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ABSTRACT. We prove several topological and dynamical properties of the boundary of a hierarchi-
cally hyperbolic group are independent of the specific hierarchically hyperbolic structure. This is
accomplished by proving that the boundary is invariant under a “maximization” procedure intro-
duced by the first two authors and Durham.

1. INTRODUCTION

A geodesic metric space X has a hierarchically hyperbolic structure if there exist an index set &
parameterizing a collection of hyperbolic spaces and projections from X to each of these hyperbolic
spaces satisfying some conditions that encode the presence/absence of certain quasi-isometrically
embedded products in X’; see Definition 3.1. A hierarchically hyperbolic group (HHG) is a finitely
generated group where the word metric on the group has a hierarchically hyperbolic structure that
is compatible with the group action.

The notion of hierarchical hyperbolicity was introduced by Behrstock, Hagen, and Sisto [BHS17b,
BHS19] and includes a number of important examples in geometric group theory including mapping
class groups, most three-manifold groups [BHS19], right-angled Coxeter groups, large classes of
Artin groups [BHS17b, HMS], hyperbolic groups, and various combinations of these examples
[BHS19, BR20a, BR20b].

A hierarchically hyperbolic group is typically studied by fixing a particular hierarchically hy-
perbolic structure and deducing results about the group using the geometric and combinatorial
properties associated to that structure. On the other hand, once a group admits one hierarchi-
cally hyperbolic structure it automatically admits many. For example, a hyperbolic group has a
hierarchically hyperbolic structure where the index set consists of a single element and the asso-
ciated hyperbolic space is the group itself. However, one can also take a more complicated index
set consisting of a collection of quasi-convex subgroups of the hyperbolic group together with an
electrification of the original group collapsing those subgroups and their cosets. (Note that a hy-
perbolic group is not hyperbolic relative to such a collection if they are not almost malnormal, but
one does get hierarchical hyperbolicity without such an assumption.) This point of view provides
an upside to having multiple structures by yielding new techniques for studying hyperbolic groups
and their boundaries; see e.g., [Spr18].

In a few cases, the possible structures for an HHG are understood; for instance a hierarchically
hyperbolic group is virtually abelian if and only if the associated hyperbolic spaces are either
bounded or quasi-lines [PS20]. However, at this point, it remains out of reach to understand all
the possible structures on a given group in general. A natural question in this direction is whether
or not a hierarchically hyperbolic group possesses a most “natural” or “simplest” structure. In a
hierarchically hyperbolic structure, there is a partial order, called nesting, on the set of hyperbolic
spaces and a unique nest-maximal element. Understanding the geometry of the nest-maximal
hyperbolic space is one way to make precise the notion of a simplest structure. Some progress on this
has been made in [ABD21], where the authors gave a construction, which we call mazimization, that
modifies any given structure to produce one where the nest-maximal hyperbolic space is canonical.
The canonicality can be seen in a number of ways, including being unique up to quasi-isometry, as
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well as encoding all the Morse elements of the group. This paper begins with the work of [ABD21]
as a starting point in order to study the effect of maximization on the boundary of a hierarchically
hyperbolic group.

Durham, Hagen, and Sisto introduced a boundary that provides a compactification for a hierar-
chically hyperbolic group and coincides with the Gromov boundary when the group is hyperbolic
[DHS17]. Their construction depends a priori on the choice of hierarchically hyperbolic structure
S for the group G, a pair which we denote (G, S); accordingly, we denote this boundary 0(G, S).
Question 1 in Durham, Hagen, and Sisto’s paper is: given two different structures on a hierarchi-
cally hyperbolic group, does the identity map from the group to itself extend to a homeomorphism
between the boundaries of the two different structures?

In this paper we resolve Durham—-Hagen—Sisto’s question for any structure and its maximized
version.

Theorem 4.1 If (G,8) is an HHG and ¥ is the structure obtained by maximizing S, then the
identity map on G extends continuously to a G—equivariant map 0(G, &) — 0(G,T) that is both a
stmplicial isomorphism and a homeomorphism.

As part of our proof of Theorem 4.1, we also prove that two other important notions in hier-
archical hyperbolicity—hierarchical quasiconvexity and hierarchy paths—are also invariant under
the maximization procedure; see Section 4.2 for the precise statements.

Theorem 4.1 allows one to convert questions about the HHG boundary to questions about a
maximized structure. In particular, this allows us to obtain a number of results about HHG
boundaries which are independent of the choice of HHG structure used to build the boundary.

One consequence is that some topological properties of the boundary of the maximized hyperbolic
space can be shown to hold in every HHG boundary, for instance:

Corollary 5.6 Let G be an HHG. If the hyperbolic space associated to the nest-mazimal element
in some (and hence any) mazximized hierarchically hyperbolic structure is one-ended, then for any

HHG structure & for G, the HHS boundary 0(G,S) is connected.

The converse of Corollary 5.6 is an interesting open question.

Theorem 4.1 and the fact that the maximized hyperbolic space encodes the Morse elements of the
group implies that the Morse elements are precisely the set of elements that act with north-south
dynamics in any HHG boundary.

Corollary 5.9 Let (G,S) be a hierarchically hyperbolic group that is not virtually cyclic. An
element g € G acts with north-south dynamics on 0(G,S) if and only if g is a Morse element of
G. In particular, the set of elements of G that act with north-south dynamics does not depend on
the HHG structure &.

We can also show that the set of attracting fixed points of the Morse elements is dense in the
boundary, regardless of the choice of HHG structure.

Corollary 5.10 Let (G,6) be an HHG that is not virtually cyclic. Either G is quasi-isometric to
a product of two unbounded spaces or the set of attracting fized points of Morse elements in 0(G,S)
is dense in 0(G,S). In the latter case, the Morse boundary is a dense subset of the HHS boundary.

Note that for the above corollary, as well as the following one, the hypothesis that G is quasi-
isometric to a product of two unbounded spaces could be replaced by the equivalent statement that
G does contain a Morse element. This equivalence is obtained by first applying the rank rigidity
theorem [DHS17, Theorem 9.13] to know that a group is either a product or contains a rank-one
element, then applying maximization to ensure that a rank-one element is irreducible axial, and
finally appealing to [DHS17, Theorem 6.15] (or alternatively [ABD21, Theorem 4.4]), which implies
that irreducible axials are Morse.
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Finally, we use the density of Morse elements to show the limit set of a normal subgroup is the
entire HHS boundary. Examples of such normal subgroups include the kernel of the Birman exact
sequence [Bir69], Bestvina—Brady subgroups of RAAGs [BB97], the normal closure of sufficiently
high powers of Dehn twists, as studied in [Dahl18], and the infinitely generated RAAG subgroups
of mapping class groups considered in [CMM21].

Corollary 5.12 Let (G,S) be an HHG that is not quasi-isometric to a product of two unbounded
spaces and is not virtually cyclic. If N is an infinite normal subgroup of G, then the limit set of N

in 0(G,6) is all of 0(G,S).

For hyperbolic groups, if the normal subgroup N is also hyperbolic, then a remarkable theorem of
Mj says there is a continuous surjection of the Gromov boundary of N onto the Gromov boundary
of the ambient group G induced by the (highly distorted) inclusion of N into G [Mit98]. These
maps are often called Cannon—Thurston maps in honor of the fact that they were first discovered
by Cannon and Thurston in the case where G is the fundamental group of a fibered hyperbolic
3-manifold [CTO07]. Corollary 5.12 therefore inspires the following question.

Question 1.1. For which HHGs do Cannon—Thurston maps exist? That is, if (G,&) is an HHG
and N is a normal subgroup of G that has an HHG structure ¥, when does the inclusion N — G
induce a continuous surjection (N, %) — 0(G, S)?

Natural test cases of Question 1.1 are the kernel of the Birman exact sequence and cases when
a Bestvina—Brady group is itself a RAAG. The answer is “no” when G is the direct product of two
hyperbolic groups, but no other obstructions are currently known.

A more general formulation of Question 1.1 is to remove the normal hypothesis and ask for
which hierarchically hyperbolic subgroups there is a continuous extension from the HHS boundary
of the subgroup to its limit set. This version holds for quasiconvex subgroups in hyperbolic groups.
Moreover, the naive obstruction noted above provided by the product of two hyperbolic groups is
not an obstruction to this version of the question. On the other hand, Mousley showed that for a
family of RAAG subgroups of mapping class groups, there are obstructions to extending, while for
a family of free groups she characterizes exactly when they do extend [Moul§].

Organization of the paper. In Section 2, we set notation and collect preliminary facts on hy-
perbolic spaces and their boundaries. In Section 3, we define hierarchically hyperbolic spaces and
their boundaries. We also describe several tools from the theory of hierarchical hyperbolicity that
we will use. We begin Section 4 by describing the maximization procedure in detail (Section 4.1),
and then devote the remainder of the section to the proof of Theorem 4.1. Section 5 contains
the applications of Theorem 4.1 including Corollaries 5.6, 5.9, 5.10, and 5.12. Section 4 contains
the bulk of the technical work of the paper. Section 5 is an essentially self-contained collection of
applications where the only reference to the rest of the paper is the statement of Theorem 4.1.

Acknowledgments. We thank Mark Hagen for helpful discussions, especially concerning the
topology of the hierarchically hyperbolic boundary. We thank the anonymous referee for comments
that improved the exposition of the paper. Abbott was supported by NSF grants DMS-1803368
and DMS-2106906. Behrstock was supported by the Simons Foundation as a Simons Fellow. Behr-
stock thanks the Barnard/Columbia Mathematics department for their hospitality. Russell was
supported by NSF grant DMS-2103191.

2. PRELIMINARIES ON HYPERBOLIC SPACES

In this section, we establish notation and recall some basic notions about hyperbolic spaces. We
also deduce a few general results about hyperbolic spaces, which we will use later in the paper.
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2.1. Coarse Geometry. We begin by gathering several facts about metric spaces and coarse
geometry. We refer the reader to [BH99] for further details.

Let (X,dx) be a metric space. If Y € X is a subspace, then for any constant C' = 0, we denote
the closed C—neighborhood of Y in X by

Ne(Y)={ze X |dx(z,Y) < C}.
We say two subsets Y, Z < X are C'—coarsely equal, for some C > 0, if Y € No(Z) and Z < Neo(Y).
When Y and Z are C—coarsely equal, we write Y =¢ Z.
A map of metric spaces f: (X,dx) — (Y,dy) is a (A, ¢)—quasi-isometric embedding if for all
r,ye X

Tdx(oy) = e < dy (f(2). £(9) < Mdx (o) + c.

A (), ¢)—quasigeodesic is a (A, c)—quasi-isometric embedding of a closed interval I < R into X, and
a geodesic is an isometric embedding of I into X. We let [z, y]| denote a geodesic in X from z to
y. In the case of quasigeodesics, we allow f to be a coarse map, that is, a map which sends points
in I to uniformly bounded diameter sets in X. Accordingly, we can assume that the domain of a
quasigeodesic is an interval in Z instead of R when convenient. A (coarse) map f: [0,7] — X is
an unparametrized (X, c)—quasigeodesic if there exists a non-decreasing function g: [0,7"] — [0,T]
such that the following hold:
9(0) =0,
g(I") =T,
fog:[0,T"] - X is a (A, ¢)—quasigeodesic.
for each j € [0,7"] n N, we have the diameter of f(g(j)) v f(g(j + 1)) is at most c.

For § > 0, a geodesic metric space X is d—hyperbolic if we have [z,y] < Ns([x, 2] U [z,y]). If the
particular choice of § is not important, we simply say that X is hyperbolic.

Quasigeodesics in a hyperbolic metric space satisfy the following Morse property, which roughly
states that quasigeodesics with the same endpoints remain in a uniform neighborhood of each other.
This is also known as quasigeodesic stability.

Lemma 2.1 (Morse Lemma). Let X be a d—hyperbolic metric space, and fit A = 1 and ¢ = 0. There
exists a constant o depending only on §, \, and ¢ such that if y1 and v2 are (A, ¢)—quasigeodesics in
X with the same endpoints, then v1 =4 ¥2.

We say o is the Morse constant associated to (), ¢)—quasigeodesics in a d—hyperbolic space.

2.2. The Gromov product and the Gromov boundary. Let X be a d—hyperbolic metric
space. For any x,y, z € X, the Gromov product of x and y with respect to z is
(¢ ). = 5 (dx (@, 2) + dx(y,2) — dx(z.)).

The Gromov product (x | y), is uniformly close to the distance from z to a geodesic connected
x and y:
Lemma 2.2 ([BH99, p. 410]). For any d—hyperbolic space X and x,y,z € X, we have

(@ | y): — dx (z [z, y])| < 6.
Given a fixed basepoint zg of X, a sequence of points (z,,) in X converges to infinity if
(Tn | Tk)zy — ©

as n,k — . Two sequences (z,,) and (y,) are asymptotic if (x, | Yn)z, — % as n — . Note,
this is equivalent to requiring that (z, | yx)z, — © as n,k — 00. The Gromov boundary 0X of
X is the set of sequences in X that converge to infinity modulo the equivalence relation of being
asymptotic.



STRUCTURE INVARIANT PROPERTIES OF THE HIERARCHICALLY HYPERBOLIC BOUNDARY 5

The Gromov product extends to z,y € X U dX and z € X by taking the supremum of

liminf(x, | yx)-
n,k

)

over all sequences (x,,) and (yi) that are either asymptotic to x or y when they are boundary points
or converge to x or y when they are points in X. We can then topologize X U ¢X by declaring a
sequence (z,) in X U dX to converge to x € 0X if and only if

Tim (i | 2)ay = .

