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Abstract— Age-Of-Information (AoI) is a metric that focuses
directly on the application-layer objectives, and a canonical
AoI minimization problem is the update-through-queues models.
Existing results in this direction fall into two categories: The
open-loop setting for which the sender is oblivious of the packet
departure time, versus the closed-loop setting for which the
decision is based on instantaneous Acknowledgment (ACK).
Neither setting perfectly reflects modern networked systems,
which almost always rely on feedback that experiences some delay.
Motivated by this observation, this work subjects the ACK traffic
to a second queue so that the closed-loop decision is made based
on delayed feedback. Near-optimal schedulers have been devised,
which smoothly transition from the instantaneous-ACK to the
open-loop schemes depending on how long the feedback delay
is. The results quantify the benefits of delayed feedback for AoI
minimization in the update-through-queues systems.

Index Terms— Age-of-information, semi-Markov decision pro-
cess, two-way delay, network scheduling, update through queues.

I. INTRODUCTION

SUPPORTING low-latency applications is a top mission
of modern communication networks. One example appli-

cation is remote control in cyber-physical systems (CPS).
E.g., [2] studies linear quadratic Gaussian (LQG) control
systems with random communication delay. The results show
that the control performance deteriorates exponentially fast
with respect to the Age of (the measurement) Information
(AoI). The intuition is that any control action at time t based
on measurements that are ∆-time old inevitably leaves the
state disturbance accumulated during time interval (t − ∆, t]
unchecked. This usually incurs exponential cost ec·∆ since
for an inherently unstable system, the system state drifts
exponentially away in time if left unchecked.

By exploring the connections between the staleness of the
data and the efficacy of the control, many existing results
have established strong relationships between AoI and the
underlying system performance [3], [4], [5]. AoI minimization
has since attracted significant research attentions on subjects
like broadcast channels [6], random access channels [7], etc.
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Fig. 1. Information Update System with 2-Way Queues.

One earliest canonical example of AoI minimization is the
update-through-queues systems [1], [8], [9], [10], [12], [13],
[14], [15], [16], [17], [19], [20]. Specifically, a source node
s would like to send update packets through a queue to a
destination node d. The AoI at d is defined as

∆(t) ≜ t − max{Si : ∀i s.t. Di < t} (1)

where Si is the send time of the i-th packet Pi (the time of
injecting Pi into the queue) and Di is the delivery time (the
time Pi departs the queue). The objective is to design {Si : i}
that minimizes the average AoI or the average peak AoI.

Existing results of this model fall into two categories:
The open-loop versus closed-loop settings. In the open-loop
settings [8], [9], [16], [17], [19], the sender is oblivious
of the packet departure time. Analysis has been conducted
for different queue service policies, e.g., Last-Come-First-
Serve, and the optimal scheme generally follows a stationary
randomized design. In the closed-loop settings [10], [12], [13],
[15], [20] s has instantaneous ACK of the departure time
Di−1. Optimal {Si : i} are analyzed for arbitrary AoI penalty
functions [10], [12], transmission cost [13], [15], and provably
optimal distribution-oblivious online algorithms [12], [14].

Nonetheless, modern network protocols almost always rely
on feedback that experiences some (random) delay. It remains
unclear whether one should employ a closed-loop scheme
designed for instantaneous ACK while knowing the feedback
being used is actually stale, or one should take an open-
loop approach that discards the delayed feedback completely.
Intuitively, even though delayed feedback is not as valuable as
instantaneous ACK, it still contains some information that can
assist scheduling. The question to answer, though, is how to
design schemes that extract the information from the delayed
feedback and perform optimal scheduling accordingly.

With this motivation, this work subjects the ACK traffic to
a second queue so that the closed-loop decision is based on
delayed ACK. See Fig. 1. The main contributions are:

(i) For any integer K ≥ 0, we propose new ways to design
an order-K achievability scheme and an order-K genie-aided
converse result, which satisfies that the larger the K value, the
smaller the performance gap between the two, and the gap is
zero if K = ∞. Numeric evaluation shows that for K = 1, the
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gap between the achievability and converse is often < 2%, and
the gap reduces to < 0.2% if K = 2. Our achievability and
converse results thus effectively determine the optimal average
AoI with delayed feedback.

(ii) By characterizing the optimal AoI under delayed feed-
back, the results reveal a smooth transition between the
closed-loop and open-loop schemes, a critical piece of infor-
mation for system designers. E.g., numerical evaluation shows
that if the forward and feedback queues have comparable
service time, then the benefits of delayed feedback vanish
almost completely, and we could use the open-loop approach
to achieve near-optimal performance. On the other hand, if the
feedback delay is half of the forward delay, then significant
gain can still be achieved when using a closed-loop design.

The rest of the paper is organized as follows. Sec. II pro-
vides the problem formulation. Sec. III defines key quantities
that will be used when describing our main results. Secs. IV
and V describe the order-1 genie-based converse bound and
achievability scheme, respectively. Sec. VI describes the order-
2 converse and achievability. Sec. VII presents the numerical
evaluation. Sec. VIII provides the intuition and several impor-
tant remarks. Sec. IX concludes this work. The proofs are
relegated to the appendices of [21].

II. PROBLEM FORMULATION

We assume slotted time axis, i.e., the injection and departure
times of both queues in Fig. 1 are integers. At time 0, both
queues are empty. For any packet index i ≥ 1, source s would
inject packet Pi to the forward queue at the send time Si.
Pi will leave the forward queue and arrive at destination d
at the delivery time Di. Once delivered, the ACK packet of
Pi, denoted by Acki, is immediately injected to the backward
queue (thus at time Di). Acki will leave the backward queue at
the ACK time Ai. Once it returns back to s, Acki will inform
s the exact delivery time Di of Pi.

For each packet Pi (and its corresponding Acki) we denote
the i.i.d. service times of the forward and backward queues
by Yi ∼ PY and Zi ∼ PZ , respectively. PY and PZ can
be arbitrary distributions with bounded supports [1, ymax] and
[0, zmax], respectively. The assumption of Yi ≥ 1 is to avoid
the complication of instantaneous forward delivery. We still
allow for Zi = 0 so that we can choose PZ to include
“instantaneous ACK” [10] as a special case. We initialize
Si = Di = Ai = 0 for all i ≤ 0. Under the basic FIFO-
queue model, the relationships between Si, Di, Ai, Yi and Zi

for all i ≥ 1 are iteratively defined by

Di = max(Si, Di−1) + Yi; (2)
Ai = max(Di, Ai−1) + Zi. (3)

E.g., packet Pi will be processed at time max(Si, Di−1). Then
it takes Yi additional time for Pi to be delivered to d. We also
define the projection operator: (·)+ ≜ max(·, 0).

For any i ≥ 1, define a random process ack.deli(t) ≜ Di ·
1{Ai≤t}, which jumps from 0 to Di at ACK time Ai and
stays at Di afterward, i.e., ack.deli(t) is the acknowledged-
delivery-time until time t. Define F(i) ≜ {F (i)

t : t ∈ [1,∞)}
as the filtration generated by random processes {ack.delj(t) :

j ∈ [1, i−1]}. I.e., σ-algebra F (i)
t contains all the information

available to s when making the Si decision at time t.
This work studies the following AoI minimization problem:

avg.aoi∗ ≜ inf
{Si:i≥1}

lim
T→∞

1
T

T∑
t=1

E {∆(t)} (4)

subject to ∀i ∈ [1,∞), Si−1 < Si and (5)

Si is a stopping time w.r.t. F(i) (6)

where ∆(t) is defined in (1); and (5) ensures that Pi−1 is,
by definition, sent at an earlier time than Pi.

Our model is general. For example, we can choose PZ to be
instantaneous ACK P(Zi = 0) = 1 [10], to be deterministic
but non-zero, to be (truncated) log-normal distribution, or to be
P(Zi = zmax) = 1 for a large zmax that mimics the open-loop
setting in which feedback never arrives.

A. Four Existing Upper and Lower Bounds of avg.aoi∗

We first describe four existing bounds of avg.aoi∗:
Zero-Wait-After-ACK (ZWAA) is a scheme for which s

sends Pi immediately after receiving Acki−1, i.e., Si = Ai−1.
We denote the corresponding average AoI by zwaa. By defi-
nition, zwaa ≥ avg.aoi∗ and simple computation shows

zwaa = E(Y ) + 0.5 +
E(Y 2) + 2E(Y )E(Z) + E(Z2)

2 · (E(Y ) + E(Z))
. (7)

Best-After-ACK (BAA) [11], [12], [13], [15], [22] adds a
constraint Si ≥ Ai−1 to (4)–(6) and solves the optimal value
of the restricted problem, i.e., new packet Pi can be sent only
after receiving Acki−1. By definition, the AoI achieved by this
scheme, denoted by baa, satisfies avg.aoi∗ ≤ baa ≤ zwaa.

Optimal periodic (Opt.Per) is an open-loop scheme which
schedules Si = ⌊(i−1)·c⌋ where c > 0 is a real-valued period
being used. Namely, source s sends out a new packet roughly
every c time slots, while completely ignoring any feedback
information. We can run Monte-Carlo simulation for each
different c and then choose the (numerically found) optimal
c∗ that leads to the smallest avg.aoi. The result is an upper
bound of avg.aoi∗, which we denote by opt.per.

Instantaneous ACK (Inst.ACK) hardwires P(Zi = 0) =
1 and uses [10] to compute the optimal AoI value. Since
the new instantaneous feedback setting dominates the delayed
feedback setting in a path-wise sense, the result is a lower
bound of avg.aoi∗, which we denote by inst.ack.

As shown in Sec. VII, none of zwaa, baa, opt.per, and
inst.ack is tight (i.e., close to avg.aoi∗) in general. Further
comparison to existing results will be provided in Sec. VIII-A.

B. An Alternative Way of Counting The Average AoI

For any integer T ≥ 0, define i(T ) ≜ max{i : Di < T}
and for any non-negative integer (δ, y) pair, define

γ(δ, y) ≜

(
δ+y∑
k=1

k

)
−

(
y∑

k=1

k

)
=

δ2

2
+ δ · (y + 0.5). (8)

We now introduce a useful lemma.
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Fig. 2. An alternative way of computing
∑T

t=1 ∆(t).

Lemma 1: For any T > 0, we have

i(T )∑
i=1

γ(Si − Si−1, Di − Si) ≤
T∑

t=1

∆(t)

≤
i(T )+1∑

i=1

γ(Si − Si−1, Di − Si). (9)

Proof: We observe that we can sum the AoI in a different
way as illustrated in Fig. 2, where the expression γ(δ, y)
computes the area of each trapezium. For example, the green
trapezoidal area is computed by γ(S3−S2, D3−S3). Note that
this alternative counting method is a well-known technique in
the literature [10]. □

The intuition of γ(δ, y) is as follows: δ is the spacing
between two consecutive send times Si−Si−1; y is how much
time it takes for Pi to arrive at the destination. Jointly, γ(δ, y)
describes the additional AoI cost of sending Pi (without
double counting the AoI cost of sending the previous Pi−1.)

