

A pipeline for analysis of allele specific expression reveals salinity-dependent regulation in Nile tilapia

Aurora Campo (✉ ayla.bcn@gmail.com)

Agricultural Research Organization

Moran Gershoni

Agricultural Research Organization

Adi Doron-Faigenboim

Agricultural Research Organization

Dietmar Kültz

University of California, Davis

Avner Cnaani

Agricultural Research Organization

Article

Keywords:

Posted Date: January 22nd, 2024

DOI: <https://doi.org/10.21203/rs.3.rs-3735302/v1>

License: This work is licensed under a Creative Commons Attribution 4.0 International License.

[Read Full License](#)

Additional Declarations: No competing interests reported.

1 **A pipeline for analysis of allele specific**

2 **expression reveals salinity-dependent**

3 **regulation in Nile tilapia**

4

5 Aurora Campo^{1,*}, Moran Gershoni¹, Adi Doron-Faigenboim², Dietmar Kültz³, Avner Cnaani^{1,*}

6

7 1. Institute of Animal Science, Agricultural Research Organization, Rishon LeZion, Israel

8 2. Institute of Plant Science, Agricultural Research Organization, Rishon LeZion, Israel

9 3. Department of Animal Sciences, University of California, Davis, CA, USA

10

11 Correspondence:

12 Aurora Campo, Department of Poultry and Aquaculture, Institute of Animal Sciences, Agricultural
13 Research Organization, Volcani Center, Rishon LeZion, Israel. E-mail: ayla.bcn@gmail.com

14 Avner Cnaani, Department of Poultry and Aquaculture, Institute of Animal Sciences, Agricultural
15 Research Organization, Volcani Center, Rishon LeZion, Israel. E-mail: avnerc@agri.gov.il

16

17

18

19 **Abstract**

20 Species living in changing environments require the acclimatization of individual organisms, which
21 may be significantly influenced by allele specific expression (ASE). Data from RNA-seq experiments
22 can be used to identify and quantify the expressed alleles. However, conventional allele matching to
23 the reference genome creates a mapping bias towards the reference allele that prevents a reliable
24 estimation of the allele counts. We developed a pipeline that allows identification and unbiased
25 quantification of the alleles corresponding to an RNA-seq dataset, without any previous knowledge
26 of the haplotype. To achieve the unbiased mapping, we generate two pseudogenomes by substituting
27 the alternative alleles on the reference genome. The SNPs are further called against each

28 pseudogenome, providing two SNP data-sets that are averaged for calculation of the allele depth to
29 be merged in a final SNP calling file. The pipeline presented here can calculate ASE in non-model
30 organisms and can be applied to previous RNA-seq data-sets for expanding studies in gene expression
31 regulation.

32

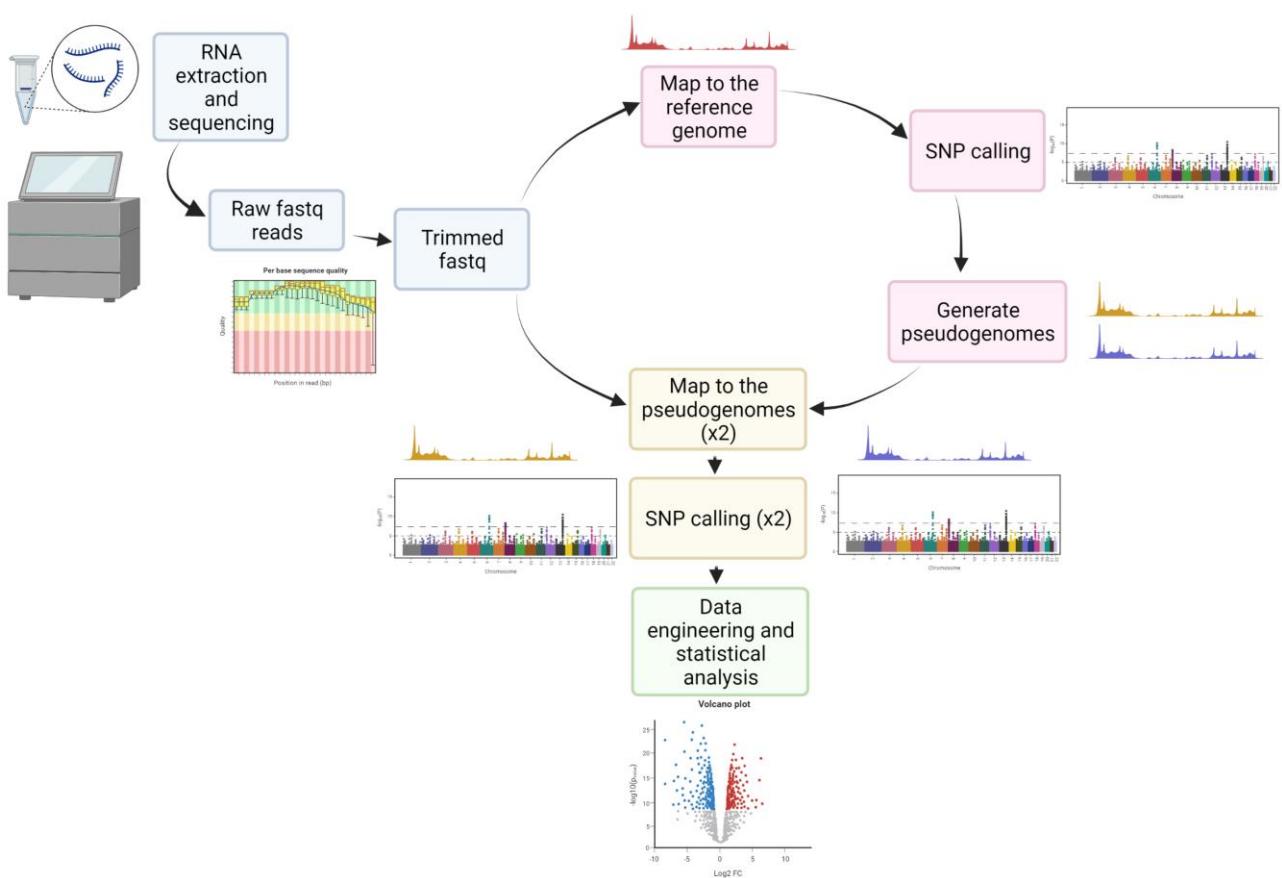
33 **Introduction**

34 High-throughput RNA-seq is a common technique in many fields of research, providing information
35 on differentially expressed genes (DEGs) in response to different conditions or experimental factors
36 ¹. Gene expression is quantified based on read counts that correspond to a particular gene. These reads
37 contain single-nucleotide polymorphism (SNP) sites, providing information on the presence of
38 different alleles. Heterozygous sites typically have equal transcription of both alleles, resulting in an
39 allele specific expression (ASE) levels of 0.5 for each. A difference in the expression ratio between
40 the two alleles is referred to as allelic imbalance (AI). This variation in expression patterns highlights
41 the significance of heterozygosity and genetic variation in adaptation and acclimatization ²⁻⁵.

42 It is possible to quantify ASE by calculating the frequencies of expressed alleles ⁶⁻⁸. To quantify
43 alleles' expression, it is necessary to identify heterozygous sites in a gene and estimate the counts for
44 each site. However, the most significant challenge of this measurement arises when mapping two
45 different alleles to a reference genome, with only one being identical to the reference. The mismatch
46 between the non-identical allele and the reference genome will discard some reads, leading to an
47 overestimation of the identical allele ⁹. This mapping bias affects the accuracy of the allele counts in
48 gene expression experiments and creates difficulty in finding the regulatory effects of ASE ^{10,11}.

49 To resolve this bias, prior knowledge of the sample haplotype is required, from either DNA-
50 sequencing or available genotype data and reference haplotypes like HapMap ¹² or SNP panels ¹³⁻¹⁵.
51 New approaches use multiple reference genomes for a broader view of SNPs in a population ¹⁶.

52 However, this is not applicable in RNA-seq experiments where genomic DNA is not sequenced.
53 We have developed a pipeline to call SNPs and analyze ASE, using RNA-seq data from experiments
54 characterizing DEGs under different environmental conditions (Figure 1). Our pipeline enables
55 quantification of ASE on coding sequences of the genome in non-model organisms without prior
56 genotypic knowledge. We overcome the mapping bias by creating two pseudogenomes based on
57 SNPs from two samples from different experimental groups. A final SNP data-set is generated by
58 averaging the counts of each polymorphic site obtained from each pseudogenome, which can then be
59 subjected to statistical tests to assess the relationship between allelic expression and environmental
60 or physiological factors. Finally, the genomic locations of ASE SNPs can be correlated with other
61 gene expression data, such as DEGs and methylation sites, to complement the results.



