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Abstract

Species living in changing environments require the acclimatization of individual organisms, which
may be significantly influenced by allele specific expression (ASE). Data from RNA-seq experiments
can be used to identify and quantify the expressed alleles. However, conventional allele matching to
the reference genome creates a mapping bias towards the reference allele that prevents a reliable
estimation of the allele counts. We developed a pipeline that allows identification and unbiased
quantification of the alleles corresponding to an RNA-seq dataset, without any previous knowledge
of the haplotype. To achieve the unbiased mapping, we generate two pseudogenomes by substituting

the alternative alleles on the reference genome. The SNPs are further called against each
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pseudogenome, providing two SNP data-sets that are averaged for calculation of the allele depth to
be merged in a final SNP calling file. The pipeline presented here can calculate ASE in non-model
organisms and can be applied to previous RNA-seq data-sets for expanding studies in gene expression

regulation.

Introduction

High-throughput RNA-seq is a common technique in many fields of research, providing information
on differentially expressed genes (DEGs) in response to different conditions or experimental factors
!, Gene expression is quantified based on read counts that correspond to a particular gene. These reads
contain single-nucleotide polymorphism (SNP) sites, providing information on the presence of
different alleles. Heterozygous sites typically have equal transcription of both alleles, resulting in an
allele specific expression (ASE) levels of 0.5 for each. A difference in the expression ratio between
the two alleles is referred to as allelic imbalance (AI). This variation in expression patterns highlights
the significance of heterozygosity and genetic variation in adaptation and acclimatization 2.

It is possible to quantify ASE by calculating the frequencies of expressed alleles ®®. To quantify
alleles’ expression, it is necessary to identify heterozygous sites in a gene and estimate the counts for
each site. However, the most significant challenge of this measurement arises when mapping two
different alleles to a reference genome, with only one being identical to the reference. The mismatch
between the non-identical allele and the reference genome will discard some reads, leading to an
overestimation of the identical allele . This mapping bias affects the accuracy of the allele counts in
gene expression experiments and creates difficulty in finding the regulatory effects of ASE ',

To resolve this bias, prior knowledge of the sample haplotype is required, from either DNA-

sequencing or available genotype data and reference haplotypes like HapMap '? or SNP panels 1315,

New approaches use multiple reference genomes for a broader view of SNPs in a population '°.
However, this is not applicable in RNA-seq experiments where genomic DNA is not sequenced.

We have developed a pipeline to call SNPs and analyze ASE, using RNA-seq data from experiments
characterizing DEGs under different environmental conditions (Figure 1). Our pipeline enables
quantification of ASE on coding sequences of the genome in non-model organisms without prior
genotypic knowledge. We overcome the mapping bias by creating two pseudogenomes based on
SNPs from two samples from different experimental groups. A final SNP data-set is generated by
averaging the counts of each polymorphic site obtained from each pseudogenome, which can then be
subjected to statistical tests to assess the relationship between allelic expression and environmental

or physiological factors. Finally, the genomic locations of ASE SNPs can be correlated with other

gene expression data, such as DEGs and methylation sites, to complement the results.
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Figure 1: Schema representing the key steps of the pipeline. The RNA is extracted from the
experimental samples and sequenced for obtaining of the fastq files. These files are trimmed and after
quality filters are mapped to the reference genome for a first SNP calling. The biallelic variant sites
obtained in this first call are then used for the creation of two pseudogenomes. The fastq files are then
mapped twice, one to each pseudogenome, and the SNP call is also performed twice. The resulting
variant call files are then submitted to home scripts for the merging and averaging of the allele depths.
The pipeline is developed in Snakemake and the scripts were submitted to GitHub.

