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A bottleneck in high-throughput nanomaterials discovery is the pace at which new 
materials can be structurally characterized. Although current machine learning (ML) 
methods show promise for the automated processing of electron diffraction patterns 
(DPs), they fail in high-throughput experiments where DPs are collected from crystals 
with random orientations. Inspired by the human decision-making process, a framework 
for automated crystal system classification from DPs with arbitrary orientations was 
developed. A convolutional neural network was trained using evidential deep learning, 
and the predictive uncertainties were quantified and leveraged to fuse multiview pre-
dictions. Using vector map representations of DPs, the framework achieves a testing 
accuracy of 0.94 in the examples considered, is robust to noise, and retains remarkable 
accuracy using experimental data. This work highlights the ability of ML to be used to 
accelerate experimental high-throughput materials data analytics.

crystal system | electron diffraction patterns | multiview opinion fusion | machine learning

Progress in the field of automated materials discovery relies on high-throughput experi-
mentation geared toward the rapid identification of key structure–function relationships 
that define material properties (1) (Fig. 1A). Recently, polymer pen lithography (PPL) 
(2), a cantilever-free approach to synthesizing nanoparticle megalibraries, has enabled the 
synthesis of billions of unique nanomaterials in a single experiment (3, 4). Nevertheless, 
the throughput of this approach, which relies on 90,000 pyramidal tips to independently 
synthesize distinct materials, far outpaces the rate of characterization (via screening) and 
analysis. Four-dimensional scanning transmission electron microscopy (4D-STEM)  
(5, 6) is ideally suited for identifying crystal systems on the nanometer scale at arbitrary 
locations on a specimen, including specimens that are nanoparticles in a megalibrary on 
a substrate. 4D-STEM allows spatially resolved electron diffraction patterns (DPs) to be 
collected. The structural information gleaned from such DPs is critical in identifying 
nanoparticle structure–function relationships (because symmetry determines the number 
of independent components of property tensors). Experimental structure data from DPs 
are also amenable to conversion to computation-ready data as inputs for computational 
modeling. However, the identification of the type of crystal systems (e.g., triclinic, mon-
oclinic, etc.) from large 4D-STEM datasets is not trivial; it is impossible to manually 
extract structural information from every single DP, due to the volume and complexity 
of the data and data processing.

Autonomous experimentation (7), which integrates machine learning (ML)–driven 
interpretation of data collected in previous measurements to guide subsequent measure-
ments, requires, in the case of DPs, the rapid, automated extraction of crystallographic 
information in real-time. Indeed, ML methods are capable of extracting information from 
complex and unstructured datasets and have proven useful in the analysis of large volumes 
of data for pattern recognition (8–10) and crystal system identification from DPs (11–13). 
Convolutional neural networks (CNNs) are among the most widely used ML methods 
for evaluating diffraction data in image format, and they have been applied to crystal 
system identification from two-dimensional (2D) (8, 11, 14–17) and one-dimensional 
(1D) diffraction data (9, 18–23). Still, the use of CNN models in the context of DPs is 
limited; the data must be collected from specific low-order zone axes (high-symmetry 
orientations in a crystal that contain the most information) in order to maximize the 
amount of information in the DP and facilitate its analysis by both humans and machines. 
However, for these models to be accurate, the crystal DPs must be obtained from the same 
zone axes as the training data, which is not possible in every experimental system. For 
example, it is not feasible to physically tilt samples to specific zone axes in most 
high-throughput experimental workflows, including in the context of nanoparticle meg-
alibraries, to collect DPs with known zone axes. Thus, the zone axes of the DPs obtained 
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from 4D-STEM experiments on nanoparticle megalibraries are 
unknown and so cannot be matched with the appropriate training 
data. Moreover, a single DP usually provides only 2D (projected) 
crystallographic information. To obtain a full description of a 
material in three dimensions (3D), it is typically necessary to 
observe the crystal from different orientations via tilting experi-
ments (Fig. 1B). In light of these issues, in order to implement 
autonomous ML-based methods for high-throughput structural 
screening of vast nanomaterial libraries, it is necessary to develop 
ML models that can interpret DP information from arbitrary 
orientations to permit the direct reconstruction of 3D structural 
information without the need to physically tilt the sample.

When human experts determine the structure of a single crystal-
line sample using electron diffraction, they first tilt the sample to 
some low-order zone axis and record a DP and then tilt the sample 
to other low-order zone axes to collect additional DPs until they are 
confident in their conclusion about the crystal structure (24). 
Considering that AI aims to mimic human intelligence, it follows 
that researchers would seek to develop ML algorithms guided by the 
operational principles of human brains (25–27) for crystal system 
identification. Herein, we describe a multiview opinion fusion 

machine learning (MVOF-ML) framework for crystal system clas-
sification with DPs from multiple arbitrary zone axes that is com-
patible with the nanoparticle megalibrary platform and that does 
not require sample titling. Given the spotty distribution of diffrac-
tion peaks (Bragg disks, particularly for DPs from random, off-axis 
orientations), vectorized location and intensity information is used 
as the representation of the DPs instead of the traditional images. 
We show that this more compact representation of diffraction infor-
mation leads to greater ML efficiency; a multistream CNN custom-
ized from PointNet (28) is utilized to handle this form of point cloud 
data. The CNN model takes on the role of a human expert making 
predictions (or forming opinions) from DPs with arbitrary zone axes. 
Our crystal system classification and its corresponding uncertainty 
are determined via a sequential decision-making process based on a 
series of sets of partial information from multiple views. The classi-
fications (“opinions”) and their related uncertainties are fused from 
different views, and these fused uncertainties reflect the confidence 
in making the final classification decision and guide whether to 
continue versus stop collecting additional DP input data. Our 
MVOF-ML framework achieves a high testing accuracy (percentage 
of correct predictions) of 0.94 on simulated data and is shown to be 