64 **Figure 1:** Schema representing the key steps of the pipeline. The RNA is extracted from the
 65 experimental samples and sequenced for obtaining of the *fastq* files. These files are trimmed and after
 66 quality filters are mapped to the reference genome for a first SNP calling. The biallelic variant sites
 67 obtained in this first call are then used for the creation of two pseudogenomes. The *fastq* files are then
 68 mapped twice, one to each pseudogenome, and the SNP call is also performed twice. The resulting
 69 variant call files are then submitted to home scripts for the merging and averaging of the allele depths.
 70 The pipeline is developed in Snakemake and the scripts were submitted to GitHub.

72 In this work, we applied our pipeline to study the effect of high salinity on Nile tilapia (*Oreochromis*
 73 *niloticus*), a freshwater fish. We performed a quantification with minimal bias of bi-allelic sites and
 74 statistical analysis of SNPs in ASE in the gills and kidney of tilapia in freshwater and brackish water
 75 environments.

78 **Results**

79 *Data engineering and statistical analysis*

80 SNPs retrieved by the pipeline were filtered and ASE levels were retrieved using a chi-square test for
81 statistical analysis. We identified 817 SNPs that were heterozygous in all 12 fish and found 63 to 611
82 SNPs with allele-specific expression, depending on the test (Table 1, Supplementary 1-4). The allele
83 frequency analysis of the identified SNPs within each experimental group was visualized through a
84 heat-map (Figure 2). A consistent allele frequency pattern was observed for both gill and kidney
85 tissues, with notable discrepancies between the two tissues. The groups exposed to salty water
86 exhibited a heightened prevalence of allelic imbalances, either favoring the reference or alternative
87 alleles (Figure 2).

88

Test description **Test number** **SNPs in ASE** **Genes containing ASE** **DEGs with SNPs in ASE**

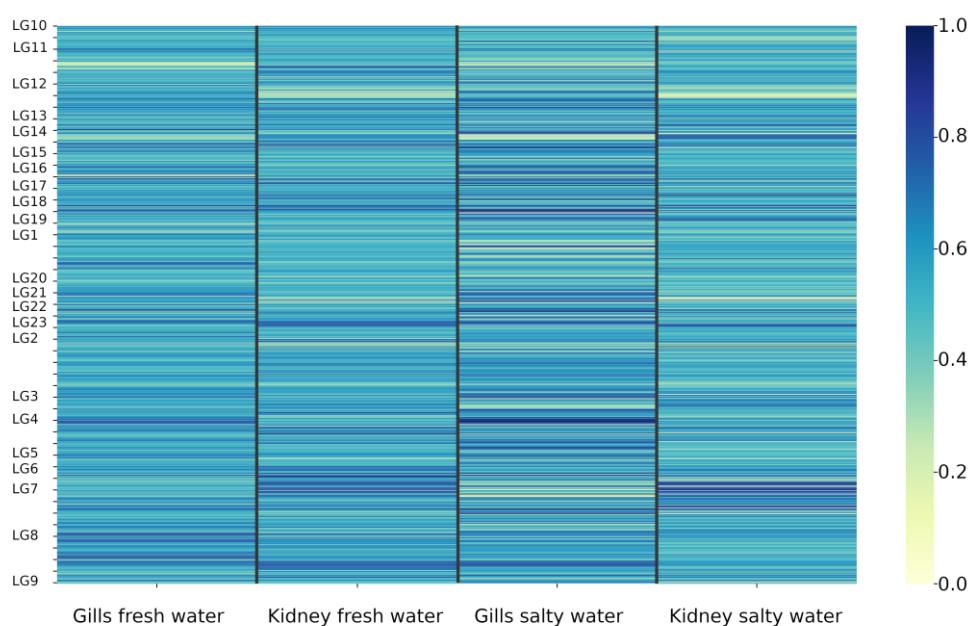
Gills and kidney in fresh water	1	474	324	250
Gills and kidney in salty water	2	611	406	326
Gills in fresh and salty water	3	63	55	17
Kidney in fresh and salty water	4	347	240	0

89

90 **Table 1:** Number of SNPs obtained in each test after applying the pipeline. Namely: test 1 gills and
91 kidney in freshwater, test 2 gills and kidney in salty water, test 3 gills in fresh and salty water, test 4
92 kidney in fresh and salty water. Chi-square test on the ASE-levels data for each individual. Five
93 individuals in each group, n=10 for each test, p<0.05.

94

95

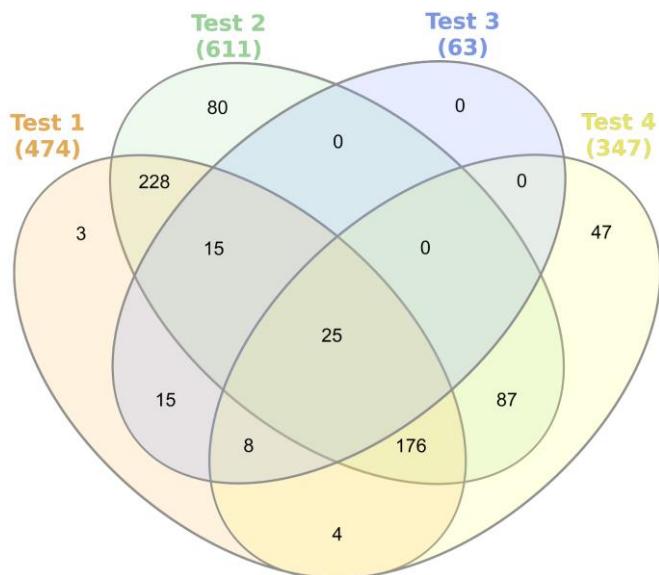


96

97 **Figure 2:** Heat-map showing allelic imbalance between the experimental groups. The Y-axis shows
98 the labels of the chromosomes in which the SNPs are located. The sequence of SNPs by chromosome
99 follows a sequential order from the beginning of the chromosome till the end according to the
100 annotation provided for the reference genome.

101
102 ASE was observed in response to different salinity treatments in the gills and kidney tissues. The Chi-
103 square tests showed 25 common SNPs displaying ASE independent of tissue or salinity treatment,
104 and 444 SNPs in common for the tissue when comparing gills and kidney in freshwater and salty
105 water (tests 1 and 2). There were 33 common SNPs for the salinity challenge in the gills and kidney
106 that were related to the tissue differences (Table 1, Figure 3).

107



108
109 **Figure 3:** Venn diagram illustrating the common ASE SNPs for each test. Absolute values of SNPs.
110

111 *Validation of the pseudogenomes method for eliminating mapping bias in allele counts*
112 Levene's and Anderson-Darling tests confirmed that no equal variances and no normality were
113 achieved on the experimental groups, respectively. Therefore, a Welch's T-test was performed in
114 order to validate the elimination of the mapping bias by comparing abundance distribution of the
115 ASE-levels on the SNPs retrieved with the classical method, after mapping towards the reference
116 genome, and on the same SNPs retrieved by the new pipeline using pseudogenomes for mapping.
117 The results indicate a significant difference between the mapping to the reference genome and the
118 use of the pseudogenomes proposed in this pipeline ($p < 0.05$, Table 2). The visualization of the test
119 indicates that the normally distributed data corresponds to the SNPs called on the pseudogenomes,
120 while the SNPs called from the reference genome show certain bias on the allele frequency towards
121 the reference allele (Figure 4).