Definition 2.3. For each p € 0X, the sets
M(rip) ={zxe X vdX:(p|x)g >r}
where r > 0 form a neighborhood basis for p in X U0X. Note that if r < v/, then M (r';p) € M (r;p).

Despite the presence of the basepoint in the above definitions, convergence to infinity, being
asymptotic, the Gromov boundary, and the topology of X U 0X are all independent of the choice
of basepoint.

If v: [0,00) — X is a quasigeodesic ray, then there exists a unique p € 0X so that y(t,) — p
for every increasing sequence (t,) that approaches infinity. In this case, we say that ~ represents
p € 0X. Every point in 0X can be represented by a (1,200)—quasigeodesic ray based at any point
in X; see e.g., [KB02].

The next two lemmas allow geodesics to assist in calculating Gromov products. The first is
straight-forward, and its proof is left to the reader.

Lemma 2.4. For every A =1, c >0, and d = 0, there exist B = 0 and tg = 0 so that the following
holds.

Let X be a d—hyperbolic space with basepoint xo, and let p € 0X and x € X. Let v: [0,00) —> X
be a (A, c)—quasigeodesic starting at xo and representing p. For all t = ty, we have

[(v(#) | @)z — (2 | 2)o] < B.

Lemma 2.5. Let X be a d—hyperbolic space and x,y,z € X. If q is a point on [z,x]| so that
q € Ne ([z,y]), then
’(:C ’ y)z - (q | y)z| < C.
Proof. Since q € [z, x], we have
dx(q,2) +dx(y,2) —dx(q,y) = dx(2,2) — dx(q,%) + dx (y,2) — dx(q,9).
Let p be point on [z,y]| with dx(p,q) < C. Thus,
dx(q,y) < dx(p,y) + C and dx(q,z) < dx(p,z) + C.
Hence,
dx (x,2) —dx(q,2) + dx(y,2) — dx(¢,y) = dx(z,2) — dx(p,x) + dx(y, 2) — dx(p,y) — 2C
For the other inequality, we apply
dx(¢,y) = dx(p,y) — C and dx(¢,7) = dx(p,x) - C
to conclude
dx(z,2) — dx(g,2) + dx(y,2) — dx(q,y) < ) —dx(p,x) + dx(y,2) — dx(p,y) + 2C
(‘T7 z) + dX(yv Z) - dX(‘T’y) + 2C.
Dividing everything by 2 produces |(z | y), — (p | v).| < C. O

—~~
&
N

Our last lemma shows that points of X that are close to M(r;p) are in M(r’;p) for some 7’
slightly smaller than r.
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Lemma 2.6. Let X be a d—hyperbolic space. There exists a constant B = 0, depending only on 6,
so that for allpe 0X, if C =235+ 2B and r = 2C + 1, then

Ne(M(r;p) n X) € M(r —2C;p).

Proof. Let B be the constant from Lemma 2.4 for A = 1 and ¢ = 206. Let C > 36+2B, r = 2C +1,
and p e 0X.

Select a a (1,200)—quasigeodesic ~y starting at the basepoint xy and representing p. There is a
point y € « that is sufficiently far along v so that y € M(r;p) and Lemma 2.4 applies to y. Let
x € No(M(r;p) n X) and 2’ € M(r;p) n X with d(z,2") < C. Using Lemmas 2.4 and 2.2 we have

(1) r < (2" [ plag < (2" [ Y)ag + B < d(wo, [2,y]) + 5 + B.
Since d(z,2') < C, d-hyperbolicity of X implies d(zo, [/, y]) < d(xo,[z,y]) + C + §. Combining
this with (1) yields
< (2| p)zy < d(z0, [2,y]) + C + 20 + B.
When C > 30 + 2B, this shows xe M(r—2C;p) as

d(xo, [2,y]) < (@ | Y)ag + B < (@[ p)ay +0+ B
by Lemmas 2.4 and 2.2. O

2.3. Quasiconvex subsets. A subset Y of a d—hyperbolic space X is p—quasiconver if every
geodesic in X between points in Y is contained in the closed p—neighborhood of Y. We recall a few
basic facts about quasiconvex subsets of hyperbolic spaces and verify a simple lemma. We direct
the reader to [DK18, §11.7] for full details.

When Y is a p—quasiconvex subset of a d—hyperbolic space X and x € X, the set of points
{yeY :dx(z,y) <dx(x,Y) + 1} is uniformly bounded in terms of p and 0. Hence, there is a well
defined coarse map py: X — Y so that

py(z) ={yeY :dx(z,y) <dx(z,Y)+ 1}.
We call the map py the closest point projection onto Y .
For a quasiconvex subset Y € X, we let dY denote the set of points in ¢.X that are represented
by sequences of points in dY. The following lemma shows that quasigeodesics in X that represent
points in dY can be modified to be eventually contained in Y.

Lemma 2.7. Let Y be a pu—quasiconvex subset of a d—hyperbolic space X. Let v: [0,00) — X be a
(1,200)—quasigeodesic ray from a point x € X to a point p € 0Y. There then exists a constant A > 1,
depending only on 6 and p, such that the following holds. There is a (1,200 + 2A)—quasigeodesic
ray v': (0,00) nZ — X from x to p and a constant T € [0,00) N Z such that v/ (t) €Y for allt =T
and ' is uniformly close to .

Proof. Since p € dY and Y is p—quasiconvex, there is a constant A, depending only on ¢ and
p, and some to € (0,00) such that v|j, o) S Ma(Y). Therefore, we may assume without loss of
generality that tg € Z>¢. For each i € Z~q, define t; = tg + ¢, and choose a point y; € Y such that
dx (v(t:), i) < A.
Define ~': [0,00) " Z — X by
’Y(t) ifte O,to NZ
(1) = i e 10t
Yt—to ifte (to, OO) N 7.
We will show that 4/ is a (1,208 + 2A)—quasigeodesic. Let t,s € [0,00) n Z. If ¢, s € [0, o], then
the result is clear. Suppose t,s € (tg, ) N Z. Then dx(v'(t),~'(s)) = dx (Yi—ty, Ys—t, ), and
dx (y(t —t0),7(s — t0)) — 2A < dx (Yt—to» Ys—to) < dx (v(t —t0),7(s — t0)) + 24
|(t —t0) — (s —to)| — 200 — 2A < dx (Yi—ty, Ys—to) < |(t —t0) — (s — to)| + 206 + 2A.

NN
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Since |(t —to) — (s — to)| = [t — s|, we conclude that 7’|, «) is a (1,200 + 2A)-quasigeodesic.
Finally, suppose t € [0,%o] and s € (to,0). Then v/(s) = ys—¢, and ts—¢, = to + (s — to) = s, and
80 dx (Ys—ty,V(8)) = dx (Ys—t,V(ts—t,)) < A. Thus we have

dx (7(t),7(s) = A < dx (7' (£),7'(5)) = dx(v(t), ys—to) < dx (v(t),7(s)) + A.
Therefore, 7/ is a (1, 20§ 4+ 2A)—quasigeodesic which, by construction, is from z to p and is uniformly
close to v, completing the proof. O

3. PRELIMINARIES ON HIERARCHICALLY HYPERBOLIC SPACES

In this section, we recall some of the tools we will use to work with hierarchically hyperbolic
spaces and groups and define the HHS boundary. We begin with the definition of an HHS.

Definition 3.1 (HHS). Let £ > 0 and X be an (E, F)-quasigeodesic space. A hierarchically
hyperbolic space structure with constant E for X is an index set & and a set {CW : W € &} of
E-hyperbolic spaces (CW, dy ) such that the following axioms are satisfied.

(1) (Projections.) For each W € &, there exists a projection my : X — 2V such that for all
xe X, mw(x) # & and diam(my (x)) < E. Moreover, each 7y is (E, F)—coarsely Lipschitz
and CW < Ng(mw (X)) for all W € &.

(2) (Nesting.) If & # ¢, then & is equipped with a partial order © and contains a unique
E-maximal element. When V &= W, we say V is nested in W. For each W € &, we
denote by Gy the set of all V e & with V £ W. Moreover, for all V,IW € & with
V £ W there is a specified non-empty subset p% c CW with diam(p%) < F, and a map
pW: CW — Ng(pY,) — 2°V.

(3) (Orthogonality.) & has a symmetric relation called orthogonality. If V and W are
orthogonal, we write V' L W and require that V and W are not E—comparable. Further,
whenever V E W and W L U, we require that V' 1 U. We denote by Gﬁ, the set of all
VeGwithV 1LW.

(4) (Transversality.) If V, W e & are not orthogonal and neither is nested in the other, then
we say V, W are transverse, denoted V m W. Moreover, for all V,W € & with V i W there
are non-empty sets p% < CW and py € CV each of diameter at most E.

(5) (Finite complexity.) Any set of pairwise T—comparable elements has cardinality at most
L.

(6) (Containers.) For each W € & and U € Gy with Sy n & # (&, there exists Q € Gy
such that V & Q whenever V € Gy N 65. We call Q) the container of U in W.

(7) (Uniqueness.) There exists a function 0: [0,00) — [0,00) so that for all » > 0, if z,y e X
and dy(z,y) = 0(r), then there exists W € & such that dy (7w (z), 7w (y)) = .

(8) (Bounded geodesic image.) For all V,W € & with V & W, if a CIWW geodesic v does not
intersect Ng(pY), then diamey (pV (7)) < E.

(9) (Large links.) For all W € & and z,y € X, there exists {V1,...,V,} € Sy — {W} such
that m is at most Edw (mw (z), 7w (y)) + E, and for all U € Gy — {W}, either U € &y, for
some i, or dy (my(x), 7y (y)) < E.

(10) (Consistency.) For all z € X and V,W,U € &:
o if V.th W, then min {dw (7w (2), ply,), dv (zv (), p} )} < E,
e if V. W, then min {dw (mw (z), p}/ ), diam 7y (z) U pyy (7v(2)))} < E,
e if U S V and either V& Wor V.h W and W £ U, then dw (oY, piy) < E.
(11) (Partial realization.) If {V;} is a finite collection of pairwise orthogonal elements of &
and p; € CV; for each i, then there exists z € X so that:
o dy,(my,(x),pi) < E for all 4;
e for each ¢ and each W e &, if V; = W or W th V;, we have dW(WW(a:),p‘v/{,) < E.
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We use & to denote the hierarchically hyperbolic space structure, including the index set &,
spaces {CW : W € &}, projections {my : W € &}, and relations =, 1, h. We call the elements of
G the domains of & and call the p% the relative projection from V to W. The number F is called
the hierarchy constant for &.

We call a quasigeodesic space X a hierarchically hyperbolic space with constant E if there exists
a hierarchically hyperbolic structure on X with constant E. We use the pair (X, &) to denote a
hierarchically hyperbolic space equipped with the specific HHS structure &.

When writing the distances in the hyperbolic spaces CW between images of points under 7y, we
will frequently suppress the 7y notation. That is, we will use dy (z,y) to denote dy (7w (), 7w (y))
for x,y e X.

For a hierarchically hyperbolic space (X, &), we are often most concerned with the domains
W e & whose associated hyperbolic spaces CW have infinite diameter. We often also restrict to
HHSs with the following regularity condition.

Definition 3.2 (Bounded domain dichotomy). Given an HHS (X, &), we let &* denote the set
{W e & :diam(CW) = w}. We say that (X, &) has the bounded domain dichotomy if there is some
D > 0 so that for all W e & — 8% we have diam(CW) < D.

The bounded domain dichotomy is a natural condition as it is satisfied by all hierarchically
hyperbolic groups (HHG) which is a condition requiring equivariance of the HHS structure. In this
paper we work with a class of finitely generated groups which is slightly more general than being an
HHG (see Remark 3.4); these are groups which have an HHS structure compatible with the action
of the group in the following way.

Definition 3.3 (G-HHS). Let G be a finitely generated group. A hierarchically hyperbolic space
(X, 6) with constant E that has the bounded domain dichotomy is a G-HHS if the following hold.

(1) X is a proper metric space with a proper and cocompact action of G by isometries.
(2) G acts on & by £—, L—, and h—preserving bijections, and &® has finitely many G—orbits.
(3) For each W € & and g € G, there exists an isometry gy : CW — CgW satisfying the
following for all VW € & and g,h € G.
e The map (gh)w: CW — CghW is equal to the map gpw o hyy: CW — CghW.
e For each x € X, g (mw () =g mew (g - x).
e f VAW or VoW, then gw(pjy) =k pZVVV'

We can and will assume that X is G equipped with a finitely generated word metric. We say that
S is a G-HHS structure for the group G and use the pair (G, &) the group G equipped with the
specific G-HHS structure 6.

Remark 3.4 (HHG vs G-HHS). The only difference between the above definition of a G-HHS
and a hierarchically hyperbolic group is that a hierarchically hyperbolic group is required to have
finitely many orbits in & and not just 6. (Both HHGs and G-HHSs satisfy the bounded domain
dichotomy, but for HHGs this is a theorem and for G-HHSs it is by definition.)

The primary reason we choose to work with the slightly broader definition of a G-HHS is that we
are ultimately interested in the boundary defined by an HHS structure. Since the definition of the
boundary does not involve uniformly bounded diameter domains, the natural class of structures to
think about are those that only have restrictions on the set of infinite diameter domains.

We note that [ABD21, Corollary 3.8] states that applying the maximization procedure that we
will introduce in Section 4 to an HHG results in an HHG. However, the argument in [ABD21] does
not explicitly address the co-finiteness of the action on the added finite diameter domains (“dummy
domains”). Thus that result only shows that the result is a G-HHS. Since that argument addresses
the infinite diameter domains, it follows that applying the maximization procedure to a G-HHS
again results in a G-HHS.
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A hallmark of hierarchically hyperbolic spaces is that every pair of points can be joined by a
special family of quasigeodesics called hierarchy paths, each of which projects to a quasigeodesic in
each of the spaces CW.