By Lemma 1, we can rewrite the objective function (4) by

avg.aoi∗ ≜ inf
{Si:i≥1}

lim
I→∞

E

{∑I
i=1 γ(Si − Si−1, Di − Si)∑I

i=1 Si − Si−1

}
.

(10)

The new problem (10), (5), and (6) now closely resembles the
classical average cost per stage (ACPS) problem.

III. DEFINITIONS OF SEVERAL IMPORTANT QUANTITIES

Since it is convenient to put all similar definitions in a cen-
tral location, we now introduce several important definitions
used extensively in the rest of this work. Readers may opt for
skipping this section and only come back when encountering
these definitions in the subsequent sections.

A. Term a1 & The Relative Time Index With Respect To Si−1

Fix any deterministic i value. We define an integer a1 ∈ N+:

a1 ≜ Ai−1 − Si−1 ≥ 0 (11)

where N+ is the set of all non-negative integers. The intuition
of a1 is as follows. The decision of the send time Si of the
current packet Pi can only be made after Pi−1 has been sent,
see (5). Therefore, we can view the time index Si−1 as a
new time origin when making the decision. I.e., source s only
needs to decide the relative send time with respect to the new
time origin Si−1. As will be seen, all our definitions are based
on the relative time indices with respect to Si−1. Herein, a1

represents the relative time of Ai−1 with respect to Si−1.

B. Terms f1, a2, Ãi−1, and m+
Y,1(x)

Similarly, we define

f1 ≜ max(Di−2, Si−1) − Si−1 = (Di−2 − Si−1)+; (12)

a2 ≜ max(Ai−2 − Si−1, f1) = (Ai−2 − Si−1)+. (13)

By (12)–(13), we always have 0 ≤ f1 ≤ a2. The
physical meanings of (f1, a2) are as follows. The term
max(Di−2, Si−1) in (12) is the instant when packet Pi−1 starts
to be processed by the forward queue. Minus the Si−1 value
converts it to the relative time index versus Si−1, similar to
the definition of a1.

The term (Ai−2 − Si−1) in (13) is the relative time index
when the backward queue has finished servicing Acki−2. Since
a backward queue can start processing the next packet Acki−1

only if Acki−2 has left the queue and only after the forward
packet Pi−1 has started to be processed by the forward queue,
the max operator in (13) depicts the relative time index when
the backward queue can possibly start processing Acki−1.

Perhaps the best way to illustrate (f1, a2) is to introduce a
related definition. For any given (f1, a2) values, we define

Ãi−1 ≜ max(f1 + Yi−1, a2) + Zi−1. (14)

Following the intuition of (12)–(13), the f1 + Yi−1 term
in (14) represents when Pi−1 will be received by d; the
term max(f1 + Yi−1, a2) then represents when the feedback
Acki−1 will start to be processed by the backward queue; and
Ãi−1 thus represents when Acki−1 will return back to s, but
described in a relative time scale versus Si−1.

We now introduce another definition that will be used
extensively later. However, because its meaning is mostly
related to the actual scheme construction, we will provide its
intuition in Sec. IV instead. For any given deterministic values
of (f1, a2), define a function of x ∈ N+ as follows.

m+
Y,1(x)

≜ E{Yi}

+ E
{

((f1 + Yi−1) − (a2 + x))+
∣∣∣ Ãi−1 > a2 + x

}
.

(15)

Note that when evaluating (15), the only randomness is the
three independent random variables Yi, Yi−1, and Zi−1 since
(f1, a2) are assumed to be deterministic parameters and Ãi−1

in (14) involves only (Yi−1, Zi−1). Clearly, the distribution of
Ãi−1 depends on the deterministic parameters (f1, a2), and so
does the function m+

Y,1(x). For notational simplicity, we opt
for not putting (f1, a2) in either the subscript or the superscript.

For example, if we have f1 = a2 = 7, then the following
two events are equivalent:{

Ãi−1 > a2 + x
}

= {Yi−1 + Zi−1 > x} (16)

and (15) becomes

m+
Y,1(x) = E{Yi} + E

{
(Yi−1 − x)+

∣∣∣Yi−1 + Zi−1 > x
}
(17)

which can be easily evaluated using the probability distribu-
tions PY and PZ . Note that the function m+

Y,1(x) is always
of the expression of (17) whenever f1 = a2. However, for

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 

Authorized licensed use limited to: Purdue University. Downloaded on July 19,2024 at 20:28:45 UTC from IEEE Xplore.  Restrictions apply. 



4 IEEE/ACM TRANSACTIONS ON NETWORKING

general 0 ≤ f1 < a2, the function m+
Y,1(x) will assume

a different expression that needs to be re-derived from its
original definition in (15).

C. Terms f2, a3, Ãi−2, and m+
Y,2(x)

Define

f2 ≜ max(Di−3, Si−2) − Si−1; (18)

a3 ≜ max(Ai−3 − Si−1, f2) (19)
= max(Ai−3, Si−2) − Si−1 (20)

where (20) is by substituting the f2 term in (19) by its
definition in (18), and by noting Di−3 ≤ Ai−3. By (19),
we always have f2 ≤ a3. The physical meanings of (f2, a3) are
as follows. The term max(Di−3, Si−2) in (18) is the instant
when packet Pi−2 starts to be processed by the forward queue.
Minus Si−1 converts it to the relative time index versus Si−1.

The term (Ai−3 − Si−1) in (19) is the relative time index
when the backward queue has finished servicing Acki−3. Since
a backward queue can start processing Acki−2 only if Acki−3

has left the queue and only after Pi−2 has started to be
processed by the forward queue, the maximum operator in (19)
depicts the relative time index when the backward queue can
possibly start processing the feedback packet Acki−2.

For any given deterministic (f2, a3) values, we define

Ãi−2 ≜ max(f2 + Yi−2, a3) + Zi−2. (21)

Following the same reasoning as in the discussion of Ãi−1

in (14), Ãi−2 represents when Acki−2 will return back to s,
under a relative time scale versus the new time origin Si−1.

We now provide the last definition while relegating the dis-
cussion of its intuition to Sec. VI. For any given deterministic
values of (f2, a3), define a function of x ∈ N+ as follows.

m+
Y,2(x) ≜ E{Yi}

+ E
{(

(f2 + Yi−2)+ + Yi−1 − (a+
3 + x)

)+∣∣∣
Ãi−2 > a+

3 + x
}

. (22)

Note that when evaluating (22), the only randomness is the
four independent random variables Yi, Yi−1, Yi−2 and Zi−2

since (f2, a3) are assumed to be deterministic parameters
and Ãi−2 in (21) involves only (Yi−2, Zi−2). Clearly, the
distribution of Ãi−2 depends on (f2, a3), and so does the
function m+

Y,2(x). For notational simplicity, we opt for not
putting (f2, a3) in either the subscript or the superscript.

IV. MAIN RESULT #1: A NEW CLASS OF LOWER BOUNDS

For any K ≥ 0, we derive an order-K converse (lower
bound) by analyzing the following genie-aided scheme.
Specifically, for any packet index i ≥ 1, at time
max(Si−1, Di−K−1), a genie will temporarily take over the
backward queue and deliver all packets in the following set

{Ackj : j ≤ i − K − 1} (23)

to source s instantaneously. Those Ack packets will be imme-
diately removed from the backward queue and will no longer
“block” the service of any newer Ack packets.

A few remarks are in order. Firstly, in our model, both the
forward and backward FIFO queues are beyond the control
of the source, the same setting as in [3], [4], [5], [10], [11],
[12], and [15]. However, when deriving an impossibility result,
we utilize a genie who is not bound by this constraint and can
directly manipulate the backward queue (but not the forward
queue).

Secondly, when K = 0 we have max(Si−1, Di−K−1) =
Di−1. Therefore, the K = 0 genie will take over the backward
queue whenever Pi−1 was delivered. Since Acki−1 is injected
to the backward queue at time Di−1, the genie will immedi-
ately deliver Acki−1 back to s at time Di−1, see (23). The
order-0 genie essentially eliminates the backward queueing
delay, and the order-0 converse bound is thus equivalent to
the inst.ack bound in Sec. II-A.

Thirdly, suppose K ≥ 1. Note that Acki−K−1 was injected
to the backward queue at time Di−K−1. If Si−1 ≫ Di−K−1,
then when the genie takes over at time max(Si−1, Di−K−1) =
Si−1, the packet Acki−K−1 could have been delivered back
to s by the backward queue already. In this case, the acknowl-
edgment packet set in (23) is empty. There is thus nothing for
the genie to “deliver” in this scenario.

We now propose the following scheduling rule:
Rule G1: During time [Si−1, max(Si−1, Di−K−1)),

source s waits and must not generate/send the current packet
Pi. I.e., this rule imposes Si ≥ max(Si−1, Di−K−1).

We would like to emphasize that even though s is aware of
the existence of an order-K genie, it does not have access to
genie’s information. All s knows is that sometimes there is a
batch of Ack packets being delivered instantaneously, likely by
a genie but could also be delivered by the backward queue.1

Therefore, we need to show that s is capable of carrying out
Rule G1, given the knowledge available to s.

Lemma 2: With the presence of an order-K genie, source
s is capable of carrying out Rule G1.
The proof is relegated to Appendix A-A of [21].

We now prove the following lemma:
Lemma 3: We can assume the optimal order-K genie-aided

scheme follows Rule G1 without loss of generality.
Proof: The delivery time of Pi−1 always satisfies

Di−1 ≥ max(Si−1, Di−K−1). Therefore, any deviation from
Rule G1 means that the Pi sent by s would get stuck behind
Pi−1, which is strictly suboptimal for AoI minimization. □

The above lemma shows that Rule G1 is optimal for general
order-K genie-aided schemes. The optimal policies for K =
1 and 2 are described in Secs. IV-A and VI-A, respectively.

A. The Order-1 Converse

Consider two arbitrarily given waiting time functions ϕ
[1]
ini :

N+ 7→ N+ and ϕ
[1]
a : N+ 7→ N+.

Rule G2: At time t = max(Si−1, Di−2), source s com-
putes the values of f1 in (12) and x∗

ini ≜ ϕ
[1]
ini (f1). If Acki−1

has not returned by time max(Si−1, Di−2) + x∗
ini, then s will

send Pi at that time. Namely, x∗
ini is the additional waiting

1A genie only facilitates the delivery of the Ack packets. It does not “label”
the delivered Ack packets in any way.
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Fig. 3. Illustrations of ϕ
[1]
ini (·) and ϕ

[1]
a (·) of Rules G2 and G3.

time after max(Si−1, Di−2) if Acki−1 has not returned by
then. The subscript “ini” stands for “initial decision”.

Rule G3: If Acki−1 has returned at an earlier time than
max(Si−1, Di−2)+x∗

ini, i.e., Ai−1 ≤ max(Si−1, Di−2)+x∗
ini,

then at time t = Ai−1, source s computes the values of a1

in (11) and x∗
a ≜ ϕ

[1]
a (a1). Source s will send Pi at time

Ai−1 + x∗
a . Namely, x∗

a is the additional waiting time after
Ai−1 has returned. The subscript “a” stands for “acknowl-
edged”.