In this work, we applied our pipeline to study the effect of high salinity on Nile tilapia (Oreochromis
niloticus), a freshwater fish. We performed a quantification with minimal bias of bi-allelic sites and
statistical analysis of SNPs in ASE in the gills and kidney of tilapia in freshwater and brackish water

environments.
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Results

Data engineering and statistical analysis

SNPs retrieved by the pipeline were filtered and ASE levels were retrieved using a chi-square test for
statistical analysis. We identified 817 SNPs that were heterozygous in all 12 fish and found 63 to 611
SNPs with allele-specific expression, depending on the test (Table 1, Supplementary 1-4). The allele
frequency analysis of the identified SNPs within each experimental group was visualized through a
heat-map (Figure 2). A consistent allele frequency pattern was observed for both gill and kidney
tissues, with notable discrepancies between the two tissues. The groups exposed to salty water

exhibited a heightened prevalence of allelic imbalances, either favoring the reference or alternative

alleles (Figure 2).
Test description Test number SNPs in ASE Genes containing ASE DEGs with SNPs in ASE
Gills and kidney in fresh water 1 474 324 250
Gills and kidney in salty water 2 611 406 326
Gills in fresh and salty water 3 63 55 17
Kidney in fresh and salty water 4 347 240 0

Table 1: Number of SNPs obtained in each test after applying the pipeline. Namely: test 1 gills and
kidney in freshwater, test 2 gills and kidney in salty water, test 3 gills in fresh and salty water, test 4
kidney in fresh and salty water. Chi-square test on the ASE-levels data for each individual. Five
individuals in each group, n=10 for each test, p<0.05.

Gills fresh water Kidney fresh water  Gills salty water Kidney salty water
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Figure 2: Heat-map showing allelic imbalance between the experimental groups. The Y-axis shows
the labels of the chormosomes in wich the SNPs are located. The sequence of SNPs by chromosome
follows a sequencial order from the beginning of the chromosome till the end according to the
annotation provided for the reference genome.

ASE was observed in response to different salinity treatments in the gills and kidney tissues. The Chi-
square tests showed 25 common SNPs displaying ASE independent of tissue or salinity treatment,
and 444 SNPs in common for the tissue when comparing gills and kidney in freshwater and salty
water (tests 1 and 2). There were 33 common SNPs for the salinity challenge in the gills and kidney

that were related to the tissue differences (Table 1, Figure 3).
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Figure 3: Venn diagram illustrating the common ASE SNPs for each test. Absolute values of SNPs.

Validation of the pseudogenomes method for eliminating mapping bias in allele counts

Levene’s and Anderson-Darling tests confirmed that no equal variances and no normality were
achieved on the experimental groups, respectively. Therefore, a Welch’s T-test was performed in
order to validate the elimination of the mapping bias by comparing abundance distribution of the
ASE-levels on the SNPs retrieved with the classical method, after mapping towards the reference
genome, and on the same SNPs retrieved by the new pipeline using pseudogenomes for mapping.
The results indicate a significant difference between the mapping to the reference genome and the
use of the pseudogenomes proposed in this pipeline (p < 0.05, Table 2). The visualization of the test
indicates that the normally distributed data corresponds to the SNPs called on the pseudogenomes,
while the SNPs called from the reference genome show certain bias on the allele frequency towards

the reference allele (Figure 4).
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Group T-statistic P-value
GF -2.32 0.0206
GS -3.56 0.0004
KF  -2.89 0.0004
KS -3.37 0.0008

Table 2: Statistics and p-value of each Welch t-test. The test was performed on the abundance of the
ASE-levels called against the reference genome and called against the pseudogenome, n= 744 SNPs.
One test was performed in each experimental group: gills fresh water, gills salty water, kidney fresh
water, kidney salty water.
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Figure 4: Student’s t-test on each experimental group. The test was performed on the abundance of
the ASE-levels called against the reference genome and called against the pseudogenome, n=744
SNPs. One test was performed in each experimental group.

