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ABSTRACT

Wetlands are rich in biodiversity, provide habitats for many wildlife species, and play a vital role in the trans-
mission of bird-borne infectious diseases (e.g., highly pathogenic avian influenza). However, wetlands worldwide
have been degraded or even disappeared due to natural and anthropogenic activities over the past two centuries.
At present, major data products of wetlands have large uncertainties, low to moderate accuracies, and lack
regular updates. Therefore, accurate and updated wetlands maps are needed for the sustainable management and
conservation of wetlands. Here, we consider the remote sensing capability and define wetland types in terms of
plant growth form (tree, shrub, grass), life cycle (perennial, annual), leaf seasonality (evergreen, deciduous), and
canopy type (open, closed). We identify unique and stable features of individual wetland types and develop
knowledge-based algorithms to map them in Northeast China at 10 m spatial resolution by using microwave
(PALSAR-2, Sentinel-1), optical (Landsat (ETM+/OLI), Sentinel-2), and thermal (MODIS land surface tempera-
ture, LST) imagery in 2020. The resultant wetland map has a high overall accuracy of >95%. There were a total
154,254 km? of wetlands in Northeast China in 2020, which included 27,219 km? of seasonal open-canopy
marsh, 69,158 km? of yearlong closed-canopy marsh, and 57,878 km? of deciduous forest swamp. Our results
demonstrate the potential of knowledge-based algorithms and integrated multi-source image data for wetlands
mapping and monitoring, which could provide improved data for the planning of wetland conservation and
restoration.

1. Introduction

worldwide have been changing rapidly, driven by human activities and
climate and hydrological changes, such as population growth, agricul-

Wetlands, characterized with a mix of plants, surface water, and/or
water-saturated soils, provide vital habitats for various wildlife such as
fishes, waterbirds, and frogs (Aiello-Lammens et al., 2011; Jansen and
Healey, 2003; Murray et al., 2019), affect the atmosphere by seques-
trating or emitting carbon (e.g., CO2 and CHy4) (Brix et al., 2001; Lan
et al., 2021; Picek et al., 2007; Tollefson, 2022), and play a significant
role in the zoonotic disease transmission (Gilbert et al., 2008, 2014;
Jourdain et al., 2007). However, over the last two centuries, wetlands

ture reclamation, warmer temperatures, and changing precipitation
patterns (Chen et al., 2018; Gong et al., 2010; Richards and Friess,
2016). Several satellite-based global land cover data products (e.g.,
IGBP-DISCover and FROM-GLC) include a broad category for wetlands
(Gong et al., 2013; Karra et al., 2021; Loveland et al., 2000; Zhang et al.,
2021). However, their classification algorithms were not specifically
designed for wetlands, leading to low to moderate accuracies in iden-
tifying wetlands. Furthermore, several wetland thematic products have
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been generated at regional and global scales (Darrah et al., 2019;
Davidson and Finlayson, 2018; Pickens et al., 2020; Slagter et al., 2020),
such as the 30 m national wetland map of China in 2015 (CAS_Wetlands)
(Mao et al., 2020). However, most of these wetland products are not
regularly updated, and thus cannot meet the need of updated and ac-
curate wetland maps for wetland monitoring, protection, and
management.

Optical images have been widely used for wetlands mapping
(Table 1) (Davranche et al., 2010; Ghosh et al., 2016; Wang et al.,
2020b, 2020d). Landsat images with a 30 m spatial resolution are an
important data source for large-scale and historical wetland mapping
due to their global coverage, long-term time series, suitable resolution,
and free availability (Amani et al., 2019; Mao et al., 2020). Landsat has a
16-day revisit cycle and some events such as flooding in wetlands occur
over short periods of time and are not frequently recorded by Landsat.
Cloud, cloud shadow, and rainfall may limit the availability of
good-quality Landsat observations for identifying specific events (Zhang
et al., 2022). Moreover, small and narrow patches of natural wetlands
with width <30 m are difficult to identify by Landsat images due to the
mix of non-wetlands and wetlands within pixels. The new imagery from
Sentinel-2A/B satellites with 10 m spatial resolution can partly reduce
mixed pixel problem as compared to Landsat. Sentinel-2A/B images
with 5-day revisit cycle, in combination with Landsat imagery, can in-
crease the probability of cloud-free observations in the same period
compared to Landsat alone (Pahlevan et al., 2019), which makes it
possible to better capture phenological information or changes in land
surface.

Synthetic aperture radar (SAR) images offer an alternative data
source for wetland mapping due to their independence from weather
conditions and distinct backscattering characteristics for surface water
and inundated vegetation (Amani et al., 2017; Li et al., 2020). L-band
SAR systems with long wavelengths allow signals to penetrate vegeta-
tion canopies to map underlying emergent herbaceous and woody
wetland vegetation through double-bounce backscatter (Townsend,
2002). With the launch of Sentinel-1, time series of high spatial reso-
lution SAR data become available globally (Torres et al., 2012). The
combination of SAR and optical data is expected to provide advantages
of land surface reflectance and surface structure features, which has
been demonstrated to improve classification accuracy of built-up area
(Huang and Zhang, 2022; Qin et al., 2017), sugarcane (Wang et al.,
2020a), mangrove (Chen et al.,, 2017), and paddy rice (Huang and
Zhang, 2023). However, the potential of combining SAR and optical
images for wetland mapping at large scales remains unexplored fully.