122

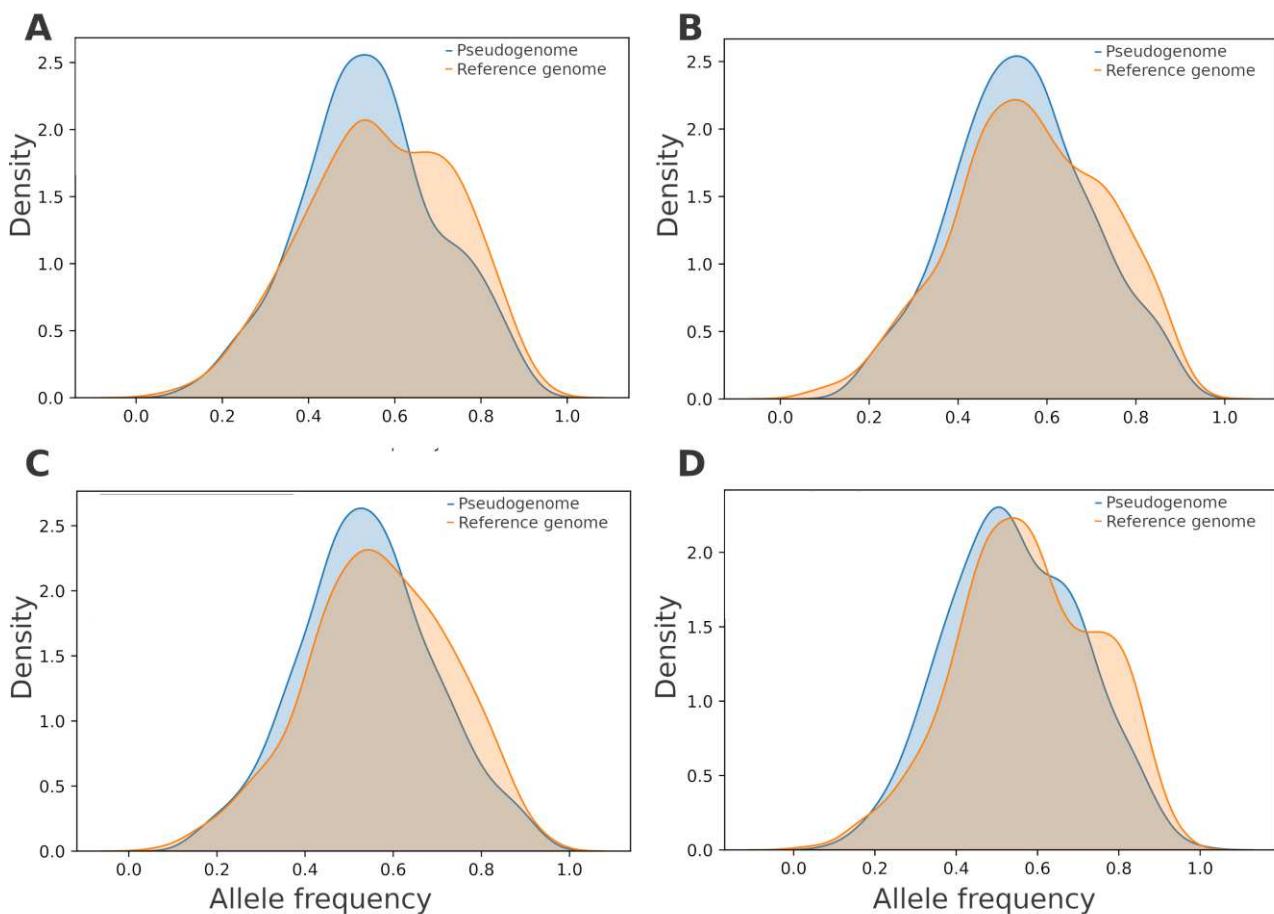
123

Group	T-statistic	P-value
GF	-2.32	0.0206
GS	-3.56	0.0004
KF	-2.89	0.0004
KS	-3.37	0.0008

124

125 **Table 2:** Statistics and p-value of each Welch t-test. The test was performed on the abundance of the
 126 ASE-levels called against the reference genome and called against the pseudogenome, n= 744 SNPs.
 127 One test was performed in each experimental group: gills fresh water, gills salty water, kidney fresh
 128 water, kidney salty water.

129



130

131

132 **Figure 4:** Student's t-test on each experimental group. The test was performed on the abundance of
 133 the ASE-levels called against the reference genome and called against the pseudogenome, n=744
 134 SNPs. One test was performed in each experimental group.

135

136 *Validation of the SNP sites by sequencing / re-sequencing*

137 In order to test the quality of the SNP calling we compared the single nucleotide variants (SNVs) on
 138 the coding areas found on the DNA with those retrieved from RNA of the same individual. Our

139 findings indicate that 89.1% of SNVs, including both synonymous and non-synonymous sites, were
140 accurately identified when calling from RNA from pseudogenomes, without using the DNA data as
141 reference. Therefore, the error rate was of a 10.9% for SNVs in the coding areas of the genome,
142 corresponding to a mismatch between the SNVs called from the RNA and those called from the DNA.
143 In order to determine the source of the error, we randomly chose 20 SNVs sites among the 10.9%
144 attributed to a mismatch between RNA and DNA SNV sites. We visualized these sites included in
145 the *bam* files with IGV software over the DNA of the individual whose transcriptome was analyzed.
146 A different genotype for the SNVs in the DNA than the one called by the Haplotype caller tool was
147 found in 9 sites out of 20 mismatches. In these sites, the RNA genotypes were correctly called. A
148 different genotype for the SNVs in the RNA than the one called by the Haplotype Caller tool was
149 found in 11 sites out of 20 mismatches. Among these cases, 7 sites had allele counts below 5, being
150 the low counts a possible source of error. Therefore, the partial error for identifying SNVs on the
151 RNA call may be a fraction the total error.

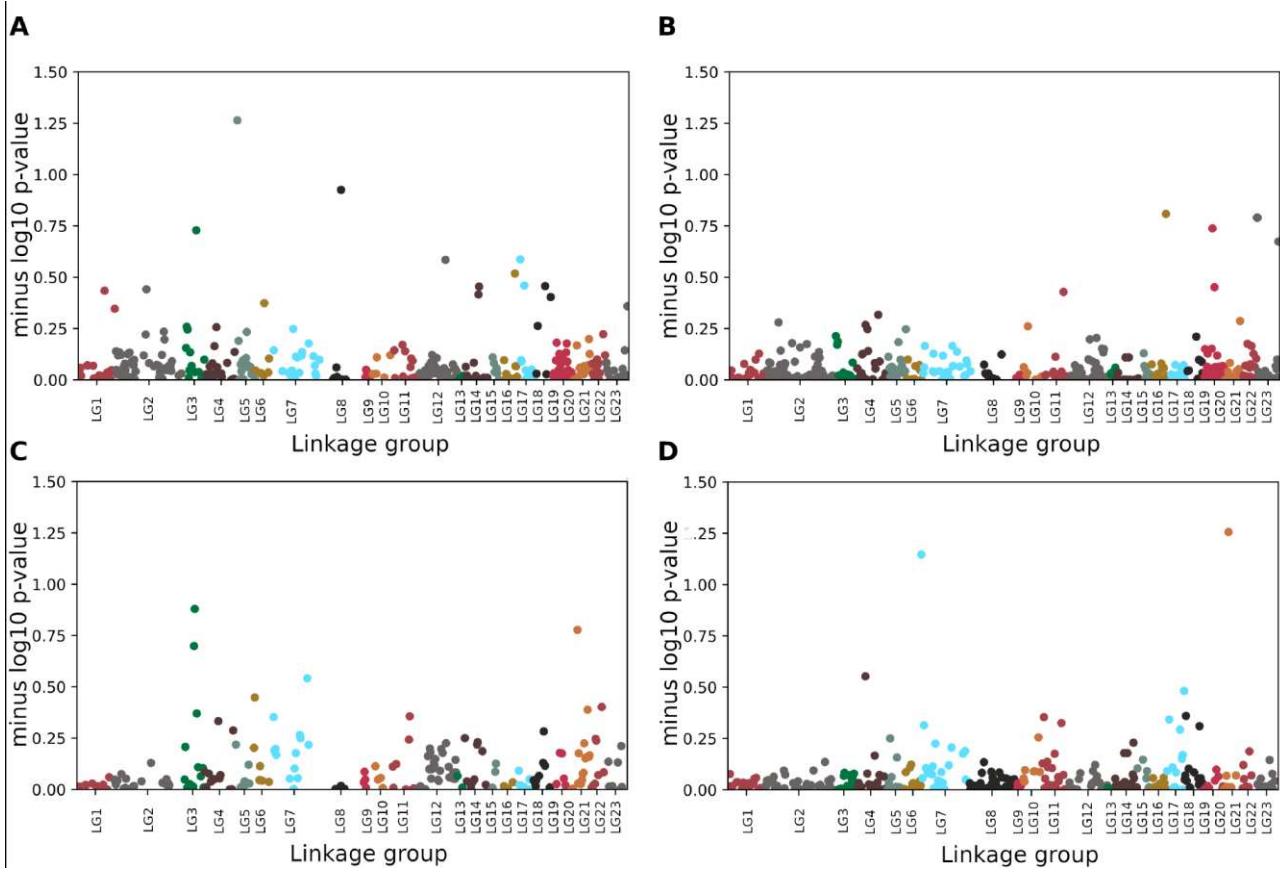
152

153 *Functional analysis and classification of the ASE SNPs*

154 The function described by GO analysis of the genes containing ASE SNPs was determined for each
155 test separately (Supplementary 5, 6, 7 and 8). The ASE variants after tissue differences conserved a
156 similar proportion of functions both in fresh and salty water fish (Supplementary 5 for test 1 and
157 Supplementary 6 for test 2, Table 1). Both tissues showed binding and catalytic activity as molecular
158 functions that included ASE SNPs (tests 1 and 2, Table 1, Supplementary 5 and 6). On the other hand,
159 some of the ASE SNPs had different gene function within the kidney and within the gills. The gills
160 showed SNPs in ASE corresponding to response to stimulus as well as ribonucleotide binding with
161 and without adenyl group (Supplementary 7, test 3). The kidney exposed to salinity had ASE SNPs
162 related to developmental process and anatomical structure development differently than in the gills
163 (Supplementary 8, test 4).