Validation of the SNP sites by sequencing / re-sequencing
In order to test the quality of the SNP calling we compared the single nucleotide variants (SNVs) on

the coding areas found on the DNA with those retrieved from RNA of the same individual. Our
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findings indicate that 89.1% of SNVs, including both synonymous and non-synonymous sites, were
accurately identified when calling from RNA from pseudogenomes, without using the DNA data as
reference. Therefore, the error rate was of a 10.9% for SNVs in the coding areas of the genome,
corresponding to a mismatch between the SNVs called from the RNA and those called from the DNA.
In order to determine the source of the error, we randomly chose 20 SNVs sites among the 10.9%
attributed to a mismatch between RNA and DNA SNV sites. We visualized these sites included in
the bam files with IGV software over the DNA of the individual whose transcriptome was analyzed.
A different genotype for the SNVs in the DNA than the one called by the Haplotype caller tool was
found in 9 sites out of 20 mismatches. In these sites, the RNA genotypes were correctly called. A
different genotype for the SNVs in the RNA than the one called by the Haplotype Caller tool was
found in 11 sites out of 20 mismatches. Among these cases, 7 sites had allele counts below 5, being
the low counts a possible source of error. Therefore, the partial error for identifying SNVs on the

RNA call may be a fraction the total error.

Functional analysis and classification of the ASE SNPs

The function described by GO analysis of the genes containing ASE SNPs was determined for each
test separately (Supplementary 5, 6, 7 and 8). The ASE variants after tissue differences conserved a
similar proportion of functions both in fresh and salty water fish (Supplementary 5 for test 1 and
Supplementary 6 for test 2, Table 1). Both tissues showed binding and catalytic activity as molecular
functions that included ASE SNPs (tests 1 and 2, Table 1, Supplementary 5 and 6). On the other hand,
some of the ASE SNPs had different gene function within the kidney and within the gills. The gills
showed SNPs in ASE corresponding to response to stimulus as well as ribonucleotide binding with
and without adenyl group (Supplementary 7, test 3). The kidney exposed to salinity had ASE SNPs
related to developmental process and anatomical structure development differently than in the gills
(Supplementary 8, test 4).

The chromosomal regions of interest for significant ASE SNPs are illustrated in the Manhattan plot
(Figure 5). The ASE SNPs were distributed along all the major linkage groups of the genome for all
the tests and no genomic region was found for a major abundance of ASE SNPs after exposure to

salinity in gills nor kidney.
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Figure 5: Manhattan plot generated with the ASE SNPs found in each test. The X-axis represents the
genomic positions of the SNPs, and the Y-axis represents the significance of the associations based
on the p-values obtained from the chi-square test (p<<0.05).

The significant ASE SNPs were classified according to their function and compared for each test
using a stacked bar chart (Figure 6). Notably, a substantial number of these synonymous SNPs were
identified in each experimental trial, save for the gill test conducted in both fresh and saline aquatic
environments (test 3), which exhibited a notably lower total SNP count. In contrast, the count of non-
synonymous SNPs remained consistently below 50 across all tests. Specifically, a limited subset,
fewer than 5 SNPs within each test, manifested frame-shift mutations, while instances of non-
frameshift deletions and insertions were also observed. One SNP remained unassigned and was

categorized as unknown variant (Figure 6).
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Figure 6: Classification of the ASE SNPs by the type predicted from the coordinates as set in the
annotation. Test 1 gills and kidney fresh water. Test 2 Gills and kidney in salty water. Test 3 Gills in
fresh and salty water. Test 4 Kidney in fresh and salty water. Chi-square test, p<0.05.

The analysis of differentially expressed genes revealed that 250 SNPs in ASE were also found to
correspond to differentially expressed genes (ASE-DEGs) when comparing gills and kidney tissues
in freshwater (test 1). Additionally, there were 326 ASE-DEGs between gills and kidney tissues in
saline water (test 2) (Table 1, Supplementary 9 and 10, respectively). In the context of salinity
comparison, 17 ASE-DEGs were identified in the gills (test 3) (Table 1, Supplementary 11). It is
noteworthy that no ASE-DEGs associated with differentially expressed genes were detected in the

kidney tissue (test 4).

