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Abstract 19 

Species living in changing environments require the acclimatization of individual organisms, which 20 

may be significantly influenced by allele specific expression (ASE). Data from RNA-seq experiments 21 

can be used to identify and quantify the expressed alleles. However, conventional allele matching to 22 

the reference genome creates a mapping bias towards the reference allele that prevents a reliable 23 

estimation of the allele counts. We developed a pipeline that allows identification and unbiased 24 

quantification of the alleles corresponding to an RNA-seq dataset, without any previous knowledge 25 

of the haplotype. To achieve the unbiased mapping, we generate two pseudogenomes by substituting 26 

the alternative alleles on the reference genome. The SNPs are further called against each 27 



pseudogenome, providing two SNP data-sets that are averaged for calculation of the allele depth to 28 

be merged in a final SNP calling file. The pipeline presented here can calculate ASE in non-model 29 

organisms and can be applied to previous RNA-seq data-sets for expanding studies in gene expression 30 

regulation. 31 

 32 

Introduction 33 

High-throughput RNA-seq is a common technique in many fields of research, providing information 34 

on differentially expressed genes (DEGs) in response to different conditions or experimental factors 35 

1. Gene expression is quantified based on read counts that correspond to a particular gene. These reads 36 

contain single-nucleotide polymorphism (SNP) sites, providing information on the presence of 37 

different alleles. Heterozygous sites typically have equal transcription of both alleles, resulting in an 38 

allele specific expression (ASE) levels of 0.5 for each. A difference in the expression ratio between 39 

the two alleles is referred to as allelic imbalance (AI). This variation in expression patterns highlights 40 

the significance of heterozygosity and genetic variation in adaptation and acclimatization 2–5.  41 

It is possible to quantify ASE by calculating the frequencies of expressed alleles 6–8. To quantify 42 

alleles’ expression, it is necessary to identify heterozygous sites in a gene and estimate the counts for 43 

each site. However, the most significant challenge of this measurement arises when mapping two 44 

different alleles to a reference genome, with only one being identical to the reference. The mismatch 45 

between the non-identical allele and the reference genome will discard some reads, leading to an 46 

overestimation of the identical allele 9. This mapping bias affects the accuracy of the allele counts in 47 

gene expression experiments and creates difficulty in finding the regulatory effects of ASE 10,11. 48 

To resolve this bias, prior knowledge of the sample haplotype is required, from either DNA-49 

sequencing or available genotype data and reference haplotypes like HapMap 12 or SNP panels 13–15. 50 

New approaches use multiple reference genomes for a broader view of SNPs in a population 16. 51 

However, this is not applicable in RNA-seq experiments where genomic DNA is not sequenced.  52 

We have developed a pipeline to call SNPs and analyze ASE, using RNA-seq data from experiments 53 

characterizing DEGs under different environmental conditions (Figure 1). Our pipeline enables 54 

quantification of ASE on coding sequences of the genome in non-model organisms without prior 55 

genotypic knowledge. We overcome the mapping bias by creating two pseudogenomes based on 56 

SNPs from two samples from different experimental groups. A final SNP data-set is generated by 57 

averaging the counts of each polymorphic site obtained from each pseudogenome, which can then be 58 

subjected to statistical tests to assess the relationship between allelic expression and environmental 59 

or physiological factors. Finally, the genomic locations of ASE SNPs can be correlated with other 60 

gene expression data, such as DEGs and methylation sites, to complement the results.  61 



 62 

 63 

Figure 1: Schema representing the key steps of the pipeline. The RNA is extracted from the 64 

experimental samples and sequenced for obtaining of the fastq files. These files are trimmed and after 65 

quality filters are mapped to the reference genome for a first SNP calling. The biallelic variant sites 66 

obtained in this first call are then used for the creation of two pseudogenomes. The fastq files are then 67 

mapped twice, one to each pseudogenome, and the SNP call is also performed twice. The resulting 68 

variant call files are then submitted to home scripts for the merging and averaging of the allele depths. 69 

The pipeline is developed in Snakemake and the scripts were submitted to GitHub.  70 

 71 

In this work, we applied our pipeline to study the effect of high salinity on Nile tilapia (Oreochromis 72 

niloticus), a freshwater fish. We performed a quantification with minimal bias of bi-allelic sites and 73 

statistical analysis of SNPs in ASE in the gills and kidney of tilapia in freshwater and brackish water 74 

environments. 75 

 76 

 77 



Results 78 

Data engineering and statistical analysis 79 

SNPs retrieved by the pipeline were filtered and ASE levels were retrieved using a chi-square test for 80 

statistical analysis. We identified 817 SNPs that were heterozygous in all 12 fish and found 63 to 611 81 