Fig. 1. Automated crystal system identification from diffraction patterns with arbitrary zone axes. (A) While high-throughput synthesis of nanoparticles is 
achievable, their characterization and analysis remain challenging due to the lack of high-throughput screening methods and data analytics technologies. 
These tools are necessary to comprehend the structure–function relationships that define material properties, which are vital for autonomously discovering 
new materials with desired properties. This paper aims to develop machine learning methods for high-throughput analysis. (B) A crystal can be observed from 
different orientations. Each orientation corresponds to a zone axis (orientation) of the crystal. From each orientation, a DP can be obtained that is a 2D projection 
in reciprocal space of the 3D crystal structure. (C) A framework for automated crystal structure identification from DPs with arbitrary zone axes. A CNN is trained 
using simulation data from multiple orientations. After training, the DPs from different zone axes of the crystal are consecutively used as inputs to a CNN. For 
each DP, the CNN model predicts the probabilities of different crystal systems and forms an opinion, and the uncertainty is quantified for each prediction. The 
individual opinions are iteratively fused to form the final decision. The DPs in Fig. 1C correspond to crystal orientations in Fig. 1B with the same frame color. The 
increase of opacity in option/decision blocks in the bottom two rows in Fig. 1C indicates the increase of confidence (or the decrease of uncertainty).
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robust even in the presence of different sources of noise designed to 
mimic real experimental conditions. Finally, this framework is 
applied to experimental data obtained from 4D-STEM datasets of 
nanoparticle libraries (representative subsets of a megalibrary syn-
thesized by Dip-Pen Nanolithography (DPN) (29), the precursor 
to PPL, where it performs with similar accuracy. Rather than apply-
ing off-the-shelf ML methodology, we built a custom CNN in which 
the convolution operations are modified in order to arrive at kernels 
that can be merged to incorporate specific physical principles embed-
ded in the data (for example, radial and angular adjacency informa-
tion, which encodes symmetry information in a DP). The success 
of the approach highlights the value of developing physics-informed 
network ML architectures and incorporating them into frameworks 
that mirror human scientific reasoning processes to accelerate data 
analysis and processing across multiple fields.

1.  Results

1.1.  A MVOF-ML Framework for Automated Crystal System 
Identification from DPs with Arbitrary Zone Axes. A MVOF-
ML framework for automated crystal system identification in 
4D-STEM is developed (Fig.  1C), wherein a series of DPs is 
analyzed to make a final decision on the crystal system. To realize 
this framework, a CNN is trained to predict the probability that 
a crystal belongs to each crystal systems (the “opinion”) and then 
extract the model’s confidence for that opinion (i.e., the uncertainty 

quantification) (30–32). Next, the opinions are automatically fused 
under consideration of uncertainty during the accumulation of 
DPs. A final decision on the classification of the crystal system is 
made once the confidence is above (or the uncertainty is below) 
a desired threshold.

The MVOF-ML framework utilizes a custom CNN architec-
ture that incorporates the physics of the system captured implicitly 
by the DP (Fig. 2). Our CNN uses vector maps (Fig. 2A), which 
contain point cloud data with the locations (r, θ) and intensities 
(I ) of the Bragg disks, as inputs, as opposed to images used in 
other ML models. There are three branches before a fully con-
nected layer, for which the inputs are the vector maps correspond-
ing to the same DP, sorted in different orders r-θ-I, θ-r-I, and 
I-r-θ, respectively (Fig. 2B) (r-θ-I represents the vector map sorted 
first by r, then θ, and then intensity I, for example). The sorting 
of the vector map affects the ability of the following convolutional 
layer to learn how adjacent Bragg disks, which encode structural 
symmetry, are correlated. The kernels defining adjacency in the 
convolutional layers are illustrated by the rectangles inside the DPs 
(Fig. 2B), and they are also shown in black squares containing two 
rows in the vector maps (Fig. 2A). The PointNet (28) framework 
has been widely used for deep learning on point sets for 3D clas-
sifications; thus, it is expected that this CNN would work well as 
a starting point with the 3D point representation (r, θ, and I ) of 
Bragg disks in a DP. We modified this standard PointNet CNN 
architecture according to the physics encapsulated in the point 

Fig. 2. Convolutional neural network architecture and dataset. A–D are CNN architecture used for both training and testing, and E is the training and testing 
datasets. (A) The DPs are represented in the form of vector maps, which are tabular data in which there are three columns (rows correspond to the identified 
Bragg disks in the DP): the distance to the center Bragg disk r, the angle θ from the horizontal, and the intensity I. The vector maps are sorted according to r-θ-I, 
θ-r-I, and I-r-θ. (B) The three sorted vector maps, corresponding to different kernel types, are used as inputs to the three PointNets. The outputs of the PointNets 
are concatenated and passed to the fully connected layers. The output layer contains seven neurons representing seven crystal systems (triclinic, monoclinic, 
orthorhombic, tetragonal, trigonal, hexagonal, and cubic). (C) The PointNet contains several convolutional layers followed by the global pooling layers. (D) The 
seven crystal systems as outputs. (E) Distribution of training and testing zone axes in 3D space. Space is represented by a 1/8 sphere. Thirty-four zone axes were 
sampled for training and 94 were sampled for testing.D
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cloud inputs (r, θ, and I) (Fig. 2C), using appropriately structured 
kernels to incorporate the physical adjacency information directly 
into the network architecture. This modified PointNet CNN is 
then applied to each input vector map that is gleaned from sub-
sequent DPs. At the end, an output layer contains seven neurons 
corresponding to the seven crystal systems (Fig. 2D).