Discussion

Two methods for SNP calling were compared in the present study. The first method was the
commonly used, which includes the mapping of the reads to the reference genome before the SNP
calling. These variants were substituted into the reference genome thus creating a pseudogenome. In
the second method tested, we created two pseudogenomes corresponding to the SNPs called in two
samples from different experimental groups. By doing so, we included in the pseudogenome variants
expressed under two different conditions of the study thus targeting the counts of alternative alleles.
The RNA data was further mapped to the pseudogenomes and the allele counts were averaged in
order to get an unbiased quantification of the SNPs expression that cannot be offered by the mapping

to the reference genome.
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The use of pseudogenomes based on known SNPs or by using several genomes from different

heterozygous individuals ¢, has been previously validated. Previous strategies used for removing

mapping bias required prior knowledge of genotypes '*17-2

, elimination of sites showing bias after
simulation 2>%, SNPs previously informed in a panel 2129 or direct use of a variant-aware alignment
3032 However, to the best of our knowledge, this is the first approach of pseudogenomes created
based on variant sites found exclusively in the RNA and without knowledge of the genotype in the
DNA. The pipeline developed in this study does not require this previous knowledge. Instead, it
detected the sites expressed in the individuals in the experiment. This detection allowed for the SNP
quantification in those organisms whose RNA was sequenced after exposure of the individuals to
different experimental conditions. For species lacking a reference genome, it is also possible to map

the RN Aseq data against two transcriptomes belonging to two samples of the experiment. Therefore,

the new analysis pipeline is applicable to a broad range of non-model organisms.

Our pipeline followed the GATK best practices recommendations ** and provided unbiased SNPs,
from which 63 are associated to the salinity challenge in gills and 347 in the kidney. The exploration
of ASE-SNPs in the context of diverse environmental conditions remains relatively limited in existing
literature. Previous studies have predominantly focused on examining expression of quantitative trait
loci (eQTLs) influenced by SNPs within specific regulatory regions **%. Interestingly, Knowles et
al. 3® developed a generalized linear model tool for analysing genome x environment interactions for
ASE, known as EAGLE. This tool, although applicable to specific model organisms, such as the
human liver, identified 442 ASE SNPs responsive to diverse molecular stimuli *. Intriguingly, the
number of ASE SNPs uncovered by our pipeline in a non-model organism context falls below the
range of results achieved by tools designed exclusively for model organisms. This discrepancy can

be attributed to the pipeline's focus on coding sequences of the RNA.

Validation

We performed a validation of the genotype on SNP sites identified by our pipeline from RNA towards
the DNAseq data of 8 individuals of tilapia exposed to freshwater. In the context of our investigation,
the outcomes yield compelling insights into the accurate identification of single nucleotide variations
of coding exons (SNVs), encompassing both synonymous and non-synonymous positions. The
successful identification of 89.1% of these SNVs underscores the efficacy of our approach, especially
considering that this error rate also includes mistakes from the SNP call on the DNA data. Moreover,
a majority of the sites showing errors after the SNP call on RNA are associated with read counts

below 5. As a result, implementing a stringent filter to include only counts above 5 will consistently
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mitigate the error rate. Nevertheless, the potential of overlooking crucial and informative sites
cautions against adopting this approach.

In summary, our study sheds light on the precision and limitations of SNV identification, with a
notable success rate of ~90%. These findings contribute to a deeper understanding of the intricacies

involved in SNV identification and emphasize the need for continued advancements in this field.

SNPs in ASE and regulation of gene expression

The pipeline deployed for SNP identification within the coding regions of RNA and subsequent
quantification of ASE has provided valuable insights into the genetic responses of Nile tilapia under
varying salinity conditions. Our approach yielded a cohort of 817 SNPs that were consistently
heterozygous across all 12 fish samples. Subsequently, the investigation revealed a range of 63 to 611
SNPs exhibiting ASE, with the specific count varying according to the experimental test conducted.
Notably, the analyses unveiled pronounced ASE patterns in response to diverse salinity treatments
across gills and kidney tissues. The Chi-square tests conducted revealed 25 SNPs with ASE that
remained consistent regardless of the tissue type or the salinity treatment, thereby indicating a degree

of independence from these factors.

