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1 Appendix: classification of ideals and factorization of formal
power series

Consider a monic polynomial f(x) ∈ Z[x] with constant term which does not lie in the set {−1, 0, 1}. We

consider the ring R = Z[x]/(f) and the element γ = x + (f). We consider the (γ)-adic completion R̂ of R.

There is a pre-order on ideals of R̂ defined by a ≼ b if γna ⊂ b for some n ≥ 0. This defines an equivalence
relation in the usual way: a ∼ b if a ≼ b and b ≼ a. The pre-order ≼ descends to a partial order ⪯ on
equivalence classes of ideals. We will call the resulting poset the poset of ideals of R̂ up to multiplication by
γ. Our goal is to describe this poset. By a Theorem of Bourbaki ([2, Ch. 2 Sec. 2 No. 4 Proposition 10]),

this poset is isomorphic to the poset of ideals of the localization γ−1R̂. So equivalently, we will describe the
poset of ideals of γ−1R̂.

First we give an alternative description of the (γ)-adic completion R̂ of R.

Lemma 1.1. Consider the ring R = Z[x]/(f). Then the completion R̂ is isomorphic to Z[[x]]/(f).

Proof. The sequence
0 → (f) → Z[x] → R → 0

is an exact sequence of finitely-generated Z[x]-modules. We consider the completions of these modules with
respect to the ideals (xi) of Z[x]. Since Z[x] is Noetherian, the sequence of (x)–adic completions

0 → (̂f) → Ẑ[x] → R̂ → 0

is exact by [1, Proposition 10.12]. Since x acts on R in the same way as γ, the (x)-adic completion R̂ is just

the usual (γ)-adic completion. Of course Ẑ[x] is just the formal power series ring Z[[x]]. The Z[x]-module

homomorphism (f) → (̂f) defines a Z[[x]]-module homomorphism Z[[x]]⊗Z[x] (f) → (̂f). By [1, Proposition
10.13] this homomorphism is an isomorphism. The image of the homomorphism is exactly the ideal of Z[[x]]
generated by f . Hence (̂f) coincides with the ideal of Z[[x]] generated by f .

We will prove the following:

Theorem 1.2. Let f be a monic polynomial in Z[x] with constant term not lying in {−1, 0, 1}. Then the
poset of ideals of Z[[x]]/(f) up to multiplication by γ = x + (f) is isomorphic to the poset of divisors of f
in Z[[x]] considered up to associates. Equivalently, the poset of ideals of γ−1(Z[[x]]/(f)) is isomorphic to the
poset of divisors of f in Z[[x]] considered up to associates.
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Denote by g = g + (f) the equivalence class of a power series g. We will switch between writing g and
g + (f) interchangeably. The localization x−1Z[[x]] with respect to the powers of x is the ring of formal
Laurent series with coefficients in Z. In other words, there may be infinitely many terms but only finitely
many with negative exponents on x. We first prove the following elementary lemma.

Lemma 1.3. Let g ∈ Z[[x]] which is neither a unit nor divisible by x. Then the quotient (x−1Z[[x]])/(g)
(where (g) denotes the ideal generated by g in x−1Z[[x]]) is isomorphic to the localization x−1(Z[[x]]/(g))
(where (g) denotes the ideal generated by g in Z[[x]]).

Proof. Note that since g is not divisible by x, x is not a zero divisor in Z[[x]]/(g). Thus an element h/xi in
x−1(Z[[x]]/(g)) is zero only if h = 0 in Z[[x]].

Consider the natural homomorphism Z[[x]] → x−1(Z[[x]]/(g)). As the image of x is a unit, there is an
induced homomorphism x−1Z[[x]] → x−1(Z[[x]]/(g)) sending h/xi to h/xi for h ∈ Z[[x]]. We see immediately
that this homomorphism is surjective. The kernel contains (g) (the ideal of x−1Z[[x]]). To see that the kernel
is contained in (g), consider h/xi in the kernel. Then h = 0 so that h lies in the ideal generated by g in Z[[x]].
That is, h/xi = fg/xi for some f ∈ Z[[x]] and we see that the kernel is contained in (g), as desired.

We first consider quotients Z[[x]]/(gi) where g is an irreducible power series which is not associate to a
prime p ∈ Z or the monomial x. By [4, Proposition 3.1.3] (see also [3, Theorem 1.4]) there is an isomorphism
Z[[x]]/(g) → Zp[α] where p ∈ Z is a prime and α is a root of an irreducible polynomial w(x) ∈ Zp[x] satisfying
the following condition:

w(x) = pu(x) + xn where u ∈ Z[x] satisfies deg(u) ≤ n− 1.