SNPs with allele-specific expression, depending on the test (Table 1, Supplementary 1-4). The allele 82 

frequency analysis of the identified SNPs within each experimental group was visualized through a 83 

heat-map (Figure 2). A consistent allele frequency pattern was observed for both gill and kidney 84 

tissues, with notable discrepancies between the two tissues. The groups exposed to salty water 85 

exhibited a heightened prevalence of allelic imbalances, either favoring the reference or alternative 86 

alleles (Figure 2). 87 

 88 

Test description Test number SNPs in ASE Genes containing ASE DEGs with SNPs in ASE 

Gills and kidney in fresh water 1 474 324 250 

Gills and kidney in salty water 2 611 406 326 

Gills in fresh and salty water 3 63 55 17 

Kidney in fresh and salty water 4 347 240 0 

 89 

Table 1: Number of SNPs obtained in each test after applying the pipeline. Namely: test 1 gills and 90 

kidney in freshwater, test 2 gills and kidney in salty water, test 3 gills in fresh and salty water, test 4 91 

kidney in fresh and salty water. Chi-square test on the ASE-levels data for each individual. Five 92 

individuals in each group, n=10 for each test, p<0.05. 93 

 94 

 95 

 96 



Figure 2: Heat-map showing allelic imbalance between the experimental groups. The Y-axis shows 97 

the labels of the chormosomes in wich the SNPs are located. The sequence of SNPs by chromosome 98 

follows a sequencial order from the beginning of the chromosome till the end according to the 99 

annotation provided for the reference genome. 100 

 101 

ASE was observed in response to different salinity treatments in the gills and kidney tissues. The Chi-102 

square tests showed 25 common SNPs displaying ASE independent of tissue or salinity treatment, 103 

and 444 SNPs in common for the tissue when comparing gills and kidney in freshwater and salty 104 

water (tests 1 and 2). There were 33 common SNPs for the salinity challenge in the gills and kidney 105 

that were related to the tissue differences (Table 1, Figure 3). 106 

 107 

 108 

Figure 3: Venn diagram illustrating the common ASE SNPs for each test. Absolute values of SNPs. 109 

 110 

Validation of the pseudogenomes method for eliminating mapping bias in allele counts 111 

Levene’s and Anderson-Darling tests confirmed that no equal variances and no normality were 112 

achieved on the experimental groups, respectively. Therefore, a Welch’s T-test was performed in 113 

order to validate the elimination of the mapping bias by comparing abundance distribution of the 114 

ASE-levels on the SNPs retrieved with the classical method, after mapping towards the reference 115 

genome, and on the same SNPs retrieved by the new pipeline using pseudogenomes for mapping. 116 

The results indicate a significant difference between the mapping to the reference genome and the 117 

use of the pseudogenomes proposed in this pipeline (p < 0.05, Table 2). The visualization of the test 118 

indicates that the normally distributed data corresponds to the SNPs called on the pseudogenomes, 119 

while the SNPs called from the reference genome show certain bias on the allele frequency towards 120 

the reference allele (Figure 4). 121 

 122 



 123 

Group T-statistic P-value 

GF -2.32 0.0206 

GS -3.56 0.0004 

KF -2.89 0.0004 

KS -3.37 0.0008 

 124 

Table 2: Statistics and p-value of each Welch t-test. The test was performed on the abundance of the 125 

ASE-levels called against the reference genome and called against the pseudogenome, n= 744 SNPs. 126 

One test was performed in each experimental group: gills fresh water, gills salty water, kidney fresh 127 

water, kidney salty water. 128 

 129 

 130 

 131 

Figure 4: Student’s t-test on each experimental group. The test was performed on the abundance of 132 

the ASE-levels called against the reference genome and called against the pseudogenome, n=744  133 

SNPs. One test was performed in each experimental group. 134 

 135 

Validation of the SNP sites by sequencing / re-sequencing  136 

In order to test the quality of the SNP calling we compared the single nucleotide variants (SNVs) on 137 

the coding areas found on the DNA with those retrieved from RNA of the same individual. Our 138 



findings indicate that 89.1% of SNVs, including both synonymous and non-synonymous sites, were 139 

accurately identified when calling from RNA from pseudogenomes, without using the DNA data as 140 

reference. Therefore, the error rate was of a 10.9% for SNVs in the coding areas of the genome, 141 

corresponding to a mismatch between the SNVs called from the RNA and those called from the DNA.  142 