164 The chromosomal regions of interest for significant ASE SNPs are illustrated in the Manhattan plot
165 (Figure 5). The ASE SNPs were distributed along all the major linkage groups of the genome for all
166 the tests and no genomic region was found for a major abundance of ASE SNPs after exposure to
167 salinity in gills nor kidney.

168



169

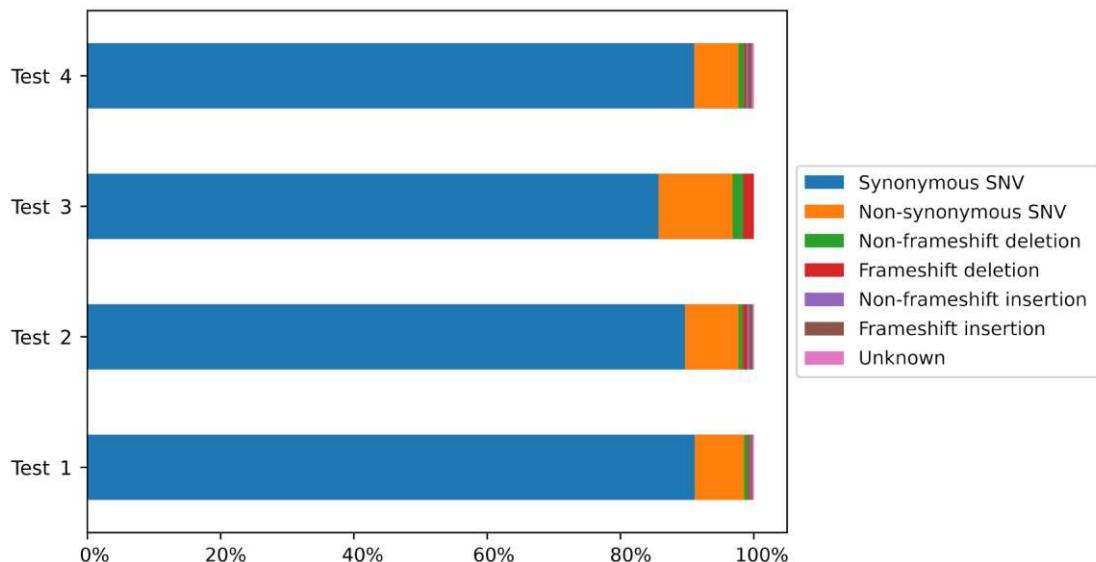
170

171 **Figure 5:** Manhattan plot generated with the ASE SNPs found in each test. The X-axis represents the
 172 genomic positions of the SNPs, and the Y-axis represents the significance of the associations based
 173 on the p-values obtained from the chi-square test ($p < 0.05$).

174

175 The significant ASE SNPs were classified according to their function and compared for each test
 176 using a stacked bar chart (Figure 6). Notably, a substantial number of these synonymous SNPs were
 177 identified in each experimental trial, save for the gill test conducted in both fresh and saline aquatic
 178 environments (test 3), which exhibited a notably lower total SNP count. In contrast, the count of non-
 179 synonymous SNPs remained consistently below 50 across all tests. Specifically, a limited subset,
 180 fewer than 5 SNPs within each test, manifested frame-shift mutations, while instances of non-
 181 frameshift deletions and insertions were also observed. One SNP remained unassigned and was
 182 categorized as unknown variant (Figure 6).

183



184

185

186 **Figure 6:** Classification of the ASE SNPs by the type predicted from the coordinates as set in the
187 annotation. Test 1 gills and kidney fresh water. Test 2 Gills and kidney in salty water. Test 3 Gills in
188 fresh and salty water. Test 4 Kidney in fresh and salty water. Chi-square test, $p < 0.05$.

189

190 The analysis of differentially expressed genes revealed that 250 SNPs in ASE were also found to
191 correspond to differentially expressed genes (ASE-DEGs) when comparing gills and kidney tissues
192 in freshwater (test 1). Additionally, there were 326 ASE-DEGs between gills and kidney tissues in
193 saline water (test 2) (Table 1, Supplementary 9 and 10, respectively). In the context of salinity
194 comparison, 17 ASE-DEGs were identified in the gills (test 3) (Table 1, Supplementary 11). It is
195 noteworthy that no ASE-DEGs associated with differentially expressed genes were detected in the
196 kidney tissue (test 4).

197

198 Discussion

199 Two methods for SNP calling were compared in the present study. The first method was the
200 commonly used, which includes the mapping of the reads to the reference genome before the SNP
201 calling. These variants were substituted into the reference genome thus creating a pseudogenome. In
202 the second method tested, we created two pseudogenomes corresponding to the SNPs called in two
203 samples from different experimental groups. By doing so, we included in the pseudogenome variants
204 expressed under two different conditions of the study thus targeting the counts of alternative alleles.
205 The RNA data was further mapped to the pseudogenomes and the allele counts were averaged in
206 order to get an unbiased quantification of the SNPs expression that cannot be offered by the mapping
207 to the reference genome.

208 The use of pseudogenomes based on known SNPs^{13,14} or by using several genomes from different
209 heterozygous individuals¹⁶, has been previously validated. Previous strategies used for removing
210 mapping bias required prior knowledge of genotypes^{13,17-22}, elimination of sites showing bias after
211 simulation²³⁻²⁶, SNPs previously informed in a panel²⁷⁻²⁹, or direct use of a variant-aware alignment
212³⁰⁻³². However, to the best of our knowledge, this is the first approach of pseudogenomes created
213 based on variant sites found exclusively in the RNA and without knowledge of the genotype in the
214 DNA. The pipeline developed in this study does not require this previous knowledge. Instead, it
215 detected the sites expressed in the individuals in the experiment. This detection allowed for the SNP
216 quantification in those organisms whose RNA was sequenced after exposure of the individuals to
217 different experimental conditions. For species lacking a reference genome, it is also possible to map
218 the RNAseq data against two transcriptomes belonging to two samples of the experiment. Therefore,
219 the new analysis pipeline is applicable to a broad range of non-model organisms.
220

221 Our pipeline followed the GATK best practices recommendations³³ and provided unbiased SNPs,
222 from which 63 are associated to the salinity challenge in gills and 347 in the kidney. The exploration
223 of ASE-SNPs in the context of diverse environmental conditions remains relatively limited in existing
224 literature. Previous studies have predominantly focused on examining expression of quantitative trait
225 loci (eQTLs) influenced by SNPs within specific regulatory regions^{34,35}. Interestingly, Knowles et
226 al.³⁶ developed a generalized linear model tool for analysing genome x environment interactions for
227 ASE, known as EAGLE. This tool, although applicable to specific model organisms, such as the
228 human liver, identified 442 ASE SNPs responsive to diverse molecular stimuli³⁶. Intriguingly, the
229 number of ASE SNPs uncovered by our pipeline in a non-model organism context falls below the
230 range of results achieved by tools designed exclusively for model organisms. This discrepancy can
231 be attributed to the pipeline's focus on coding sequences of the RNA.
232

233 *Validation*

234 We performed a validation of the genotype on SNP sites identified by our pipeline from RNA towards
235 the DNAseq data of 8 individuals of tilapia exposed to freshwater. In the context of our investigation,
236 the outcomes yield compelling insights into the accurate identification of single nucleotide variations
237 of coding exons (SNVs), encompassing both synonymous and non-synonymous positions. The
238 successful identification of 89.1% of these SNVs underscores the efficacy of our approach, especially
239 considering that this error rate also includes mistakes from the SNP call on the DNA data. Moreover,
240 a majority of the sites showing errors after the SNP call on RNA are associated with read counts
241 below 5. As a result, implementing a stringent filter to include only counts above 5 will consistently

242 mitigate the error rate. Nevertheless, the potential of overlooking crucial and informative sites
243 cautions against adopting this approach.

244 In summary, our study sheds light on the precision and limitations of SNV identification, with a
245 notable success rate of ~90%. These findings contribute to a deeper understanding of the intricacies
246 involved in SNV identification and emphasize the need for continued advancements in this field.

247

248 *SNPs in ASE and regulation of gene expression*

249 The pipeline deployed for SNP identification within the coding regions of RNA and subsequent
250 quantification of ASE has provided valuable insights into the genetic responses of Nile tilapia under
251 varying salinity conditions. Our approach yielded a cohort of 817 SNPs that were consistently
252 heterozygous across all 12 fish samples. Subsequently, the investigation revealed a range of 63 to 611
253 SNPs exhibiting ASE, with the specific count varying according to the experimental test conducted.
254 Notably, the analyses unveiled pronounced ASE patterns in response to diverse salinity treatments
255 across gills and kidney tissues. The Chi-square tests conducted revealed 25 SNPs with ASE that
256 remained consistent regardless of the tissue type or the salinity treatment, thereby indicating a degree
257 of independence from these factors.