Definition 3.5. A A\—hierarchy path v in an HHS (X, &) is a (A, A\)—quasigeodesic with the property
that 7y oy is an unparametrized (A, \)—quasigeodesic for each W € &.

Theorem 3.6 ([BHS19, Theorem 4.4]). Let (X, &) be an HHS with constant E. There exist A = 1
depending only on E so that every pair of point points in X is joined by a A—hierarchy path.

In general, a quasigeodesic (or even geodesic) in an HHS can be arbitrarily far from being a
hierarchy path. Moreover, a given space might have different HHS structures, and the set of
hierarchy paths with respect to each structure might be different.

3.1. Hierarchical quasiconvexity and standard product regions. The analogue of quasi-
convex subsets of a hyperbolic space in the setting of hierarchical hyperbolicity are the following
hierarchically quasiconvexr subsets. We refer the reader to [BHS19, §5] for details on any of the
background material in this subsection.

Definition 3.7. Let k: [0,00) — [0,00). A subset Y of an HHS (X, &) is k-hierarchically quasi-
convex if

(1) for each W e &, my(Y) is a k(0)—quasiconvex subset of CW;
(2) if x € X so that dw (x,)) < r for each W € &, then dy(z,Y) < k(r).

As with hierarchy paths, whether or not a subset is hierarchically quasiconvex can depend on
which HHS structure is put on the space, hence ) is a hierarchically quasiconvex subset of (X', &)
and not just X.

Each hierarchically quasiconvex subset ) comes equipped with a gate map denoted gy: X — V.
While this map might not be the coarse closest point projection, it has a number of nice properties
that we summarize below.

Lemma 3.8 ([BHS19, Lemma 5.5] plus [BHS21, Lemma 1.20]). Let (X, &) be an HHS with constant
E. Suppose Y < X is k-hierarchically quasiconvex. There is a coarse map gy: X — Y and a
constant k = 1 depending only on k and E, so that the following hold.

® gy is coarsely the identity on Y.
gy is (k, k)—coarsely Lipschitz.
For each x € X and W € & we have

mw(gy(z)) =« Pﬂw(y)(ﬂw(l’))‘
For each x € X and y € Y, there is a k—hierarchy path v from x to y with the property that
v N Nﬁ(gy(x)) #* .

Associated to each domain W € & of an HHS (X, &) is a pair of hierarchically quasiconvex
subspaces Fyy and Eyp. Since we will not work directly with the definition of these subsets, we
will just state the salient properties that we will need. For details, we direct the interested reader
to [BHS19, §5B] for the definition and proofs of their basic properties. In the sequel, we shall work
primarily with the Fy, but we include the companion facts about Eyy for context.

Proposition 3.9. Let (X, &) be an HHS with constant E. For each W € &, the subsets Fyy, Ey <
X have the following properties.
(1) There ezists k: [0,00) — [0,00) depending only on E so that Fy and By are k—hierarchically
qUaSICONVET.
(2) There ezists k = 0 depending only on E so that for each V € &:
o v (Fw) = pyyy and my (Ew) =, p{¥ when W 2V or W h V;
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o CV = Ny (nv(Fw)) and diam(my (Ew)) < k when V = W; and
o diam(my (Fw)) < k and CV = Ny (my (Ew)) when V L W.
Moreover, if V£ W, then mw(x) =, mw(9r,, (z)) for each v € X.
(3) If (X, S) has the bounded domain dichotomy, then diam(Fy ) = oo if and only if Sy nG&™ #
&. Similarly, diam(Eyw) = oo if and only if G N G # F in this case.

Remark 3.10. The construction of Fy and Ey in [BHS19] involves some choices, but all choices
will produce coarsely equal subsets that satisfy the above properties.

While we will not use this structure directly, the Fyy and Eyy form natural product regions in X
as follows: equipping each Fy and Ey with the metric induced from X', there is a quasi-isometric
embedding Fyy x Eyy — X that sends Fyy x {e} and {f} x Ey onto Fy and Eyy for some e € Ey
and f € Fy. The image of this quasi-isometric embedding is often called the standard product
region for W and denoted Pyy.

3.2. The boundary of a hierarchically hyperbolic space. Durham, Hagen, and Sisto defined
a boundary for an HHS (X', &) that is built from the boundaries of the hyperbolic spaces in &;
[DHS17] is the reference for this subsection.

The points in the HHS boundary are organized in a simplicial complex that we denote da (X, S).
The vertex set of da(X, &) is the set of all boundary points of all the hyperbolic spaces CU for
U e &%. That is, the set of vertices is the set of points | Jegeo OCU. The vertices pi,...,p, of
oa(X,6) will form an n-simplex if each p; € 0CU; and U; L Uj for each ¢ # j. This means the
set of points making up the HHS boundary can equivalently be described as the set of all linear
combinations ZUeu aypy where

e {l is a pairwise orthogonal subset of 6%,
e py € 0CU for each U € U, and
® Y eyau = 1 and each ay > 0.

Definition 3.11. For each p € da (X, &), we define supp(p), the support of p, to be the pairwise
orthogonal set 4 = & so that p = >, avpy. Equivalently, the support of p is the pairwise
orthogonal set Yl € & so that the smallest dimensional simplex of da(X, &) that contains p has
exactly one vertex from ¢CU for each U € il

For clarity, we will often decorate the coefficients ay with the boundary point they are the
coefficient for, that is, we write p = ZUesupp(p) al;py to emphasize af; are the coefficients for the
point p.

Durham, Hagen, and Sisto equip the HHS boundary with a topology beyond that coming from
the simplicial complex described above. The definition of this topology is quite involved, combining
the standard topology on the boundaries of the hyperbolic spaces CU with projections of boundary
points onto certain domains of the HHS structure. We will define these boundary projections in
Section 3.2.1 and use these boundary projections to define the topology in Section 3.2.2. After
defining the boundary, we will describe when certain maps that respect the HHS structure extend
to maps on the boundary in Section 3.2.3. When our HHS is in fact a G-HHS, this will produce a
natural action of the group on the boundary by homeomorphisms and simplicial automorphisms.

We use 0(X,8) to denote the HHS boundary equipped with the topology coming from the
boundary projections while da (X, &) will denote the simplicial complex that is the underlying set
of boundary points.

3.2.1. Boundary projections. The following is a slight modification of the definition of a boundary
projection from [DHS17].

Definition 3.12. Fix a point ¢ = ZWGSupp(q) awqw € 0(X,8). For each U € & such that there
exists W € supp(q) with U &£ W, we define the boundary projection dmy(q) of q into CU as follows.
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o If W = U, then we define dny(q) := qu = qw-
e W UorWnhU,let V={Vesupp(q) | VhUorV = U}, then define

oru(q) = U oL
Vey
o If W 22U, then U LV for each V € supp(q) — {W}. In this case, let Z < CW be the set of
all points on all (1,20F)—quasigeodesics from a point in p‘[,JV € CW to qw € 0CW that are
at distance at least E' 4+ o from p%, where o is the Morse constant from Lemma 2.1 for a
(1,20E)-quasigeodesics in a E-hyperbolic metric space. We then define omy (q) := pfY (Z).

The difference between this definition and the original from [DHS17] is that [DHS17] only defines
the boundary projection of g to a certain set of domains related to the support set of another point
in the boundary. We define the boundary projection of ¢ to any domain for which the definition
makes sense. Because of this, our notation is different from what is used in [DHS17]: they use
(0mg(q))u, where S is the support set of some point in the boundary, while we use omy(q).

3.2.2. Topology on X v d(X,S). Before defining the topology, we define the notion of a remote
point. This is a slight modification of [DHS17, Definition 2.5], where they define a point being
remote to a support set.

Definition 3.13. Let (X, &) be a hierarchically hyperbolic space, and let p € d(X,&). A point
q € d(X,S) is remote to p if:

(1) supp(p) N supp(q) = J; and

(2) for all @ € supp(q), there exists P € supp(p) so that P and @ are not orthogonal.
Denote the set of points remote to p by 0, (X, &).

We are now ready to define the topology on 0(X,&). Fix a basepoint zy € X, and, for each
W e &%, pick the basepoint for 0CW to be a point in my (xg). Fix a point p = ZWesupp(p) ajypw €
0(X,6). For each r = 0, each € > 0, and each W € supp(p), let M (r; pw) be a neighborhood of
pw in CW U 0CW as in Definition 2.3. We first define three sets depending on r and e: the remote
part, the non-remote part, and the interior part. In what follows, if U is not in the support of a
boundary point ¢, then a?] = 0; if U is in supp(q) then a?J is the coefficient of ¢ in the domain U
so that ¢ = ZUEsupp(q) atqu.

Definition 3.14. Given any ¢ € (X, 8), let S; be the union of supp(p) and the set of domains
T € supp(p)* such that there exists some Wy € supp(q) with T & Wr. The remote part B¢ (p) is
the set of all points g € 0, (X, &) satisfying the following three conditions:

(R1) YW € supp(p), omw (q) S M (r;pw), )

dw (zo, 0mw (q))  ayy,
R2) YW e S,,V € su ) - —=
( ) q pp(p) ' dv(xo’aﬂ_v(q)) ag'

< g, and

(R3) Z:Tesupp(p)L ag“ <E€.

Definition 3.15. The non-remote part B;'2"(p) is the set of all points

q= Z apqr € 0X — 0, (X, 6)
Tesupp(q)
satisfying the following three conditions, where .4 = supp(p) N supp(q).
(N1) VT'e A, qr € M(r;pr),
(NQ) ZVEsupp(q)—A agf <&,
(N3) VT e A, |at — a%’ <e.

Definition 3.16. Finally, the interior part Bﬁ'f?(p) is the set of all points x € X satisfying the
following three conditions:
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(I1) YW € supp(p), mw(z) < M(r;pw),

(I12) VW,V € supp(p) ‘a%/ dw (20, 7) <&, and

’ " al, dv($0, x)
(a:

d
(I3) YW e supp(T), T € supp(p)t, —= 0.7)
dw (20, )

The disjoint union of these sets forms a basic set in the topology.

Definition 3.17. For each € > 0 and each r > 0, a basic set in the topology on X U d(X, &) is the
set B, (p) defined as follows:

Bre(p) == By (p) 1 B2 (p) 1 B (p).

n [DHS17], the basic sets are defined slightly differently. We briefly describe their definition
here; Lemma 3.18 shows that the two collections generate the same topology. Given p € (X, &)
and W € supp(p), let Ky be any neighborhood of py in CW v 0CW. Let {’”f(m L .(p), N{}?ﬁ/} -(p),

and {i?(tw} .(p) be the sets of points satisfying (R1)~(R3), (N1)-(N3), and (I1)-(I3), respectively,
using the neighborhoods Ky in place of M (r; pw). Then define Nk, .(p) to be the disjoint union

of these three sets.

Lemma 3.18. The collections of sets B = {B,:(p) | p € d(X,8),r = 0,e = 0} and N =
{./\/'{KW}’E(p) | p e A(X,6),e = 0, and Ky is a neighborhood of pywy when W € supp(p)} generate
the same topology on X U (X, S).

Proof. Since B € N, we need only show that for every p € d(X, &) and every collection { Ky }wesupp(p)
of neighborhoods of pyy, there is an 7 > 0 such that B, .(p) < N{Kw}ﬁ(p). For each W € supp(p),
there is some 7y such that M (ry;pw) S Kyw. Since supp(p) consists of finitely many domains,
the result follows by setting r = max{ry | W € supp(p)}. O

The following technical lemma will be useful in verifying when points in the boundary lie in a
particular basic set.

Lemrna 3.19. Let A, and B, be sequences of positive numbers so that A, — o0, B, — 0 and
lim,, o 4 5+ = L. If there exists E > 0 so that |A, —Cy| < E and |B, —Dy| < E, then hm CZ = L.

Proof. Fix ¢ > 0. There exists s > 0 sufficiently large and r > 0 sufficiently small so that
1
L-r+—-—+ r <e.
s s
Since A,, and B, tend to oo,
1+ £
lim & =1
n—m ] 4 o

Therefore, for all sufficiently large n we have
Cn A+ E A

— 1
Dy SB,—E<B,"""
where 7 is the number fixed above. Since % L as n — oo, for every large enough n, we have
An 1 1
(1+7r) < <L+ >(1—|—7‘) <SL+Lr+-+-<L+e.
B, s s
Hence, we have < L+e
A completely analogous argument beginning with the inequality
& > An — B
D,  B,+FE

gives the lower bound, completing the proof. O
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The next lemma says that sequences that stay within uniformly bounded distance of each other
in X' converge to the same point in the boundary d(X, ).

Lemma 3.20. Let (X,S) be an HHS. Let (zy,) be a sequence of points in X that converges to
p € AX,8). If (yn) is a sequence in X with dx(xn,yn) uniformly bounded for all n € N, then y,
also converges to p.