In the multistream CNN, the input to each branch consists of 
the same DP information; however, the vector map containing the 
point cloud data is sorted in three different ways to achieve three 
different kernels (SI Appendix, Fig. S1). We tested this multistream 
CNN with the combination of the three kernel types and compared 
its accuracy to the accuracy of single-stream CNNs with only one 
of three kernel types. The squares in the first three DP images illus-
trate a kernel with size 2. The results show that the accuracy is the 
highest when we combine the three kernel types in the multistream 
CNN (SI Appendix, Fig. S2), and thus, we subsequently adopt this 
architecture. By utilizing multiple kernel types, the CNN is able to 
more effectively home in on various physical features of the different 
adjacent Bragg disks and exploit the actual physical information 
encoded in the DPs to learn and make accurate predictions.

Traditionally, CNNs perform a classification task by outputting 
probabilities of particular crystal systems (i.e., opinions), and a 
classification is usually achieved by applying a SoftMax activation 
function at the output layer and minimizing the cross-entropy 
loss function. Conventionally, it is equivalent to minimizing the 
cross-entropy loss function and maximizing the likelihood, assum-
ing a multinomial distribution with the parameters as class prob-
abilities. However, such a setup does not account for the confidence 
of forming an opinion (i.e., the uncertainty). Uncertainty quan-
tification is desired in our MVOF-ML framework since it is used 
to guide the fusion of the opinions. Therefore, we trained our 
CNN using the principle of evidential deep learning (33, 34). The 
uncertainty is explicitly modeled via

	
[1]

where u is the uncertainty mass, bk is the belief mass for the k-th 
class, and K  is the total number of classes. In evidential learning, 
the neural network forms opinions as Dirichlet distributions that 
can model the probability distribution of each class. The param-
eters of the Dirichlet distribution are calculated from the neural 
network outputs. The loss function is the marginal likelihood 
calculated using the Dirichlet distribution.

The multiview opinions are automatically fused sequentially, 
two opinions at a time, to capture how live experimental data will 
be presented to the CNN. Opinions from the first two different 
views are fused with uncertainty as outlined above. After that, a 
fused opinion is formed, which is then fused with the third opin-
ion, and so on. During the opinion fusion, uncertainties are also 
fused. This process stops when the uncertainty is below a desired 
threshold. The Dempster–Shafer theory is used to combine two 
opinions under uncertainty (35). Consider that the joint masses 
{

{

b1
k

}K

k=1
, u1

}

 and 
{

{

b2
k

}K

k=1
, u2

}

 are obtained from two 

different views. The fused belief mass bk and the uncertainty mass 
u can be expressed as

	
[2]

and

	 [3]

respectively, where C =
∑

i≠jb
1
i
b2
j
 measures the quantity of con-

flicts between two different views. The Dempster–Shafer theory 
(35–38) implies the following properties (35) that are appropriate 
for decision making. First, when fused with each new opinion, 
the uncertainty mass successively decreases, indicating increasing 
confidence in decision-making, ensuring that the procedure auto-
matically stops analyzing new DPs when enough evidence is accu-
mulated. Second, when two uncertainties are high, the fused 
uncertainty remains high. For this reason, only the opinions with 
high confidence (low uncertainty) play a significant role in the 
decision-making process. Third, the accuracy can be improved 
during opinion fusion; this is true when the belief mass of the 
correct class in the new opinion is higher than the maximum belief 
mass in the previous opinion. Although the accuracy can decrease 
when fused with a wrong prediction, the amount of degradation 
is limited when the uncertainty associated with the wrong predic-
tion is large.

1.2.  Classification with Uncertainty Quantification. DPs with 
different zone axes were simulated for crystal systems from the 
Materials Project database (39). Since it is impossible to train the 
neural network using data from all possible zone axes, a number of 
diverse and representative zone axes were sampled and tested in 3D 
space (Fig. 2E). For training and testing, one DP from a random 
orientation is used as input. The classification results, shown in a 
confusion matrix, have true labels as well as predicted labels (Fig. 3A). 
The summation of each row is the total amount of data per class (i.e., 
329,000). The diagonal numbers show correct classifications, and 
the off-diagonal numbers show misclassifications. For predictions 
made using single input DPs (one zone axis), the testing accuracy 
was 0.55. We hypothesized that the accuracy was low for two key 
reasons. First, any single input DP is only a 2D projection of a 3D 
crystal structure, and it may not contain sufficient information to 
uniquely classify the crystal system. Second, the CNN was trained 
using the data from a fixed and finite number of zone axes, so the 
zone axes of most of the testing data were different from those of 
the training data. To explore the former hypothesis, we trained and 
tested the CNN using two or three DPs (taken along different zone 
axes) as simultaneous inputs (vide infra, SI Appendix, Fig. S3), and 
the accuracy of the prediction made with multiple DP inputs is 
improved (0.94), which is expected as this provides the CNN with 
information in 3D. However, since the DPs will have arbitrary 
orientations for actual samples, this solution cannot be applied to 
improve accuracy in real high-throughput experiments. So, moving 
forward, we only input one DP at a time. In particular, we also tested 
the CNN using test cases composed of a single DP input at the 
same orientations as the training data, and a higher accuracy of 0.78 
(versus the 0.55 stated above) was attained (SI Appendix, Fig. S4). 
This implies that the CNN is more accurate in classifying a DP if 
the orientation is similar to one that it has already seen. This bodes 
well because we note that our CNN architecture is not designed to 
achieve the highest accuracy for a one-shot prediction. Instead, it is 
designed to achieve a high accuracy as data accumulates, so that it 
is meaningful in the context of high-throughput experimental data 
acquisition. We present classification results obtained after fusing 
information from multiple zone axes in the next section.