258

259 *ASE between tissues*

260 A substantial subset of 444 SNPs exhibited common ASE between gills and kidney tissues when
261 comparing responses to fresh and salty water (tests 1 and 2). This shared ASE across tissues and
262 salinity treatments suggests an underlying genetic mechanism that potentially transcends tissue
263 specificity, evoking different allelic expression responses in the tissues independently of the salinity.
264 In previous studies, ASE was mostly detected when comparing the expression in different tissues, as
265 shown in cattle ³⁷. Also in cattle, Guillocheau et al. ¹⁷ found that 13% of the total expressed genes in
266 muscle had SNPs in ASE associated with phenotypic traits and potentially causative of *cis*-regulation.
267 Allelic imbalance was also described in these studies, reporting that at minimum 89% of the total
268 SNPs were imbalanced in at least one tissue out of 18 studied ³⁷. Allelic imbalance was also common
269 between 19 muscle samples of the Limousine cattle breed ¹⁷. It has been suggested that the
270 phenomenon of tissue-specific regulation of allele expression and the regulation of ASE may be
271 driven by tissue-specific enhancers or by post-transcriptional differences as found in the mouse
272 allelome ³⁸.

273 In summary, our findings highlight the presence of ASE in tilapia, akin to other species, revealing a
274 shared phenomenon of inter-tissue variation. The existence of ASE suggests the operation of complex
275 regulatory mechanisms of expression that transcend species boundaries. To shed light on the

276 evolution of such a mechanism, it is imperative to explore its regulatory pathways, identifying
277 commonalities and differences across organisms.

278

279 *Salinity challenge in tilapia*

280 Additionally, our investigation identified 33 SNPs exhibiting common ASE in response to the salinity
281 challenge across both gill and kidney tissues. The common patterns on the GO expression for both
282 tissues facing a salinity challenge corresponded to molecule and ion binding (Supplementary 5, 6, 7
283 and 8). This shared response suggests a coordinated attempt to counteract oxidative stress and uphold
284 cellular viability in a systemic approach to achieve oxidative homeostasis between tissues and under
285 the salinity challenge by allelic expression regulation.

286 Many different reasons can explain this variable expression of the alleles after salinity challenge.
287 Gene imprinting caused by environmental factors, silencing the maternal or paternal allele, is one
288 case ³⁹. The spectrum of silencing ranges from monoallelic expression (MAE), where one allele is
289 completely silenced, to imbalances of varying degrees. Also cis-acting mutations may alter regulation
290 for just one allele through a change to promoter/enhancer regions (transcription factor binding sites)
291 ⁴⁰, or even through 3' UTR mutations that affect mRNA stability or microRNA binding ⁴¹.

292 In light of these mechanisms, the gills exhibited ASE in genes associated with the ribonucleotide
293 binding with and without adenyl group, upon salinity exposure (Supplementary 7). Earlier
294 transcriptomic and proteomic analyses of these data indicated that there is a response in the gills to
295 salinity by differential expression of genes related to epithelial turnover ^{42,43}. These previous results
296 are consistent with our current analysis where ASE SNPs were associated to DEGs in the gills but
297 not in the kidney (Table 1). However, the total SNP count exhibited a remarkable reduction when
298 compared to the kidneys (test 3 and 4, Table 1). Altogether may indicate the differential expression
299 found in gills to cope with the salinity challenge may be regulated partially by ASE, thus driving the
300 epithelium turnover.

301 Meanwhile, the kidneys showed SNPs in ASE related to developmental process and anatomical
302 structure development after salinity exposure (test 4, Supplementary 8). However, no differentially
303 expressed genes correspond to ASE. These results align with proteomic analysis of Nile tilapia
304 kidneys, revealing higher translational modifications in the kidney as a response to the salinity
305 exposure in contrast with few differentially expressed genes ⁴⁴. The mechanisms in the kidney to cope
306 with the salinity challenge were related to proteomic changes reflected already by the SNPs in ASE
307 from our study.

308 A growing body of research in teleosts has unveiled ASE patterns in response to various
309 environmental factors. In the case of turbot (*Scophthalmus maximus*), SNP studies discovered the sex
310 determination patterns of ASE ⁴⁵. Similarly, SNP markers in Atlantic salmon (*Salmo salar*) were

311 found to enhance DHA synthesis ⁴⁶, while eQTL were associated with resistance to lice in Atlantic
312 salmon ⁴⁷ and broad scale suppression of gene expression was detected in triploid medaka (*Oryzias*
313 *latipes*) ⁴⁸. Our analysis stands in alignment with this emerging trajectory of ASE findings in teleosts
314 facing diverse environmental challenges. Our results suggest that the salinity, as an environmental
315 factor, may challenge each tissue in a different manner. The gill's response is characterized by a higher
316 number of DEGs including ASE SNPs. In contrast, the kidney's response involves a higher frequency
317 of ASE SNPs, correlating with proteomic changes previously determined ⁴⁴. These results collectively
318 emphasize the role of salinity as a pivotal environmental factor influencing allelic expression
319 dynamics.

320 In conclusion, the ASE SNPs found within the context of a salinity challenge has uncovered a rich
321 landscape of genetic responses in Nile tilapia gill and kidney tissues. Two distinct strategies employed
322 by Nile tilapia to confront the salinity challenge through ASE. The first strategy entails a systemic
323 response, characterized by ASE patterns intricately linked to protein binding and oxidation-reduction
324 processes. This widespread approach reflects a concerted effort to adapt and manage the salinity stress
325 across multiple tissues. Conversely, the second approach is marked by nuanced differentiation. In the
326 gills, a concerted effort to address the challenge is evident through a higher prevalence of ASE related
327 to DEGs. This tailored response is particularly notable given the reduced number of DEGs observed
328 in this tissue. In contrast, the kidney employs a proteomic approach, where ASE patterns exhibit a
329 broader scope, encompassing SNPs unrelated to DEGs. This distinct strategy indicates a sophisticated
330 mechanism by which the kidney leverages allelic expression to navigate the salinity stress, potentially
331 involving regulatory mechanisms beyond traditional gene expression pathways.

332

333 *Type of SNPs in ASE*

334 The significant SNPs in ASE, underwent additional analysis using a stacked bar chart, presented in
335 Figure 6. The prominent SNPs identified for specific allelic expression were predominantly single
336 nucleotide variants. Synonymous SNVs, which preserve amino acid composition within translated
337 proteins, significantly outnumbered non-synonymous SNPs by approximately 8 to 13 times across all
338 tests. Synonymous polymorphisms have potential impact on messenger RNA splicing, stability,
339 structure, and protein folding ⁴⁹. These alterations can substantially affect protein function, modulate
340 cellular responses to therapeutic targets, and frequently elucidate distinct patient reactions to specific
341 medications ⁴⁹, which becomes particularly relevant following an environmental challenge as
342 presented in this study.

343 In contrast, non-synonymous SNPs consistently remained below 50 across all tests, implying a level
344 of coding region conservation. Comparative investigations into these SNV types have revealed that
345 diversity among non-synonymous SNVs is notably lower than among synonymous substitutions ⁵⁰.

346 This discrepancy is attributed to natural selection's influence on non-synonymous SNPs ⁵¹,
347 highlighting how environmental pressures influence the prevalence and distribution of different SNV
348 types. Moreover, the identified frameshift and non-frameshift mutations amplify the scope of genetic
349 variability and its potential functional implications. The presence of an unclassified SNP serves as a
350 reminder of the complexities of genetic annotation and the ongoing pursuit to decipher the functional
351 significance of genetic variation. Overall, the paragraph contributes to our understanding of how
352 genetic variation, influenced by natural selection and environmental challenges, plays a pivotal role
353 in shaping the evolutionary trajectories of organisms.

354

355 *Regions of the genome affected by different allele expression*

356 The pipeline targets the regions of the genome that may be affected by the different expression of the
357 alleles in two different approaches: with a heat-map on the allelic imbalance (Figure 2) and a
358 Manhattan plot on the ASE SNPs (Figure 5).

359 The visualization of allele frequency analysis for the identified SNPs within each experimental group
360 was executed using a heat-map according to a distribution on the genome, as shown in Figure 2. Gill
361 and kidney tissues exhibited very different allele frequency patterns, thus illustrating the major
362 differences in allele expression depending on the tissue, as previously described ³⁷. Striking a
363 consistent pattern, gills in fresh and salty water exhibited parallel allele frequency trends, yet
364 discernible disparities were evident between the two environment types. A similar effect is visible in
365 kidney from fresh and from salty water. Notably, exposure to saline water triggered pronounced shifts
366 in allelic balance within the respective groups.