First we consider the case i = 1.

Lemma 1.4. Let g ∈ Z[[x]] be an irreducible power series not associate to a prime p ∈ Z or to x. Then the
localization x−1(Z[[x]]/(g)) is a field.

Proof. Consider the prime p ∈ Z and the polynomial w ∈ Zp[x] as described in the last paragraph. Then the
localization x−1(Z[[x]]/(g)) is isomorphic to the localization α−1Zp[α]. We have the equation αn = −pu(α)
and therefore p is a unit in α−1Zp[α]. There is a natural injection from α−1Zp[α] to the finite field extension
Qp(α). Namely, Qp(α) = Qp[x]/(w) and Zp[x]/(w) includes into Qp[x]/(w) in such a way that x + (w) is
a unit. We claim that this homomorphism is also surjective and thus an isomorphism of fields. We may
write an element of Qp(α) as h(α) with h ∈ Qp[x]. Multiplying by a high enough power of p to clear the
denominators of the coefficients of h, we have pih(x) ∈ Zp[x] for some i. Since p is a unit in α−1Zp[α] we have
p−i(pih(α)) ∈ α−1Zp[α] and the image of this element is h(α). Thus, the natural map α−1Zp[α] → Qp(α) is
surjective as desired.

Now we consider the case i ≥ 1.

Lemma 1.5. Let g ∈ Z[[x]] be an irreducible power series not associate to a prime p ∈ Z or to x. Let i ≥ 1.
Then the ideal (g) is the unique non-zero prime ideal of x−1(Z[[x]]/(gi)).

Proof. The quotient of the localization x−1(Z[[x]]/(gi)) by (g) is a field by Lemma 1.4 and thus (g) is prime.
Moreover, we have (g)i = 0. Let p be a non-zero prime ideal of x−1(Z[[x]]/(gi)). Then (g)i ⊂ p. Since p is
prime, we must have in fact (g) ⊂ p. Since (g) is maximal, it must be equal to p.

Lemma 1.6. Let g ∈ Z[[x]] be an irreducible power series not associate to a prime p ∈ Z or to x. Let i ≥ 1.
Then the ideals of x−1(Z[[x]]/(gi)) are exactly the ideals (gj) generated by powers gj for 0 ≤ j ≤ i.
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Proof. By Lemma 1.5, (g) is the unique prime ideal of x−1(Z[[x]]/(gi)). By [1, Exercise 1.10], every element
of x−1(Z[[x]]/(gi)) is either nilpotent or a unit. We may write an element of this ring as h/xk with h ∈ Z[[x]].
If g divides h then h/xk is nilpotent. On the other hand, if g does not divide h then h/xk is a unit. To see
this, suppose for contradiction that h/xk ∈ (g). Then h/xk = gh′/xl for some h′ ∈ Z[[x]] and hxl = gh′xk.
In other words, hxl+(gi) = gh′xk+(gi) so that hxl = gh′xk+gih′′ for some h′′ ∈ Z[[x]]. However, g divides
the right hand side of this equation while it does not divide the left. This is a contradiction. Thus, if g does
not divide h then h/xk does not lie in (g) and therefore it is a unit.

Now, given any h/xk ∈ x−1(Z[[x]]/(gi)) we may write h = h′gj with h′ not divisible by g. We have
h/xk = (h′/xk)(gj/1) and by the previous paragraph, h′/xk is a unit. In other words, h/xk is associate to
gj . Consider an ideal a. Choose j to be the minimum such that there is an element of a associate to gj .
Then clearly a ⊂ (gj) but also gj ∈ a. That is, a = (gj) = (g)j .

Now we consider the case of a monic polynomial f ∈ Z[x] with constant term not lying in {−1, 0, 1}. We
consider its prime factorization f = ufn1

1 · · · fnr
r in Z[[x]]. Here u ∈ Z[[x]] is a unit and the fi are prime.

Moreover, since the constant term of f is not ±1, f is not a unit in Z[[x]] and therefore there is at least one
prime in its prime factorization. The prime power series of Z[[x]] are either:

• associate to x;

• associate to a prime integer p ∈ Z;

• not associate to x or to any prime integer. Such a power series has constant term equal to a power of
a prime in Z times ±1.

Note that any prime of the first type has constant term 0. Any prime of the second type has all its coefficients
divisible by p. Since f has non-zero constant term, the same holds for each fi. That is, no fi is associate to
x. Since the coefficients of f are not all divisible by a common prime integer p, the same holds for each fi.
That is, no fi is associate to a prime integer p.