The uncertainty of the CNN model was analyzed across the 
entire testing data set using two metrics: uncertainty mass and 
information entropy. The uncertainty mass ( u in Eq. 1) describes 
the overall uncertainty of the classification according to the evi-
dence gathered from data (35). The information entropy ( H  ) is 
the average amount of information (or “surprise”) of a random 
variable defined as

u +
∑K

k=1
bk = 1,

bk =
1

1 − C

(

b1
k
b2
k
+ b1

k
u2 + b2

k
u1

)

,

u =
1

1 − C
u1u2,
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Fig. 3. Results of classification and uncertainty quantification before (A–E) and after (F and G) multiview opinion fusion. (A) The confusion matrix shows the 
true labels versus predicted labels. The accuracy is 0.55 before the fusion of information from multiple zone axes. (B–E) Uncertainty quantification. B and C are 
the distribution of uncertainty mass and information entropy categorized by correct classifications and misclassifications. The model is more uncertain on the 
samples it predicts wrong. D and E are the distribution of uncertainty mass and entropy categorized by seen and unseen zone axes, respectively. The model 
is more uncertain on the samples where the testing zone axes are different from the training zone axes. (F) Confusion matrix after opinion fusion. The overall 
accuracy is 0.94. The worst case is triclinic (accuracy 0.71). For other crystal systems, the accuracy is between 0.95 and 1.00. The total amount of data for each 
class is different from that seen in Fig. 3A. This is because, in this case, we treated each crystal as one sample after opinion fusion, while above we treated the 
DPs from different zone axes of a crystal as separate datapoints before fusion. (G) The testing process for each crystal is repeated multiple times. An arbitrary 
series of DPs with different zone axes are used for opinion fusion at each time. The final decision is the class with the majority vote. The vote percentages are 
higher for correct classifications than misclassifications. Thus, a correct decision is associated with high confidence.
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[4]

where pk is the probability that the CNN model assigns to the 
k-th class. A higher u or H  implies that the model is more uncer-
tain about its prediction. For each test case, u and H  are calculated, 
and the distributions of all test cases are presented (Fig. 3). Both 
the mean uncertainty mass and the mean entropy are higher for 
misclassifications than for correct classifications (Fig. 3 B and C). 
This result is reasonable because the model is more uncertain on 
the samples it predicts wrongly. The testing data are further cate-
gorized according to seen and unseen zone axes. The model is 
more confident when the zone axes were already seen by the model 
(i.e., they were used for training) (Fig. 3 D and E). Again, the data 
show that the CNN trained with evidential deep learning is aware 
of the uncertainty in its predictions, which are leveraged to guide 
the decision-making process while the DPs are accumulated.

1.3.  Classification Fusion from Multiple Random Zone Axes. After 
training, the CNN can be applied to make predictions when given 
a DP with any arbitrary zone axis. The MVOF-ML framework 
(Fig.  1B) is implemented, and its power is illustrated (Fig.  4) 
using a triclinic LiCo

(

PO3

)

3
 bulk structure randomly selected 

from the Materials Project database (mp-26015) as an example. 
First, a DP orientation is randomly selected (zone axis [2 1 4]). 
The classification result given by the CNN model shows that the 
most probable classification is trigonal. The uncertainty mass for the 
first DP is 0.39. The uncertainty mass is higher than the threshold 
of 0.1, and so the second DP is collected. This representation is 
analogous to human reasoning, where a decision cannot be made if 
one is not confident in the conclusion. The CNN model classifies 
the second DP with another randomly selected zone axis, [2 1 0], 
as triclinic with an uncertainty mass of 0.22. The fused opinion 
indicates that both triclinic and trigonal are possible. The fused 
uncertainty mass is 0.16, which is still higher than the threshold 
of 0.1, so another DP with a random zone axis is analyzed, and 
the process continues until the fused uncertainty is lower than the 
threshold. The final fused opinion yields a decision that the crystal 
symmetry is triclinic, the correct decision, after five iterations. This 
example highlights that, although a CNN model may misclassify a 
single DP, the opinion fusion framework makes the correct overall 
decision in the end after the uncertainty decreases to a level where 
the CNN is confident in the opinion.

Next, the overall predictive performance of our CNN frame-
work was examined on the whole testing data set from the 
Materials Project database (Materials and Methods). The confusion 
matrix is shown in Fig. 3F. The overall accuracy is 0.94, which is 
higher than that of other models in the current literature used for 
crystal system classification. All cubic crystals are correctly iden-
tified (i.e., the accuracy is 1) (Fig. 3F), and the accuracy was the 
lowest for the triclinic (accuracy 0.71, SI Appendix, Note 1). For 
the other crystal systems, their accuracies were between 0.95 and 
1.00 (SI Appendix, Table S1). If we do not leverage uncertainty 
decision-making in our framework, fusing the opinions for the 
DPs of all 94 testing zone axes for a single crystal, the accuracy is 
0.54. This accuracy is similar to that seen before the opinion fusion 
(single DP input; see Section 1.2). These results highlight that the 
uncertainty quantification is just as important as the number of 
informational inputs in the ultimate decision-making process. 
Our CNN operates analogous to a human assigning different 
degrees of “trust” to an opinion depending on the degree of uncer-
tainty associated with it.

The results in Fig. 3F were obtained by majority vote, where the 
testing process for a crystal is repeated multiple times (100 in this 
example). Each time a series of DPs with different randomly chosen 
zone axes were used, the final decision is the classification with the 
majority vote. The higher the vote percentage, the higher the algo-
rithm’s confidence is in making a final decision. The vote percentages 
for correct classifications and misclassifications (from Fig. 3F) are 
shown in Fig. 3G. The median and mean vote percentages for cor-
rect classifications versus misclassifications are 0.99 vs. 0.67, and 
0.90 vs. 0.69, respectively. Thus, in these examples, when a correct 
decision is made, it is associated with a high level of confidence.