Proof. Let R be the uniform bound on dy(x,,y,) and zg be the basepoint of the HHS boundary
(X, &). The sequence (y,) will converge to p = > awpw € d(X, &) if for each r > 1 and € > 0, we
have y,, € Bﬁfg(p) for all but finitely many n. Since z,, converges to p, for each » > 1 and € > 0,
there exists ng = ng(r,e) so that for all n > ng, x, € Bi(p). Thus,

e for each W € supp(p), mw(x,) € M (r; pw);

e for each W,V € supp(p), hm dw (z0,2n) _ W and

o dv(zo,xn) — av

1

e for each W € supp(p) and T € supp(p)—, hm dr(zo.wn) _ ()

dW(IO:In)

Let W € supp(p). Since dw (zn,yn) < ER+ E and dw (xg, ) — 00 as n — o0, there must exist
ny € N so that y, € M(r;pw) for all n = ny. Since dy (xn,yn) < ER + E for every V € &, we have
|dv (xo, xn) — dv (0, yn)| < ER + E for each V € &. Thus, Lemma 3.19 implies that

o for cach W,V € supp(p), lim 2wlzon) _ aw. 4nq

o dv(zo,yn) ay’

d n
e for each W € supp(p) and T € supp(p)*, 11_)OO % =

Hence y,, € B/ (p) for all sufficiently large n. O

3.2.3. Boundary maps induced by hieromorphisms and the group action on the boundary. Given
two hierarchically hyperbolic spaces, it is natural to wonder when maps between the spaces extend
to maps between their respective HHS boundaries. A natural class of maps to consider for this
question are the following hieromorphisms.

Definition 3.21. Let (X, &) and (Y, ) be HHSs and A > 1. A A\-hieromorphism from (X, &) to
(Y, %) consists of
eamap f: X = );
e an injective map f°: & — T that preserves nesting, transversality, and orthogonality; and
a (A, A)-quasi-isometric embedding fi : CgV — Czf*(V) for each V € &
satisfying the following properties:
o fu(myv(x)) =i mps(v)(f(z)) for each x € X and V € &;

e fv (pv ) = pjﬁ“’EV)) whenever W MV or W C V; and
e whenever W T V, fW(Pg/(Z)) =\ Pfg (fw( )) for each 2z € CV *NE(p%//V).

Since f, f®, and fy all have different domains, is it often clear from context which is the relevant
map. In these cases, we will abuse notation and call all maps f; we denote the hieromorphism by

f(X,6) - %).

Give a hieromorphism f: (X,8) — (), %T), each quasi-isometric embedding fy: CV — Cf(V)
induces a continuous inclusion dfy : 0CV — oCf(V). Since f respects the orthogonality relation
on the index sets, there is an induced injective simplicial map 0f: Oa(X,8) — Ia(X,T) defined
by

ofp)=of | D>, avpv|= D, avifvipy).
Vesupp(p) Vesupp(p)
Work of Durham, Hagen, and Sisto implies the following sufficient conditions for this map df to
be continuous with respect to the topology on the HHS boundary.
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Theorem 3.22 (A special case of [DHS17, Theorem 5.6]). Let f: (X,&) — (), %) be a hieromor-
phism. If for each V € &, fy is a (1, \)—quasi-isometric embedding, then the map of: Oa(X,6) —
oAV, %) defines a continuous map from (X, &) to d(Y,%).

We will use Theorem 3.22 only in the following special case.

Corollary 3.23. Let (X,6) be an HHS. If T is another HHS structure for X and there is a
hieromorphism f: (X,8) — (X,%) so that f: & — T is a bijection and fy is a (1,\)—quasi-
isometry for each V € &, then 0f: d(X,6) — d(X,%) is a homeomorphism.

The definition of a G-HHS ensures that the action of an element g € G on G by left multiplication
gives a hieromorphism g: (G, &) — (G, &) where for each V € &, the map gy: CV — CgV is an
isometry. Thus, we can use Corollary 3.23 to extend the action of G on itself to an action of G on
0(G, S) that is both a homeomorphism and a simplicial automorphism.

3.3. Hyperbolic HHSs. A hyperbolic space can itself have many different HHS structures [Spr1§],
but being hyperbolic puts a number of restriction on all of these HHS structures. The following
result summarize the facts about hyperbolic HHSs that we will need.

Theorem 3.24. Let (X,8) be an HHS with constant E, and suppose X is also an E-hyperbolic
space.

(1) For allW € &*, we have &, n&* = ¢f [DHS17, Lemma 4.1]. In particular, the simplicial
HHS boundary oa(X,S) is a collection of 0—simplices.

(2) For each £ > 1 and ¢ = 0, there exists A\ = 1 (depending on ¢, ¢, and E) so that every
(¢, c)—quasigeodesic in X is a \—hierarchy path in (X, &) [Sprl8, Proposition 3.5].

(8) The identity map X — X continuously extends to a homeomorphism from the Gromov

boundary 0X to the HHS boundary o(X,&) [DHS17, Theorem 4.3].

The next lemma describes how basis neighborhoods in CW u dCW are related to basis neigh-
borhoods in X U X when (X, &) is a hyperbolic HHS. In the statement, we use M (r, p) to denote
basis neighborhoods in X U 0X and My (r,p) to denote basis neighborhoods in CW u dCW'.

Lemma 3.25. Let (X,8) be an HHS with constant E, and suppose X is also a E-hyperbolic
space. There exists rg = 0 so that for each r = o and each W € &%, there exists r' = 0 so that the
following hold.

(1) v is an increasing linear function of r with constant of linearity determined by E;
(2) for each p e OCW < 0X and each x € X, if my (x) < My (r,p), then x € M(r',p); and
(3) for each p e OCW < X and each q € OCW , if ¢ € My (r,p), then g € M(r';p).

Proof. Fix W € 6% and a basepoint g € X. For the reader’s convenience we will use (- | -)g,
to denote the Gromov product in X and (- | -)z, to denote the Gromov product in CW. We first
prove the second bullet point; the proof will determine the value of rg and calculate 7’ in terms of
r, which will establish the first bullet point.

Fix x € X and p € 0CW. Let a be a (1,20F)—quasigeodesic ray from zg to p in X. Since X is
hyperbolic, Theorem 3.24 (2) provides A > 1 so that each (1,20F)—quasigeodesic (in particular o)
in X is a A-hierarchy path in (X, &). Since the projections of hierarchy paths are unparametrized
quasigeodesics, the projection 7y o a is an unparametrized (A, A)—quasigeodesic in CW. Thus
Lemma 2.4 provides a constant B > 0 that depends only on E and a point y € a so that

[(@ | P)ag = (@ | Y)ao| < B and [(z | phag — (&" | Y )uo| < B,
where 2’ and y’ are any point in 7y (x) and 7y (y) respectively. Let 3 be a (1, 20F)—quasigeodesic
from y to x in X, and consider the unparametrized (A, \)—quasigeodesic Sy = m o 8 in CW. By
the Morse Lemma (Lemma 2.1), 3 (resp. fw) and any X—geodesic (resp. CW—geodesic) from z to
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y (resp. 2’ to ') are each contained in the o—neighborhood of each other for some ¢ determined
by E. Combining this with Lemma 2.2 yields

|dx(z0, 8) — (x| Y)uo| < E + 0 and |dw (z0, Bw) — {2’ | ¥ )uy| < E + 0.
Since dw (zo, fw) < Edx(xo,8) + E, we now have
r <2 [ Pay <K@ | Y )ay + B
<dw (xo,fw)+ B+oc+ E
<FEdx(zo,8)+ B+ o0 +2FE
<E(x|Y)p + E(E+0)+B+0+2FE
<E(z|p)ey+ EB+ E(E+0)+ B+0+2E.

Hence if 1’ = £(r—B—0)—B—0—E—2andr > (2B + 20 + E + 2)E, then z € M(r'; p).
Now we establish the third bullet. Let ¢ € dICW n My (r;p). By Theorem 3.24, the inclusion
map continuously extends to a homeomorphism between 0X and (X, S). Hence, we can consider
g € 0X and find a sequence (g,) S X that converges to ¢ in both dX and 0(X,S). The definition
of the topology on d(X,&) ensures that ¢, — ¢ in X implies that for any choice ¢/, € mw(gn),
q,, — q in CW. Hence 7y (¢,) S Mw (r;p) for all but finitely many n. The second bullet then says
qn € M(r'; p) for all sufficiently large n. Hence g € M (r';p) as well. O

4. MAXIMIZATION AND THE BOUNDARY

The goal of this section is to prove that the boundary of a proper hierarchically hyperbolic space
with the bounded domain dichotomy is invariant under changing the structure by a procedure
introduced in [ABD21] which we call mazimization. To simplify our arguments we break maxi-
mization into two steps. Given a hierarchically hyperbolic space (X, &) with the bounded domain
dichotomy, we first replace & with the set of essential domains (see Section 4.1 for the definition),
denoted S.ss. Second, we apply the work of [ABD21] to obtain a new hierarchical structure on X,
denoted (X, %), that satisfies several nice properties. If we want to emphasize the initial structure
G, we call this procedure maximizing the structure &. The resulting structure ¥ is called the max-
imized structure on X obtained from &, or simply a maximized structure on X, if the structure &
is implicit or irrelevant.

Our main result is that the HHS boundary of a G-HHS is invariant under maximization.

Theorem 4.1. If (G,6) is a G-HHS and ¥ is the mazimized structure on X obtained from &, then
the identity map on G extends to a G-equivariant map (G, S) — (G, %) that is both a simplicial
isomorphism and a homeomorphism.

While the case of G-HHSs is likely of primary interest, our proof will not use a group action in
any way and will apply to any hierarchically hyperbolic space that is proper and has the bounded
domain dichotomy; see Theorem 4.21 for this more general statement.

4.1. The maximization procedure. In this section, we will provide a detailed description of
the two steps of maximization and show that the first step does not change the boundary of
a hierarchically hyperbolic space. The proof that the boundary is invariant under the second
step is more involved, and we will prove that in Section 4.6, after first developing some technical
preliminaries in Sections 4.2—4.5.

Fix a hierarchically hyperbolic space (X, &) with the bounded domain dichotomy. As every
quasigeodesic space is quasi-isometric to a geodesic space, we will assume for convenience that X
is a geodesic metric space. In the context of G-HHSs, the space X can be taken to be a Cayley
graph of the group with respect to a finite generating set.
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Step 1: Essential domains. Let G4 € & be the set of domains U € & such that there exists some
V £ U so that CV has infinite diameter, that is, V € &%. We call elements of G,z essential
domains. The first step of maximization is to replace & with the set of essential domains S 5.

Lemma 4.2. Let (X,8) be a hierarchically hyperbolic space with the bounded domain dichotomy.
Then (X,8ess) is a hierarchically hyperbolic space and the identity X — X extends to map
O(X, Gess) — O(X,S) that is both a simplicial automorphism and a homeomorphism.

Proof. The set & — G4, is the set of domains U € & such that CV is uniformly bounded for every
V £ U. Since this set is clearly closed under nesting, it follows from [BHS17a, Proposition 2.4] and
the distance formula in hierarchically hyperbolic spaces [BHS19, Theorem 4.5] that (X, G¢ss) is a
hierarchically hyperbolic space where all the relations, hyperbolic spaces, and projections are the
same as in (X, &). This yields a hieromorphism f: (X, Scss) — (X, &) where f: X — X is the
identity, f: Gess — 6 is the inclusion, and fy is an isometry for all V € G.45. Therefore by Theorem
3.22, there is an injective simplicial map 0f: Oa (X, Sess) — Ia(X,S) that is also a continuous
map 0f: (X, Sess) — (X, S). Moreover, since no domain in & — S, contributes to (X, &), this
map is a bijection and the basis neighborhoods (given by Definition 3.17) with respect to & and
Gess will be identical. Hence, the map Jf is a homeomorphism from (X, Ges5) — (X, S). O

We note that Lemma 4.2 implies that if a group G has two different G-HHS structures & and
S’ such that Gess = G'css, then 0(G, S) is homeomorphic to (G, &’). More generally, the two
boundaries associated to & and &’ are homeomorphic if there exists a hieromorphism (G, S.s5) —
(G, E.,,) that satisfies the condition of Corollary 3.23.

€SS

Step 2: The new hierarchical structure. We describe the second and more involved step in the
process of maximizing an HHS structure (X', &). We refer the reader to [ABD21] for the proof that
this process in fact gives an HHS structure on X'. We assume that we have already performed Step
1 so that & = G.gs.

Given (X,8) an HHS with constant E satisfying the bounded domain dichotomy, define ¥ to
be the subset of & containing the E—maximal element S € & as well as all domains W € & where
Fy and Eyp are both unbounded. Because & = G.5; and & has the bounded domain dichotomy,
Proposition 3.9 says Fyy and Ey will both be unbounded if and only if Gﬁ/ # . In particular,
W,V € & are orthogonal if and only if W,V € T — {S} and are orthogonal in ¥.

The maximal structure on X obtained from & has index set T. Before we describe the full
hierarchy structure associated to the set of domains ¥, we fix some notation to differentiate in
which structure a domain is being considered.

Notation 4.3. To distinguish which structure we are working in (S vs ¥), we use the following
convention. If nothing is appended to the notation, it occurs in (X, &); for example, my: X — CW
is the projection map in the structure (X', &). For the hyperbolic spaces associated to the structure
(X,%T), we use the notation CxW for each W € T. For most other notation * that occurs in (X, &),
we will typically use ¥ to denote the corresponding object in (X', ¥). For example, Ty : X — CxW
is a projection map in the structure (X, ¥). Similarly, a point in (X, &) is simply denoted p, while
a point in (X, T) is denoted p. Given a point p € (X, T), we denote its support in T by supp<(p).

The relations between domains in ¥ are inherited from the relations in &, i.e., the relation
between W,V € ¥ is the same as the relation in &. If W e T — {S}, then CW = CzW and
the projection maps and relative projection maps are defined as in the original structure for any
We%—{S}

Thus the only associated hyperbolic space in the structure (X', %) that is different is CsS. The
hyperbolic space CzS is defined as follows.

Definition 4.4. Let CzS be the space obtained from X by adding an edge of length 1 between
every pair of points x,y for which there is a W € ¥ — {S} so that x,y € Fyy.
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For the =—maximal domain S € ¥ and any W € ¥ — {S}, we define Tg to be the inclusion map
X — CgS, we define ﬁa, be the map Ty ofgl, and we define ﬁlg/ to be the subset Tg(Fyy) in C<S.