367 The identification and visualization of significant allelic expression ASE SNPs through the lens of
368 chi-square tests across chromosomal regions were achieved using a Manhattan plot (Figure 5). No
369 distinct genomic region emerged as an exclusive hotspot for an abundance of ASE SNPs in response
370 to salinity exposure, neither in gills nor kidney tissues. This lack of clustering suggests a much more
371 dispersed genetic response to salinity stress as previously indicated by the heat-map, with significant
372 ASE SNPs dispersed across the genome rather than being concentrated in specific regions. Focusing
373 solely on ASE SNPs from the entire pool of RNA-derived SNPs could potentially limit our ability to
374 identify specific genomic regions responsible for regulating allelic expression. However, this
375 approach effectively targets SNPs that undergo altered expression in response to the experimental
376 factor being investigated – in this instance, the salinity challenge. The results of our analysis show
377 that while there are patterns of allelic imbalance throughout the genome, those do not correspond
378 with exposure to salinity.

379 In conclusion, the combined insights from the heat-map and Manhattan plot analyses presented in the
380 pipeline offer a comprehensive understanding of the genetic dynamics underlying allelic expression

381 changes in response to environmental shifts. The heat-map underscores the tissue-specific allelic
382 imbalances on the experimental groups, while the Manhattan plot showcases the distributed nature of
383 significant ASE SNPs across the genome. This integrative approach advances our comprehension of
384 the genetic mechanisms governing responses to environmental challenges, shedding light on the
385 intricate regulatory networks operating within the examined organisms.

386

387 The pipeline presented in this study has proven to be a robust and versatile tool for SNP quantification,
388 enabling unbiased assessment of SNPs in ASE resulting from fish exposures to an environmental
389 challenge. This methodology operates without requiring prior genotype knowledge, making it
390 suitable for model and non-model organisms, regardless of strain or the availability of a reference
391 genome. This approach opens avenues for reanalyzing data from differentially expressed gene (DEG)
392 experiments to uncover gene regulation and shifts in biochemical networks driven by specifically
393 expressed alleles. Furthermore, the SNP coordinates generated by this pipeline can be seamlessly
394 integrated with other sources of transcript data, including methylome information. This pipeline,
395 based on Snakemake and integrating GATK best practices, tailored to the unique context of non-
396 model organisms and has facilitated a deeper understanding of how genetic variation influences gene
397 expression responses under different conditions. By extending the pipeline's scope to include analysis
398 of non-coding regions, we envision a compelling prospect: the utilization of our pipeline may
399 significantly advance the study of regulatory regions in non-model organisms. Such an expansion
400 could potentially enhance our understanding of the intricate genetic responses these organisms exhibit
401 in the face of environmental challenges.

402 The findings of this study, coupled, therefore, with insights from comparative research, underscore
403 the intricate nature of allelic expression dynamics, tissue-specificity, and regulatory mechanisms,
404 inviting further exploration into the epigenomic dimensions of ASE regulation in species like tilapia.
405

406 In conclusion, our developed pipeline not only reveals unbiased allele-specific expression in response
407 to environmental challenges, as demonstrated in the context of salinity alterations in Nile tilapia, but
408 it also prioritizes user convenience. By integrating various tools and virtual environments within the
409 Snakemake framework, our pipeline streamlines the analytical process, empowering researchers to
410 explore and interpret their data efficiently. Furthermore, the graphical representation of results adds
411 a layer of visual comprehension, enhancing the accessibility and impact of our findings. This holistic
412 approach underscores our commitment to advancing the field of allele-specific expression analysis
413 while prioritizing usability and clarity for researchers in non-model organism studies.

414

415 Material and methods

416 *Ethical statement*

417 This study was approved by the Agricultural Research Organization Committee for Ethics in
418 Experimental Animal Use, and was carried out in compliance with the current laws governing
419 biological research in Israel (Approval number: IL-715/17). The study is reported in accordance with
420 the ARRIVE guidelines (<https://arriveguidelines.org>).

421

422 *Origin, processing and sequencing of samples*

423 The sequences used in this study were from an experiment performed in Nile tilapia fish previously
424 described by Root et al.^{43,44}. In summary, 12 male Nile tilapia were randomly allocated into two 600-
425 liter freshwater tanks and allowed to acclimate for two weeks. One group was subjected to a gradual
426 increase in salinity of 5 ppt per day until reaching a final salinity of 25 ppt, at which point gill and
427 kidney samples were collected after 24 hours. In addition, eight fish were individually placed in 40
428 liter freshwater tanks and allowed to acclimate for two weeks before sampling gills for RNAseq and
429 fin for DNAseq.

430 The samples were preserved in RNAsave (Biological Industries, Beit-Haemek, Israel) and stored at -
431 20°C until extraction, following a 24-hour incubation period at 4°C. The mRNA of the first 12
432 individuals' samples was extracted using TRIzol reagent (Thermo Fisher Scientific), and purified
433 using the TURBO DNA-free kit (Invitrogen) to eliminate DNA contamination. The quality of the
434 total mRNA samples was assessed at the Israel National Center for Personalized Medicine (INCPM)
435 at the Weizmann Institute of Science (Rehovot, Israel) using the TapeStation Agilent 2200 system
436 before library preparation and sequencing on an Illumina Hi-Seq 2500 device. For the additional eight
437 individuals, the mRNA and DNA were extracted using the RNeasy mini kit and DNeasy blood and
438 tissue kit (Qiagen, Hilden, Germany), respectively. RNA and DNA sequencing for the additional
439 eight individuals were conducted at the INCPM using the Illumina Novaseq 600 platform, with the
440 RNA samples sequenced to an average sequencing depth of 10 times, and the DNA samples
441 sequenced to an average sequencing depth of 30 times, both of which included unique molecular
442 identifier (UMI) barcoding.

443

444 *Pipeline for mapping bias removal using pseudogenomes and SNP calling*

445 We developed and utilize a Snakemake-based⁵² pipeline for SNP calling and removal of mapping
446 bias using pseudogenomes. We implemented this pipeline with and without prior knowledge of
447 genotypes, and the entire code along with scripts is available at GitHub
448 (https://github.com/AylaScientist/Snakemake_for_SNPs). *Fastq* files were trimmed with

449 Trimmomatic ⁵³ and quality was verified with FASTQC (v0.11.8, Andrews, 2010) before mapping
450 against the *O. niloticus* reference genome (NMBU GCF_001858045.2) using STAR (v2.7.1a, Dobin
451 et al., 2013). SNPs were called following GATK best practices ³³ and Picard tools were used (release
452 2.27.5). Two pseudogenomes were constructed from a *vcf* file following the protocol by Johan Zicola
453 (https://github.com/johanzi/make_pseudogenome, MIT license) for downstream analysis. Two final
454 *vcf* files joining the SNPs from all samples were annotated using ANNOVAR ⁵⁶. Allele depth and
455 genotypes were collected into a table (VariantsToTable, GATK).

456

457 *Data engineering and statistical analysis*

458 After the pipeline produced two data-sets, each containing alternative SNPs for all sites identified in
459 one of the pseudogenomes, Python v3.7.3 scripts developed in-house and part of the Snakemake
460 pipeline were used to merge and filter the data-sets for multiallelic sites using Pandas and Numpy.
461 The counts of each reference and alternative polymorphic site were then averaged for each sample.
462 SNPs with a depth of one allele less than 3 and those with a total allele depth less than 10 were
463 removed to avoid homozygosity. As the genotype is unknown, only the SNPs shared by all individuals
464 with both alleles expressed were retained in the final data-set of consensus SNPs.

465

466 *Validation of the pseudogenomes method for eliminating mapping bias in allele counts*

467 To validate the mitigation of mapping bias, a comparison was conducted by assessing allele
468 frequencies of ASE-levels in two scenarios: SNPs obtained through the conventional method
469 involving mapping to the reference genome, and SNPs retrieved via the novel pipeline, which
470 employed pseudogenomes for mapping. After studying the normality and the equal variances with
471 Anderson-Darling and Levene's tests respectively, Welch's t-test was performed on the common
472 SNPs called by each method.

473

474 *Validation of the SNP sites by sequencing / re-sequencing*

475 We used a pipeline to identify SNPs from both DNA and RNA, and conducted a qualitative analysis
476 to detect false positives by comparing SNPs identified from RNA with those present in DNA. We
477 selected SNPs that had biallelic expression and were exonic single nucleotide variants (SNVs),
478 excluding indels and intronic sites. The mismatches were attributed to the error from SNP calling
479 from RNA information. We further used IGV software ⁵⁷ to analyze 20 SNVs for false negatives.

480

481 *Functional analysis and classification of the ASE SNPs*

482 Significant ASE SNPs for each treatment were analyzed for gene ontology (GO) functions. DEG
483 analysis was performed with the DESeq package ⁵⁸ in R (v 3.6.3, Development Core Team, 2013) for

484 salinity effects. In order to find regulatory pathways, the SNPs in ASE were contrasted with the
485 significant DEGs.

486

487 **Data availability**

488 The sequencing data was submitted to SRA under the bioproject PRJNA669315.

489

490 **Code Availability**

491 The snakemake pipeline was submitted to the GitHub
492 https://github.com/AylaScientist/snakefile_for_SNPs.

493

494 **Acknowledgements**

495 This research was supported by grant 2016611 from the US-Israel Binational Science Foundation
496 BSF and the US-Israel Binational Agricultural Research and Development Fund (BARD) Grant (IS-
497 5358-21).