1.4.  Tolerance to Noise. The results presented thus far are based 
on the following idealized, but still reasonably representative, 
conditions on the DPs:

Condition 1: The simulated DPs are idealized with no noise,
Condition 2: The DPs used to make a decision are from the 

same crystal, and
Condition 3: The DPs used to make a decision are from varied 

zone axes.
Now, these conditions are relaxed, and the performance of the 

MVOF-ML framework is investigated in more realistic noisy sce-
narios. The same trained model using the simulation data is tested. 
To alleviate Condition 1, we tested the performance of the frame-
work on more realistic noisy DPs. Three types of noise—pertur-
bation, vacancy, and redundancy—were introduced to the ideal 
simulated DPs. For perturbation, the location and intensity of the 
Bragg disks were altered. The perturbed Bragg disks were obtained 
by multiplying the location and intensity values in the vector map 
with random numbers drawn from an  (1, �) Gaussian distribu-
tion, where � is the SD. As � increases, the DPs contain Bragg disks 
at more strongly perturbed locations and/or intensities than their 
true values. For vacancy and redundancy, we randomly remove or 
add Bragg disks, analogous to “missing” points or detecting “false 
positives” in a DP that are not part of the structure. Any added 
Bragg disks are sampled from the range of the original vector maps. 
The data show that the accuracy decreases gradually with increasing 
noise, but there is no sudden or significant drop in accuracy when 
noise is introduced (Fig. 4B). When the noise level is low (noise 
level between 0.05 and 0.1 for all the three cases), the accuracies 
remain higher than 0.8. Thus, the MVOF-ML framework is rela-
tively robust to those three types of noise (SI Appendix, Note 2).

In the above opinion fusion process, we assume that all of the 
fused opinions are multiple views of the same crystal (Condition 
2). This condition is true only when a single crystalline phase is 
present in the material. However, when a specimen contains mul-
tiple crystal systems, the 4D-STEM dataset will include DPs cor-
responding to different crystals, and as a result, the opinions for 
different crystals may be fused. When incorporating an opinion 
irrelevant to the crystal being classified, it will negatively influence 
the decision process or lead to the wrong decision. In the original 
candidate pool (all possible orientations that can be collected for 
testing), there are 94 DPs for each crystal corresponding to 94 
testing zone axes. To test the tolerance of the method to irrelevant 
DPs, when classifying test cases, we introduced the DPs of other 
crystal systems to the candidate pool, randomize the pool, and then 
conduct the classification. The number of irrelevant DPs varies from 
0.5 to 3 times of the original pool size (i.e., 94). As expected, the 
accuracy decreases as the number of irrelevant DPs increases 
(Fig. 4B “Irrelevant opinions 0 - 0.5 - 1 - 2 - 3”); however, it remains 
higher than 0.9 even when the number of DPs corresponding to 
the true crystal is only half of the size of the candidate pool.

In the above analyses, we assume that every time an opinion 
for an additional DP with an additional zone axis is fused with 

H =

K
∑

k=1

pk log2pk ,
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another, and the additional zone axis is one that has not been 
used before (Condition 3), which will not always be true in real 
experiments. To test the robustness of the method to repeatedly 
fusing opinions for the same zone axis, we duplicated the original 
candidate pool. Thus, when multiple DPs are randomly sampled 
from the pool for opinion fusion, it is possible that the same 

DPs are repeatedly fused. The number of duplicates varies from 
2 to 5. The data show that the accuracy does not decrease if the 
candidate pool is duplicated ≤5 times (Fig. 4B; “Repetition 0 - 2 
- 3 - 4 - 5”).

It is assumed that each DP in this work contains only one phase. 
However, the mixed-phased DP classification is of significant 

Fig. 4. An illustration of decision-making and tolerance to noise. (A) The triclinic mp-26015 from the Materials Project database is tested. Row 1 shows the 
DPs with corresponding randomly selected zone axes collected sequentially. Probability distributions (opinions) of seven crystal systems predicted from the 
CNN model are presented in row 2. Row 3 shows the probability distribution formed by fusing the current opinion with the previous fused opinion. During the 
fusion of opinions, the uncertainty mass decreases (row 4). “Single” and “Fused” correspond to a single or fused opinion or uncertainty, respectively. It should 
be noted that the zone axes shown next to the DPs are only for visualization purposes and are not used for classification. (B) Tolerance to noise. Perturbation, 
vacancy, and redundancy are added as sources of noise to the simulated DPs to alleviate Condition 1. The five numbers refer to a value of � for perturbation 
and proportion of the total amount of Bragg disks for vacancy and redundancy, and they represent five different levels of noise. Irrelevant opinions are DPs 
from other crystals to investigate the performance of the MVOF-ML framework when Condition 2 is relaxed. Repetition refers to fusing opinions from the same 
DPs by duplicating the candidate pool, corresponding to a relaxation of Condition 3. The numbers in the legend are the noise levels.
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importance, e.g., for grain or phase boundary identification. The 
mixed-phase DP is similar to the combination of the three types 
of noise (i.e., perturbation, vacancy, and redundancy) in Condition 
1 in Section 1.4. More detailed investigation needs to be con-
ducted in future work by extending the proposed method to 
mixed-phase DPs. In this case, the accurate class probability pre-
diction is needed to correctly distinguish the primary phase and 
the secondary phases with uncertainty quantification. Also, criteria 
such as distinguishing mix-phases or uncertain phases need to be 
further investigated. In ongoing, related work, we are investigating 
segmentation of nanoparticles into regions containing distinct 
single phases and regions containing overlapping mixed phases. 
We anticipate that this related work will serve as the basis for 
classification of mixed-phase DPs. For example, one first performs 
the segmentation to identify regions of single-phase DPs and over-
lapping DPs and then incorporates this information into the clas-
sifier to improve the classification of regions with the mixed-phase 
DPs. Our preliminary segmentation results are very promising, 
but the paper is not yet ready for publication.