In sum, we use Rule G2 initially, but would opportunisti-
cally switch to Rule G3 at time Ai−1 if the precomputed send
time max(Si−1, Di−2)+x∗

ini has not been “committed” by the
time Acki−1 returns. We now have the following lemma.

Lemma 4: With the existence of an order-1 genie, we can
assume the optimal order-1 genie-aided scheme follows Rules
G2 and G3 without loss of generality.

Proof: At time max(Si−1, Di−2), source s is still waiting
for Acki−1 because even the forward packet Pi−1 has not been
processed by the forward queue yet, see (2). If Acki−1 had not
returned for some time interval, then no additional “variable”
is revealed to s during that interval. Therefore, s can anticipate
the situation and pre-compute the decision Si at time as early
as t = max(Si−1, Di−2), assuming Acki−1 returns later than
that decision. See Rule G2.

We now consider the “state” faced by s at time
max(Si−1, Di−2). In general, the state of a Markov decision
process (MDP) must fully capture (a) the distribution of the
randomness it faces, and (b) the cost it faces if certain decision
is made in that particular state.

We first consider (a) the distribution of the randomness
faced by s. At time max(Si−1, Di−2), s knows with 100%
certainty (i) Pi−1 has just started to be processed and (ii) there
is no other packet in either the forward or the backward queue
because the order-1 genie has delivered Acki−2. Therefore,
the distribution of the randomness faced by s is always the
same at time max(Si−1, Di−2). There is no variation of the
distribution that needs to be included in the “state”.

We now consider (b) the cost function faced by s. At time
max(Si−1, Di−2), the AoI cost in Fig. 3a has grown to
max(Si−1, Di−2) − Si−1 = f1, see the definition in (12).
Since that value will affect the AoI cost of the subsequent
MDP decisions, we must include f1 as part of the state. From
the above discussion, we impose the waiting time function to
be of the form ϕ

[1]
ini (f1) in Rule G2.

We now argue for Rule G3. Suppose that Acki−1

has returned back to s before the tentative decision

max(Si−1, Di−2)+x∗
ini. Then at that time instant Ai−1, source

s knows with 100% certainty that both the forward and
backward queues are empty, a new piece of information that is
“revealed” to s at that moment. As a result, s switches to a new
waiting time decision x∗

a . Since the randomness faced by s at
time Ai−1 is always the same, the system state at time Ai−1

is how much the AoI has grown, which is Ai−1 −Si−1 = a1.
See Fig. 3b. To capture the state faced by s at time Ai−1,
we impose the waiting time to be of the form ϕ

[1]
a (a1). □

Using Rules G1–G3, our problem (10), (5), and (6) becomes
an ACPS problem of semi-MDP [23]. We can then use any
ACPS solver to numerically compute the best AoI value
among all order-1 genie-aided schemes, which serves as a
lower bound of avg.aoi∗ for all (non-genie-aided) solutions.

Specifically, the value functions f
[1]
a (a1) and f

[1]
ini (f1) and

Bellman equations for Rules G3 and G2 are as follows.

∀a1 ∈ [1, 2ymax + zmax], we define

f [1]
a (a1)

= min
x∈N+

γ(a1 + x, E{Yi}) − v · (a1 + x) + f
[1]
ini (0); (24)

∀f1 ∈ [0, ymax], we hardwire the value a2 = f1 and define

f
[1]
ini (f1)

= min
x∈N+

{ x∑
k=1

P(Ãi−1 = f1 + k) · f [1]
a (f1 + k) (25)

+ P(Ãi−1 > f1 + x) ·
(

γ
(
f1 + x, m+

Y,1(x)
)
− v · (f1 + x)

(26)

+
ymax∑
y=1

P(Yi−1 = y|Ãi−1 > f1 + x) · f [1]
ini

(
(y − x)+

))}
(27)

where the probabilities involving Ãi−1 can be computed
by (16); the functions γ(·, ·) and m+

Y,1(·) are defined in (8)
and (17), respectively; and v is a scalar variable that represents
the average cost. For example, if f1 = 7, then the Bellman
equation (25)–(27) (after hardwiring a2 = f1 = 7) becomes

f
[1]
ini (7)

= min
x∈N+

{ x∑
k=1

P(Yi−1 + Zi−1 = k) · f [1]
a (7 + k)

+ P(Yi−1 + Zi−1 > x) ·
(

γ
(
7 + x, m+

Y,1(x)
)
− v · (7 + x)

+
ymax∑
y=1

P(Yi−1 = y|Yi−1 + Zi−1 > x) · f [1]
ini

(
(y − x)+

))}
which can be easily evaluated using the given distributions PY

and PZ , and the expression of m+
Y,1(x) in (17).

The reason that we hardwire a2 = f1 is two-fold. Firstly,
the distribution of Ãi−1 in (14) and the function m+

Y,1(x)
in (15) are defined only after the deterministic values (f1, a2)
are given. Therefore, we need to explicitly specify the a2

value being used when stating the Bellman equation (25)–(27).
Secondly, we have the following lemma.
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Lemma 5: With the presence of an order-1 genie, the
(f1, a2) computed by (12) and (13) always satisfy f1 = a2.
A short proof is relegated to Appendix A-B of [21].

We now describe how we derive the Bellman equations.
Recall that γ(δ, y) in (8) is the AoI cost of the total waiting
time being Si − Si−1 = δ and the end-to-end delay between
sending and receiving Pi being y = Di −Si. Also see Fig. 2.
Therefore, the cost of a decision Si is simply

γ(Si − Si−1, Di − Si). (28)

Also see (9) in Lemma 1 and the discussion therein.
Recall that f

[1]
a (a1) in (24) is the value function after

receiving Acki−1 at time t = Ai−1. In this case, any additional
waiting time x will result in the total waiting time being

Si − Si−1 = (Ai−1 + x) − Si−1 = a1 + x (29)

and the end-to-end delay of packet Pi being Di − Si = Yi

since the forward queue is empty at time Ai−1. Let evntG3

denote the event that Si = Ai−1 + x, i.e., Rule G3 decides to
wait x additional time slots. Under evntG3, we thus have

γ(Si − Si−1, Di − Si) = γ(a1 + x, Yi). (30)

Note that the actual value of Yi is still unknown at time Si.
Therefore, we further take the conditional expectation under
evntG3. By (30) and because γ(δ, y) in (8) is linear with
respect to y, the expected cost becomes

E {γ(Si − Si−1, Di − Si)|evntG3} = γ(a1 + x, E{Yi})

This leads to the first half of the expression of f
[1]
a (a1) in (24).

The term “−v · (a1 + x)” in (24) is a generalization of the
average-cost adjustment term of ACPS-MDP to its counterpart
for ACPS-semi-MDP. Namely, being a semi-MDP, the cost-
per-stage is now linearly proportional to the total waiting time
Si − Si−1 = a1 + x. Therefore, we multiply the average-cost
variable v with the duration of the semi-MDP decision a1 +x.

Finally, after sending Pi, source s will move on to the next
packet index inx = i + 1 and decide the next send time Sinx

at time max(Sinx−1, Dinx−2). Since Si = Ai−1 + x ≥ Di−1,
at time max(Sinx−1, Dinx−2) = Si, source s will face a new
f
[new]
1 = (Dinx−2 − Sinx−1)+ = (Di−1 − Si)+ = 0 according

to (12). That is why in (24) the next state value is always
f

[1]
ini (0). Overall, the argmin x∗ value in (24) is the optimal

waiting time function ϕ
[1]
a (a1) for Rule G3.

Now consider Rule G2 and its value function f
[1]
ini (·).

Suppose at time max(Si−1, Di−2), source s decides to wait for
x extra time slots and sends Pi at time max(Si−1, Di−2)+x =
Si−1 + f1 +x, see the definition of f1 in (12). We first consider
the possibility that Acki−1 returns back to s before Rule G2
“commits” its decision of sending Pi at time Si−1 + f1 + x.
Recall that Ãi−1 in (14) is the time when Acki−1 returns back
to s (under a relative time scale with respect to Si−1). As a
result, if {Ãi−1 = f1 + k} for some k ≤ x, then s will move
on to Rule G3 without committing to the Rule-G2 decision.

Therefore, with probability P(Ãi−1 = f1 + k), the state
will transition to Rule G3 with a1 = Ai−1 − Si−1 = f1 + k
without committing to the decision of Rule G2. This gives us
the first term of f

[1]
ini (·) as described in (25), which represents

the probabilistic transition to its next state f
[1]
a (f1 +k) without

incurring any direct cost.
Eqs. (26) and (27) consider the random event that s sends

Pi at time Si−1 + f1 + x prior to the return of Acki−1. That
is why we multiply P(Ãi−1 > f1 + x) in both (26) and (27).

Specifically, (26) quantifies the direct cost incurred by
committing this decision. For further explanation, we define

evntG2.x ≜ {Ai−1 > Si = max(Si−1, Di−2) + x} (31)

as the event that the Rule-G2 decision is committed prior to the
return of Acki−1. We now consider the conditional expectation
of the cost (28) given evntG2.x. The total waiting time is

Si − Si−1 = (max(Si−1, Di−2) + x) − Si−1 = f1 + x.

(32)

The end-to-end delay under evntG2.x is

Di − Si = (max(Si, Di−1) + Yi) − Si (33)
= (Di−1 − Si)+ + Yi (34)

=
(
(max(Si−1, Di−2) + Yi−1)

− (max(Si−1, Di−2) + x)
)+ + Yi (35)

= (Yi−1 − x)+ + Yi (36)

where (33) is by substituting Di by (2); (34) is by basic
simplification; (35) is by substituting Di−1 by (2) and because
Rule G2 chooses Si = max(Si−1, Di−2) + x; and (36) is by
basic simplification. The total expected cost thus becomes

E{γ(Si − Si−1, Di − Si)|evntG2.x}
= γ(f1 + x, E{Di − Si|evntG2.x}) (37)

= γ(f1 + x, m+
Y,1(x)) (38)

where (37) is by (32) and the linearity of γ(δ, y) w.r.t. y; (38)
is by (36) and the definitions in (16)–(17) since we hardwire
a2 = f1 when stating (25)–(27).

Comparing (38) to the cost term in (24), the difference is
that before the return of Acki−1, when sending Pi at time
max(Si−1, Di−2) + x, source s cannot be 100% certain that
the forward queue is empty. There is a chance that Pi−1 may
“block” Pi and the expected delay of Pi is thus enlarged from
E{Yi} to m+

Y,1(x) defined in (17). Therefore we use m+
Y,1(x)

inside the AoI cost term γ(·) of (38).
The term “−v · (f1 + x)” in (26) is again the average-cost

adjustment term for ACPS-semi-MDP.
Finally, (27) computes the next state values. Specifically,

when s moves on to the next index inx = i + 1 and decides
the send time Sinx at time max(Sinx−1, Dinx−2), the new state
value f

[new]
1 , defined in (12), at that time becomes

f
[new]
1 = (Dinx−2 − Sinx−1)+ = (Yi−1 − x)+ (39)

where (39) follows from the identical steps of deriving the
equality in (34)–(36). In the end, (39) shows that the next
state value is a function of Yi−1. Multiplying f

[1]
ini ((y − x)+)

by its probability P(Yi−1 = y|Ãi−1 > f1+x) gives us the term
in (27). Once again, the argmin x∗ value in (25)–(27) gives
us the optimal waiting time function ϕ

[1]
ini (f1) of Rule G2.
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We use value iteration to find a scalar v and functions
f

[1]
a (a1) and f

[1]
ini (f1) that satisfy (24)–(27) with the ground

state value being f
[1]
ini (0) = 0. The final v value is the optimal

AoI of the genie-aided scheme, thus a new lower bound lb[1]
new.