Remark 4.5. Technically, (X,T) as described is not a hierarchically hyperbolic space, because it
may not satisfy the containers axiom (Definition 3.1(6)). In order to fix this problem, we actually
define ¥ to be the union of the set described above along with a collection of dummy domains,
whose associated hyperbolic spaces are points. These dummy domains essentially take the place of
any containers that we may have removed when initially forming ¥ from &. Since to each dummy
domain the associated hyperbolic space is defined to be a point, these domains do not contribute
in any way to the HHS boundary, and hence we can ignore them in this paper. We refer the reader
to [ABD21] for a detailed description of how the dummy domains are incorporated into the full
hierarchy structure on (X,%).

The fact that CzS is a hyperbolic space is a consequence of the factored space construction in
an HHS introduced in [BHS17a, §2]. In addition to hyperbolicity, this construction yields that CzS
inherits an HHS structure as described in the next result.

Proposition 4.6 ([BHS17a, Proposition 2.4] plus [BHS21, Corollary 2.16]). Given an HHS (X,S),
there exists E' = 0, depending only on the HHS constant E of (X,6), so that the space C<S is
E'~hyperbolic and admits an HHS structure with constant E' that has index set (& —T) U {S} and
where the hyperbolic spaces, relations, and projections are all inherited from (X, S).

The domains, hyperbolic spaces, and relative projections for the HHS (CsS, (6 — %) u {S}) are
all identical to their counterparts from &. The projection maps need a little more illumination.
Recall, CzS is the space X with additional edges attached. If x € CsS is also a point of X, then
for each W e (& — ¥) u {S}, the projection my (x) is the same as the projection to CW in &. If
instead x is a point on an edge e that is added to X to make C<S, then my (x) is the union of the
images of two end points of e under my .

There are two important consequences of Proposition 4.6 that we will use repeatedly for the
remainder of the section. First, Theorem 3.24 applies to the hyperbolic HHS (CzS, (6 — %) u {S}),
so we can identify the Gromov boundary of CzS with points in the Gromov boundaries of CW for
We (6—%)u{S} Second, we can use Lemma 3.25 to relate neighborhoods in CW v 6CW to
neighborhoods in CzS U dCxS when W e (6 — %) u {S}.

In order to prove Theorem 4.1, it remains to show that this second step in the maximization
procedure (replacing & with ¥) does not change the boundary of a G-HHS. The proof of this fact
is involved, and we spend the next several subsections developing the necessary machinery and
establishing a number of preliminary results. Theorem 4.1 is then proven in Section 4.6.

4.2. Invariance of hierarchy paths and hierarchical quasiconvexity under maximiza-
tion. As in the previous subsection, (X, &) is an HHS with constant E and the bounded domain
dichotomy, and (X, %) is the HHS produced after maximizing &. We denote the E—maximal do-
main in both structures by S. The goal of this subsection is establish that hierarchy paths and
hierarchical quasiconvexity do not change under the maximization procedure. These results are
used to prove that Step 2 of the maximization procedure does not change the boundary, but we
expect they will be of broader interest as well.

We start by quoting a result that says hierarchy paths with respect & are also hierarchy paths
with respect to T. This was established by the first two authors and Durham during the introduction
of the maximization procedure.

Lemma 4.7 ([ABD21, Special case of Lemma 3.6]). For each A =1 there exists X' = X\ for which
the following holds: if vy is a A~hierarchy path in (X, &), then Tg o~y is an unparametrized (X', \') -
quasigeodesic of C<S. In particular, every A\~hierarchy path of (X, &) is also a N ~hierarchy path of
(X,%).
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Next we establish the converse of Lemma 4.7, that hierarchy paths with respect to ¥ are also
hierarchy paths with respect to &. This establishes that (X, &) and (X, %) have the same set of
hierarchy paths (with possibly different constants).

Lemma 4.8. For each A\ > 1 there exists X' = X for which the following holds: if v is a A—hierarchy
path in (X, %), then v is also a X' ~hierarchy path of (X,S).

Proof. Let v be a A-hierarchy path in (X,%). For each W € ¥ — {S}, the projection my o~y is an
unparametrized (A, A\)—quasigeodesic because my = Ty. Now assume W = S or W e & —T. By
Proposition 4.6, the space CzS is a hierarchically hyperbolic space with respect to {S} U (& — ),
where the projection maps are the projection maps in the structure &. Because CzS is hyperbolic,
every quasigeodesic in CzS is a hierarchy path in every HHS structure by Theorem 3.24. Thus
Tw 0 Tg oy is an unparametrized (X', \')-quasigeodesic in CW. Because Tg is the inclusion map,
we have that 7y o 7 is an unparametrized (X, \')—quasigeodesic in CW. ]

Using a result of the third author with Spriano and Tran, the above lemmas imply that the sets
of hierarchically quasiconvex subsets of X with respect to & and ¥ are the same.

Proposition 4.9. A subset Y < X is hierarchically quasiconvexr with respect to & if and only if it
is hierarchically quasiconvezr with respect to T. Further, the function of hierarchical quasiconvezity
in either & or ¥ will determine the function in the other.

Proof. Lemmas 4.7 and 4.8 show that every hierarchy path of (X, &) is a hierarchy path of (X, %)
and vice-versa. The proposition then follows from [RST18, Proposition 5.7], which states that a
subset ) of an HHS is hierarchically quasiconvex if and only if there is a function F': [1,00) — [0, o0)
so that for every A > 1, every A-hierarchy path based on ) is contained in the F'(\)-neighborhood
of ). The statement on the function of hierarchical quasiconvexity also follows from [RST18,
Proposition 5.7], which additionally shows that the function k of hierarchical quasiconvexity and
the function F' each determine the other. (|

Proposition 4.9 is most relevant for us in the case of the sets Fyy in (X, &) and Fyy in (X, %).
While Fy might not equal Fyr even when W € & n T, they are each hierarchically quasiconvex
with respect to their respective structures (Proposition 3.9(1)). By Proposition 4.9, there is thus
some k depending only on (X, &) such that Fy and Fy are each k-hierarchically quasiconvex with
respect to both & and . In particular, the projection 7g(Fy) is a k(0)—quasiconvex subspace of
the hyperbolic space CzS.

Since a subset ) is hierarchically quasiconvex with respect to & if and only if it is hierarchically
quasiconvex with respect to T, such a subset has a gate map with respect to each structure. We
denote the gate map in & by gy and the gate map in T by gy. Our final lemma says these two
gate maps are coarsely the same. The key step is relating the the gate map in & to the closest
point projection onto the image of a hierarchically quasiconvex subset in Cs.S.

Lemma 4.10. Suppose Y S X is k-hierarchically quasiconvex with respect to &. There exists
C1,Cy = 0 depending on k and & so that for all x € X we have

prs ) (Ts(2)) =cy Ts(gy(x)) and gy(z) =c, 8y ().
Proof. Let E be the hierarchy constant for G and €. Fix x € X, and let y be any point of
Y satisfying Ts(y) € prgy)(Ts(x)). Since Ts(y), Ts(gy(x)) and gy(x),gy(z) all have diameter
uniformly bounded in terms of F, the two coarse equalities will follow if we can bound the distances
ds(Ts(y), Ts(gy(x))) and dx(gy(z), §y(x)), respectively.

By Lemma 3.8, there exists A > 1 depending only on k£ and & so that there is a A-hierarchy
path v in (X, &) that connects x and y and passes within A of gy(x). Let 3’ be a point on v with

dx(y', gy(x)) < A
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By Lemma 4.7, v is also a hierarchy path in (X, T), and so g o~y is an unparametrized (X, \')—
quasigeodesic in CzS for some )\ ultimately depending only on & and k. By the Morse Lemma
(Lemma 2.1), there is o > 0, depending ultimately only on & and k, so that 7g(7) is contained
in the o—neighborhood of any CzS-geodesic [Ts(x),Ts(y)]. Since y' € v and g is 1-Lipschitz,
we know Tg(gy(z)) is within ¢’ = XA + o of [Ts(x),Ts(y)]. Since Ts(y) € pzy(y)(Ts(x)), we have
ds(7s(y), Ts(gy(x))) < 20" +1, where o’ depends only on & and k. This establishes the first coarse
equality.

Since pz¢(y)(Ts(x)) =x Ts(gy(r)), the uniform bound on dx(gy(x), gy (x)) now follows from the
uniqueness axiom in T (Definition 3.1(7)), because 7y (gy(z)) will be uniformly close to 7 (gy(z))
for all U € T — {S}. O

4.3. A bijection from A (X, S) to da(X,T). In this section, we define a simplicial isomorphism
¢: 0A(X,6) = 0a(X,%).

In Section 4.6, we will prove that this map is a homeomorphism from J(X, &) to d(X, ¥). By Lemma
4.2, we may assume that the first step of the maximization procedure has already been applied to
(X,S). Thus we have a standing assumption for the remainder of this section that & = Ggs.

We first define ¢ for points p € da(X, &) whose support is contained in ¥ — {S}. Recall, if
W e T —{S}, then CW = CzW. Moreover, because & = S5, we have W,V € & are orthogonal
if and only if W,V € ¥ — {S} and are orthogonal in ¥. Thus, each point p € Ja(X,S) with
supp(p) € T — {S} is also a point in da(X,T) with the same support. For such points we define
¢(p) = p-

Now consider p € 0a(X,S) with supp(p) € T — {S}. As supports are pairwise orthogonal
collections of domains and the only non-singleton sets of orthogonal domains of & are contained
in ¥ — {S}, this implies supp(p) = {P} for some P € {S} U (6 — ¥). In this case, we define
¢ using the fact given by Proposition 4.6 that (0CzS, (6 — T) u {S}) is a hyperbolic HHS. By
Theorem 3.24, the identity map on Cs.S extends to a homeomorphism from the Gromov boundary
0CzS to the HHS boundary 0(CsS, (6 — ¥) u {S}). This homeomorphism gives a bijection from
{pe dCW | W e {S}u (6 —%)} to dCzS. Hence, if p € 0CW for some W € {S} u (& — T), then
¢(p) will be the image of p under this identification.

For each p € 0aA (X, &), we will denote ¢(p) by p. For each P € G, we also define a corresponding
domain Pe Tby P=Pif PeTand P = S if P e & — T. This definition ensures the following
basic fact.

Lemma 4.11. If p € 0A(X,8) and P € supp(p), then P € suppz(p). Moreover, |supp(p)| =
| supp(p)]-

Proof. As described in the preceding paragraphs, either supp(p) € T — {S} or supp(p) < {S} U
(& —%). If supp(p) = T — {5}, then supp(p) = supp<(p) and P = P for each P € supp(p). Since
(6 —%) U {S} does not contain any pairwise orthogonal domains, if supp(p) < (& —F) u {S}, then

supp(p) = {P} for some P € (& —F) u {S}. In this case supp<(p) = {S} and P = S. O

Note that if p = X pyequpp(p) aWPW, then b = > iyyeqo0 apPyy where aw = apr and Py =

d(pw)-

4.4. Defining neighborhoods in (X, &) and (X, %). The key step in proving that Step 2 of the
maximization procedure does not change the boundary is to understand how basis neighborhoods
in 0(X, ) relate to those in (X, S).

In addition to assuming that & = G4, we make the following standing assumption to simplify
notation. One consequence of this assumption is that the projection map associated to any W now
has codomain CW; this ensures that the preimage WI;} (X) is well defined for a subset X < CW.
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Standing Assumption 4.12. Given an HHS (X, &), we will assume that for each W € & and
x € X, mw(z) is a single point instead of a bounded diameter set. This can always be done
by replacing the image 7y (x) with a choice of a single point in 7y (2). This modification gives a
hieromorphism where the map on index sets is bijection and the maps between hyperbolic spaces are
isometries. Hence, Corollary 3.23 ensures that this assumption does not affect the HHS boundary.
Note this assumption may increase the hierarchy constant from E to 3F.

We also fix the following constant for the remainder of the section.

Notation 4.13. We first fix a constant E larger than twice all the HHS constants for (X, &),
(X,%), and (CzS,(6 — %) u {S}), as well as the hyperbolicity constant of CzS. This includes
making F larger than the diameter of the boundary projections in each structure. Next, we define
a constant C' to be
C=2x+8E+2B+1,

where E is the constant fixed above, k is the maximum of the constants for the gate map and
the Fy’s from Lemma 3.8 and Proposition 3.9(2), and B is the constant from Lemma 2.6 for an
E-hyperbolic space. (Essentially, C' is chosen large enough to accommodate any coarseness from
the HHS properties and to apply Lemma 2.6.)

For convenience, we also define the following subsets of Cs.S.
Definition 4.14. For each W € & — T, define Y} to be the subspace of CzS given by

Yw := fs(Fw).
Remark 4.15 (Quasiconvexity and boundary of Yy ). Because Fyy is hierarchically quasiconvex
in (X, ), it is also hierarchically quasiconvex in (X,%) by Proposition 4.9. Let k be a function
so each Fyy is k-hierarchically quasiconvex with respect to both & and ¥. By the definition of
hierarchical quasiconvexity, the space Yy is a k(0)—quasiconvex subspace of the hyperbolic space
CsS.

If ¢ € d(X,6) with supp(q) = {Q} for some Q € & — T, then Proposition 3.9(2) ensures that
there is a sequence of points (z,,) in Fg so that the sequence (mg(x,,)) converges to ¢ in CQ U dCQ.
Since Q € & — %, the point g is in dCsS and the first two parts of Lemma 3.25 ensure that the
sequence (Tg(xy)) will then converge to g in CzS U 0CzS. Hence § € 0Yy.