ASE between tissues

A substantial subset of 444 SNPs exhibited common ASE between gills and kidney tissues when
comparing responses to fresh and salty water (tests 1 and 2). This shared ASE across tissues and
salinity treatments suggests an underlying genetic mechanism that potentially transcends tissue
specificity, evoking different allelic expression responses in the tissues independently of the salinity.
In previous studies, ASE was mostly detected when comparing the expression in different tissues, as
shown in cattle *’. Also in cattle, Guillocheau et al. !’ found that 13% of the total expressed genes in
muscle had SNPs in ASE associated with phenotypic traits and potentially causative of cis-regulation.
Allelic imbalance was also described in these studies, reporting that at minimum 89% of the total
SNPs were imbalanced in at least one tissue out of 18 studied *’. Allelic imbalance was also common
between 19 muscle samples of the Limousine cattle breed !’. It has been suggested that the
phenomenon of tissue-specific regulation of allele expression and the regulation of ASE may be
driven by tissue-specific enhancers or by post-transcriptional differences as found in the mouse
allelome .

In summary, our findings highlight the presence of ASE in tilapia, akin to other species, revealing a
shared phenomenon of inter-tissue variation. The existence of ASE suggests the operation of complex

regulatory mechanisms of expression that transcend species boundaries. To shed light on the
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evolution of such a mechanism, it is imperative to explore its regulatory pathways, identifying

commonalities and differences across organisms.

Salinity challenge in tilapia

Additionally, our investigation identified 33 SNPs exhibiting common ASE in response to the salinity
challenge across both gill and kidney tissues. The common patterns on the GO expression for both
tissues facing a salinity challenge corresponded to molecule and ion binding (Supplementary 5, 6, 7
and 8). This shared response suggests a coordinated attempt to counteract oxidative stress and uphold
cellular viability in a systemic approach to achieve oxidative homeostasis between tissues and under
the salinity challenge by allelic expression regulation.

Many different reasons can explain this variable expression of the alleles after salinity challenge.
Gene imprinting caused by environmental factors, silencing the maternal or paternal allele, is one
case *°. The spectrum of silencing ranges from monoallelic expression (MAE), where one allele is
completely silenced, to imbalances of varying degrees. Also cis-acting mutations may alter regulation
for just one allele through a change to promoter/enhancer regions (transcription factor binding sites)
40 or even through 3’ UTR mutations that affect mRNA stability or microRNA binding *'.

In light of these mechanisms, the gills exhibited ASE in genes associated with the ribonucleotide
binding with and without adenyl group, upon salinity exposure (Supplementary 7). Earlier
transcriptomic and proteomic analyses of these data indicated that there is a response in the gills to
salinity by differential expression of genes related to epithelial turnover “>**. These previous results
are consistent with our current analysis where ASE SNPs were associated to DEGs in the gills but
not in the kidney (Table 1). However, the total SNP count exhibited a remarkable reduction when
compared to the kidneys (test 3 and 4, Table 1). Altogether may indicate the differential expression
found in gills to cope with the salinity challenge may be regulated partially by ASE, thus driving the
epithelium turnover.

Meanwhile, the kidneys showed SNPs in ASE related to developmental process and anatomical
structure development after salinity exposure (test 4, Supplementary 8). However, no differentially
expressed genes correspond to ASE. These results align with proteomic analysis of Nile tilapia
kidneys, revealing higher translational modifications in the kidney as a response to the salinity
exposure in contrast with few differentially expressed genes **. The mechanisms in the kidney to cope
with the salinity challenge were related to proteomic changes reflected already by the SNPs in ASE
from our study.

A growing body of research in teleosts has unveiled ASE patterns in response to various
environmental factors. In the case of turbot (Scophthalmus maximus), SNP studies discovered the sex

determination patterns of ASE #°. Similarly, SNP markers in Atlantic salmon (Salmo salar) were
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found to enhance DHA synthesis 4 while eQTL were associated with resistance to lice in Atlantic
salmon *’ and broad scale suppression of gene expression was detected in triploid medaka (Oryzias
latipes) *®. Our analysis stands in alignment with this emerging trajectory of ASE findings in teleosts
facing diverse environmental challenges. Our results suggest that the salinity, as an environmental
factor, may challenge each tissue in a different manner. The gill's response is characterized by a higher
number of DEGs including ASE SNPs. In contrast, the kidney's response involves a higher frequency
of ASE SNPs, correlating with proteomic changes previously determined *4. These results collectively
emphasize the role of salinity as a pivotal environmental factor influencing allelic expression
dynamics.