B. Remark on The Computation

When solving the Bellman equations, it is critical to ensure
the problem is finite. To that end, we note that a1 = Ai−1 −
Si−1 is upper bounded by 2ymax + zmax, since it takes at most
ymax slots for Pi−2 be delivered, another ymax slots for Pi−1

to be delivered, and another zmax slots for Acki−1 to return to
s. That is why2 in (24) the range of a1 is [1, 2ymax + zmax].

We now argue that the range of f1 is [0, ymax]. Specifically,
we have Si−1 ≥ max(Si−2, Di−3) by Rule G1. Therefore,
at time Si−1, packet Pi−3 has been delivered to d, and it
takes at most ymax additional slots to deliver Pi−2. This implies
f1 ≜ (Di−2 − Si−1)+ ≤ ymax.

Additionally, minx∈N+ in (24) can be solved analytically
without trying all x values. The reason is that given any v value
(and after hardwiring f

[1]
ini (0) = 0), Eq. (24) is a second-order

polynomial with a positive leading term 0.5x2. Therefore, the
minimizing x can be found analytically.

The minimization in (25) over x ∈ N+ can be simplified as
well. Specifically, we observe that if we keep increasing the x
value in (25)–(27), the probability terms eventually “stabilize”
and do not change anymore once x > ymax + zmax. Therefore,
the minimization only needs to be over x ∈ [0, ymax + zmax].

In sum, the Bellman equations (24)–(27) are finite and its
solution lb[1]

new can be numerically found.

V. MAIN RESULT #2: A NEW CLASS OF UPPER BOUNDS

For any K ≥ 0, we derive an order-K achievability scheme
(i.e., an upper bound) by imposing the following constraint:

Si ≥ Ai−K−1, ∀i ≥ 1. (40)

in addition to (10), (5), and (6). I.e., s is prohibited to
transmit Pi before the return of Acki−K−1. Such a constraint
is represented by the following policy rule:

Rule A1: During time t ∈ [Si−1, max(Si−1, Ai−K−1)),
source s waits and must not send the current packet Pi.

If K = 0, the new constraint becomes Si ≥ Ai−1, which
is exactly the BAA scheme in Sec. II-A. On the other hand,
if K = 1, our scheme can send Pi before Ai−1 if desired, but
must be after Ai−2. Secs. V-A and VI-C describe the optimal
order-1 and order-2 achievability schemes, respectively.

A. The Order-1 Achievability Scheme

Consider two waiting time functions θ
[1]
ini : (N+)2 7→ N+

and θ
[1]
a : N+ 7→ N+.

Rule A2: At time t = max(Si−1, Ai−2), source s com-
putes (f1, a2) in (12) and (13), respectively, and computes
x∗

ini ≜ θ
[1]
ini (f1, a2). If Acki−1 has not returned by time

max(Si−1, Ai−2) + x∗
ini, then s will send Pi at that time, i.e.,

2We do not need to worry about the time for Acki−2 to be delivered since
that packet will be delivered instantaneously by the order-1 genie.

x∗
ini is the additional waiting time after max(Si−1, Ai−2) if

Acki−1 has not returned by then.
Rule A3: If Acki−1 has arrived at an earlier time than

max(Si−1, Ai−2)+x∗
ini, then at time t = Ai−1, s computes a1

in (11) and x∗
a ≜ θ

[1]
a (a1), and will send Pi at time Ai−1 +x∗

a .
Rules A1 to A3 have the same structure as the genie-aided

scheme (Rules G1 to G3) in Sec. IV. The main difference lies
in Rules A2 vs G2, for which the state value now consists of
a pair (f1, a2) instead of a scalar f1. To explain the difference,
we note that in Rule G2, the state value is “how much the
AoI has grown at the decision time”. Since the decision of
Rule A2 is made at time max(Si−1, Ai−2), we include a2 =
max(Si−1, Ai−2) − Si−1 as part of the state, which serves a
similar role as the f1 in Rule G2.

We now explain why we still need to include f1 as a state
value of Rule A2 when we already have a2 as part of the
state. At time t = max(Si−1, Ai−2), using Acki−2, source
s knows with 100% certainty the value of Di−2, the time
when Pi−2 left the forward queue. Therefore, the past a2

slots (counted from the injection of Pi−1 to the current time
max(Si−1, Ai−2)) can be divided into two segments: Segment
1: The first f1 = (Di−2 − Si−1)+ slots during which the
forward queue was still busy processing Pi−2 and thus cannot
process Pi−1; and Segment 2: The remaining a2 − f1 slots,
during which the forward queue started to process Pi−1.

As a result, the shorter the Segment 1 is (the longer the
Segment 2), the more time the forward queue has devoted to
serving Pi−1, the more likely that Pi−1 has been delivered to
d (though we cannot be 100% sure since there is no return of
Acki−1 yet), and the more likely that new packet Pi will face
an empty queue and thus a shorter delay. The value f1 is thus
another critical information when deciding the send time Si.
That is why we include both (f1, a2) as the state in Rule A2.

Using Rules A1 to A3, we can numerically find the best
AoI among all order-1 achievability schemes by solving the
corresponding ACPS problem. The computed AoI value then
becomes an upper bound of avg.aoi∗. Specifically, the Bellman
equations can be written as follows. ∀a1 ∈ N+ we have

g[1]
a (a1) =min

x∈N+
γ(a1 + x, E{Yi}) − v ·(a1 + x) + g

[1]
ini (0, 0)

(41)

and ∀(f1, a2) ∈ (N+)2 we have

g
[1]
ini (f1, a2)
= min

x∈N+{ x∑
k=1

P
(

Ãi−1 = a2 + k
∣∣∣ Ãi−1 > a2

)
· g[1]

a (a2 + k) (42)

+ P
(

Ãi−1 > a2 + x
∣∣∣ Ãi−1 > a2

)
·(

γ
(
a2 + x, m+

Y,1(x)
)
− v · (a2 + x) (43)

+
∑
y,z

P
(

Yi−1 = y, Zi−1 = z| Ãi−1 > a2 + x
)
·

g
[1]
ini

(
f
[new]
1 , a

[new]
2

))}
(44)
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where Ãi−1 is defined in (14) and

g
[1]
ini (f, a) ≜ P(max(f + Yi, a) + Zi = a) · g[1]

a (a)

+ P(max(f + Yi, a) + Zi > a) · g[1]
ini (f, a) (45)

f
[new]
1 ≜ (f1 + y − a2 − x)+ (46)

a
[new]
2 ≜

(
(f1 + y − a2)+ + z − x

)+
. (47)

We now explain how we derive the Bellman equations.
Specifically, (41) describes the Bellman equation under Rule
A3, which is almost identical to (24) and consists of the
AoI cost term γ(a1 + x, E{Yi}), the ACPS adjustment term
−v(a1 + x), and the next state value term g

[1]
ini (0, 0).

The reasoning of the first two terms is verbatim to the
discussion of (24). We thus focus our discussion on the last
term. In Rule A3, we send Pi after Ai−1. Therefore, for the
next packet index inx = i + 1, the decision time must be
max(Sinx−1, Ainx−2) = Si since Ai−1 ≤ Si. On the other
hand, because the forward delay Yi ≥ 1 with probability one,
we also have Ainx−1 ≥ Dinx−1 > Sinx−1. Jointly, it means
that when deciding the send time of packet Pinx at time Sinx−1,
the feedback Ackinx−2 has returned to s but Ackinx−1 has not.
Therefore, the scheme must apply Rule A2, which corresponds
to the value function g

[1]
ini (·, ·) term in the end of (41).

Furthermore, the new state values become

f
[new]
1 = (Dinx−2 − Sinx−1)+ = (Di−1 − Si)+ = 0 (48)

a
[new]
2 = (Ainx−2 − Sinx−1)+ = (Ai−1 − Si)+ = 0 (49)

where (48) and (49) follow from Di−1 ≤ Ai−1 ≤ Si since
Bellman equation (41) corresponds to applying Rule A3.

Eqs. (42)–(47) correspond to Rule A2, and they follow the
same structure as in (25)–(27). Recall that Ãi−1 in (14) is
a random variable representing when s will receive Acki−1

given the deterministic (f1, a2) value. Since (42) represents the
scenario that we apply Rule A2 at time max(Si−1, Ai−2) =
Si−1 + a2, it implies, though implicitly, that Ãi−1 > a2.
Otherwise, the scheme would skip Rule A2 and move on
to Rule A3 instead. Because of this subtlety of implicitly
assuming Ãi−1 > a2, the main probability terms in (42)
and (43) are both conditional probabilities given {Ãi−1 > a2}.

After noting that we need to condition on {Ãi−1 > a2}, the
derivation of (42)–(47) is similar3 to (25)–(27). Specifically,
(42) depicts the event that Acki−1 returns back to s before
the scheduled send time decision a2 + x. Once it happens,
source s will skip Rule A2 and move on to Rule A3, which is
represented by the value function g

[1]
a (a2 + k), where a2 + k

is the (relative) time index when Acki−1 returns back to s.
Eqs. (43)–(44) describe the event that Acki−1 returns back

to s after time a2 + x. In particular, the AoI cost term in (43)
uses m+

Y,1(x) function first defined in (15). The reason is
similar to the discussion of (26), i.e., Pi is facing elongated

3The reason that (25)–(27) does not have to condition on {Ãi−1 > a2}
is because in (25)–(27) we hardwire a2 = f1. Then by (14) we will have
P(Ãi−1 > a2) = 1 since P(Yi−1 ≥ 1) = 1, and the conditioning event
automatically disappears in (25)–(27). However, in the order-1 achievability
scheme, we sometimes have 0 ≤ f1 < a2 and thus P(Ãi−1 > a2) < 1. This
necessitates the use of the conditional probabilities as in (42)–(47).

expected delay (when passing through the forward queue) due
to the possibility of being blocked by the earlier packet Pi−1.
The term “−v ·(a2 +x)” is the adjustment term for the ACPS-
semi-MDP problem.

Eq. (44) analyzes the next state when transmitting the next
packet Pinx with inx = i + 1. Specifically, suppose we have
Yi−1 = y and Zi−1 = z under the event {Ãi−1 > a2 + x}.
The f

[new]
1 of packet Pinx is

f
[new]
1 = (Dinx−2 − Sinx−1)+= ((f1 + y) − (a2 + x))+ (50)

where f1 is the time Pinx−2 = Pi−1 being processed and
Yi−1 = y is the random delay for Pi−1 to reach d; and
(a2 + x) = Si is the send time of packet Pinx−1. Similarly,
the a

[new]
2 of packet Pinx is

a
[new]
2 = (Ainx−2 − Sinx−1)+

= ((max(f1 + y, a2) + z) − (a2 + x))+ (51)

where max(f1 + y, a2) is when Ackinx−2 = Acki−1 is being
processed by the backward queue. Adding the backward delay
Zi−1 = z gives us the Ainx−2 value. The above two equations
give us the next state value defined in (46) and (47).