Fix a basepoint xy € X, and let 7y (z9) be the basepoint with respect to which the boundary
0CW is constructed for each W e &. Given a point p = >.I" | ay,py, € 0(X,S) and a basic set
B,.c(p) in the topology on d(X, &), there is an associated collection of neighborhoods M (r;py,) of
pu, in CU;. The goal of this subsection is to define an associated collection of sets in the hyperbolic
spaces in the structure . In Section 4.6, we will discuss how this associated collection of sets is
related to a basic set in the topology on d(X,¥). Given a neighborhood M (r; py ) of py € OCW, we
will define a corresponding neighborhood M (R;; py7) in C<W U 0CzW. In what follows, M° (x; py)
denotes the set M (x;pw) n CW, that is, M°(x;py ) is the subset of the neighborhood that is not
in the boundary of CW.

Definition 4.16 (Neighborhoods in ¥). Let M (r;pw) be a neighborhood in CW U dCW of py €
OCW for some W € &. Let F and C be the constants from Notation 4.13 and assume r > rg, where
7 is the constant from Lemma 3.25 for F -

First, we define an intermediate subset M (r;py;7) as

M (r;Byy) := No (T (! e (M (r;pw))))) -

We now use M (7; Pyyr) to define a neighborhood of py; in CsW. Our choice of C is large enough that
Lemma 2.6 gives No(M°(r;pw)) © M(r —2C;pw). If W = W, then CW = CzW and pw = Dyp-
Thus, we have

M (r;Dyr) € Nac(M°(r,pw)) S M (r — 4C; Pyyr)-
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If instead W = S, then Py is a point in dCgS. Since 7 = 1o, we can therefore apply Lemma 3.25(2)
to the E-hyperbolic HHS (CzS, {S} U (& — T)) to see that

M (r; ) € M(r'; Pry)
for some ' determined by r and E. Setting R, = max{r’,r — 4C}, the desired neighborhood is
M (Rr§ Pw )-
The next lemma verifies that R, is an increasing function of r.

Lemma 4.17. Given a neighborhood M (r;pw) in CW u dCW (where r = 10) and its associated
neighborhood M (R,;Dyr) in CsW u 0CsW as in Definition 4.16, the quantity R, is an increasing
linear function of r with the constant of linearity determined by E.

Proof. From Definition 4.16, R, = max{r’,7—4C'}. Since C is determined by the hierarchy constant
E, the result follows from Lemma 3.25(1), as r/ is an increasing linear function of r with the constant
of linearity determined by F. O

4.5. How boundary projections behave when switching structures. We now prove three
technical lemmas that let us understand how the boundary projections change when switching from
G to its maximization ¥. These lemmas will be essential in the proof of Theorem 4.1.

The first lemma describes a specific situation when the boundary projection changes by only a
uniformly bounded amount.

Lemma 4.18. Let q,p € d(G,S), and suppose q is remote to p and G is remote to p. Suppose

supp(p) = suppg(p) # {S} and supp(q) = {Q} for some Q € {S} U (& —F). If W € supp(p) or
W e supp(p)* with W £ Q, then we have

diamew (07w (q) v 0w (q)) < C —2E.

Proof. Let o be the Morse constant (Lemma 2.1) for a (1,20F)—quasigeodesic in an E-hyperbolic
space. Since supp(q) = {@Q} < {S} U (6 — %), we have supps(q) = {S}. Thus for any W € ¥, the
boundary projection o7y (q) is defined as pj,(Z) where Z is the set of all points of CzS that are
at least F + o far from p% = 7s(Fw) and lie on a (1,20F)-quasigeodesic from a point in p% to g.

On the other hand, the boundary projection 0wy (¢) depends on the relation between W and Q.
The only way supp(p) = supps(p) # {S} is if supp(p) € T — {S}. Since the only orthogonality of
G or T happens in T — {S}, we also have supp(p)t < T — {S}. This means Q = W as Q ¢ T — {S}.
Similarly, @ &£ W as the only orthogonality occurs among domains of T — {S}. Hence, we must
have Q M W or W & Q. We consider each case separately, because the definition of the boundary
projection dwp(q) depends on which relation holds.

If @ M W, the boundary projection of ¢ to W is defined as dmy (q) = pg,. Since supp(q) = {Q}
and @ ¢ T, consider the subspace Yg = Tg(Fg) of CzS. By Remark 4.15, Yy is k(0)-quasiconvex
subset of CzS and g € 0Yg. Hence, Lemma 2.7 provides a constant A > 0 and an (1,20F + 2A4)—
quasigeodesic from a point in pgv to g that eventually lies in Yg. Denote this quasigeodesic by a. By
the Morse Lemma (Lemma 2.1), « is contained in a o’-neighborhood of any (1, 20FE)—quasigeodesic
from ﬁ‘év to g, where ¢’ is determined by E. In particular, by going sufficiently far along «, we can
find a point z € a n Y and a point y € Z so that the CzS—geodesic from z to y avoids NQE(ﬁgf).
Moreover, we can choose x and y so that they are points in X in addition to points in CzS. The
bounded geodesic image axiom (Definition 3.1(8)) in T now says diamew (3, (z) U p5, (y)) < E. As
y € Z, it follows that 07w (q) =g py (v).

By Proposition 3.9, mw (Fg) =« pgv. Since ¥ € anYg, we have gy, (z) = mw (75" (2)) € 7w (Fog).
We have shown that

omw (@) = P (Z) =5 P (y)
and
omw(q) = Py =« Tw (FQ) =g Piy ().
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As we have also shown that diamew (5, () U pji(y)) < E, we conclude that

diameyw (07w () U dmw (q)) < diamew (55 () U By (y)) + 2E + k < 3E + k.

The definition of C' ensures 3FE + £ < C' — 2F, finishing the proof in this case.

If W = @, the boundary projection dmy(q) is defined in terms of projections of quasigeodesic
rays. Since @ ¢ T—{S}, dCQ is a subset of CzS. Pick z € Fyy, and let a be a (1, 20 E)—quasigeodesic
in CzS from Tg(z) < ﬁgv to g€ 0CQ < 0C<S. By Theorem 3.24, the quasigeodesic « is a hierarchy
path in the hyperbolic HHS CgS. Thus, mg o a is an unparametrized (A, \)-quasigeodesic in
CQ for some A determined by E, where here m¢ is the projection map in (CzS, (6 — %) u {S}).
Since plg =¢ mg(Fw) by Proposition 3.9, mg o a gives a quasigeodesic ray in CQ that goes from
mo(z) € ./\/'c(pg/) to gq. Hence, mg(a) will be contained in a uniform neighborhood of any (1,20E)—
quasigeodesic from pg/ to q. Therefore, there is a point x € « so that if ag is the subray of

a starting at x, then 53, () S 07w (g) and pgv(wQ(ao)) € Ng(0mw(q)) (this second inclusion
follows from the bounded geodesic image axiom in &). In particular, dQ(pZ)V, ap) and ds(p¥ , ap)
are both strictly larger than E. See Figure 1 for a summary of the situation.

CzS CcQ

S
Q

. ) g (o)

CW =CzW

FIGURE 1. Proof of Lemma 4.18 when W & Q.

Since 7g is the inclusion map, we can further select x so that 7g'(z) = . Since dQ(pZ?V, x)>E,
the consistency axiom (Definition 3.1(10)) in & says

(2) diamew (o} (r(75" (2)) U mw (75 (2)) ) < .
By our choice of x, we have mg (75" (z)) < mg(ap), and hence
o (o (75 (2))) € ) (mq(a0)) € Nu(@mw (q)).
Equation (2) then implies
(3) diamew (0mw (q) U T (75" (2))) < 4E.
Similarly, because dg (ﬁ?, x) > FE, the consistency axiom in ¥ says

diameyy (ﬁﬁ;(w) v (Tg' (7)) < E.
Since = was chosen so that p5,(z) € 07w (q), this implies

(4) diamey (afw(q) v Ww(ﬁgl(f))) < 2FE.
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Applying the triangle inequality to (3) and (4), we obtain

diameyy (aﬂw(q) U @fw(q)) < diameyy (aﬂ'w(q) ) Ww(fgl(f))) + diameywy (Ww(fgl(f)) ] afw(a))
<4F +2F = 6F.
As 6F < C — 2F, this completes the proof of Lemma 4.18. ]

The next two lemmas describe how switching structures affects the interaction of boundary
projections with neighborhoods. Roughly, the lemmas state that if we have two points p, ¢ € J(X, &)
with g remote to p and a domain P € supp(p), then if the boundary projection in (X, &) of ¢ to P is
contained in the neighborhood M (r;pp) of pp in CP, then the boundary projection in (X, %) of g to
P (or q itself) is contained in the associated set M (R,;pp) in CP. Here, P is as defined in Section
4.4; see Definitions 2.3 and 4.16 for the definitions of M (r;pp) and M (R,;p;), respectively. The
statements are made precise by considering how g and p are related. Lemma 4.19 handles the case
when 7 is remote to p and is broken into two subcases depending on whether supp(p) = supp<(p) or
not. Lemma 4.20 handles the case when § is not remote to p and assumes that supp(p) # supp< (D),
which is the only case we will need for the proof of Theorem 4.1.

Recall, we are still operating under the standing assumptions that & = G5 (Lemma 4.2) and
that my () is a single point for each z € X and W € & (Standing Assumption 4.12).

Lemma 4.19. Let q,p € 0(G,S), and suppose q is remote to p and G is remote to p. Let r = o,
where rq is the lower bound on r required in Definition 4.16.

(1) If supp(p) = {P} and suppz(p) = {S} (including the possibility that P = S), then

orp(q) € M(r;pp) — 0ms(q) = M(Ry;Pg)-
(2) If supp(p) = supp<(p) # {S}, then for any P € supp(p)
orp(q) € M(r;pp) = omp(q) < M(R,;Dp).

Proof. Proof of (1). Suppose supp(p) = {P} and suppz(p) = {S}. We first determine how
the boundary projections 0ms(q) and drp(q) are defined. Since g is remote to p, we must have
supps(p) N suppz(q) = & (see Definition 3.13), and so S ¢ supps(g). Thus @ = S for all Q €
supp<(q), and the boundary projection (Definition 3.12) of g to S is defined as
ms@= |J 79
Qesupps(q)
Moreover, suppz(q) # {S} implies that supp(q) = suppz(q), and so Q € T—{S} for all @ € supp(q).
However, since P ¢ T — {S}, it is not possible that P 1 @ or P & @ for any @ € supp(q). Thus,
for each @ € supp(q), either Q@ = P or Q th P. In either case, the boundary projection of ¢ to P is

defined as
orple) = |J %

Qesupp(q)
Fix r > ro where ry is the lower bound on 7 require by Definition 4.16. Assume omwp(q) <

M (r;pp) and let Q € supp(q) = supps(g). Proposition 3.9(2) says pg =c mp(Fg), which implies
Fq € 75t (Ne(M°(r;pp))) -

However, R, was chosen so that this implies Tg(Fg) = ﬁg € M(R,,pp). Thus 07s(q) = M(R,,Dpp)
as desired.

Proof of (2). Suppose supp(p) = supps(p) # {S}. This only occurs when supp(p) € T — {S}.
If suppz(q) # {S}, then the result is immediate because supp(q) = suppz(q) < T — {S} and
we have Omp(q) = 0mp(q) and Noc(M°(r;pp)) & M(R,;Pp); see Definition 4.16. So suppose
supps(g) = {S}. This only occurs when supp(q) = {Q} for some @ € {S} U (& — ). Since
Q ¢ T — {S} but supp(p) € ¥ — {S}, we know @ # P and Q &£ P for each P € supp(p).
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Because supp<(p) = supp(p) # {S}, we have P = S for all P € supp(p). Let o be the Morse
constant for a (1,20F)—quasigeodesic in an E-hyperbolic space and fix P € supp(p). Let Z be
the set of all points in CzS that are at least F + o far from p% and are contained in a (1,20E)—
quasigeodesic from a point in ﬁg to §g = §. The boundary projection of § to each P € supp(p) is
then defined as 07p(q) = p2(Z); see Definition 3.12.

Since P is in both & and ¥, we have CP = CzP, and so we consider dwp(q) as a subset of
CP. Since 0rp(q) has diameter at most E and dwp(q) < M°(r; pp) by assumption, it follows from
Lemma 4.18 (with W = P) that 07p(q) € No(M°(r;pp)). Because P = P, the set M(R,,Dp) is
defined so that No(M(r;pp)) © M(R,;Dp), and the result follows. O

Lemma 4.20. Let p,q € (G, S), and suppose q is remote to p but G is not remote to p. Suppose
supp(p) = {P} and suppz(p) = {S} where S # P. If rg is the lower bound for r from Definition
4.16, then for any r > 19

orp(q) € M(r;pp) = g€ M(R;;Dg)-

Proof. We have supp(p) = {P} and suppz(p) = {S} where S # P. We first determine the supports
of g and g. Because there are no domains orthogonal to S, no domain in supp<(q) is orthogonal to S.
Since we are assuming that g is not remote to p, we therefore must have supp<(q) N supp<(p) # &;
see Definition 3.13. It follows that supp<(q) = {S}, and so supp(q) = {@} for some @ € & with
Q ¢ T — {S}. Since we are assuming p and ¢ are remote, we also have P # Q.

Assume d7p(q) € M(r;pp). We consider two cases, depending on how the boundary projection
orp(q) is defined: we first handle the case where either @Q = P or Q M P, then we address the case
where Q 2 P.

Case Q = P or Qh P: When Q = P or @ h P, the boundary projection is defined as
orp(q) = ijD. Since dmp(q) = pg < M(r;pp) by assumption and ijD =c mp(Fg) by Proposition
3.9(2), our choice of R, yields

p§ =7s(Fo) € Ts(mp' (Ne(M(ripp))) € M(Ry:ps)
as desired.