In conclusion, the ASE SNPs found within the context of a salinity challenge has uncovered a rich
landscape of genetic responses in Nile tilapia gill and kidney tissues. Two distinct strategies employed
by Nile tilapia to confront the salinity challenge through ASE. The first strategy entails a systemic
response, characterized by ASE patterns intricately linked to protein binding and oxidation-reduction
processes. This widespread approach reflects a concerted effort to adapt and manage the salinity stress
across multiple tissues. Conversely, the second approach is marked by nuanced differentiation. In the
gills, a concerted effort to address the challenge is evident through a higher prevalence of ASE related
to DEGs. This tailored response is particularly notable given the reduced number of DEGs observed
in this tissue. In contrast, the kidney employs a proteomic approach, where ASE patterns exhibit a
broader scope, encompassing SNPs unrelated to DEGs. This distinct strategy indicates a sophisticated

mechanism by which the kidney leverages allelic expression to navigate the salinity stress, potentially

involving regulatory mechanisms beyond traditional gene expression pathways.

Type of SNPs in ASE

The significant SNPs in ASE, underwent additional analysis using a stacked bar chart, presented in
Figure 6. The prominent SNPs identified for specific allelic expression were predominantly single
nucleotide variants. Synonymous SNVs, which preserve amino acid composition within translated
proteins, significantly outnumbered non-synonymous SNPs by approximately 8 to 13 times across all
tests. Synonymous polymorphisms have potential impact on messenger RNA splicing, stability,
structure, and protein folding *°. These alterations can substantially affect protein function, modulate
cellular responses to therapeutic targets, and frequently elucidate distinct patient reactions to specific

medications *°

, which becomes particularly relevant following an environmental challenge as
presented in this study.

In contrast, non-synonymous SNPs consistently remained below 50 across all tests, implying a level
of coding region conservation. Comparative investigations into these SNV types have revealed that

diversity among non-synonymous SNVs is notably lower than among synonymous substitutions °.
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This discrepancy is attributed to natural selection's influence on non-synonymous SNPs 5!,
highlighting how environmental pressures influence the prevalence and distribution of different SNV
types. Moreover, the identified frameshift and non-frameshift mutations amplify the scope of genetic
variability and its potential functional implications. The presence of an unclassified SNP serves as a
reminder of the complexities of genetic annotation and the ongoing pursuit to decipher the functional
significance of genetic variation. Overall, the paragraph contributes to our understanding of how
genetic variation, influenced by natural selection and environmental challenges, plays a pivotal role

in shaping the evolutionary trajectories of organisms.

Regions of the genome affected by different allele expression

The pipeline targets the regions of the genome that may be affected by the different expression of the
alleles in two different approaches: with a heat-map on the allelic imbalance (Figure 2) and a
Manhattan plot on the ASE SNPs (Figure 5).

The visualization of allele frequency analysis for the identified SNPs within each experimental group
was executed using a heat-map according to a distribution on the genome, as shown in Figure 2. Gill
and kidney tissues exhibited very different allele frequency patterns, thus illustrating the major
differences in allele expression depending on the tissue, as previously described 7. Striking a
consistent pattern, gills in fresh and salty water exhibited parallel allele frequency trends, yet
discernible disparities were evident between the two environment types. A similar effect is visible in
kidney from fresh and from salty water. Notably, exposure to saline water triggered pronounced shifts
in allelic balance within the respective groups.

The identification and visualization of significant allelic expression ASE SNPs through the lens of
chi-square tests across chromosomal regions were achieved using a Manhattan plot (Figure 5). No
distinct genomic region emerged as an exclusive hotspot for an abundance of ASE SNPs in response
to salinity exposure, neither in gills nor kidney tissues. This lack of clustering suggests a much more
dispersed genetic response to salinity stress as previously indicated by the heat-map, with significant
ASE SNPs dispersed across the genome rather than being concentrated in specific regions. Focusing
solely on ASE SNPs from the entire pool of RNA-derived SNPs could potentially limit our ability to
identify specific genomic regions responsible for regulating allelic expression. However, this
approach effectively targets SNPs that undergo altered expression in response to the experimental
factor being investigated — in this instance, the salinity challenge. The results of our analysis show
that while there are patterns of allelic imbalance throughout the genome, those do not correspond
with exposure to salinity.