Finally, we describe why we introduce the g
[1]
ini (f, a) term

in (44) and (45). Recall that the next-state-value term in (44)
is under the event that Ai−1 > Si = Si−1 +a2 +x. Therefore,
source s will decide the send time of Pinx = Pi+1 at time
max(Sinx−1, Ainx−2) = Ainx−2. Namely, the decision of Pinx

is made at time Ainx−2. However, it is possible that the
feedback Ackinx−1 may return back to s at the same time
as Ackinx−2 since the feedback queue could sometimes be
instantaneous, i.e., P(Zinx−1 = 0) > 0. If that happens, the
scheduling policy for Pinx will skip Rule A2 and move on to
Rule A3 instead. Therefore, we introduce the g

[1]
ini (f, a) term

in (44) and (45) to properly take into account the probabilistic
weights of each event regarding the timing of Ackinx−1.

Specifically, the first half of (45) describes the event
{Ainx−1 = Ainx−2} or, equivalently, the event{(

Sinx−1 + max(f + Yi, a) + Zi

)
=
(
Sinx−1 + a

)}
where we use (f, a) as shorthand for (f [new]

1 , a
[new]
2 ). Under

this event, s will skip Rule A2 and move on to Rule A3. That
is why the first half of (45) is coupled with the value function
g
[1]
a (a[new]

2 ). Similarly, the second half of (45) describes the
event {Ainx−1 > Ainx−2}, which means that s will use Rule
A2 for packet Pinx . That is why the second half of (45) is
coupled with the value function g

[1]
ini (f

[new]
1 , a

[new]
2 ).

We use value iteration to find a scalar v and functions
g
[1]
a (a1) and g

[1]
ini (f1, a2) that satisfy (41)–(47) and g

[1]
ini (0, 0) =

0. The final v value is the AoI cost of the optimal order-1
achievability scheme, which we denote by ub[1]

new. The argmin
x∗ values in (41)–(44) give the optimal waiting time functions
θ
[1]
a (a1) and θ

[1]
ini (f1, a2), respectively. Once the entire functions

θ
[1]
a (a1) and θ

[1]
ini (f1, a2) are computed, the scheme can be easily

implemented following Rules A1 to A3.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 

Authorized licensed use limited to: Purdue University. Downloaded on July 19,2024 at 20:28:45 UTC from IEEE Xplore.  Restrictions apply. 



WANG: OPTIMAL AoI FOR SYSTEMS WITH QUEUEING DELAY IN BOTH FORWARD AND BACKWARD DIRECTIONS 9

B. Remark on The Computation

Thus far, we have described (41)–(44) in their unbounded
form, i.e., both the input arguments and their minimization
ranges minx∈N+ are unbounded. To ensure computabil-
ity/solvability, we further convert it to its bounded form.

We first discuss the search range of minx∈N+ . Specifically,
we note that the maxx∈N+ in (41) can be solved analytically
without trying all x ∈ N+ values since (41) is a quadratic
polynomial of x with a positive second order term 0.5x2.

We then notice that when x → ∞ in (42), the conditional
probability eventually becomes P(Ãi−1 > a2 + x|Ãi−1 >
a2) = 0, and the value of (42)–(44) will no longer change
once x > (f1 + ymax − a2)+ + zmax. Without loss of generality,
we can thus limit the search range of x in (42) to be

Xini(f1, a2) = [0, (f1 + ymax − a2)+ + zmax]. (52)

Finally, we discuss the ranges of the input parameters a1

in (41) and (f1, a2) in (42), respectively. Because (41) can be
solved analytically, the value of g

[1]
a (a1) can be computed on

the fly for any given a1 and there is no need to worry about
the range of a1 in numerical computation.

To decide the range of (f1, a2), we note that we only need
to consider (f1, a2) satisfying 0 ≤ f1 ≤ a2 because of their
definitions in (12) and (13). For any finite or infinite subset

Ω ⊆ {(f1, a2) : 0 ≤ f1 ≤ a2 < ∞} (53)

we introduce the following definition.
Definition 1: The set Ω is self-contained with respect to

the Bellman equations (42)–(47) if it satisfies (i) the ground
state (f1, a2) = (0, 0) ∈ Ω; and (ii) whenever the (f1, a2) in the
left-hand side of (42) belongs to Ω, then any g

[1]
ini (f

[new]
1 , a

[new]
2 )

involved in the computation of the right-hand side of (42)–(47)
must also satisfy (f [new]

1 , a
[new]
2 ) ∈ Ω.

It is straightforward to see that when solving the Bellman
equations, we only need to consider a self-contained Ω since
any state (f1, a2) /∈ Ω is not reachable under an optimal policy.
I.e., the evolution of the state value is strictly within the self-
contained Ω. Using this observation, we can reduce the range
of (f1, a2) to any arbitrarily given finite self-contained Ω:

Lemma 6: The finite set Ωsc that contains all (f1, a2) satis-
fying

f1 ∈ [0, ymax] and (a2 − f1) ∈ [0, zmax] (54)

is self-contained w.r.t. the Bellman equations (42)–(47).
The proof of Lemma 6 is straightforward by verifying that

both conditions (i) and (ii) in Definition 1 hold for Ωsc.
A detailed argument is relegated to Appendix A-C of [21].

The above discussion shows that the ACPS-semi-MDP
problem (41)–(47) can be made finite without loss of general-
ity. The application of value iteration is thus straightforward.

VI. THE ORDER-2 CONVERSE & ACHIEVABILITY
RESULTS

Secs. IV and V discuss the order-1 results. This section
focuses on order-2 genie and achievability schemes. Since the
derivation is based on similar ideas (being more complicated
due to the more involved dynamics of order-2 schemes),

we provide complete descriptions and high-level intuitions,
and leave detailed discussion in the appendices of [21].

Subsequent sections describe two ACPS problems. Using
their corresponding Bellman equations, a user can numerically
solve the best AoI value of order-2 genie-aided schemes, which
becomes a lower bound of avg.aoi∗; Or a user can numerically
solve the best AoI value of order-2 achievability schemes,
which becomes an upper bound of avg.aoi∗.

A. The Order-2 Converse

Consider K = 2. Lemma 3 says that an optimal scheme
must follow Rule G1, i.e., s waits until time max(Si−1, Di−3)
and then decides “when to transmit the current packet Pi”.
In the sequel, we strengthen Rule G1 with new Rules
G4 to G6.

Consider three arbitrarily given “waiting time functions”
ϕ

[2]
ini (f, a), ϕ

[2]
a (f, a), and ϕ

[2]
aa (a), where the input parameters

f and a are integers, which can sometimes be negative.
Rule G4: At time t = max(Si−1, Di−3), source s com-

putes (f2, a3) by (18) and (20), respectively, and computes
x∗

ini ≜ ϕ
[2]
ini (f2, a3). If Acki−2 has not returned back to s by

time max(Si−1, Di−3)+x∗
ini, then s will send Pi at that time.

The subscript “ini” signifies that it is the initial decision at the
decision time max(Si−1, Di−3).

Remark 1: It is possible that Ai−2 ≤ max(Si−1, Di−3),
i.e., at time t = max(Si−1, Di−3), feedback Acki−2 has
already returned back to s. In this case, s will automatically
skip Rule G4 and move on to the following Rule G5.

Rule G5: This rule is for the scenario that Acki−2 returns
back to s before s can “commit” the waiting time decision
of Rule G4. To be precise, we will “activate” Rule G5 at
time t = max(Ai−2, max(Si−1, Di−3)) = max(Ai−2, Si−1)
if Rule G4 has not been “committed” at that time yet.
Specifically, at time t = max(Ai−2, Si−1), source s computes
(f1, a2) by (12) and (13), respectively, and computes x∗

a ≜
ϕ

[2]
a (f1, a2). If Acki−1 has not returned back to s by time

max(Ai−2, Si−1) + x∗
a , then s will send Pi at that time. The

subscript “a” signifies that it is the decision under the scenario
that after time max(Si−1, Di−3) we have received exactly one
more acknowledgement packet Acki−2.

Remark 2: Because the backward queue could have instan-
taneous delivery, i.e., P(Zi−1 = 0) > 0, it is possible that the
next feedback packet Acki−1 returns back to s at the same
time as the activation time of Rule G5. In this case, s will
skip Rule G5 and move on to Rule G6 immediately.

Rule G6: This rule is for the scenario that the second
acknowledgement packet Acki−1 returns back to s before
s can “commit” the waiting time decision of Rule G5.
To be precise, we will “activate” Rule G6 at time t =
max(Ai−1, max(Ai−2, Si−1)) = Ai−1. Specifically, at time
t = Ai−1, source s computes a1 in (11) and x∗

aa ≜ ϕ
[2]
aa (a1),

and will send Pi at time Ai−1 + x∗
aa. The subscript “aa”

signifies that it is the decision under the scenario that after time
max(Si−1, Di−3) we have received both acknowledgement
packets Acki−2 and Acki−1.

Lemma 7: With the presence of an order-2 genie (K = 2),
we can assume the optimal genie-aided scheme follows Rules
G1, G4, G5, and G6 without loss of generality.
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The proof is relegated to Appendix B of [21].
The Bellman equations corresponding to Rules G4, G5,

and G6 fall into three different types. The type-1 Bellman
equations are for Rule G6 and they are

∀a1 ∈ N+, we have

f [2]
aa (a1) = min

x∈N+
γ(a1 + x, E{Yi}) − v · (a1 + x) + f [2]

a (0, 0)

(55)

where γ(·, ·) was defined in (8); and f
[2]
a (·, ·) is the type-2

Bellman equation to be described next.
The intuition of type-1 Bellman equations is the simplest.

Rule G6 makes its decision at time Ai−1 = Si−1 + a1 and we
use x to denote the additional waiting time. The term γ(a1 +
x, E{Yi}) quantifies the AoI cost of the decision. The term
“−v · (a1 + x)” is the average-cost adjustment term of ACPS-
semi-MDP. The term f

[2]
a (0, 0) represents the next state value,

the derivation of which is relegated to Appendix C of [21].
Recall the definitions of f1, a2, Ãi−1, and m+

Y,1(x) in (12),
(13), (14), and (15), respectively. The type-2 Bellman equa-
tions are for Rule G5 and they are described as follows.