In order to determine the source of the error, we randomly chose 20 SNVs sites among the 10.9% 143 

attributed to a mismatch between RNA and DNA SNV sites. We visualized these sites included in 144 

the bam files with IGV software over the DNA of the individual whose transcriptome was analyzed. 145 

A different genotype for the SNVs in the DNA than the one called by the Haplotype caller tool was 146 

found in 9 sites out of 20 mismatches. In these sites, the RNA genotypes were correctly called. A 147 

different genotype for the SNVs in the RNA than the one called by the Haplotype Caller tool was 148 

found in 11 sites out of 20 mismatches. Among these cases, 7 sites had allele counts below 5, being 149 

the low counts a possible source of error. Therefore, the partial error for identifying SNVs on the 150 

RNA call may be a fraction the total error. 151 

 152 

Functional analysis and classification of the ASE SNPs  153 

The function described by GO analysis of the genes containing ASE SNPs was determined for each 154 

test separately (Supplementary 5, 6, 7 and 8). The ASE variants after tissue differences conserved a 155 

similar proportion of functions both in fresh and salty water fish (Supplementary 5 for test 1 and 156 

Supplementary 6 for test 2, Table 1). Both tissues showed binding and catalytic activity as molecular 157 

functions that included ASE SNPs (tests 1 and 2, Table 1, Supplementary 5 and 6). On the other hand, 158 

some of the ASE SNPs had different gene function within the kidney and within the gills. The gills 159 

showed SNPs in ASE corresponding to response to stimulus as well as ribonucleotide binding with 160 

and without adenyl group (Supplementary 7, test 3). The kidney exposed to salinity had ASE SNPs 161 

related to developmental process and anatomical structure development differently than in the gills 162 

(Supplementary 8, test 4). 163 

The chromosomal regions of interest for significant ASE SNPs are illustrated in the Manhattan plot 164 

(Figure 5). The ASE SNPs were distributed along all the major linkage groups of the genome for all 165 

the tests and no genomic region was found for a major abundance of ASE SNPs after exposure to 166 

salinity in gills nor kidney. 167 

 168 



 169 

 170 

Figure 5: Manhattan plot generated with the ASE SNPs found in each test. The X-axis represents the 171 

genomic positions of the SNPs, and the Y-axis represents the significance of the associations based 172 

on the p-values obtained from the chi-square test (p<0.05). 173 

 174 

The significant ASE SNPs were classified according to their function and compared for each test 175 

using a stacked bar chart (Figure 6). Notably, a substantial number of these synonymous SNPs were 176 

identified in each experimental trial, save for the gill test conducted in both fresh and saline aquatic 177 

environments (test 3), which exhibited a notably lower total SNP count. In contrast, the count of non-178 

synonymous SNPs remained consistently below 50 across all tests. Specifically, a limited subset, 179 

fewer than 5 SNPs within each test, manifested frame-shift mutations, while instances of non-180 

frameshift deletions and insertions were also observed. One SNP remained unassigned and was 181 

categorized as unknown variant (Figure 6). 182 

 183 



 184 

 185 

Figure 6: Classification of the ASE SNPs by the type predicted from the coordinates as set in the 186 

annotation. Test 1 gills and kidney fresh water. Test 2 Gills and kidney in salty water. Test 3 Gills in 187 

fresh and salty water. Test 4 Kidney in fresh and salty water. Chi-square test, p<0.05. 188 

 189 

The analysis of differentially expressed genes revealed that 250 SNPs in ASE were also found to 190 

correspond to differentially expressed genes (ASE-DEGs) when comparing gills and kidney tissues 191 

in freshwater (test 1). Additionally, there were 326 ASE-DEGs between gills and kidney tissues in 192 

saline water (test 2) (Table 1, Supplementary 9 and 10, respectively). In the context of salinity 193 

comparison, 17 ASE-DEGs were identified in the gills (test 3) (Table 1, Supplementary 11). It is 194 

noteworthy that no ASE-DEGs associated with differentially expressed genes were detected in the 195 

kidney tissue (test 4). 196 

 197 

Discussion 198 

Two methods for SNP calling were compared in the present study. The first method was the 199 

commonly used, which includes the mapping of the reads to the reference genome before the SNP 200 

calling. These variants were substituted into the reference genome thus creating a pseudogenome. In 201 

the second method tested, we created two pseudogenomes corresponding to the SNPs called in two 202 

samples from different experimental groups. By doing so, we included in the pseudogenome variants 203 

expressed under two different conditions of the study thus targeting the counts of alternative alleles. 204 

