorithm to an ARNE of the game. We evaluated
the proposed RL-ARNE algorithm using a attaker-defender game
grounded on a real-world ransomware attack dataset collected using
RAIN framework. Our simulation results validated the convergence
of the proposed algorithm to an ARNE of the attacker-defender game.

REFERENCES

[1] L. S. Shapley, “Stochastic games,” Proceedings of the national academy
of sciences, vol. 39, no. 10, pp. 1095–1100, 1953.

[2] R. Amir, “Stochastic games in economics and related fields: An
overview,” Stochastic Games and Applications, pp. 455–470, 2003.

[3] D. Foster and P. Young, “Stochastic evolutionary game dynamics,”
Theoretical Population Biology, vol. 38, no. 2, p. 219, 1990.

[4] Q. Zhu and T. Başar, “Robust and resilient control design for cyber-
physical systems with an application to power systems,” IEEE Decision
and Control and European Control Conference (CDC-ECC), 2011.

[5] K.-w. Lye and J. M. Wing, “Game strategies in network security,”
International Journal of Information Security, vol. 4, no. 1-2, 2005.

[6] J. F. Nash, “Equilibrium points in n-person games,” Proceedings of the
national academy of sciences, vol. 36, no. 1, pp. 48–49, 1950.

[7] J. Filar and K. Vrieze, Competitive Markov Decision Processes.
Springer Science & Business Media, 2012.

[8] M. Sobel, “Noncooperative stochastic games,” The Annals of Mathemat-
ical Statistics, vol. 42, no. 6, pp. 1930–1935, 1971.

[9] J.-F. Mertens and T. Parthasarathy, “Equilibria for discounted stochastic
games,” Stochastic Games and Applications, pp. 131–172, 2003.

[10] T. Raghavan and J. A. Filar, “Algorithms for stochastic games—A
survey,” Zeitschrift für Operations Research, vol. 35, no. 6, 1991.

[11] K. Zhang, Z. Yang, and T. Başar, “Multi-agent reinforcement learning:
A selective overview of theories and algorithms,” Handbook of Rein-
forcement Learning and Control, pp. 321–384, 2021.

[12] J. Li, “Learning average reward irreducible stochastic games: Analysis
and applications,” Ph.D. dissertation, Dept. Ind. Manage. Syst. Eng.,
Univ. South Florida, Tampa, FL, USA, 2003.

[13] J. Li, K. Ramachandran, and T. K. Das, “A reinforcement learning (nash-
R) algorithm for average reward irreducible stochastic games,” Journal
of Machine Learning Research, 2007.

[14] C. Daskalakis, P. W. Goldberg, and C. H. Papadimitriou, “The com-
plexity of computing a nash equilibrium,” SIAM Journal on Computing,
vol. 39, no. 1, pp. 195–259, 2009.

[15] X. Chen, X. Deng, and S.-H. Teng, “Settling the complexity of comput-
ing two-player nash equilibria,” Journal of the ACM, vol. 56, 2009.

[16] J. Hu and M. P. Wellman, “Nash Q-learning for general-sum stochastic
games,” Journal of Machine Learning Research, vol. 4, 2003.

[17] M. L. Littman et al., “Friend-or-foe Q-learning in general-sum games,”
in ICML, vol. 1, 2001, pp. 322–328.

[18] H. L. Prasad, L. A. Prashanth, and S. Bhatnagar, “Two-timescale algo-
rithms for learning Nash equilibria in general-sum stochastic games,”
International Conference on Autonomous Agents and Multiagent Sys-
tems, pp. 1371–1379, 2015.

[19] J. Pérolat, F. Strub, B. Piot, and O. Pietquin, “Learning nash equilibrium
for general-sum Markov games from batch data,” in Artificial Intelli-
gence and Statistics. PMLR, 2017, pp. 232–241.

[20] G. Arslan and S. Yüksel, “Decentralized Q-learning for stochastic teams
and games,” IEEE Transactions on Automatic Control, 2016.

[21] M. Sayin, K. Zhang, D. Leslie, T. Basar, and A. Ozdaglar, “Decentralized
Q-learning in zero-sum Markov games,” Advances in Neural Information
Processing Systems, vol. 34, 2021.

[22] C. Martin and T. Sandholm, “Efficient exploration of zero-sum stochastic
games,” arXiv preprint arXiv:2002.10524, 2020.

[23] A. Ozdaglar, M. O. Sayin, and K. Zhang, “Independent learning in
stochastic games,” arXiv preprint arXiv:2111.11743, 2021.

[24] Y. Ji, S. Lee, E. Downing, W. Wang, M. Fazzini, T. Kim, A. Orso,
and W. Lee, “RAIN: Refinable attack investigation with on-demand
inter-process information flow tracking,” ACM SIGSAC Conference on
Computer and Communications Security, pp. 377–390, 2017.

[25] A. Gosavi, “Reinforcement learning for long-run average cost,” Euro-
pean Journal of Operational Research, vol. 155, no. 3, 2004.

[26] H. J. Kushner and D. S. Clark, Stochastic approximation methods for
constrained and unconstrained systems. Springer Science & Business
Media, 2012, vol. 26.

[27] M. Metivier and P. Priouret, “Applications of a Kushner and Clark
lemma to general classes of stochastic algorithms,” IEEE Transactions
on Information Theory, vol. 30, no. 2, pp. 140–151, 1984.

[28] V. S. Borkar, Stochastic Approximation: A Dynamical Systems View-
point. Springer, 2009, vol. 48.

[29] D. P. Bertsekas and J. N. Tsitsiklis, Neuro-Dynamic Programming.
Athena Scientific, 1996.

[30] M. Kaledin, E. Moulines, A. Naumov, V. Tadic, and H.-T. Wai, “Finite
time analysis of linear two-timescale stochastic approximation with
Markovian noise,” in Conference on Learning Theory. PMLR, 2020.

[31] J. N. Tsitsiklis, “Asynchronous stochastic approximation and Q-
Learning,” Machine learning, vol. 16, no. 3, pp. 185–202, 1994.

[32] M. James, “The generalised inverse,” The Mathematical Gazette, vol. 62,
no. 420, pp. 109–114, 1978.

[33] K. Soumyanath and V. S. Borkar, “An analog scheme for fixed-point
computation-part ii: Applications,” IEEE Transactions on Circuits and
Systems I: Fundamental Theory and Applications, vol. 46, no. 4, 1999.

[34] S. Bhatnagar, R. S. Sutton, M. Ghavamzadeh, and M. Lee, “Natural
actor–critic algorithms,” Automatica, vol. 45, no. 11, 2009.

[35] D. Sahabandu, S. Moothedath, J. Allen, L. Bushnell, W. Lee, and
R. Poovendran, “A reinforcement learning approach for dynamic infor-
mation flow tracking games for detecting advanced persistent threats,”
arXiv preprint arXiv:2007.00076, 2020.

This article has been accepted for publication in IEEE Transactions on Automatic Control. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TAC.2024.3403693

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on July 17,2024 at 23:11:08 UTC from IEEE Xplore. Restrictions apply.