∀0 ≤ f1 ≤ a2, we have

f [2]
a (f1, a2)

= min
x∈N+{ x∑

k=1

P(Ãi−1 = a2 + k|Ãi−1 > a2) · f [2]
aa (a2 + k) (56)

+ P(Ãi−1 > a2 + x|Ãi−1 > a2) ·
(

γ
(
a2 + x, m+

Y,1(x)
)

− v · (a2 + x) + f
[2]
ini (f1 − (a2 + x),−x)

)}
(57)

where f
[2]
ini (·, ·) is the type-3 Bellman equation to be described

later. The intuition of type-2 Bellman equations is as fol-
lows. We first note that Ãi−1 in (14) represents when s
will receive the feedback Acki−1 at a relative time scale
versus Si−1. Recall that the activation time of Rule G5 is
max(Ai−2, Si−1) = Si−1 + a2. Since we would skip Rule
G5 and activate Rule G6 instead if Acki−1 has returned back
to s before the (relative) decision time a2, whenever we are
making a decision for Rule G5, we are implicitly assuming
Acki−1 returns after (the relative) time a2, i.e., we are under
the event {Ãi−1 > a2}. That is why both the state transition
probabilities in (56) and (57) are conditioned on {Ãi−1 > a2}.

The term in (56) represents the events that we will skip
Rule G5 and switch to Rule G6, i.e., the scenario in which
Acki−1 returns at time Si−1+a2+k, no later than the tentative
decision Si−1 + a2 + x. The derivation of the next state value
f

[2]
aa (a2 + k) is relegated to Appendix A-D of [21].

The term γ
(
a2 +x, m+

Y,1(x)
)

in (57) quantifies the AoI cost
of the decision. The first input argument a2 +x = Si−Si−1 is
the time difference between sending Pi and Pi−1. The input
argument m+

Y,1(x) is the average delay experienced by Pi,
which is different from the simple delay E{Yi} in (55) because
Pi could potentially be blocked by Pi−1. Note that m+

Y,1(x)
also appears in (26) and (43). See the discussion therein.

The term −v · (a2 + x) is once again the average-
cost adjustment term of ACPS-semi-MDP. The last term
f

[2]
ini (f1 − (a2 + x),−x) represents the next state value, the

derivation of which is relegated to Appendix D-B of [21].
The type-3 Bellman equations (for Rule G4) are described

as follows. We first define a function of x1 and x2:

f [cmb]
a (x1, x2)

= P(max(x1 + Yi−1, x2) + Zi−1 = x2) · f [2]
aa (x2)

+ P(max(x1 + Yi−1, x2) + Zi−1 > x2) · f [2]
a (x1, x2)

(58)

which combines the type-1 and type-2 Bellman equations
described previously. We also define

f
[cmb]
ini (x)

= P(max(x + Yi−1, x
+) + Zi−1 = x+) · f [2]

a (x+, x+)

+ P(max(x + Yi−1, x
+) + Zi−1 > x+) · f [2]

ini (x, x+)
(59)

which combines f
[2]
a (·, ·) and f

[2]
ini (·, ·), where the type-3

Bellman equations f
[2]
ini (·, ·) will be described shortly.

Recall the definitions of f2, a3, Ãi−2, and m+
Y,2(x) in (18),

(20), (21), and (22), respectively. The type-3 Bellman equa-
tions become

∀(f2, a3) satisfying f2 ≤ a3 ≤ f+2 , we have

f
[2]
ini (f2, a3)

= min
x∈N+{ x∑

k=1

ymax∑
y=1

P(Yi−2 = y, Ãi−2 = a+
3 + k|Ãi−2 > a+

3 )

· f [cmb]
a

(
(f2 + y)+, a+

3 + k
)

(60)

+ P(Ãi−2 > a+
3 + x|Ãi−2 > a+

3 ) ·
(

γ
(
a+
3 + x, m+

Y,2(x)
)

− v · (a+
3 + x)

)
(61)

+
ymax∑
y=1

P
(

Yi−2 = y, Ãi−2 > a+
3 + x

∣∣∣ Ãi−2 > a+
3

)
· f [cmb]

ini

(
(f2 + y)+ − (a+

3 + x)
)}

(62)

To explain the intuition of (60)–(62), we need the following
lemma, the proof of which is relegated to Appendix E of [21].

Lemma 8: With the presence of an order-2 genie, we have

max(Si−1, Di−3) = Si−1 + (a3)+ (63)
and f2 ≤ a3 ≤ (f2)+. (64)

We now provide the intuition of type-3 Bellman equations.
Given a fixed pair of (f2, a3) values, Ãi−2, defined in (21),
represents when s will receive the feedback Acki−2. By (63),
source s applies Rule G4 at time a+

3 at a relative time scale of
Si−1. Since we would immediately skip Rule G4 and activate
Rule G5 instead if Acki−2 has returned back to s before the
decision time a+

3 , whenever we are making a decision for Rule
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G4, we are implicitly assuming Acki−2 returns after time a+
3 .

That is why all the state transition probabilities in (60), (61),
and (62) are conditioned on {Ãi−2 > a+

3 }.
The term in (60) represents the events that we will skip Rule

G4 and switch to Rule G5 instead, i.e., Acki−2 returns back to
s before the tentative decision Si−1 + a+

3 + x. The derivation
of the next state value f

[cmb]
a

(
(f2 + y)+, a+

3 + k
)

is relegated
to Appendix F-A of [21].

Nonetheless, unlike the type-2 Bellman equations, there is
some subtlety for the type-3 Bellman equations. That is, even
if we skip Rule G4 and move on to Rule G5 (because of the
early return of Acki−2), there is a chance that Acki−1 will
return to s at the same time as Acki−2 since the backward
delay Zi−1 could be zero with some positive probability. If that
happens, we will immediately skip Rule G5 again and move
on to Rule G6 instead. As a result, we introduce the combined
value function f

[cmb]
a (·, ·) in (58), which further allows for the

switching to Rule G6 depending on the arrival time of Acki−1.
Namely, (58) carefully quantifies the probabilities of staying
in Rule G5 versus switching to Rule G6, by discussing the
corresponding events in terms of Yi−1 and Zi−1. Also see the
detailed analysis in Appendix F-A of [21].

The term γ
(
a+
3 + x, m+

Y,2(x)
)

in (61) quantifies the AoI
cost of the decision. Herein, the average delay experienced
by Pi is once again lengthened due to the fact that Pi could
potentially be blocked by Pi−1 and Pi−2 since when under
Rule G4, source s only knows that Pi−3 has been delivered
(because Acki−3 has returned) but has no knowledge about the
delivery times of Pi−1 and Pi−2. The expected time needed to
deliver Pi is characterized by the m+

Y,2(x) term defined in (22).
See Appendix F.B of [21] for detailed discussion. Plugging
m+

Y,2(x) into γ(·, ·) gives us the AoI cost of the decision.
The term −v · (a+

3 +x) is the average-cost adjustment term
of ACPS-semi-MDP.

The last term f
[cmb]
ini

(
(f2 + y)+ − (a+

3 + x)
)

represents the
next state value function when sending Pinx with inx = i + 1,
the derivation of which is relegated to Appendix F-C of [21].

Even though we have figured out the next state values

f
[new]
2 = (f2 + y)+ − (a+

3 + x) (65)

a
[new]
3 =

(
f
[new]
2

)+

(66)

in Appendix F-C of [21], there is some subtlety when
considering the next state value function, i.e., even though
one may expect that we would apply Rule G4 again for
packet Pinx under state values (f [new]

2 , a
[new]
3 ), we may skip

Rule G4 and move on to Rule G5 instead if Ackinx−2 =
Acki−1 returns back to s before we make the decision at
time max(Sinx−1, Dinx−3). Also see our discussion of the
f

[cmb]
a (·, ·) term in (60).

As a result, we introduce the combined value function
f

[cmb]
ini (·) in (59), which further allows for the switching

to Rule G5 depending on the arrival time of Ackinx−2.
Specifically, (59) carefully quantifies the probabilities of stay-
ing in Rule G4 versus switching to Rule G5 for packet
Pinx , by discussing the corresponding events in terms of
Yinx−2 = Yi−1 and Zinx−2 = Zi−1. By (65), (66),
and (59), we set the next-state value function in (62) to

f
[cmb]
ini

(
(f2 + y)+ − (a+

3 + x)
)
. Also see the detailed analysis

in Appendix F-A of [21].
In the end, the Bellman equations for the optimal order-2

genie scheme consist of (55), (57), and (62).

B. Remark on The Computation

We use value iteration to find a scalar v and functions
f

[2]
aa (a1), f

[2]
a (f1, a2), and f

[2]
ini (f2, a3) that satisfy (55), (57),

and (62) with the ground state value hardwired to f
[2]
a (0, 0) =

0. The final v value is the optimal AoI of the order-2 genie-
aided scheme, thus a new lower bound lb[2]

new.
To ensure computability, we prove that the “unbounded”

version of (55), (57), and (62) can be replaced by their
“bounded” counterparts without loss of generality using the
following three steps based on almost identical arguments as
in Secs. IV-B and V-B. Step 1: We argue that there is no need
to change the unbounded version (55) since (55) can be solved
analytically. See the discussion in Secs. IV-B and V-B.

Step 2: We argue that we can limit the search range of the
minimizing x of (57) to be

Xa(f1, a2) = [0, (f1 + ymax − a2)+ + zmax] (67)

and limit the search range of the minimizing x of (62) to be

Xini(f2, a3) = [0,
(
max(f2 + ymax, a3) + zmax − a+

3

)+
] (68)

without loss of generality. The reason is that all the probability
terms, e.g., P(Ãi−1 > a2 + x|Ãi−1 > a2) in (57), remain
unchanged if x is larger than the specified ranges in (67)
and (68). See the discussion in Secs. IV-B and V-B.

Step 3: We again use the concept of a self-contained input
parameter set in Definition 1. Namely, we only need to solve
the Bellman equations for a bounded input parameter set Ωsc

such that the evaluation of both the left-hand and right-hand
sides of (57) and (62) are “fully covered” within the set Ωsc.

Lemma 9: The Ωsc that contains all (f1, a2) satisfying

f1 ∈ [0, 2ymax], (a2 − f1) ∈ [0, zmax]; (69)

and all (f2, a3) satisfying

either f2 = a3 ∈ [0, ymax], (70)

or

{
−max(ymax, zmax) − zmax ≤ f2 ≤ a3 ≤ 0,

−ymax − zmax ≤ a3 ≤ f2 + zmax
(71)

is self-contained w.r.t. the Bellman equations (57) and (62),
provided we use the search ranges of x defined in (67)–(68).

The proof is relegated to Appendix F-D of [21].
After applying this 3-step process, we have a finite set of

Bellman equations that can be numerically solved.

C. The Order-2 Achievability Scheme

The structure of the order-2 achievability scheme is similar
to the order-2 genie-aided scheme described earlier. Therefore,
we focus on providing a complete description and leave most
of the derivations to Appendix G of [21].

Consider three arbitrarily given “waiting time functions”
θ
[2]
ini (f, a), θ

[2]
a (f, a), and θ

[2]
aa (a), where the input parameters

f and a are integers, which can sometimes be negative.
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Rule A4: At time t = max(Si−1, Ai−3), source s computes
the (f2, a3) values by (18) and (20), respectively. It then uses
them to compute x∗

ini ≜ θ
[2]
ini (f2, a3). If Acki−2 has not returned

back to s by time max(Si−1, Ai−3)+x∗
ini, then s will send Pi

at that time. The subscript “ini” signifies that it is the initial
decision at the decision time max(Si−1, Ai−3).