The RNA data was further mapped to the pseudogenomes and the allele counts were averaged in 205 

order to get an unbiased quantification of the SNPs expression that cannot be offered by the mapping 206 

to the reference genome.  207 



The use of pseudogenomes based on known SNPs 13,14 or by using several genomes from different 208 

heterozygous individuals 16, has been previously validated. Previous strategies used for removing 209 

mapping bias required prior knowledge of genotypes 13,17–22, elimination of sites showing bias after 210 

simulation 23–26, SNPs previously informed in a panel 27–29, or direct use of a variant-aware alignment 211 

30–32. However, to the best of our knowledge, this is the first approach of pseudogenomes created 212 

based on variant sites found exclusively in the RNA and without knowledge of the genotype in the 213 

DNA. The pipeline developed in this study does not require this previous knowledge. Instead, it 214 

detected the sites expressed in the individuals in the experiment. This detection allowed for the SNP 215 

quantification in those organisms whose RNA was sequenced after exposure of the individuals to 216 

different experimental conditions. For species lacking a reference genome, it is also possible to map 217 

the RNAseq data against two transcriptomes belonging to two samples of the experiment. Therefore, 218 

the new analysis pipeline is applicable to a broad range of non-model organisms. 219 

 220 

Our pipeline followed the GATK best practices recommendations 33 and provided unbiased SNPs, 221 

from which 63 are associated to the salinity challenge in gills and 347 in the kidney. The exploration 222 

of ASE-SNPs in the context of diverse environmental conditions remains relatively limited in existing 223 

literature. Previous studies have predominantly focused on examining expression of quantitative trait 224 

loci (eQTLs) influenced by SNPs within specific regulatory regions 34,35. Interestingly, Knowles et 225 

al. 36 developed a generalized linear model tool for analysing genome x environment interactions for 226 

ASE, known as EAGLE. This tool, although applicable to specific model organisms, such as the 227 

human liver, identified 442 ASE SNPs responsive to diverse molecular stimuli 36. Intriguingly, the 228 

number of ASE SNPs uncovered by our pipeline in a non-model organism context falls below the 229 

range of results achieved by tools designed exclusively for model organisms. This discrepancy can 230 

be attributed to the pipeline's focus on coding sequences of the RNA.  231 

  232 

Validation 233 

We performed a validation of the genotype on SNP sites identified by our pipeline from RNA towards 234 

the DNAseq data of 8 individuals of tilapia exposed to freshwater. In the context of our investigation, 235 

the outcomes yield compelling insights into the accurate identification of single nucleotide variations 236 

of coding exons (SNVs), encompassing both synonymous and non-synonymous positions. The 237 

successful identification of 89.1% of these SNVs underscores the efficacy of our approach, especially 238 

considering that this error rate also includes mistakes from the SNP call on the DNA data. Moreover, 239 

a majority of the sites showing errors after the SNP call on RNA are associated with read counts 240 

below 5. As a result, implementing a stringent filter to include only counts above 5 will consistently 241 



mitigate the error rate. Nevertheless, the potential of overlooking crucial and informative sites 242 

cautions against adopting this approach. 243 

In summary, our study sheds light on the precision and limitations of SNV identification, with a 244 

notable success rate of ~90%. These findings contribute to a deeper understanding of the intricacies 245 

involved in SNV identification and emphasize the need for continued advancements in this field.  246 

 247 

SNPs in ASE and regulation of gene expression 248 

The pipeline deployed for SNP identification within the coding regions of RNA and subsequent 249 

quantification of ASE has provided valuable insights into the genetic responses of Nile tilapia under 250 

varying salinity conditions. Our approach yielded a cohort of 817 SNPs that were consistently 251 

heterozygous across all 12 fish samples. Subsequently, the investigation revealed a range of 63 to 611 252 

SNPs exhibiting ASE, with the specific count varying according to the experimental test conducted. 253 

Notably, the analyses unveiled pronounced ASE patterns in response to diverse salinity treatments 254 

across gills and kidney tissues. The Chi-square tests conducted revealed 25 SNPs with ASE that 255 

remained consistent regardless of the tissue type or the salinity treatment, thereby indicating a degree 256 

of independence from these factors.  257 

 258 

ASE between tissues 259 

A substantial subset of 444 SNPs exhibited common ASE between gills and kidney tissues when 260 

comparing responses to fresh and salty water (tests 1 and 2). This shared ASE across tissues and 261 

salinity treatments suggests an underlying genetic mechanism that potentially transcends tissue 262 

specificity, evoking different allelic expression responses in the tissues independently of the salinity.  263 