Case Q 22 P: Let o be the Morse constant (Lemma 2.1) for a (1,20E)—quasigeodesic in an
E-hyperbolic space. Because ) 22 P, the boundary projection dmp(q) is defined as pg(Z ), where
Z is the collection of all points on (1,20FE)—quasigeodesics in CQ from a point in pg to g that are
at distance at most E + o from pg. Let a be a (1,20F)—quasigeodesic ray « in CzS from a point in
Ts(Fp) = Yp toq. By Theorem 3.24, there is A > 1 determined by F so that « is A-hierarchy path
in the HHS (CzS, (6 — %) u {S}). In particular, mg o a is an unparameterized (A, A)—quasigeodesic
ray from a point in NE(pS) to ¢. By the Morse Lemma (Lemma 2.1), mg(«) is contained in a
uniform neighborhood of any (1,20E)—quasigeodesic from a point in pg to gq. Hence, by going
far enough along «, we can find a subray ag so that the consistency and bounded geodesic image
axioms in (CzS, (6 — %) u {S}) imply pg(wQ(ao)) < NEg(dmg(q)) and mp(ap) =g pg(wQ(ao)). As
a result,

mp(an) € Nop(M(ripp)) € M(r — AE;pp) = M(r — 4C;pp).
Lemma 3.25(2) and our choice of R, (Definition 4.16) then imply a9 & M(R,;pp). Since ag
represents g, this implies g € M (R,;p;) as desired. O

4.6. Invariance of the boundary under maximization. We are now ready to prove that the
maximization procedure does not change the HHS boundary for proper HHSs with the bounded
domain dichotomy. Since every finitely generated group is a proper metric space and every G-HHS
structure has the bounded domain dichotomy, Theorem 4.1 is a special case of this result.

Theorem 4.21. Let X be a proper geodesic space and & an HHS structure for X with the
bounded domain dichotomy. Suppose ¥ is the HHS structure produced by mazximizing &. The map
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¢: 0(X,6) - 0(X,%T) defined in Section 4.3 is both a simplicial isomorphism Oa(X, &) — Oa(X,T)
and a homeomorphism 0(X,8) — 0(X,%). Moreover, the identity map X — X extends continu-
ously to ¢.

Proof. By Lemma 4.2, we can assume & = S, without loss of generality. We also assume 7y ()
is a single point for each x € X and W € G by Standing Assumption 4.12.

The fact that ¢ is a simplicial automorphism follows from the fact that we are assuming all the
domains of G are essential and thus & and ¥ have identical sets of pairwise orthogonal domains.

Define the map ®: X U d(X,8) - X U (X, %) to be the identity on X and ¢ on the boundary.
As with ¢, we will denote the image ®(p) by p.

The map @ is a bijection, and we will show it is sequentially continuous. Since (X, &) and
0(X,%T) are first countable (this is implicit in [DHS17] and explicitly proven in [Hag20, Proposition
1.5]), sequential continuity implies that ¢ is continuous and is a continuous extension of the identity
on X. Because X is proper, X U d(X,8) and X U J(X,T) are compact and Hausdorff [DHS17,
Theorem 3.4]. Hence, proving ¢ is a continuous bijection implies it is a homeomorphism.

Let p € (X, 6) and suppose (p,) is a sequence in X U (X, S) that converges to p. To prove ®
is sequentially continuous, it suffices to prove ®(p,) = p,, = D = ®(p).

Continuing the convention from Notation 4.3, we let B, .(-) denote a basis neighborhood in T
and B, .(-) denote a basis neighborhood in & as described in Definition 3.17. Recall, Definition
4.16 takes any neighborhood M (r;pw ) of pw € 0CW with r > ¢y and produces a neighborhood
M (Ry; pyr) of Dz € OCW so that Lemmas 4.19 and 4.20 hold. We let the constants E and C' be as
described in Notation 4.13.

Fix a basis neighborhood Em(;ﬁ) for some 7 = 0 and € > 0. To prove p,, — P, it suffices to show
that D, € Br.(p) for all but finitely many n.

By Lemma 4.17, there exists an r sufficiently large so that the constant R, is defined and is large
enough to ensure B, (D) S Br.(p). Fixing this r, it suffices to show that p,, € Bg, -(p) for all but
finitely many n.

Since p, — p, for each s > 1 and all but finitely many n, we have

Dn € Br-i-sé(p)‘

Notice that M(r+s;pw) € M(r;pw) for all s > 1, and so B,  1(p) S By,-(p) for all sufficiently

large s. In fact, it is clear from the definition of the decomposition of the neighborhoods that
B . 1(p) < Bi.(p), where x € {rem,int, non}. Moreover, since r + s — o0 as s — c0, we have that

dw (xo, M(r + s;pw)) — o0 as s — o for each W € supp(p).

We divide the sequence (p,,) into three disjoint subsequences, and analyze each in a separate
step of the proof. We will show that for each such subsequence, p,, € Bg, -(p) for all but finitely
many n.

Step 1. Consider the subsequence consisting of all n so that p, € BT\ (p) = BZ"(p). If this

subsequence is finite, we are done and move on to step two. So suppose it is infinite. There are
two further subcases, depending on the support of p and p. Note that since p,, is remote to p in
this case, we can apply Lemmas 4.19 and 4.20 with ¢ = p,,.

Step 1(a): Assume supp(p) = suppg(p). We divide the elements of our subsequence of p,
into two sets: those that satisfy supp(p,) = suppz(p,) and those which do not. For the elements
satisfying the first condition, we will show that p, € E;%ez(ﬁ) For the remaining elements, we
consider two further subcases, depending on whether supp(p) = {S} or not. If it does, then we
show that p,, € EZTE (p), and if it does not, then we show that p,, € ET};’TE (p). In any of the cases in
this substep, we will have shown that p,, € Br, (p), as desired.
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For any n such that supp(p,) = supp<(p,,), we must have p,, is remote to p, because p,, is remote
to p and remoteness is determined by the support set. Hence, we can apply Lemma 4.19(2) to see
that condition (R1) from Definition 3.14 for B R, E( ) is satisfied. Since supp(p)* = supps(p)*, the

fact that p, € B;¢"(p) implies (R2) and (R3) are also satisfied for By . (D) (to see this, note (R2)

and (R3) involve & but not 7). This implies 7, € B, R, E( ), as desired.

We now turn our attention to those p, in our subsequence which satisfy supp(py,) # supp<(p,,)-
In this case, we have supp<(p,,) = {S} and supp(p,) = {Qn} for some @Q,, € & — T; in particular
Qn # S. There are two cases to consider, depending on whether supp(p) = {S} or not.

First assume supp(p) = {S}. Since, in this case, suppz(p) = {S}, it follows that p,, is not remote
to p. We will check that Py € By E( ). Condition (N1) of Definition 3.15 holds by Lemma 4.20.

Condition (N2) holds as a% = ¥, =1 and aS = aQ = 1. Finally, (N3) vacuously holds, as

supps (p,) — (supps(P,) N supps(p)) = -

Now assume supp(p) # {S}. Since supp(p) = suppz(p), we also have supp<(p) # {S}. This
means P, is remote to p because suppg(p,,) = {S}. We will show that p,, € BE.(p) in this case.

Since p, € B.2"(p), we have dmp(p,) S M (r;pp) for all P € supp(p). By Lemma 4.19(2), we
therefore have éﬁp(ﬁn) S M(R,;pp) for all P € supp(p), satisfying (R1). The condition (R3) is
satisfied because alp = 0 for all W € suppg(p,,)*, since supps(p,) = {S} and S is not orthogonal
to any domain.

For the remaining condition (R2), note that supp(p)* = supps(p)*. Because supps(p) # {S},
we have supp(p) = suppz(p) € ¥. Thus, CzW = CW for each W € supp<(p), and we can think
of both dmy (p,) and 07w (p,,) as subsets of CW. Recall supp<(p,) = supp(p,) contains only the
domain Q. As in Definition 3.13, let S5 be the union of suppz(p) = supp(p) with the set of

1

domains in supp(p)* that are not orthogonal to @Q,, (this is the set of domains for which (R2) needs
to be verified). By Lemma 4.18, we have

() dw (0, 0mw (pn)) — C < dw (20, 07w (Pr)) < dw (20, 0w (pn)) + C

for each W € S5 . The following claim uses (5) to complete the proof that (R2) holds for all but
finitely many n.

Claim 4.22. For any W € S5 and P € supp(p), we have

- <e

dW (330, aﬁW (T)n)) aIF;V
(6) dp(ﬂ;'o, aﬁP(ﬁn)) a%

for all but finitely many n.

Proof. Recall that for any s > 1, we have that p, € B, , sl (p) for all but finitely many n. When
pn € BT 1 (p), (R1) and (R2) in & imply for any P € supp(p) and W € S, we have

omp(pn)) € M(r + s;pp)
and

(7) CZW(:EU’ aﬂ-W(pn)) _ @ < 1
p(zo, 0mp(pn))  ap| s
Recall that dp(zo, M(r + s;pp)) — o as s — 00, which coupled with (5) implies that for all
P € supp(p), the distance dp(xo, 07p(p,)) — © as n — 0.
Suppose W € supp(p)* and dy (zq, 07w (p,,)) is uniformly bounded for all n. In this case,
ali, = 0, and since the numerator of the first term of (6) is bounded while the denominator goes to

infinity as n — o0, (6) is satisfied for all but finitely many 7.
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Thus, we may assume without loss of generality that the numerator and denominator of the first
term of (6) both go to infinity as n — c0. Lemma 3.19 now implies

dw (20, 07w (P,))
dp(zo,0mp(P,))  db

because of (5). 0

<e€

The above shows that p,, € B;f:i (p) for all but finitely many n when supp(p) # {S}. Combining
this with the earlier proof that p,, € BEO:E (p) when supp(p) = {S}, we conclude that p,, € Bg, (D)
for all but finitely many n, whenever supp(p) = supp<(p).

Step 1(b): Assume supp(p) # supps(p). Then supp<(p) = {S} and supp(p) = {P} for some
P e & —%. We consider two subcases, depending on supp<(p,,)-

e Suppose suppz(p,) # {S} for some n. Now p,, is remote to P, because supps(p) = {S}.
Thus, we show p,, € B, R, a( ). Lemma 4.19(1) shows that (R1) holds, and conditions (R2)
and (R3) vacuously hold as supp<(p)* = & and | supp<(p)| = 1. Therefore B, € B}fg(ﬁ)

e Suppose supp<(p,) = {S} and let supp(p,) = {Q}, where we include the possibility that
@ = S. In this case, p,, is not remote to p, so we show p,, € EZ;TE (p). Condition (N1) holds
by Lemma 4.20. Condition (N2) trivially holds, as p,, = (p,,)s and p = pg. Finally, (N3) is

/non

vacuously satisfied, as supp(p,,) = suppz(p) = {S}. Thus p,, € Bg_.(p)-
Step 2. Consider the subsequence consisting of all n so that p, € B (p) € B2"(p). If this

subsequence is finite, we are done and move on to step three. So suppose it is infinite. There are
two further subcases, depending on the support of p and p.

Step 2(a): Assume supp(p) = suppz(p). First suppose that supp(p,) # supp<(p,,) for some n.
The only way for this to occur is for supp<(p,,) = {S} and for supp(p,) = {Q} for some Q € & —%.
If supp(p) N supp(pn) = &, then p, is remote to p because no domains are orthogonal to Q.
However, this contradicts the assumption in this step, so we must have supp(p) n supp(p,) # &,
and this intersection must be {Q}. Hence supp(p) = {Q}, because support sets are collections of
pairwise orthogonal domains and there are no domains orthogonal to Q). However, ) ¢ T, and so
supp<(p) = {S} # supp(p), which contradicts the assumptions of this case.

Therefore we must have supp(p,) = supp<(p,,), which makes p,, not remote to p. We verify that
Dy € Egiz(fo). If supp(p) = suppz(p) < T — {S}, then supp(p,) = supp(p,,) is also contained in
¥ —{S}. This means p, = p,, p = P, and supp(p) N supp(p,) = suppz(p) N suppz(p,,). Hence, the
conditions for p,, to be in Egﬁl& (p) follow from the fact that p, € By'¢"(p) and M (R;; py) S M (7, pw)
for each W € supp(p) in this case. If instead supp(p) = suppg( ) = {S}, then supp(p,) =
supp(p,) = {S} as well. Thus (N1) is satistied as M(R;;pg) S M(r,ps) and (N2) and (N3) are

trivially true because aly = a%* = 1 and supps(p,,) — (suppg( ) O supp<(p)) = .

Step 2(b): Assume supp(p) # suppz(p). In this case, suppz(p) = {S} and supp(p) = {P} for
some P € & — T. Since p,, is not remote to p, either P € supp(p,) or @ L P for all Q € supp(py,).
However, the latter is impossible, as there are no domains orthogonal to P. So we must have that
P € supp(py), in which case supp(p,,) = {P}, as support sets are collections of pairwise orthogonal
domains. Thus supp<(p,,) = {5}, making p,, not remote to p.

We show that p,, € Eg:ng(ﬁ) Since p, € M(r,pp) n 0CP and P € & — ¥, Lemma 3.25(3) applied
to the hyperbolic HHS (CzS, (6 — T) u {S}) says p,, € M(R,,pg). Hence Condition (N1) for p,, to
be in B%ﬁ(ﬁ) is satisfied. Condition (N3) is clear as p,, = (p,,)s and p = pg, and Condition (N2)
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is vacuously satisfied as supp<(p,,) = supps(p). Therefore p,, € BZ{O:E ().