Rule A5: Suppose Acki−2 returns back to s before s can
“commit” the waiting time decision of Rule A4. At time t =
max(Ai−2, max(Si−1, Ai−3)) = max(Ai−2, Si−1), source
s computes (f1, a2) by (12) and (13), respectively. It then
computes x∗

a ≜ θ
[2]
a (f1, a2). If Acki−1 has not returned back

to s by time max(Ai−2, Si−1) + x∗
a , then s will send Pi at

that time. The subscript “a” signifies that it is the decision
under the scenario that after time max(Si−1, Ai−3) we have
received exactly one more acknowledgement packet Acki−2.

Rule A6: Suppose Acki−1 returns back to s before s can
“commit” the waiting time decision of Rule A5. At time
max(Ai−1, max(Ai−2, Si−1)) = Ai−1, source s computes a1

by (11), computes x∗
aa ≜ θ

[2]
aa (a1), and will send Pi at time

Ai−1 +x∗
aa. The subscript “aa” signifies that it is the decision

under the scenario that after time max(Si−1, Ai−3) we have
received both acknowledgement packets Acki−2 and Acki−1.

The optimal choices of the waiting time functions can be
found by solving the Bellman equations described below, and
we leave the detailed derivation to Appendix G of [21].

The following type-1 Bellman equations are for Rule A6:

∀a1 ∈ N+, we have

g[2]
aa (a1) = min

x∈N+
γ(a1 + x, E{Yi}) − v · (a1 + x) + g[2]

a (0, 0)

(72)

where γ(·, ·) was defined in (8); and g
[2]
a (·, ·) is the type-2

Bellman equation to be described next.
The type-2 Bellman equations are for Rule A5. Recall the

definitions of f1, a2, Ãi−1, and m+
Y,1(x) in (12), (13), (14),

and (15), respectively. The type-2 Bellman equations then
become

∀0 ≤ f1 ≤ a2, we have

g[2]
a (f1, a2)

= min
x∈N+{ x∑

k=1

P(Ãi−1 = a2 + k|Ãi−1 > a2) · g[2]
aa (a2 + k) (73)

+ P(Ãi−1 > a2 + x|Ãi−1 > a2) ·
(

γ
(
a2 + x, m+

Y,1(x)
)

− v · (a2 + x) + g
[2]
ini (f1 − (a2 + x),−x)

)}
(74)

where g
[2]
ini (·, ·) will be described next.

The type-3 Bellman equations g
[2]
ini (·, ·) are described as

follows. We first define the following functions of x1 and x2:

g[cmb]
a (x1, x2)

= P(max(x1 + Yi−1, x2) + Zi−1 = x2)g[2]
aa (x2)

+ P(max(x1 + Yi−1, x2) + Zi−1 > x2)g[2]
a (x1, x2) (75)

which combines the type-1 and type-2 Bellman equations
described previously. We also define

g
[cmb]
ini (x1, x2)

=
ymax∑
ỹ=1

P
(
Yi−1 = ỹ, max(x1 + ỹ, x2) + Zi−1 = x2

)
· g[cmb]

a ((x1 + ỹ)+, x2)

+ P(max(x1 + Yi−1, x2) + Zi−1 > x2) · g[2]
ini (x1, x2)

(76)

which combines the new function in (75) with the type-
3 Bellman equations, the latter of which will be described
shortly.

Recall the definitions of f2, a3, Ãi−2, and m+
Y,2(x) in (18),

(20), (21), and (22), respectively. The type-3 Bellman equa-
tions then become

∀(f2, a3) satisfying f2 ≤ a3, we have

g
[2]
ini (f2, a3)
= min

x∈N+{ x∑
k=1

ymax∑
y=1

P(Yi−2 = y, Ãi−2 = a+
3 + k|Ãi−2 > a+

3 )

· g[cmb]
a

(
(f2 + y)+, a+

3 + k
)

(77)

+ P(Ãi−2 > a+
3 + x|Ãi−2 > a+

3 ) ·
(

γ
(
a+
3 + x, m+

Y,2(x)
)

− v · (a+
3 + x)

)
(78)

+
∑
y,z

P
(

Yi−2 =y, Zi−2,=z, Ãi−2 > a+
3 + x

∣∣∣ Ãi−2 > a+
3

)
· g[cmb]

ini

(
(f2 + y)+ − (a+

3 + x),

max(f2 + y, a3) + z − (a+
3 + x)

)}
(79)

We can further convert the above unbounded versions of
Bellman equations in (72), (74), and (79) to their equivalent
bounded versions, in ways almost identical to the discussion
in Sec. VI-B. That is, Step 1: There is no need to change the
unbounded version (72) since (72) can be solved analytically.

Step 2: We can limit the search range of the minimizing
x of (74) to be the Xa defined in (67), and limit the search
range of the minimizing x of (79) to be the Xini defined in (68)
without loss of generality.

Step 3: We once again use the concept of a self-contained
input parameter set, and only consider the (f1, a2) and (f2, a3)
values satisfying

0 ≤ f1 ≤ a2 ≤ ymax + zmax + max(ymax, zmax); (80){
−max(ymax, zmax) − ymax − 2zmax ≤ f2 ≤ ymax

f2 ≤ a3 ≤ ymax + zmax
(81)

The description of the Bellman equations for the optimal
order-2 achievability scheme is now complete.
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Fig. 4. (lb
[1]
new, ub

[1]
new) versus existing results — log-normal PY .

Fig. 5. The pmf of the quantized log-normal distribution of the forward
service time Y .

VII. NUMERICAL EVALUATION

For any given [ML, MU ], µ, and σ2 values, we say a
random variable Q is integer-quantized, [ML, MU ]-truncated,
log-normal with parameters (µ, σ2) if ∀q ∈ [ML, MU ],

P(Q = q) ∝ P
(
W ∈ (q − 0.5, q + 0.5]

)
where W is log-normal with parameters (µ, σ2). That is,
we first truncate the values outside [ML, MU ] so the total
probability becomes strictly less than one, and then we pro-
portionally scale it so that the total probability is back to one.

Fig. 4 plots the order-1 converse and achievability bounds
(lb[1]

new, ub[1]
new) in Secs. IV and V, versus existing bounds zwaa,

baa, opt.per, and inst.ack, for which we assume Yi (resp. Zi)
is integer-quantized, [1, 24]-truncated (resp. [0, 24]-truncated),
log-normal with parameters (µY , σ2

Y ) (resp. (µZ , σ2
Z)). The

truncation intervals are slightly different since we assume Yi ≥
1 and Zi ≥ 0 in our setting, see Sec. II. We fix (µY , σ2

Y ) =
(2.5, 0.62) and set σ2

Z = 0.62 while varying the value of µZ to
change the expected backward delay. The pmf of the forward
service time Y is illustrated in Fig. 5, a unimodal curve with
a unique peak at Y = 9. A thin vertical line E(Y ) = 11.86 is
drawn in Fig. 4 to indicate when the expected backward service
time E(Z) is equal to the average forward delay 11.86.

As can be seen, when E(Z) = 0, the upper bound baa
and the lower bound inst.ack coincide since baa is indeed the
optimal scheme in the instantaneous feedback setting [10].
However, for the general cases of E(Z) > 0, none of the

Fig. 6. (lb
[K]
new , ub

[K]
new ) for K = 1 and 2, respectively, — log-normal PY .

existing bounds zwaa, baa, opt.per and inst.ack is tight.
In Fig. 4, we plot the first-order (K = 1) converse lower
bound lb[1]

new and achievability upper bound ub[1]
new, respectively.

As can be seen, lb[1]
new and ub[1]

new closely follow each other for
a wide range of E(Z) values.

In fact, the smaller the E(Z), the smaller the gap ratio
ub[1]

new−lb[1]
new

lb
[1]
new

. Specifically, it is less than 0.28% when E(Z) ≤
6.40 and it grows to 1.24% when E(Z) = E(Y ) = 11.86. The
bounds do diverge for E(Z) ≥ E(Y ), also see our subsequent
discussion in Sec. VIII. We can also sharpen the upper bound

by ub
[1]

new ≜ min(ub[1]
new, opt.per). The gap ratio ub

[1]
new−lb[1]

new

lb
[1]
new

is

less than 1.24% for all E(Z). The pair (lb[1]
new, ub

[1]

new) thus
tightly brackets the true avg.aoi∗, the optimum value of the
ACPS-MDP problem (10), (5), and (6), for all our choices of
different µZ values.

While lb[1]
new and ub[1]

new have already bracketed avg.aoi∗

tightly, we are interested in learning whether it is lb[1]
new or

ub[1]
new that is farther away from the optimum avg.aoi∗. To that

end, we evaluate the order K = 2 converse lower bound
lb[2]

new and achievability upper bound ub[2]
new, respectively, and

plot them in Fig. 6. The gap ratio between the K = 2 pair
(lb[2]

new, ub[2]
new), computed by ub[2]

new−lb[2]
new

lb
[2]
new

, is much smaller than

the K = 1 pair (lb[1]
new, ub[1]

new). Specifically, the gap ratio
of (lb[2]

new, ub[2]
new) is less than 0.065% for all the data points

satisfying E(Z) ≤ E(Y ) = 11.86.
The comparison among the three achievability schemes

opt.per, ub[1]
new, and ub[2]

new also gives us practical guidelines
when to switch between different classes of schemes. For
example, if E(Z) ≤ 6, then ub[1]

new ≈ ub[2]
new < opt.per.

There is thus no need to use the more complicated order-
2 achievability scheme and we can simply use the order-1
achievability scheme to harvest significant AoI savings over
the open-loop opt.per solutions. If 6 < E(Z) < 15.5, then
the order-2 scheme starts to outperform the order-1 scheme
and should be the choice for a performance conscientious
user. Finally, if 15.5 < E(Z), then the open-loop scheme
opt.per starts to dominate and one can simply discard all
feedback information while comfortably knowing that the gap
ratio between lb[2]

new and opt.per is ≤ 0.44%, a near-optimality
guarantee for opt.per.
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Fig. 7. The pmf of the quantized bimodal composite log-normal distribution
of the forward service time Y .

Fig. 8. (lb
[1]
new, ub

[1]
new) versus existing results — composite log-normal PY .

We repeat the same numerical evaluations but this time we
examine a bimodal distribution of the forward service time
Y . Specifically, we let PY be a (0.5, 0.5) mixture of two
integer-quantized [1, 24]-truncated log-normals with parame-
ters (µY1 , σ

2
Y1

) = (2.9, 0.22) and (µY2 , σ
2
Y2

) = (1.0, 0.72),
respectively. That is, PY is bimodal composite-log-normal as
illustrated in Fig. 5. We reuse the same feedback service
distribution of PZ . That is, Z is a simple [0, 24]-truncated
log-normal with parameters σ2

Z = 0.62 and we vary the value
of µZ to change the expected backward delay.