1.5.  Demonstration of Experimental Data. To test the performance 
of the MVOF-ML framework under realistic experimental 
scenarios, experimental data obtained from AuCu nanoparticle 
libraries are used as inputs (SI  Appendix, Fig.  S5). Data from 
different regions of a nanoparticle were treated as DPs from different 
orientations of the same crystal. In total, 17 nanoparticle datasets 
(SI Appendix, Fig. S6) with cubic crystal systems are tested. The 
experimental data processing for an example nanoparticle (Fig. 5A) 
is depicted (SI Appendix, Fig. S7). The DPs distributed at different 
scan positions (white squares in Fig. 5A) are shown (Fig. 5B) as 
well as the DPs of all the nanoparticles (SI Appendix, Figs. S8–
S24). At each scan position, the locations and intensities of the 
Bragg disks are extracted and are used as inputs in the MVOF-ML. 
The CNN model was retrained on the simulated data (the real 
experimental data are the test data) with disk intensity higher than 
0.2. This intensity thresholding removes all low-intensity disks that 
would not be observed experimentally to provide a more realistic 
training dataset. The accuracy of the MVOF-ML framework on 
the simulated testing data was 0.80. The results for experimental 
data are as follows.

Out of 17 nanoparticles, 16 were correctly classified (Fig. 5C). 
Nanoparticles 6, 9, and 14 are the same as nanoparticles 5, 8, and 
13 at different magnifications, respectively, and they maintain the 
expected classification trends. The one wrong prediction (trigonal 
as opposed to cubic, particle 17 in Fig. 5C and SI Appendix, 
Fig. S24) is based on the only single crystalline nanoparticle, for 
which all DPs are from the same zone axis, which makes a unique 
classification impossible. In this particular case, the particle’s ori-
entation is near the cubic <101> zone axes, which exhibit the same 
symmetry as the trigonal <101>. Accordingly, the correct opin-
ion—“cubic”—is classified as the second probable class for that 
nanoparticle. Cases like these are inevitable when analyzing indi-
vidual nanoparticles and highlight the power of our MVOF-ML 
framework to accumulate data. In a high-throughput experimental 
data acquisition process, the framework would be allowed to accu-
mulate data across particles to arrive at a “global opinion” for a 
particle array, eliminating the possibility of incorrect classification 
due to an insufficient number of crystal orientations being 
acquired. In addition, instances featuring multiple predictions 
with similar probabilities can be addressed similarly. The number 
of iterations required for the framework to reach its final decision 
can serve as a metric indicating classification complexity. This 
pinpoints structures of particular interest for manual examination. 

These results show that the high accuracy observed on simulated 
data is maintained on noisy experimental data, which underscores 
the importance of designing robust systems for use in an experi-
mental context and highlights the effectiveness of this MVOF-ML 
framework.

2.  Discussion

In this work, DPs are described as vector maps containing posi-
tion and intensity information of Bragg disks to encapsulate the 
parts of the data in a condensed format that contains physical 
information. We compared the predictive performance of the 
CNN model using vector maps versus using images as inputs. 
Due to the differences in these two types of inputs (i.e., images 
and tabular data), we used different CNN architectures for each 
input type. For grayscale image inputs, we adopted the typical 
CNN with several combinations of a convolutional and max 
pooling layer followed by the fully connected layer and the output 
layer. For vector map inputs, we used a modified PointNet CNN 
architecture, as described earlier. We tested the predictive perfor-
mance given 1, 2, and 3 images or vector maps as inputs (corre-
sponding to 1, 2, or 3 multiple DPs for each case), and we found 
that the accuracy is always higher when vector maps are used as 
DP descriptors (SI Appendix, Fig. S25 and Note 3). In addition, 
we again observed that the accuracy improves significantly when 
two or three DPs are input to the CNN compared to one DP 
(via supra). The results shown in this section are representative 
of the situation where testing data are obtained from the same 
zone axes as the training data, a common practice in the literature 
when ML is used for crystal structure classification from DPs. 
However, in real experiments, the zone axes of the collected crys-
tal diffraction data may be unknown and random, especially in 
high-throughput workflows, including those involving nanopar-
ticle megalibraries. Our MVOF-ML framework (Section 1.1) 
can avoid that problem, significantly increasing its practical appli-
cation in such workflows.

In summary, we have developed a framework for automated 
crystal system identification from DPs with arbitrary zone axes 
for high-throughput material discovery. Inspired by the human 
reasoning process from multiple perspectives (i.e., DPs of a crystal 
taken from different zone axes), the problem is modeled as a 
sequential decision-making process by multiview opinion fusion. 
The location and intensity information of the Bragg disks in the 
DP images are extracted and used as inputs for ML. We designed 
a custom CNN to capture the physical parameters embedded with 
the DPs by working off the adjacency relations between Bragg 
disks. The CNN was trained in the context of evidential deep 
learning, which provides opinions (classification probabilities) and 
quantifies uncertainties. The decision is made through the fusing 
of the opinions from multiple zone axes and is automated through 
the guidance of the quantified uncertainty. Our framework 
achieves high testing accuracy and is shown to be robust under 
noisy scenarios involving Bragg disk perturbation, vacancy, and 
redundancy. Finally, we have demonstrated the framework on real 
experimental data with high accuracy (0.94). To enhance the 
applicability of the MVOF-ML method to classify deeper levels 
of crystal structures (e.g., space groups), future work will imple-
ment retrieval of space groups and lattice parameters from the 
DPs to more completely describe the structures of the materials. 
In the context of experimental materials discovery, where data can 
now be generated faster than they can be analyzed, this work sets 
the stage for integrating ML frameworks into high-throughput 
experimental workflows, not only delivering the much-needed 
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processing power but also providing a basis for autonomous 
decision-making in the materials discovery pipeline.