In previous studies, ASE was mostly detected when comparing the expression in different tissues, as 264 

shown in cattle 37. Also in cattle, Guillocheau et al. 17 found that 13% of the total expressed genes in 265 

muscle had SNPs in ASE associated with phenotypic traits and potentially causative of cis-regulation. 266 

Allelic imbalance was also described in these studies, reporting that at minimum 89% of the total 267 

SNPs were imbalanced in at least one tissue out of 18 studied 37. Allelic imbalance was also common 268 

between 19 muscle samples of the Limousine cattle breed 17. It has been suggested that the 269 

phenomenon of tissue-specific regulation of allele expression and the regulation of ASE may be 270 

driven by tissue-specific enhancers or by post-transcriptional differences as found in the mouse 271 

allelome 38.  272 

In summary, our findings highlight the presence of ASE in tilapia, akin to other species, revealing a 273 

shared phenomenon of inter-tissue variation. The existence of ASE suggests the operation of complex 274 

regulatory mechanisms of expression that transcend species boundaries. To shed light on the 275 



evolution of such a mechanism, it is imperative to explore its regulatory pathways, identifying 276 

commonalities and differences across organisms.  277 

 278 

Salinity challenge in tilapia  279 

Additionally, our investigation identified 33 SNPs exhibiting common ASE in response to the salinity 280 

challenge across both gill and kidney tissues. The common patterns on the GO expression for both 281 

tissues facing a salinity challenge corresponded to molecule and ion binding (Supplementary 5, 6, 7 282 

and 8). This shared response suggests a coordinated attempt to counteract oxidative stress and uphold 283 

cellular viability in a systemic approach to achieve oxidative homeostasis between tissues and under 284 

the salinity challenge by allelic expression regulation.  285 

Many different reasons can explain this variable expression of the alleles after salinity challenge. 286 

Gene imprinting caused by environmental factors, silencing the maternal or paternal allele, is one 287 

case 39. The spectrum of silencing ranges from monoallelic expression (MAE), where one allele is 288 

completely silenced, to imbalances of varying degrees. Also cis-acting mutations may alter regulation 289 

for just one allele through a change to promoter/enhancer regions (transcription factor binding sites) 290 

40, or even through 3’ UTR mutations that affect mRNA stability or microRNA binding 41.  291 

In light of these mechanisms, the gills exhibited ASE in genes associated with the ribonucleotide 292 

binding with and without adenyl group, upon salinity exposure (Supplementary 7). Earlier 293 

transcriptomic and proteomic analyses of these data indicated that there is a response in the gills to 294 

salinity by differential expression of genes related to epithelial turnover 42,43. These previous results 295 

are consistent with our current analysis where ASE SNPs were associated to DEGs in the gills but 296 

not in the kidney (Table 1). However, the total SNP count exhibited a remarkable reduction when 297 

compared to the kidneys (test 3 and 4, Table 1). Altogether may indicate the differential expression 298 

found in gills to cope with the salinity challenge may be regulated partially by ASE, thus driving the 299 

epithelium turnover.  300 

Meanwhile, the kidneys showed SNPs in ASE related to developmental process and anatomical 301 

structure development after salinity exposure (test 4, Supplementary 8). However, no differentially 302 

expressed genes correspond to ASE. These results align with proteomic analysis of Nile tilapia 303 

kidneys, revealing higher translational modifications in the kidney as a response to the salinity 304 

exposure in contrast with few differentially expressed genes 44. The mechanisms in the kidney to cope 305 

with the salinity challenge were related to proteomic changes reflected already by the SNPs in ASE 306 

from our study. 307 

A growing body of research in teleosts has unveiled ASE patterns in response to various 308 

environmental factors. In the case of turbot (Scophthalmus maximus), SNP studies discovered the sex 309 

determination patterns of ASE 45. Similarly, SNP markers in Atlantic salmon (Salmo salar) were 310 



found to enhance DHA synthesis 46, while eQTL were associated with resistance to lice in Atlantic 311 

salmon 47 and broad scale suppression of gene expression was detected in triploid medaka (Oryzias 312 

latipes) 48. Our analysis stands in alignment with this emerging trajectory of ASE findings in teleosts 313 

facing diverse environmental challenges. Our results suggest that the salinity, as an environmental 314 

factor, may challenge each tissue in a different manner. The gill's response is characterized by a higher 315 

number of DEGs including ASE SNPs. In contrast, the kidney's response involves a higher frequency 316 