Fig. 8 repeats the same experiment of Fig. 4 using the new
bimodal PY in Fig. 7. The thin vertical line indicates the new
E(Y ) = 10.71. The gap ratio between (lb[1]

new, ub[1]
new) is less

than 0.54% when E(Z) ≤ 5.83 and grows to 1.6% when
E(Z) = E(Y ) = 10.71. If we define the improved upper
bound ub

[1]

new ≜ min(ub[1]
new, opt.per), then the largest gap ratio

between lb[1]
new and ub

[1]

new is 1.9% for all E(Z).
Under the instantaneous ACK setting, the gap between zwaa

and baa is larger if P(Y ) happens to be bimodal, see the
diverging gap between zwaa and baa in Fig. 8 when E(Z) = 0.
This is why we are interested in bimodal PY of Fig. 8 in
the first place. In both Figs. 4 and 8, the gap between zwaa
and ubnew continues to widen when E(Z) grows. Namely, the
AoI improvement of our new achievability schemes over the
naive zero-wait policy gets bigger since our schemes utilize

Fig. 9. (lb
[K]
new , ub

[K]
new ) for K = 1 and 2, respectively, — composite

log-normal PY .

the delayed feedback in a near-optimal way. It also shows
that the performance of Best-After-ACK is quite bad when
E(Z) > 0 and one really should not take a pessimistic stance
that sends Pi only after receiving Acki−1.

Similar to Fig. 6, we compare (lb[K]
new, ub[K]

new) for K = 1, 2 in
Fig. 9. As can be seen, the order-2 lower and upper bounds
are significantly tighter than their order-1 counterparts. The
gap ratio between (lb[2]

new, ub[2]
new) is less than 0.044% for all

E(Z) < E(Y ). From a practical perspective, the results have
characterized the avg.aoi∗ in this numerical example.

Figs. 4 to 9 show that our bounds are numerically tight for
two very distinct distributions, e.g., unimodal versus bimodal.
In other not-reported experiments, the tightness persists for
both uniform and geometric delay distributions as well.

VIII. FURTHER DISCUSSION

A. Contribution

While our results do not innovate any MDP methodology
to solve the problem (just like most AoI minimization results
can be viewed as a specialization of a general MDP problem),
new observations are made to facilitate tractable analysis and
computation. We summarize these observations as below.

Observation 1: The state space of AoI minimization under
2-way queues is exceedingly large. The reason is that under
the 2-way delay setting, there is a temporal dependence across
multiple waiting time decisions. This is in contrast with the
instantaneous feedback setting, for which each instantaneous
feedback severs the temporal dependence across multiple deci-
sions and greatly simplifies the state space [10]. To overcome
this challenge, the first innovation of ours is to propose new
ways of reducing the state space.

In the order-K achievability schemes, we judicially impose
the condition Si ≥ Ai−K−1 to reduce the state space. On the
converse side, we derive rigorous AoI lower bounds by intro-
ducing the order-K genie-aided schemes, the first of its kind
in the AoI literature. Our deceptively simple order-K genie
definition in (23) was obtained after numerous unsuccessful
attempts during the development stage. Furthermore, by pro-
viding companying converse bounds lb[K]

new , we can numerically
compute the performance loss of our design (imposing Si ≥
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Ai−K−1) when compared to avg.aoi∗ and show that our
schemes are near-optimal from a practical perspective.

Observation 2: The second innovation is to notice that even
though the uncertainty faced by source s is reduced during
each passing time slot, the major change of the situation
happens only when we receive a new feedback Ackj for some
j < i. Therefore, we can let the decision maker s “simulate”
the decision process during each individual time slot and only
make meaningful new decisions at each major event (when
Ackj returns to s). This important observation converts the
scheduling problem to a sequential opportunistic policy of (i)
first propose a waiting time; (ii) wait and see whether there is
any major event (when Ackj returns to s) before the proposed
waiting time; (iii) If so, abandon the proposed waiting time
and propose a new waiting time instead. If not, commit to the
proposed waiting time. By rigorously formulating the above
sequential policy, we convert the traditional MDP problem into
a semi-MDP problem with special structures, which is much
more tractable for numerical computation.

Observation 3: Even with the structure of the semi-MDP
formulation, the derivation of the Bellman equations is highly
non-trivial, which is evidenced by the involved expressions
and various subtle considerations in our Bellman equations.

The above three observations have addressed the critical
challenges when analyzing the 2-way queue systems. The
results answer an important problem that have been open for
several years despite the early works that completely solved
the instantaneous ACK setting [10] and many follow-up results
since then. Our approach also provides a clear road map about
how to evaluate the AoI benefits under a delayed feedback
setting for the first time in the literature.

In terms of the converse, our AoI lower bounds are the first
and only results that govern avg.aoi∗ in a 2-way delay setting.
In terms of the acheivability, several schemes have been pro-
posed based on the Best-After-ACK (BAA) designs [11], [12],
[13], [15], [22], which, as discussed in Secs. II-A and VII, are
far from optimum. The only existing non-BAA design is [24],
a parallel work to this paper. Similar to our results, [24] shows
significant AoI improvement over all BAA schemes.

This work and [24] have the following differences: (i) [24]
focuses exclusively on geometric service times while this work
allows for arbitrary4 service time distributions; (ii) Under the
sampler-controller framework introduced in [11] and [13], the
authors of [24] study a controller-centric setting with an obe-
dient sampler, while this work studies sampler-centric setting
with an obedient controller. As a result, the settings are very
different and incompatible to each other; (iii) [24] does not
study any converse bound that governs all achievable schemes;
(iv) [24] solves MDP problems under simplified/augmented
state spaces, which, as discussed in Remark 1 of [24] “may
not always be practical”. In contrast, the state spaces in our
achievability results capture exactly the available information
at the sampler/source. The resulting schemes are guaranteed
to be feasible; (v) [24] derives closed-form expressions of the

4Our results can be greatly simplified if assuming geometric PY and PZ .
However, we deliberately focus on arbitrary PY and PZ so that we can
characterize avg.aoi∗ under a general 2-way-queue setting.

average AoI for three simple suboptimal policies called Zero-
Wait-1, Zero-Wait-2, and Wait-1, respectively.

B. Complexity

For K = 1, the performance bounds (lb[1]
new, ub[1]

new) are
easily computable and their performance is reasonably close
to optimality, see Sec. VII. Unfortunately, the complexity of
computing (lb[2]

new, ub[2]
new) is high when (ymax, zmax) are large.

For example, the reason why we set ymax = zmax = 24 in our
numerical evaluations is that larger (ymax, zmax) would slow
down the computation (lb[2]

new, ub[2]
new) substantially.5

It is worth noting that the complexity is on the design stage.
For implementation, the complexity is low as one only needs
to memorize the waiting time tables found when solving the
ACPS-semi-MDP, e.g., for K = 2, the waiting time functions
θ
[2]
a (a1), θ

[2]
aa (f1, a2), and θ

[2]
ini (f2, a3) are simple 1D and 2D

tables. If desired, one can also use the lower-complexity K =
1 scheme, at the cost of slightly larger AoI.

Note that smaller ymax and zmax do not mean that the
algorithm can only handle short delays. Instead, it simply says
that the algorithm is applicable when the quantization level is
coarse. For example, say Yi is exponentially distributed with
average service time 25ms. Because only 1% of the delay
would be larger than 115.1ms, we can quantize the continuous
range of [0, 115.1ms] by an integer interval {0, 1, · · · , 24}
with each integer j ∈ {0, · · · , 24} represents the delay
Y ≈ j · 4.80ms. We can then solve our integer-based AoI
minimization problem. If we have access to a more powerful
computer capable of solving the order-2 achievability semi-
MDP problem for (ymax, zmax) = (50, 50), then we quantize
[0, 115.1ms] by an integer interval j ∈ {0, · · · , 50} satisfying
Y ≈ j ·2.30ms. The benefits of using larger (ymax, zmax) lie in
the finer granularity of the network scheduler, not the actual
range of the delay it can handle. As in most quantization-
based schemes, any AoI suboptimality caused by coarser
quantization levels generally diminishes quickly to zero after
we increase the levels of quantization.

C. Intuition

The intuition why the performance of our achievability
schemes ub[1]

new and ub[2]
new is near-optimal is that when back-

ward delay E(Z) is zero, then obviously an optimal scheduler
should wait until Acki−1 has returned, which indicates that
no backlog in the forward queue. When the backward delay
E(Z) is small (but non-zero), then waiting for Acki−2 to return
before we start to send Pi is reasonable since if we have not
received Acki−2 yet, it likely means that Pi−1 has not been
delivered yet since even the previous packet Pi−2 has not been
officially acknowledged. That is why even for the simple K =
1 achievability scheme, the best scheme under the condition
Si ≥ Ai−2 has already achieved excellent performance for
small E(Z). The same logic applies that if when deciding to
send Pi, we have not even received the acknowledgement Ai−3

5We can use larger (ymax, zmax) when computing (lb
[1]
new, ub

[1]
new) since the

computation of the order-1 bounds is fast. However, to ensure fair comparison
of (lb

[K]
new , ub

[K]
new ) between K = 1 versus K = 2, we limit the range to be

ymax = zmax = 24.
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(two packets before the Pi−1), then with probability close-to-
one the packet Pi−1 has not been delivered yet and is still
clogging the forward queue. Therefore, we should wait for
Acki−3 and only send the current packet Pi after time Ai−3

almost always. That is why the K = 2 achievability scheme
is almost indistinguishable from the converse lower bound in
all cases satisfying E(Z) ≤ E(Y ).

The above intuition also explains why the upper and lower
bounds start to diverge significantly only if E(Z) > E(Y ).
In this scenario, the backward queue has a strictly smaller
sustainable throughput and if we (almost) saturate the forward
queue, then the backward queue length will explode, and
no acknowledgement packets can return back to s within a
reasonable amount of time. The performance of the achiev-
ability scheme ub[K]

new thus suffers greatly. This observation
also explains why when E(Z) > E(Y ), the performance of
feedback-based schemes (with a heavily clogged backward
queue) is not much better than the best open-loop scheme
that periodically sends out Pi while completely ignoring any
feedback information {Ackj : j < i}, because all Ackj packets
now experience exceedingly long delay.

D. Future Extension

Because of the analytical and practical importance of char-
acterizing the optimal AoI for the 2-way-queue information
update systems and because of the complicated nature of this
problem, this work focuses exclusively on the most canonical
setting of linear AoI penalty with no average energy/cost
constraints. At the same time, the proposed framework can
be readily extended to include arbitrary AoI penalty func-
tions [12] by simply changing the cost function/structure of
the proposed semi-MDP problems. Built upon a general ACPS
framework, the proposed approaches are likely to be applicable
to other age-based metrics, including Age-of-Version (AoV),
Age-of-Synchronization (AoS), etc. Our solution can also be
used to solve the problem with energy/cost constraints by the
well known techniques of Lagrange multipliers [15], [25]. See
the references therein.

IX. CONCLUSION

This work has studied the AoI minimization problem
with 2-way queues. Near-optimal schedulers have been
devised, which smoothly transition from the instantaneous-
ACK schemes to the open-loop schemes depending on how
long the feedback delay is. The results have provided a
useful road map for other AoI minimization problems with
delayed feedback, and can serve as important guidelines when
implementing an update-through-queues system in practice.
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