3.  Materials and Methods

3.1.  Simulation Data Preparation. The data were generated using an auto-
mated workflow modified from ref. 40. We retrieved the crystallographic infor-
mation framework (CIF) files from the Materials Project database (39). In these 
files, it was necessary to regenerate the symmetry information (i.e., space groups 
and symmetry operations). Using FINDSYM software (41), we obtained the crystal 
system for each structure. We developed an electron diffraction simulator using 

the open-source Pymatgen package (42). Given an incident beam direction, the 
simulator generates the positions and intensities of Bragg disks, from which we 
can construct vector maps.

We adopted the following principle for zone axis sampling. The sampling 
covers zone axes [u v w] in the 1/8 sphere (due to symmetry) (Fig. 2E), with integer 
u, v, and w values in the range from 0 to 5 (except all zeros). For two zone axes that 
are close (i.e., the angle between them is below a threshold), only the lower-order 
ones will be sampled. The threshold for training and testing data is 10° and 5°, 
respectively. Thus, the testing data contain DPs from zone axes unseen in the 
training data, which matches the scenario of applying the trained model to real 
experimental data. In total, there are 34 zone axes for training and 94 for testing. 

Fig. 5. Experiment data and results. (A) An example of a nanoparticle and its scan positions in 4D-STEM. (B) The DPs corresponding to different scan positions. 
(C) Classification results for the 17 nanoparticles. Sixteen out of 17 nanoparticles were correctly classified as cubic crystal systems.
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Training and testing sets each include 500 randomly sampled crystal structures 
per crystal system. For each crystal, DPs are simulated with the above zone axes. 
The resulting training data size is 500 × 7 × 34 = 119,000, and testing data size 
is 500 × 7 × 94 = 329,000.

We transform the location of a Bragg disk from Cartesian coordinates (the 
horizontal location x and the vertical location y) to polar coordinates (the distance 
to the center Bragg disk r and the angle from the horizontal θ). Thus, the vector 
map is presented by a matrix whose three columns are r, θ, and intensity I. Each 
row represents one Bragg disk in the DP.

3.2.  Experimental Data Preparation. Chloroauric acid hydrate (HAuCl4 
xH2O, ≥ 99.9% trace metals basis), copper (II) nitrate hydrate (Cu(NO3)2 xH2O, 
99.999%), nitric acid (HNO3, 70%, redistilled, ≥99.999% trace metals basis), hex-
amethyldisilazane (HMDS, 99.9%), and hexane (anhydrous, 95%) were purchased 
from Sigma-Aldrich. Poly(ethylene oxide)-block-poly(2-vinylpyridine) (PEO-b-
P2VP, Mn = 2.8-b-1.5 kg/mol, polydispersity index = 1.11) was purchased 
from Polymer Source, Inc. Dip-Pen Nanolithography (DPN) 1D pen arrays (type 
M, without a gold coating) were purchased from Advanced Creative Solutions 
Technology, LLC. Silicon nitride membranes for TEM (amorphous, thickness = 
15 nm) were purchased from Ted Pella, Inc.

The synthesis of nanoparticle arrays has been described previously (43). In brief, 
silicon nitride membranes were functionalized with HMDS, and precursor inks were 
prepared by adding PEO-b-P2VP, metal precursors, and HNO3, at desired ratios in 
deionized water. Plasma-treated DPN pen arrays were mounted onto an AFM (Park 
Systems XE-150) at a relative humidity of 80% and coated with the precursor ink. 
Nanoreactors were deposited onto the functionalized silicon nitride membranes by 
repeatedly bringing the cantilever tips in contact with the surface. Nanoparticles were 
formed from the nanoreactors through thermal annealing in a H2 atmosphere.

All 4D-STEM datasets (128 × 128 × 128 × 128 pixels) were acquired on a 
JEOL JEM-ARM300F (S)TEM equipped with a cold field emission gun operated at 
80 kV on a Gatan STELA hybrid-pixelated camera operated at 2,000 fps.

The identification plots of the 17 nanoparticles are presented in SI Appendix, 
Fig. S6. Each nanoparticle varies in shape and composition of grains. The locations 
and intensities of the Bragg disks are extracted from the DPs. The locations are 
represented as the centers of the Bragg disks. Since the true Bragg disk intensities 
are unknown for the experimental data, we approximate intensities using the 
cross-correlation intensities that measure the extent that a point is a true Bragg 
disk. The process to extract the data for a typical nanoparticle contains local averag-
ing, symmetrizing, background subtraction, Bragg disk identification, calibration, 
and recentering (SI Appendix, Fig. S7). Since the raw DPs of each scan position 
from the 4D-STEM datasets are noisy, we averaged DPs of each scan position 
for analysis to reduce the noise. In the end, the coordinates are centered and 
transformed from pixel distances to inverse nanometers.