of ASE SNPs, correlating with proteomic changes previously determined 44. These results collectively 317 

emphasize the role of salinity as a pivotal environmental factor influencing allelic expression 318 

dynamics. 319 

In conclusion, the ASE SNPs found within the context of a salinity challenge has uncovered a rich 320 

landscape of genetic responses in Nile tilapia gill and kidney tissues. Two distinct strategies employed 321 

by Nile tilapia to confront the salinity challenge through ASE. The first strategy entails a systemic 322 

response, characterized by ASE patterns intricately linked to protein binding and oxidation-reduction 323 

processes. This widespread approach reflects a concerted effort to adapt and manage the salinity stress 324 

across multiple tissues. Conversely, the second approach is marked by nuanced differentiation. In the 325 

gills, a concerted effort to address the challenge is evident through a higher prevalence of ASE related 326 

to DEGs. This tailored response is particularly notable given the reduced number of DEGs observed 327 

in this tissue. In contrast, the kidney employs a proteomic approach, where ASE patterns exhibit a 328 

broader scope, encompassing SNPs unrelated to DEGs. This distinct strategy indicates a sophisticated 329 

mechanism by which the kidney leverages allelic expression to navigate the salinity stress, potentially 330 

involving regulatory mechanisms beyond traditional gene expression pathways. 331 

 332 

Type of SNPs in ASE 333 

The significant SNPs in ASE, underwent additional analysis using a stacked bar chart, presented in 334 

Figure 6. The prominent SNPs identified for specific allelic expression were predominantly single 335 

nucleotide variants. Synonymous SNVs, which preserve amino acid composition within translated 336 

proteins, significantly outnumbered non-synonymous SNPs by approximately 8 to 13 times across all 337 

tests. Synonymous polymorphisms have potential impact on messenger RNA splicing, stability, 338 

structure, and protein folding 49. These alterations can substantially affect protein function, modulate 339 

cellular responses to therapeutic targets, and frequently elucidate distinct patient reactions to specific 340 

medications 49, which becomes particularly relevant following an environmental challenge as 341 

presented in this study. 342 

In contrast, non-synonymous SNPs consistently remained below 50 across all tests, implying a level 343 

of coding region conservation. Comparative investigations into these SNV types have revealed that 344 

diversity among non-synonymous SNVs is notably lower than among synonymous substitutions 50. 345 



This discrepancy is attributed to natural selection's influence on non-synonymous SNPs 51, 346 

highlighting how environmental pressures influence the prevalence and distribution of different SNV 347 

types. Moreover, the identified frameshift and non-frameshift mutations amplify the scope of genetic 348 

variability and its potential functional implications. The presence of an unclassified SNP serves as a 349 

reminder of the complexities of genetic annotation and the ongoing pursuit to decipher the functional 350 

significance of genetic variation. Overall, the paragraph contributes to our understanding of how 351 

genetic variation, influenced by natural selection and environmental challenges, plays a pivotal role 352 

in shaping the evolutionary trajectories of organisms. 353 

 354 

Regions of the genome affected by different allele expression 355 

The pipeline targets the regions of the genome that may be affected by the different expression of the 356 

alleles in two different approaches: with a heat-map on the allelic imbalance (Figure 2) and a 357 

Manhattan plot on the ASE SNPs (Figure 5).  358 

The visualization of allele frequency analysis for the identified SNPs within each experimental group 359 

was executed using a heat-map according to a distribution on the genome, as shown in Figure 2. Gill 360 

and kidney tissues exhibited very different allele frequency patterns, thus illustrating the major 361 

differences in allele expression depending on the tissue, as previously described 37. Striking a 362 

consistent pattern, gills in fresh and salty water exhibited parallel allele frequency trends, yet 363 

discernible disparities were evident between the two environment types. A similar effect is visible in 364 

kidney from fresh and from salty water. Notably, exposure to saline water triggered pronounced shifts 365 

in allelic balance within the respective groups.  366 

The identification and visualization of significant allelic expression ASE SNPs through the lens of 367 

chi-square tests across chromosomal regions were achieved using a Manhattan plot (Figure 5). No 368 

distinct genomic region emerged as an exclusive hotspot for an abundance of ASE SNPs in response 369 

to salinity exposure, neither in gills nor kidney tissues. This lack of clustering suggests a much more 370 

dispersed genetic response to salinity stress as previously indicated by the heat-map, with significant 371 