498

499

500 **References**

- 501 1. Marioni, J. C., Mason, C. E., Mane, S. M., Stephens, M. & Gilad, Y. RNA-seq: An assessment
502 of technical reproducibility and comparison with gene expression arrays. *Genome Res.* **18**,
503 1509–1517 (2008).
- 504 2. Barrett, R. D. H. & Schluter, D. Adaptation from standing genetic variation. *Trends Ecol. Evol.*
505 **23**, 38–44 (2008).
- 506 3. Lande, R. & Shannon, S. The Role of Genetic Variation in Adaptation and Population
507 Persistence in a Changing Environment Author (s): Russell Lande and Susan Shannon
508 Published by: Society for the Study of Evolution Stable URL:
509 <http://www.jstor.org/stable/2410812> Accessed : 07. *Evolution (N. Y.)*. **50**, 434–437 (1996).
- 510 4. Hermisson, J. & Pennings, P. S. Soft sweeps: Molecular population genetics of adaptation from
511 standing genetic variation. *Genetics* **169**, 2335–2352 (2005).
- 512 5. Bernatchez, L. On the maintenance of genetic variation and adaptation to environmental
513 change: considerations from population genomics in fishes. *J. Fish Biol.* **89**, 2519–2556

514 (2016).

515 6. Garber, M., Grabherr, M. G., Guttman, M. & Trapnell, C. Computational methods for
516 transcriptome annotation and quantification using RNA-seq. *Nat. Methods* **8**, 469–477 (2011).

517 7. Ozsolak, F. & Milos, P. M. RNA sequencing: Advances, challenges and opportunities. *Nat.*
518 *Rev. Genet.* **12**, 87–98 (2011).

519 8. Trapnell, C. *et al.* Transcript assembly and abundance estimation from RNA-Seq reveals
520 thousands of new transcripts and switching among isoforms. *Nat. Biotechnol.* **28**, 511–515
521 (2011).

522 9. Degner, J. F. *et al.* Effect of read-mapping biases on detecting allele-specific expression from
523 RNA-sequencing data. *Bioinformatics* **25**, 3207–3212 (2009).

524 10. Monsu, M. & Comin, M. Fast alignment of reads to a variation graph with application to SNP
525 detection. *J. Integr. Bioinforma.* **18**, 1–9 (2021).

526 11. Zhan, S., Griswold, C. & Lukens, L. Zea mays RNA-seq estimated transcript abundances are
527 strongly affected by read mapping bias. *BMC Genomics* **22:285**, 1–12 (2021).

528 12. Consortium, I. H. A haplotype map of the human genome The International HapMap
529 Consortium. *Physiol. Genomics* **437**, 1299–320 (2003).

530 13. Rozowsky, J. *et al.* AlleleSeq: Analysis of allele-specific expression and binding in a network
531 framework. *Mol. Syst. Biol.* **7**, 1–15 (2011).

532 14. Vijaya Satya, R., Zavaljevski, N. & Reifman, J. A new strategy to reduce allelic bias in RNA-
533 Seq readmapping. *Nucleic Acids Res.* **40**, 1–9 (2012).

534 15. Harvey, C. T. *et al.* QuASAR: Quantitative allele-specific analysis of reads. *Bioinformatics*
535 **31**, 1235–1242 (2015).

536 16. Chen, N., Solomon, B., Mun, T., Iyer, S. & Langmead, B. Reference flow : reducing reference
537 bias using multiple population genomes. *Genome Biol.* **22**, 1–17 (2021).

538 17. Guillocheau, G. M. *et al.* Survey of allele specific expression in bovine muscle. *Sci. Rep.* **9**, 1–
539 11 (2019).

540 18. Yuan, S. & Qin, Z. Read-mapping using personalized diploid reference genome for RNA
541 sequencing data reduced bias for detecting allele-specific expression. *Proc. - 2012 IEEE Int.*
542 *Conf. Bioinforma. Biomed. Work. BIBMW 2012* 718–724 (2012)
543 doi:10.1109/BIBMW.2012.6470225.

544 19. Xin, H. *et al.* Accelerating read mapping with FastHASH. *BMC Genomics* **14**, 1–13 (2013).

545 20. Braasch, I. *et al.* The spotted gar genome illuminates vertebrate evolution and facilitates
546 human-teleost comparisons. *Nat Genet* **48**, 427–437 (2016).

547 21. Mayba, O. *et al.* MBASED: Allele-specific expression detection in cancer tissues and cell
548 lines. *Genome Biol.* **15**, 1–21 (2014).

549 22. Pandey, R. V., Franssen, S. U., Futschik, A. & Schlötterer, C. Allelic imbalance metre (Allim),
550 a new tool for measuring allele-specific gene expression with RNA-seq data. *Mol. Ecol. Resour.* **13**, 740–745 (2013).

552 23. Pickrell, J. K. *et al.* Understanding mechanisms underlying human gene expression variation
553 with RNA sequencing. *Nature* **464**, 768–772 (2010).

554 24. Panousis, N. I., Gutierrez-arcelus, M., Dermitzakis, E. T. & Lappalainen, T. Allelic mapping
555 bias in RNA-sequencing is not a major confounder in eQTL studies. *Genome Biol.* **467**, 1–8
556 (2014).

557 25. Stevenson, K. R., Coolon, J. D. & Wittkopp, P. J. Sources of bias in measures of allele-specific
558 expression derived from RNA-seq data aligned to a single reference genome. *BMC Genomics*
559 **14**, 1–13 (2013).

560 26. Hodgkinson, A., Grenier, J. C., Gbeha, E. & Awadalla, P. A haplotype-based normalization
561 technique for the analysis and detection of allele specific expression. *BMC Bioinformatics* **17**,
562 1–10 (2016).

563 27. Van De Geijn, B., Mcvicker, G., Gilad, Y. & Pritchard, J. K. WASP: Allele-specific software
564 for robust molecular quantitative trait locus discovery. *Nat. Methods* **12**, 1061–1063 (2015).

565 28. Salavati, M. *et al.* Elimination of Reference Mapping Bias Reveals Robust Immune Related
566 Allele-Specific Expression in Crossbred Sheep. *Front. Genet.* **10**, 1–16 (2019).

567 29. Gutierrez-Arcelus, M. *et al.* Allele-specific expression changes dynamically during T cell
568 activation in HLA and other autoimmune loci. *Nat. Genet.* **52**, 247–253 (2020).

569 30. Hach, F. *et al.* MrsFAST-Ultra: A compact, SNP-aware mapper for high performance
570 sequencing applications. *Nucleic Acids Res.* **42**, 494–500 (2014).

571 31. Buchkovich, M. L. *et al.* Removing reference mapping biases using limited or no genotype
572 data identifies allelic differences in protein binding at disease-associated loci. *BMC Med. Genomics* **8**, 1–15 (2015).

574 32. Miao, Z., Alvarez, M., Pajukanta, P. & Ko, A. ASElux: An ultra-fast and accurate allelic reads
575 counter. *Bioinformatics* **34**, 1313–1320 (2018).

576 33. Poplin, R. *et al.* Scaling accurate genetic variant discovery to tens of thousands of samples.
577 *bioRxiv* 201178 (2017) doi:10.1101/201178.

578 34. Wang, J. The computer program structure for assigning individuals to populations: easy to use
579 but easier to misuse. *Mol. Ecol. Resour.* **17**, 981–990 (2017).

580 35. Zhang, F. *et al.* Genetic architecture of quantitative traits in beef cattle revealed by genome
581 wide association studies of imputed whole genome sequence variants: I: feed efficiency and
582 component traits. *BMC Genomics* **21**, 1–22 (2020).

583 36. Knowles, D. A. *et al.* Allele-specific expression reveals interactions between genetic variation

584 and environment. *Nat. Methods* **14**, 699–702 (2017).

585 37. Chamberlain, A. J. *et al.* Extensive variation between tissues in allele specific expression in an
586 outbred mammal. *BMC Genomics* **16**, 1–20 (2015).

587 38. Andergassen, D. *et al.* Mapping the mouse Allelome reveals tissue-specific regulation of allelic
588 expression. *Elife* **6**, 1–29 (2017).

589 39. Monk, D., Mackay, D. J. G., Eggemann, T., Maher, E. R. & Riccio, A. Genomic imprinting
590 disorders: lessons on how genome, epigenome and environment interact. *Nat. Rev. Genet.* **20**,
591 235–248 (2019).

592 40. Serre, D. *et al.* Differential allelic expression in the human genome: A robust approach to
593 identify genetic and epigenetic Cis-acting mechanisms regulating gene expression. *PLoS
594 Genet.* **4**, (2008).