In conclusion, the combined insights from the heat-map and Manhattan plot analyses presented in the

pipeline offer a comprehensive understanding of the genetic dynamics underlying allelic expression
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changes in response to environmental shifts. The heat-map underscores the tissue-specific allelic
imbalances on the experimental groups, while the Manhattan plot showcases the distributed nature of
significant ASE SNPs across the genome. This integrative approach advances our comprehension of
the genetic mechanisms governing responses to environmental challenges, shedding light on the

intricate regulatory networks operating within the examined organisms.

The pipeline presented in this study has proven to be a robust and versatile tool for SNP quantification,
enabling unbiased assessment of SNPs in ASE resulting from fish exposures to an environmental
challenge. This methodology operates without requiring prior genotype knowledge, making it
suitable for model and non-model organisms, regardless of strain or the availability of a reference
genome. This approach opens avenues for reanalyzing data from differentially expressed gene (DEG)
experiments to uncover gene regulation and shifts in biochemical networks driven by specifically
expressed alleles. Furthermore, the SNP coordinates generated by this pipeline can be seamlessly
integrated with other sources of transcript data, including methylome information. This pipeline,
based on Snakemake and integrating GATK best practices, tailored to the unique context of non-
model organisms and has facilitated a deeper understanding of how genetic variation influences gene
expression responses under different conditions. By extending the pipeline's scope to include analysis
of non-coding regions, we envision a compelling prospect: the utilization of our pipeline may
significantly advance the study of regulatory regions in non-model organisms. Such an expansion
could potentially enhance our understanding of the intricate genetic responses these organisms exhibit
in the face of environmental challenges.

The findings of this study, coupled, therefore, with insights from comparative research, underscore
the intricate nature of allelic expression dynamics, tissue-specificity, and regulatory mechanisms,

inviting further exploration into the epigenomic dimensions of ASE regulation in species like tilapia.

In conclusion, our developed pipeline not only reveals unbiased allele-specific expression in response
to environmental challenges, as demonstrated in the context of salinity alterations in Nile tilapia, but
it also prioritizes user convenience. By integrating various tools and virtual environments within the
Snakemake framework, our pipeline streamlines the analytical process, empowering researchers to
explore and interpret their data efficiently. Furthermore, the graphical representation of results adds
a layer of visual comprehension, enhancing the accessibility and impact of our findings. This holistic
approach underscores our commitment to advancing the field of allele-specific expression analysis

while prioritizing usability and clarity for researchers in non-model organism studies.
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Material and methods

Ethical statement

This study was approved by the Agricultural Research Organization Committee for Ethics in
Experimental Animal Use, and was carried out in compliance with the current laws governing
biological research in Israel (Approval number: IL-715/17). The study is reported in accordance with

the ARRIVE guidelines (https://arriveguidelines.org).

Origin, processing and sequencing of samples

The sequences used in this study were from an experiment performed in Nile tilapia fish previously
described by Root et al.**** In summary, 12 male Nile tilapia were randomly allocated into two 600-
liter freshwater tanks and allowed to acclimate for two weeks. One group was subjected to a gradual
increase in salinity of 5 ppt per day until reaching a final salinity of 25 ppt, at which point gill and
kidney samples were collected after 24 hours. In addition, eight fish were individually placed in 40
liter freshwater tanks and allowed to acclimate for two weeks before sampling gills for RNAseq and
fin for DNAseq.