ASE SNPs dispersed across the genome rather than being concentrated in specific regions. Focusing 372 

solely on ASE SNPs from the entire pool of RNA-derived SNPs could potentially limit our ability to 373 

identify specific genomic regions responsible for regulating allelic expression. However, this 374 

approach effectively targets SNPs that undergo altered expression in response to the experimental 375 

factor being investigated – in this instance, the salinity challenge. The results of our analysis show 376 

that while there are patterns of allelic imbalance throughout the genome, those do not correspond 377 

with exposure to salinity.  378 

In conclusion, the combined insights from the heat-map and Manhattan plot analyses presented in the 379 

pipeline offer a comprehensive understanding of the genetic dynamics underlying allelic expression 380 



changes in response to environmental shifts. The heat-map underscores the tissue-specific allelic 381 

imbalances on the experimental groups, while the Manhattan plot showcases the distributed nature of 382 

significant ASE SNPs across the genome. This integrative approach advances our comprehension of 383 

the genetic mechanisms governing responses to environmental challenges, shedding light on the 384 

intricate regulatory networks operating within the examined organisms. 385 

 386 

The pipeline presented in this study has proven to be a robust and versatile tool for SNP quantification, 387 

enabling unbiased assessment of SNPs in ASE resulting from fish exposures to an environmental 388 

challenge. This methodology operates without requiring prior genotype knowledge, making it 389 

suitable for model and non-model organisms, regardless of strain or the availability of a reference 390 

genome. This approach opens avenues for reanalyzing data from differentially expressed gene (DEG) 391 

experiments to uncover gene regulation and shifts in biochemical networks driven by specifically 392 

expressed alleles. Furthermore, the SNP coordinates generated by this pipeline can be seamlessly 393 

integrated with other sources of transcript data, including methylome information. This pipeline, 394 

based on Snakemake and integrating GATK best practices, tailored to the unique context of non-395 

model organisms and has facilitated a deeper understanding of how genetic variation influences gene 396 

expression responses under different conditions. By extending the pipeline's scope to include analysis 397 

of non-coding regions, we envision a compelling prospect: the utilization of our pipeline may 398 

significantly advance the study of regulatory regions in non-model organisms. Such an expansion 399 

could potentially enhance our understanding of the intricate genetic responses these organisms exhibit 400 

in the face of environmental challenges.  401 

The findings of this study, coupled, therefore, with insights from comparative research, underscore 402 

the intricate nature of allelic expression dynamics, tissue-specificity, and regulatory mechanisms, 403 

inviting further exploration into the epigenomic dimensions of ASE regulation in species like tilapia. 404 

 405 

In conclusion, our developed pipeline not only reveals unbiased allele-specific expression in response 406 

to environmental challenges, as demonstrated in the context of salinity alterations in Nile tilapia, but 407 

it also prioritizes user convenience. By integrating various tools and virtual environments within the 408 

Snakemake framework, our pipeline streamlines the analytical process, empowering researchers to 409 

explore and interpret their data efficiently. Furthermore, the graphical representation of results adds 410 

a layer of visual comprehension, enhancing the accessibility and impact of our findings. This holistic 411 

approach underscores our commitment to advancing the field of allele-specific expression analysis 412 

while prioritizing usability and clarity for researchers in non-model organism studies. 413 

 414 



Material and methods 415 

Ethical statement  416 

This study was approved by the Agricultural Research Organization Committee for Ethics in 417 

Experimental Animal Use, and was carried out in compliance with the current laws governing 418 

biological research in Israel (Approval number: IL-715/17). The study is reported in accordance with 419 

the ARRIVE guidelines (https://arriveguidelines.org). 420 

 421 

Origin, processing and sequencing of samples 422 

The sequences used in this study were from an experiment performed in Nile tilapia fish previously 423 

described by Root et al.43,44. In summary, 12 male Nile tilapia were randomly allocated into two 600-424 

liter freshwater tanks and allowed to acclimate for two weeks. One group was subjected to a gradual 425 

increase in salinity of 5 ppt per day until reaching a final salinity of 25 ppt, at which point gill and 426 

kidney samples were collected after 24 hours. In addition, eight fish were individually placed in 40 427 

liter freshwater tanks and allowed to acclimate for two weeks before sampling gills for RNAseq and 428 

fin for DNAseq.  429 

The samples were preserved in RNAsave (Biological Industries, Beit-Haemek, Israel) and stored at -430 