Step 3. Consider the subsequence consisting of all n so that p, € Bffs 1(p) = B (p). If this

subsequence is finite, the proof is complete. So suppose it is infinite. There are two further sub-
cases, depending on the support of p and p. Since @ restricts to the identity on X, we have p,, = py,.

Step 3(a): Assume supp(p) = supps(P). Since supp(p) = suppg(p), we have supp(p)* =
supps (P)*, and so (12) and (I3) hold automatically because p, € B (p). If supp(p) = suppg(p) #
{S}, then (I1) follows from the fact that CW = C<W for W € supp(p), R, <r, and p, € B/ (p). If
supp(p) = suppz(p) = {S}, then CS # CzS. In this case, (I1) is a consequence of our choice of R,

and Lemma 3.25(2) applied to the hyperbolic HHS (CzS, (6 — T) u {S}). Thus p, € ng:’s(]?).

Step 3(b): Assume supp(p) # suppz(p). In this case suppg(p) = {S}, which makes Con-
ditions (I2) and (I3) for p, to be in ngyg(ﬁ) automatically true. For Condition (I1), we have
7p(pn) S M(r;pp) for each P € supp(p) because p, € B (p). By our choice of R, (Defini-
tion 4.16), this implies Tg(pn) S M (R,;pg), verifying (I1).

We have show that for all but finitely many n, we have D, € Bg, (D) S Bry(p). Therefore
P, — P as n — oo and & is sequentially continuous. This completes the proof of Theorem 4.21. [

5. APPLICATIONS

We conclude by recording several corollaries of Theorem 4.1, which show that some topological
and dynamical properties that are known to hold for maximized G-HHS structures also hold in
every possible G-HHS structure for the group. We begin by recalling some definitions from [DHS17]
about the dynamics of an element of a G-HHS on the HHS structure. The results we cite below
were originally formulated in the setting of hierarchically hyperbolic groups, but they continue to
hold in the slightly more general context of G-HHS because the definition of the HHS boundary
does not interact in any way with the domains whose associated hyperbolic spaces have uniformly
bounded diameter. Also, since any HHG is a G-HHS, the results in this section imply all the
statements from the introduction about hierarchically hyperbolic groups.

Fix a G-HHS (G, S) with E-maximal element S € &. The big set in & of an element g € G is
the set of domains W € & so that diam(my ({g))) = o0; we denote the big set in & by Bigg(g).
We say g is irreducible with respect to & if Bigg(g) = {S}. If Bigg(g) # & but Bigg(g) # {S},
then we say g is reducible with respect to &. Durham, Hagen, and Sisto show the following basic
properties of the big sets, which holds more generally assuming that (G, &) is only a G-HHS.

Lemma 5.1 ([DHS17]). Let (G,8) be an HHG and g € G.

(1) Bigs(g) = & if and only if g has finite order. That is, every element of G is either
irreducible, reducible, or finite order.

(2) Bigs(g) is a pairwise orthogonal subset of domains of &. In particular, there is k € N
depending only on & so that g"W =W for each W € Bigg(g).

(8) For each n € Z and W € Bigg(g), if "W =W, then g" acts loxodromically on CW.

Recall that the action of G on itself is by hieromorphisms where each of the maps between
hyperbolic spaces in an isometry; see Section 3.2.3. Hence, the action of G on itself extends
continuously to an action by both homeomorphisms and simplicial automorphism on the boundary.
The main dynamical property of this action that we will be interested is that of north-south
dynamics.
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Definition 5.2. Let (G,S) be a G-HHS that is not virtually cyclic. An element g € G acts with
north-south dynamics on 0(G,S) if g has exactly two fixed points 7,6~ € (G, S) and for any
disjoint open sets O, 0~ < 0(G, ) containing £ and £~ respectively, there exists n € N so that

g" (0(G,6)—-07)c O*.
We call £* the attracting fized point of g and £~ the repelling fized point.

Remark 5.3. Combining the work in [DHS17] and [ABD21] yields: (G, &) = ¢ if and only if G
is finite; |0(G, &)| = 2 if and only if G is virtually Z; and |0(G, &)| = oo in all other cases. Thus
|0(G,6)| = oo if and only if G is not virtually cyclic.

Durham, Hagen, and Sisto show that the irreducible elements always act with north-south dy-
namics, and that the set of attracting fixed points of the irreducible elements is dense in the HHS
boundary; again this holds equal as well under the assumption that G is a G-HHS.

Theorem 5.4 ([DHS17]). Let (G,S) be a non-virtually cyclic HHG and S € & be the =-mazimal
element. If CS has infinite diameter, then

(1) if g € G is irreducible with respect to &, then g acts with north-south dynamics on 0(G,S);
(2) the set of attracting fized points for the irreducible elements of (G, &) are dense in (G, S);
(8) the inclusion of dCS into 0(G,S) is a continuous embedding whose image is dense in

(G, 8).

A result of the first two authors and Durham established that the hyperbolic space obtained from
the maximization procedure is independent of the initial HHG structure (this result is implicit in
[ABD21, Theorem 5.1], which proves that the hyperbolic space associated to the nest-maximal
element in a maximized structure is the initial object in a particular category and whence unique).
Since the proof in [ABD21] only involves the domains in &%, the proof there for HHGs also
establishes the identical result for G-HHSs.

Theorem 5.5 ([ABD21]). Let &1 and &2 be two HHG structures for the group G. Let T1 and
To be the mazimizations of ©1 and &o accordingly. If S1 and So are the E—mazimal elements of

T1 and To respectively, then CS1 is quasi-isometric to CSs. In this case, 0CS1 is homeomorphic to
0CS,.

Combining this uniqueness with the density results from Theorem 5.4, some topological proper-
ties of the boundary of the maximized hyperbolic space can be expanded to the HHS boundary of
any G-HHS. One salient example of such a topological property that can be extended from a dense
subset is connectedness.

Corollary 5.6. Let (G,%) be a mazimized G-HHS. If T € T is the E-maximal element and CT s
one-ended, then for any G-HHS structure & for G, the HHS boundary 0(G, &) is connected.

Proof. Let & be a G-HHS structure for G and let R be the maximization of &. Let S be the
C—maximal element of & and fR.

Since G acts coboundedly on CT', one-endedness of CT is equivalent to connectedness of 0CT. Now
CT is quasi-isometric to CxS by Theorem 5.5, so 0CT being connected implies dCyx.S is connected.
Since dCy S is dense in (G, R), this implies 0(G,R) is also connected. Thus, (G, &) is connected
by Theorem 4.1. O

Remark 5.7. Unfortunately, such an argument with density can not be used to show the HHS
boundary is path connected. The topologist’s sine curve is an example of a space that has a dense
path-connected subset, but is not path-connected.

Our next set of applications involve the Morse elements of a G-HHS and the elements that act
by north-south dynamic on the boundary.
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A quasigeodesic 7 in a metric space is Morse if there exists a function N: [1,00) x [0,00) — [0, o0)
so that each (A, ¢)—quasigeodesic with endpoints on + is contained in the N (A, ¢)—neighborhood of
7. An element g of a finitely generated group G is Morse if (g) is a Morse quasigeodesic in the
Cayley graph of G with respect to some finite generating set. Since a quasigeodesic being Morse is
preserved by quasi-isometries, whether or not g € G is Morse is independent of the choice of finite
generating set for G.

One of the original applications of the maximization procedure was to characterize Morse ele-
ments of an HHG as precisely those that are irreducible with respect to a maximized structure.
Since this condition involves only domains in &%, its proof also works identically for G-HHSs.

Theorem 5.8 ([ABD21]). Let G be a HHG. If T is a maximized structure, then g € G is Morse if
and only if g is irreducible with respect to ¥.

Since the boundary is invariant under maximization and the maximized hyperbolic space is
unique up to quasi-isometry, we now show that the Morse elements are precisely the set of elements
that act with north-south dynamics on the HHS boundary of any G-HHS.

Corollary 5.9. Let (G,6) be a G-HHS that is not virtually cyclic. An element g € G acts with
north-south dynamics on 0(G,S) if and only if g is a Morse element of G. In particular, the set
of elements of G that act with north-south dynamics does not depend on the G-HHS structure &.

Proof. Let T be the maximization of the G-HHS structure &. Let S be the E-maximal domain
of & and T. Since G is not virtually cyclic, both (G, %) and d(G, S) have an infinite number of
points; see Remark 5.3.

Assume that g € G is a Morse element. By Theorem 5.8, g being Morse is equivalent to g being
irreducible with respect to ¥. Hence, g acts with north-south dynamics on (G, %) (Theorem 5.4).
Since 0(G, %) is G—equivariantly homeomorphic to d(G,&) by Theorem 4.1, g must also act on
0(G, &) with north-south dynamics.

Now assume g € G acts by north-south dynamics on 0(G,S). Since d(G, &) is Hausdorff and
has an infinite number of points, north-south dynamics ensures that g does not have finite order.
Hence, Bigg(g9) # & by Lemma 5.1. Further, [DHS17, Proposition 6.22] says |Bigg(g)| > 1
implies g stabilizes at least 3 points in 0(G, &), which would contradict ¢ having north-south
dynamics. Thus, we know Bigg(g) contains exactly one domain W € &. Since gWW = W, if
V 1L W, then gV 1L W as well. Thus, GI%V N 6% # & would imply that the non-empty set of
points {p € d(G, S) : supp(p) < G#V N 6%} is stabilized by g. Since this would violate north-south
dynamics, we know (‘5#[, NG6* = . Hence, W ¢ T—{S} as maximization removes all non-maximal
domains that are not orthogonal to a domain of &*. This implies Bigz(g) = {S}, which makes g
a Morse element by Theorem 5.8. O

Since the set of attracting fixed points for the irreducible elements are dense, we have the same
for the attracting fixed points of the Morse elements regardless of the choice of G-HHS structure.

Corollary 5.10. Let (G,S) be a G-HHS that is not virtually cyclic. If G contains a Morse
element, then the set of attracting fized points of Morse elements in 0(G,S) is dense in 0(G,S).

Proof. Let T be the maximization of &. By Theorem 5.4 and Theorem 5.8, the set of attracting
fixed point of the Morse elements is dense in 0(G,T). Theorem 4.1 then implies that they are also
dense in 0(G, S). O

Remark 5.11 (Density of the Morse boundary). The Morse geodesics of a group can be used to
make a Morse boundary for any finitely generated group; see [Corl9]. The Morse boundary of
an HHG has a G-equivariant continuous injection into 0(G,¥) where ¥ is a maximized structure
[ABD21, Theorem 6.6] (this result again works for G— HHSs, as well). Every Morse element also
has a pair of fixed points in the Morse boundary, and the continuous inclusion sends fixed points
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to fixed points. Hence, Corollary 5.10 shows that the image of the Morse boundary in the HHS
boundary is dense.

Finally, we use the density of Morse elements to show the limit set of a normal subgroup is the
entire HHS boundary. The limit set of a subgroup H of a G-HHS (G, &) is the set of all points in
0(G, ©) that are the limit of a sequence of elements of H.

Corollary 5.12. Let (G,6) be a G-HHS that is not virtually cyclic. If G contains a Morse element
and N is an infinite normal subgroup of G, then the limit set of N in 0(G,S) is all of (G, S).

Proof. Let T be the maximization of &, and let S be the E-maximal element of & and ¥. Since
0CzS is dense in 0(G,%T) and by Theorem 4.1 the identity G — G induces a homeomorphism
Gui(G,6) - Gui(G,T), it suffices to prove that the limit set of N contains all of dCzS < (G, T).

Let p € 0(G,%) with supp(p) = {S}. Fix a basis neighborhood B,.(p) in d(G,T). Since G
has at least one Morse element, Corollary 5.10 says there is a Morse element g € G, so that its
attracting fixed point ¢ is contained in B, .(p). Proposition 5.14 below shows that there is also a
Morse element h in the normal subgroup N with attracting fixed point ¢ € CzS < d(G, S). Since
the Morse elements of G act with north-south dynamics, there is some n € N so that ¢"( € B, .(p).
Now, the sequence {g"h’g~"}*, will converge to g"( because {rs(g"hig™™)}%,; will converge to
g™( € 0CzS. Since h € N and N is a normal subgroup, ¢g"hig™" € N for each i € N. Thus, p will
be a limit point of elements of V. ]

Remark 5.13. The conclusion of Corollary 5.12 can fail to hold when G does not contain any
Morse elements. For example, if G is the direct product of two infinite G-HHSs H; x Hs, then the
HHS boundary of G will be the join of the HHS boundaries of H; and Ha, and the limit set of each
H,; will be exactly one side of this join.

Our last proposition was used in the proof of Corollary 5.12 and is useful in its own right. We
note that it can be deduced as a special case of [RST22, Corollary 3.6]; we provide a short proof
using the theory of hierarchical hyperbolicity for completeness.

Proposition 5.14. Let G be a G-HHS containing a Morse element. Then every infinite normal
subgroup of G contains an element that is Morse in G.

Proof. Let g € G be a Morse element, and let & be a maximized structure for G. By Theorem
5.8, Bigg(g) = {S} where S is the E-maximal element of S. Let N be a normal subgroup of G.
Applying the Rank-Rigidity Theorem ([DHS17, Theorem 9.13]) to the action of N on (G, &), either
N contains a Morse element or it stabilizes a product region Py for some U € & (Py is the image
of Fy x Ey in G). Since g is loxodromic on CS, by taking n large enough we can ensure that pg
is as far as desired from pgnU. Since p¥ = m5(Py), the orbits N - p& and g"Ng™ - p%nU both have
uniformly bounded diameter for any n € Z. Since ¢g"Ng~" = N, acylindricity of the action of G on
CS implies that N is finite. O
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