Note that the localization of a unique factorization domain is a unique factorization domain. Thus
x−1Z[[x]] is a unique factorization domain and its prime and irreducible elements coincide.

Lemma 1.7. Let g ∈ Z[[x]] be a prime power series which is neither associate to x nor to a prime p ∈ Z.
Then g is prime as an element of x−1Z[[x]]. Moreover, consider two prime powers g1, g2 ∈ Z[[x]] neither
of which is associate to x nor to a prime p ∈ Z. Suppose that g1 and g2 are not associate to each other in
Z[[x]]. Let n1, n2 ≥ 1. Then the ideal (gn1

1 , gn2
2 ) generated by gn1

1 and gn2
2 in x−1Z[[x]] is all of x−1Z[[x]].

Proof. Let g be a prime power series with the desired properties. First we show that g is not a unit in
x−1Z[[x]]. If g is a unit then there is an element h/xk ∈ x−1Z[[x]] with gh/xk = 1 in x−1Z[[x]]. Hence
gh = xk. However, the prime g does not divide the prime power xk so this is a contradiction.

Consider a product of elements of x−1Z[[x]] which is equal to g. We may write this product as g =
(h1/x

k1)(h2/x
k2) where h1, h2 ∈ Z[[x]]. This yields gxk1xk2 = h1h2 in Z[[x]]. Hence g divides one of the

hi. Say g divides h1. Thus g and h1/x
k1 divide each other in the domain x−1Z[[x]] and therefore they are

associates while h2/x
k2 is a unit. This proves that g is irreducible in x−1Z[[x]] and hence also prime.

For the last statement, consider two non-associate prime power series g1, g2 ∈ Z[[x]] with the desired
properties. By the proof of Lemma 1.6, an element of x−1(Z[[x]]/(gn2

2 )) is either a unit or nilpotent. Moreover,

an element h/xk with h ∈ Z[[x]] is nilpotent exactly if g2 divides h in Z[[x]]. Consider the element gn1
1 ∈

x−1(Z[[x]]/(gn2
2 )). Since g2 does not divide gn1

1 in Z[[x]], g1n1 is a unit. Thus, g1
n1(h/xk) = 1 for some

h ∈ Z[[x]]. In other words,

gn1
1 h+ (gn2

2 ) = xk + (gn2
2 ) and hence gn1

1 h = xk + gn2
2 h′ for some h′ ∈ Z[[x]].

So 1 = gn1
1 (h/xk)− gn2

2 (h′/xk) ∈ (gn1
1 , gn2

2 ).
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Proof of Theorem 1.2. Consider a monic polynomial f ∈ Z[x] with constant term not lying in {−1, 0, 1}.
By the discussion above, there is a prime factorization f = ufn1

1 · · · fnr
r in Z[[x]] with r ≥ 1 and all the

prime factors fi are neither associate to x nor to a prime p ∈ Z. By Lemma 1.3 we have x−1(Z[[x]]/(f)) ∼=
(x−1Z[[x]])/(f) where (f) denotes the ideal generated by f in the localization x−1Z[[x]]. We have (f ) =
(fn1

1 ) · · · (fnr
r ) in x−1Z[[x]] and by Lemma 1.7, the ideals (fni

i ) are pairwise coprime. Thus by the Chinese
Remainder Theorem we have

x−1(Z[[x]]/(f)) ∼= (x−1Z[[x]])/(f) ∼= (x−1Z[[x]])/(fn1
1 )× · · · × (x−1Z[[x]])/(fnr

r ).

Applying Lemma 1.3 again we have

x−1(Z[[x]]/(f)) ∼= x−1(Z[[x]]/(fn1
1 ))× · · · × x−1(Z[[x]]/(fnr

r )).

An ideal of this ring has the form a1×· · ·×ar where ai is an ideal of x−1(Z[[x]]/(fni
i )) for each i. By Lemma

1.6 we see that in fact an ideal has the form (f1
j1
)× · · · × (fr

jr
) where 0 ≤ ji ≤ ni for each i.

The divisors of f in Z[[x]] up to associates are f j1
1 · · · f jr

r and the function

f j1
1 · · · f jr

r 7→ (f1
j1
)× · · · × (fr

jr
)

is a bijection from the poset of divisors of f with the order of divisibility to the poset of ideals of
x−1(Z[[x]]/(f)). This bijection is order-reversing. Thus the poset of ideals of x−1(Z[[x]]/(f)) is isomor-
phic to the opposite of the poset of divisors of f in Z[[x]]. However the poset of divisors of f in Z[[x]] is
isomorphic to its own opposite, so x−1(Z[[x]]/(f)) is also isomorphic to the poset of divisors of f .
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