20°C until extraction, following a 24-hour incubation period at 4°C. The mRNA of the first 12 431 

individuals' samples was extracted using TRIzol reagent (Thermo Fisher Scientific), and purified 432 

using the TURBO DNA-free kit (Invitrogen) to eliminate DNA contamination. The quality of the 433 

total mRNA samples was assessed at the Israel National Center for Personalized Medicine (INCPM) 434 

at the Weizmann Institute of Science (Rehovot, Israel) using the TapeStation Agilent 2200 system 435 

before library preparation and sequencing on an Illumina Hi-Seq 2500 device. For the additional eight 436 

individuals, the mRNA and DNA were extracted using the RNeasy mini kit and DNeasy blood and 437 

tissue kit (Qiagen, Hilden, Germany), respectively. RNA and DNA sequencing for the additional 438 

eight individuals were conducted at the INCPM using the Illumina Novaseq 600 platform, with the 439 

RNA samples sequenced to an average sequencing depth of 10 times, and the DNA samples 440 

sequenced to an average sequencing depth of 30 times, both of which included unique molecular 441 

identifier (UMI) barcoding. 442 

 443 

Pipeline for mapping bias removal using pseudogenomes and SNP calling 444 

We developed and utilize a Snakemake-based 52 pipeline for SNP calling and removal of mapping 445 

bias using pseudogenomes. We implemented this pipeline with and without prior knowledge of 446 

genotypes, and the entire code along with scripts is available at GitHub 447 

(https://github.com/AylaScientist/Snakemake_for_SNPs). Fastq files were trimmed with 448 



Trimmomatic 53 and quality was verified with FASTQC (v0.11.8, Andrews, 2010) before mapping 449 

against the O. niloticus reference genome (NMBU GCF_001858045.2)  using STAR (v2.7.1a, Dobin 450 

et al., 2013). SNPs were called following GATK best practices 33 and Picard tools were used (release 451 

2.27.5). Two pseudogenomes were constructed from a vcf file following the protocol by Johan Zicola 452 

(https://github.com/johanzi/make_pseudogenome, MIT license) for downstream analysis. Two final 453 

vcf files joining the SNPs from all samples were annotated using ANNOVAR 56. Allele depth and 454 

genotypes were collected into a table (VariantsToTable, GATK).  455 

 456 

Data engineering and statistical analysis 457 

After the pipeline produced two data-sets, each containing alternative SNPs for all sites identified in 458 

one of the pseudogenomes, Python v3.7.3 scripts developed in-house and part of the Snakemake 459 

pipeline were used to merge and filter the data-sets for multiallelic sites using Pandas and Numpy. 460 

The counts of each reference and alternative polymorphic site were then averaged for each sample. 461 

SNPs with a depth of one allele less than 3 and those with a total allele depth less than 10 were 462 

removed to avoid homozygosis. As the genotype is unknown, only the SNPs shared by all individuals 463 

with both alleles expressed were retained in the final data-set of consensus SNPs. 464 

 465 

Validation of the pseudogenomes method for eliminating mapping bias in allele counts 466 

To validate the mitigation of mapping bias, a comparison was conducted by assessing allele 467 

frequencies of ASE-levels in two scenarios: SNPs obtained through the conventional method 468 

involving mapping to the reference genome, and SNPs retrieved via the novel pipeline, which 469 

employed pseudogenomes for mapping. After studying the normality and the equal variances with 470 

Anderson-Darling and Levene’s tests respectively, Welch’s t-test was performed on the common 471 

SNPs called by each method.  472 

 473 

Validation of the SNP sites by sequencing / re-sequencing  474 

We used a pipeline to identify SNPs from both DNA and RNA, and conducted a qualitative analysis 475 

to detect false positives by comparing SNPs identified from RNA with those present in DNA. We 476 

selected SNPs that had biallelic expression and were exonic single nucleotide variants (SNVs), 477 

excluding indels and intronic sites. The mismatches were attributed to the error from SNP calling 478 

from RNA information. We further used IGV software 57 to analyze 20 SNVs for false negatives.  479 

 480 

Functional analysis and classification of the ASE SNPs  481 

Significant ASE SNPs for each treatment were analyzed for gene ontology (GO) functions. DEG 482 

analysis was performed with the DESeq package 58 in R (v 3.6.3, Development Core Team, 2013) for 483 

https://github.com/johanzi/make_pseudogenome


salinity effects. In order to find regulatory pathways, the SNPs in ASE were contrasted with the 484 

significant DEGs. 485 

 486 

Data availability 487 

The sequencing data was submitted to SRA under the bioproject PRJNA669315.  488 

 489 

Code Availability 490 

The snakemake pipeline was submitted to the GitHub 491 

https://github.com/AylaScientist/snakemake_for_SNPs. 492 
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