3.3.  Framework Implementation. Inspired by the human reasoning process, 
the framework for automated crystal system identification for 4D-STEM is devel-
oped and presented (Fig. 1B), and the algorithm is shown in Algorithm 1. First, 
a machine learning model (a modified version of PointNet CNN in this work) is 
trained to make predictions in place of a human expert. Next, a DP simulated 
from an arbitrary orientation is used as input in the CNN. The CNN predicts the 
probability that a crystal belongs to each crystal system, regarded as one opinion. 
In addition to an opinion about what probability it assigns to each class, we also 
determine how confident it is in that opinion (i.e., the uncertainty quantifica-
tion) (30–32). Next, another DP is collected from a different arbitrary orientation, 
and the same process is conducted to form the second opinion as well as its 
uncertainty. Following that, the first and second opinions are fused, and their 
uncertainties are also fused. If the fused uncertainty is still high, another new 
opinion will be formed from an additional DP. The previously fused opinion and 
uncertainty will be fused with the new opinion and uncertainty. Fused opinion 
II is more confident (less uncertain) about what structure the crystal belongs to 
as information is accumulated (Fig. 1B). That process is repeated until the fused 
uncertainty is below a sufficiently small, specified threshold. In other words, 
when enough DPs are analyzed, decisions regarding the crystal system can be 
finally made with high confidence. The decision is the final fused opinion. The 
uncertainty threshold in Algorithm 1 is a user-defined value. A lower threshold 
corresponds to a more conservative decision (SI Appendix, Note 4).

Algorithm 1: Algorithm for automated crystal system identification

/*Training*/

Train a CNN using simulated diffraction data with multiple zone axes

/*Testing*/

Repeat n times:
Collect a DP

Prediction with uncertainty

While uncertainty > threshold do
Collect next DP

Prediction with uncertainty

Fuse predictions and fuse uncertainties

End
End

3.4.  CNN Architecture. The details of the CNN architecture (Fig. 2B) are 
shown in SI Appendix, Table S2. The three PointNet branches have the same 
architecture. The inputs are matrixes. Each row represents a Bragg disk. Three 
columns represent the distance to the center Bragg disk r, the angle from the 
horizontal line θ, and intensity I, respectively. In the convolutional layers, 
the kernel moves in a 1D direction from top to bottom of the input matrixes 
since each row is treated as a unit in PointNet. The filters of the convolutional 
layers extract specific features. A significant difference between PointNet and 
regular CNN is that there are no pooling layers right after the convolutional 
layers. Instead, there is a global pooling layer after stacking all convolutional 
layers to condense a filter as one value. In the original PointNet, the kernel 
is 1D with size of 1 for the invariance of point sequence in 3D space, which 
results in the ignorance of information among adjacent points. In this work, 
the kernel size is set to be greater than 1 to extract and learn information 
among adjacent Bragg disks, which increases the accuracy. The condensed 
features from the three PointNets are concatenated before being processed 
by two fully connected layers. At the end, there is an output layer with 7 
neurons representing 7 crystal systems. The Rectified Linear Unit (ReLU) 
activation function is used for all convolutional layers, the fully connected 
layer, and the output layer. The optimizer is Adam with a learning rate of 
0.001. The CNN was trained with a batch size of 32 and 10 epochs under 
the framework of Tensorflow. The CNN model is translation invariant due to 
the normalization with respect to the center Bragg disk, and it is permuta-
tion invariant due to the sorting operation on the point cloud and global 
pooling layers in PointNet. However, it is not rotation invariant. In addition, 
the NN architecture in this work captures local and global features through 
convolutional operations and multiple sorting schemes. Future work can be 
modifying the neural network architecture [e.g., Graph Convolutional Neural 
Network (44)] to handle different transformation invariance and/or enhance 
capturing both global and local features.

3.5.  Deep Learning for Classification with Uncertainty Quantification. 
Classification with uncertainty quantification is achieved through evidential deep 
learning (33). The main idea is that the uncertainty is explicitly modeled, together 
with class probabilities, through Eq. 1, where the belief mass and uncertainty 
mass are obtained as bk = ek∕S , k = 1, 2, ⋯ , K  , and u = K∕S , respectively, 
where ek is the evidence for the k-th class, and S =

∑K

k=1
(ek + 1) . The CNN 

outputs are ek . The activation function at the last layer is the Rectified Linear Unit 
(ReLU) activation to ensure the nonnegativity of ek . The expected probability of 
the k-th class is pk = �k∕S , where �k = ek + 1.

The neural network is trained by minimizing the loss function expressed 
using the Dirichlet distribution. The Dirichlet distribution is a probability den-
sity function that models the probability distribution of K  class probabilities 
p = [p1, ⋯ , pK ] . It is expressed as 

	 [5]D
�

p ��
�

=

⎧

⎪

⎨

⎪

⎩

1

B(�)

K
�

k=1

p
�k−1

k
for p∈K,

0 otherwise
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where K is a set of K  probabilities

and B(�) is the multinomial beta function. � = [�1, ⋯ , �K ] is a set of parame-
ters characterizing the Dirichlet distribution function. The K parameters of Dirichlet 
distribution represent the evidence for K  classes.

Let Θ be the weights and biases of a neural network and y = [y1, ⋯ , yK ] be 
a one-hot encoded vector representing the true label. The following loss function 
is adopted

	 [6]

where ∥ y−p∥2
2
 is the sum of squares loss.

The first term in the loss function [6] can be rewritten as

	
[7]

where the first and second terms represent prediction error and variance, 
respectively.

The second term in the loss function [6] is a Kullback–Leibler (KL) divergence 
term, which serves as regularization, where 1 is a vector with all the K  elements 
being ones, and �̃ = y + (1 − y) ∙ � is a vector after removing the evidence of 
the true class. �t = min(1, t∕50) ∈

[

0, 1
]

 gradually increases with the increase 
of epoch t  . The KL divergence can be expressed as

	

[8]

where Γ( ∙ ) and � ( ∙ ) are the gamma function and the digamma function, 
respectively. This term is to ensure that the evidence for a sample approaches 
zero if the model cannot classify it correctly (SI Appendix, Note 5).

Data, Materials, and Software Availability. The crystallographic informa-
tion framework (CIF) files, and the codes for simulation of DPs with arbitrary 
zone axes, CNN model training, and opinion fusion for decision making are 
available at https://github.com/jcj7292/Multiview-Opinion-Fusion-Machine-
Learning (45).
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