595 41. Mayr, C. Regulation by 3'-Untranslated Regions. *Annu. Rev. Genet.* **51**, 171–194 (2017).

596 42. Campo, A. *et al.* Different transcriptomic architecture of the gill epithelia in Nile and
597 Mozambique tilapia after salinity challenge. *Comp. Biochem. Physiol. - Part D Genomics
598 Proteomics* **41**, 100927 (2022).

599 43. Root, L. *et al.* Nonlinear effects of environmental salinity on the gill transcriptome versus
600 proteome of *Oreochromis niloticus* modulate epithelial cell turnover. *Genomics* **113**, 3235–
601 3249 (2021).

602 44. Root, L. *et al.* A data-independent acquisition (DIA) assay library for quantitation of
603 environmental effects on the kidney proteome of *Oreochromis niloticus*. *Molecular Ecol.
604 Resour.* (2021) doi:10.22541/au.160553713.37893872/v1.

605 45. Martínez, P. *et al.* Multiple evidences suggest sox2 as the main driver of a young and complex
606 sex determining ZW/ZZ system in turbot (*Scophthalmus maximus*). *bioRxiv* 834556 (2019)
607 doi:<https://doi.org/10.1101/834556>.

608 46. Horn, S. S., Meuwissen, T. H. E., Moghadam, H., Hillestad, B. & Sonesson, A. K. Accuracy
609 of selection for omega-3 fatty acid content in Atlantic salmon fillets. *Aquaculture* **519**, 734767
610 (2020).

611 47. Robledo, D. *et al.* Discovery and functional annotation of quantitative trait loci affecting
612 resistance to Sea lice in Atlantic salmon. *Front. Genet.* **10**, 1–10 (2019).

613 48. Garcia, T. I. *et al.* Novel method for analysis of allele specific expression in triploid *Oryzias
614 latipes* reveals consistent pattern of allele exclusion. *PLoS One* **9**, 100250 (2014).

615 49. Hunt, R., Sauna, Z. E., Ambudkar, S. V., Gottesman, M. M. & Kimchi-Sarfaty, C. Silent
616 (Synonymous) SNPs: Should We Care About Them? BT - Single Nucleotide Polymorphisms:
617 Methods and Protocols. in *Single Nucleotide Polymorphisms Methods and Protocols* (ed.
618 Komar, A. A.) 23–39 (Humana Press, 2009). doi:10.1007/978-1-60327-411-1_2.

619 50. Graur, D. & Li, W. *Fundamentals of molecular evolution*. (Sinauer Associates, Incorporated
620 Publishers, 1997).

621 51. Ohta, T. Synonymous and Nonsynonymous Substitutions in Mammalian Genes and the Nearly
622 Neutral Theory. *J. Mol. Evol.* **40**, 56–63 (1995).

623 52. Köster, J. & Rahmann, S. Snakemake-a scalable bioinformatics workflow engine.
624 *Bioinformatics* **28**, 2520–2522 (2012).

625 53. Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: A flexible trimmer for Illumina
626 sequence data. *Bioinformatics* **30**, 2114–2120 (2014).

627 54. Andrews, S. FastQC: a quality control tool for high throughput sequence data. (2010).

628 55. Dobin, A. *et al.* STAR: Ultrafast universal RNA-seq aligner. *Bioinformatics* **29**, 15–21 (2013).

629 56. Wang, K., Li, M. & Hakonarson, H. ANNOVAR: Functional annotation of genetic variants
630 from high-throughput sequencing data. *Nucleic Acids Res.* **38**, 1–7 (2010).

631 57. Robinson, J. T., Thorvaldsdóttir, H., Wenger, A. M., Zehir, A. & Mesirov, J. P. Variant review
632 with the integrative genomics viewer. *Cancer Res.* **77**, e31–e34 (2017).

633 58. Anders, S. *et al.* Differential expression analysis for sequence count data via mixtures of
634 negative binomials. *Adv. Environ. Biol.* **7**, 2803–2809 (2010).

635 59. Development Core Team, R. R: A language and environment for statistical computing. (2013).

636

637

638 **Author contributions**

639 Author Aurora Campo produced the data analysis on the experimental data, and the development of
640 the code, testing and validation of the pipeline, as well as the RNA and DNA extraction, sequencing
641 and analysis on the dataset for validation of the pipeline. This author performed the writing of the
642 article. Authors Moran Gershoni and Adi Doron-Faigenboim supervised some steps of the pipeline,
643 as for example merge of databases or use of UMI. Author Dietmar Kültz supervised the experimental
644 design and of the writing of the article. Author Avner Cnaani supervised the experimental design and
645 the sequencing protocol of the experimental data in which the pipeline was tested, as well as
646 supervision of the writing.

647

648 **Competing interest statement**

649 The authors declare that they have no conflict of interest related to the research, authorship or
650 publication of the present article.

651

652 **Supplementary material**

653 **Supplementary 1:** Table including ASE SNPs contained in genes that are differentially expressed
654 between gills and kidney in freshwater (test 1). Coordinates of chromosome and position, as well as
655 Chi-square statistic, product description and GO function associated.

656

657 **Supplementary 2:** Table including ASE SNPs contained in genes that are differentially expressed
658 between gills and kidney in salty water (test 2). Coordinates of chromosome and position, as well as
659 Chi-square statistic, product description and GO function associated.

660

661 **Supplementary 3:** Table including ASE SNPs contained in genes that are differentially expressed
662 between gills in fresh and salty water (test 3). Coordinates of chromosome and position, as well as
663 Chi-square statistic, product description and GO function associated.

664

665 **Supplementary 4:** Table including ASE SNPs contained in genes that are differentially expressed
666 between kidney in fresh and salty water (test 4). Coordinates of chromosome and position, as well as
667 Chi-square statistic, product description and GO function associated.

668

669 **Supplementary 5:** Top 10 most frequent GO functions of the ASE SNPs found in test 1, gills in fresh
670 water compared to kidney in fresh water. The functions are separated by Molecular Function,

671 Biological Process and Cellular Component. The x axis indicate the counts of SNPs in ASE
672 corresponding to genes associated to the GO function. The intensity of the color of the bar indicates
673 the adjusted p-value on the correspondent function associated to the set of genes in Nile tilapia.

674

675 **Supplementary 6:** Top 10 most frequent GO functions of the ASE SNPs found in test 2, gills in salty
676 water compared to kidney in salty water. The functions are separated by Molecular Function,
677 Biological Process and Cellular Component. The x axis indicate the counts of SNPs in ASE
678 corresponding to genes associated to the GO function. The intensity of the color of the bar indicates
679 the adjusted p-value on the correspondent function associated to the set of genes in Nile tilapia.

680

681 **Supplementary 7:** Top 10 most frequent functions of the ASE SNPs found in test 3, gills in fresh
682 water compared to gills in salty water. The functions are separated by Molecular Function, Biological
683 Process and Cellular Component. The x axis indicate the counts of SNPs in ASE corresponding to
684 genes associated to the GO function. The intensity of the color of the bar indicates the adjusted p-
685 value on the correspondent function associated to the set of genes in Nile tilapia.

686

687 **Supplementary 8:** Top 10 most frequent GO functions of the ASE SNPs found in test 4, kidney in
688 fresh water compared to kidney in salty water. The functions are separated by Molecular Function,
689 Biological Process and Cellular Component. The x axis indicate the counts of SNPs in ASE
690 corresponding to genes associated to the GO function. The intensity of the color of the bar indicates
691 the adjusted p-value on the correspondent function associated to the set of genes in Nile tilapia.

692

693 **Supplementary 9:** Table including the differentially expressed genes between gills and kidney in
694 freshwater (test 1) that present ASE SNPs for the same test.

695

696 **Supplementary 10:** Table including the differentially expressed genes between gills and kidney in
697 salty (test 2) that present ASE SNPs for the same test.

698

699 **Supplementary 11:** Table including the differentially expressed genes between gills after salinity
700 challenge (test 3) that present ASE SNPs for the same test.

Supplementary Files

This is a list of supplementary files associated with this preprint. Click to download.

- [Supplementary1Test1CHlpfdrASEdescriptionnoMAEexonic.xls](#)
- [Supplementary2Test2CHlpfdrASEdescriptionnoMAEexonic.xls](#)
- [Supplementary3Test3CHlpfdrASEdescriptionnoMAEexonic.xls](#)
- [Supplementary4Test4CHlpfdrASEdescriptionnoMAEexonic.xls](#)
- [Supplementary5G0test1.pdf](#)
- [Supplementary6G0test2.pdf](#)
- [Supplementary7G0test3.pdf](#)
- [Supplementary8G0test4.pdf](#)
- [Supplementary9ASEDEtest1tissuefreshnilenoMAEexonic.xls](#)
- [Supplementary10ASEDEtest2tissueseanilenoMAEexonic.xls](#)
- [Supplementary11ASEDEtest3gillsnoMAEexonic.xls](#)