The samples were preserved in RNAsave (Biological Industries, Beit-Haemek, Israel) and stored at -
20°C until extraction, following a 24-hour incubation period at 4°C. The mRNA of the first 12
individuals' samples was extracted using TRIzol reagent (Thermo Fisher Scientific), and purified
using the TURBO DNA-free kit (Invitrogen) to eliminate DNA contamination. The quality of the
total mMRNA samples was assessed at the Israel National Center for Personalized Medicine (INCPM)
at the Weizmann Institute of Science (Rehovot, Israel) using the TapeStation Agilent 2200 system
before library preparation and sequencing on an Illumina Hi-Seq 2500 device. For the additional eight
individuals, the mRNA and DNA were extracted using the RNeasy mini kit and DNeasy blood and
tissue kit (Qiagen, Hilden, Germany), respectively. RNA and DNA sequencing for the additional
eight individuals were conducted at the INCPM using the Illumina Novaseq 600 platform, with the
RNA samples sequenced to an average sequencing depth of 10 times, and the DNA samples
sequenced to an average sequencing depth of 30 times, both of which included unique molecular

identifier (UMI) barcoding.

Pipeline for mapping bias removal using pseudogenomes and SNP calling

We developed and utilize a Snakemake-based °? pipeline for SNP calling and removal of mapping
bias using pseudogenomes. We implemented this pipeline with and without prior knowledge of
genotypes, and the entire code along with scripts 1is available at GitHub

(https://github.com/AylaScientist/Snakemake_for_SNPs). Fastqg files were trimmed with
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Trimmomatic >3 and quality was verified with FASTQC (v0.11.8, Andrews, 2010) before mapping
against the O. niloticus reference genome (NMBU GCF_001858045.2) using STAR (v2.7.1a, Dobin
et al., 2013). SNPs were called following GATK best practices ** and Picard tools were used (release
2.27.5). Two pseudogenomes were constructed from a vcf file following the protocol by Johan Zicola

(https://github.com/johanzi/make pseudogenome, MIT license) for downstream analysis. Two final

vef files joining the SNPs from all samples were annotated using ANNOVAR 3. Allele depth and
genotypes were collected into a table (VariantsToTable, GATK).

Data engineering and statistical analysis

After the pipeline produced two data-sets, each containing alternative SNPs for all sites identified in
one of the pseudogenomes, Python v3.7.3 scripts developed in-house and part of the Snakemake
pipeline were used to merge and filter the data-sets for multiallelic sites using Pandas and Numpy.
The counts of each reference and alternative polymorphic site were then averaged for each sample.
SNPs with a depth of one allele less than 3 and those with a total allele depth less than 10 were
removed to avoid homozygosis. As the genotype is unknown, only the SNPs shared by all individuals

with both alleles expressed were retained in the final data-set of consensus SNPs.

Validation of the pseudogenomes method for eliminating mapping bias in allele counts

To validate the mitigation of mapping bias, a comparison was conducted by assessing allele
frequencies of ASE-levels in two scenarios: SNPs obtained through the conventional method
involving mapping to the reference genome, and SNPs retrieved via the novel pipeline, which
employed pseudogenomes for mapping. After studying the normality and the equal variances with
Anderson-Darling and Levene’s tests respectively, Welch’s t-test was performed on the common

SNPs called by each method.

Validation of the SNP sites by sequencing / re-sequencing

We used a pipeline to identify SNPs from both DNA and RNA, and conducted a qualitative analysis
to detect false positives by comparing SNPs identified from RNA with those present in DNA. We
selected SNPs that had biallelic expression and were exonic single nucleotide variants (SNVs),
excluding indels and intronic sites. The mismatches were attributed to the error from SNP calling

from RNA information. We further used IGV software >’ to analyze 20 SNV for false negatives.

Functional analysis and classification of the ASE SNPs
Significant ASE SNPs for each treatment were analyzed for gene ontology (GO) functions. DEG
analysis was performed with the DESeq package °® in R (v 3.6.3, Development Core Team, 2013) for


https://github.com/johanzi/make_pseudogenome

484
485
486

487

488
489

490

491
492

493

494

495
496
497

498
499

500

501
502
503
504
505
506
507
508
509
510
511
512
513

salinity effects. In order to find regulatory pathways, the SNPs in ASE were contrasted with the

significant DEGs.

Data availability

The sequencing data was submitted to SRA under the bioproject PRINA669315.

Code Availability

The snakemake pipeline was submitted to the GitHub
https://github.com/AylaScientist/snakemake for SNPs.
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