Wetland classification algorithms can be categorized into four ap-
proaches: (1) visual interpretation and classification, (2) data-based
unsupervised classification, (3) information-based supervised classifi-
cation, and (4) knowledge-based supervised classification (Table 1). The
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visual interpretation and classification approach is time-consuming and
labor-intensive. The data-based unsupervised classification approach
calculates statistics of surface reflectance, vegetation indices, back-
scatter coefficient, and/or texture for all pixels in single- or multi-date
images, and then uses clustering algorithms to generate various clus-
ters that are later interpreted as different land cover types (Gong et al.,
20105 Niu et al., 2009). The information-based supervised classification
approach uses image data from regions of interest (ROIs) to train clas-
sification algorithms and then applies the trained algorithms to generate
wetland maps (Han et al., 2018; Vo et al., 2013; Xing and Niu, 2019).
This approach requires a large amount of high-quality training data for
the specific land cover types being classified. The knowledge-based su-
pervised classification approach analyzes time series image data of
selected pixels for specific land cover types and identifies unique and
stable optical and/or microwave characteristics of those land cover
types, which is considered as knowledge. The knowledge (e.g., object-
and sensor-specific phenological traits), along with associated decision
trees and rule-based algorithms, is applied to identify specific land cover
types. Several studies have highlighted the potential of
knowledge-based algorithms in generating annual maps of plantations,
crops, surface water, and coastal wetlands (Chen et al., 2017; Dong
etal., 2013; Helman et al., 2015; Massey et al., 2017; Wang et al., 2020a,
2021; Xiao et al., 2005a, 2006; Zhang et al., 2023a). Despite these
successful applications, the knowledge of inland wetlands is poorly
explored and the knowledge-based algorithm has not been designed and
applied for identifying and mapping inland wetlands.

Northeast China is renowned for its abundant wetland ecosystems,
characterized by a high concentration and diversity of wetlands.
Currently, 15 sites in this region have been listed as internationally
important wetlands, accounting for 26% of China. In this study, we in-
tegrated all available microwave (PALSAR-2, Sentinel-1), optical
(Landsat (ETM+/OLI), Sentinel-2), and thermal (MODIS land surface
temperature) images over Northeast China in 2020 in Google Earth
Engine (GEE) to (1) identify and evaluate unique and stable optical and/
or microwave signatures of wetlands based on their biophysical features;
(2) develop knowledge-based algorithms for wetland classification; and
(3) apply and evaluate these algorithms to generate a wetland map at 10
m spatial resolution for Northeast China in 2020.

2. Materials and methods
2.1. Study area

Northeast China encompasses Heilongjiang, Jilin, and Liaoning
Provinces, and four municipalities in eastern Inner Mongolia Autono-

mous Region (Supplementary Fig. 1). The region has a cold temperate
and humid/sub-humid climate. Annual accumulated air temperatures

Table 1
A sample list of publications on image data sources and algorithms for wetland mapping from previous studies.
Methods Optical SAR (RADARSAT, Optical + SAR (MODIS,
ERS-1, Sentinel-1) Landsat, Sentinel-2, PALSAR,
VHSR (<10 m; e.g., HSR (10 m-30 m; e.g., SPOT-5, MSR (250 Sentinel-1)
QuickBird, IKONOS, Landsat) m-500 m; e.g.,
UAV) MODIS)
Visual interpretation and Liu et al. (2017) Gong et al. (2010)
classification
Data-based unsupervised (Giri et al., 2015; Simard et al., Parmuchi et al. (2002)
classification (e.g., K-means, 2008)
ISODATA)
Information-based supervised (Wang et al., 2004, (Amani et al., 2019; Davranche Xing and Niu (Parmuchi et al., 2002; (Mahdianpari et al., 2020;
classification (e.g., MLC, NN, 2015) et al., 2010; Han et al., 2018; Mao (2019) Simard et al., 2002) Niculescu et al., 2020;

DT, SVM, RF) et al., 2020; Vo et al., 2013)
Knowledge-based supervised (Wang et al., 2020d, 2021; Zhang
classification et al., 2020)

Onojeghuo et al., 2021)
This study

VHRS: Very High Spatial Resolution; HSR: High Spatial Resolution; MSR: Moderate Spatial Resolution; UAV: Unmanned Aerial Vehicle; MLC: Maximum Likelihood
Classifier; NN: Neural Networks; DT: Decision Tree; SVM: Support Vector Machine; RF: Random Forest.
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above 0 °C range from 2000 to 4200 °C-day, and above 10 °C range from
1600 to 3600 °C-day (Dong et al., 2016). Frost-free periods vary between
140 and 170 days (Dong et al., 2016). The average annual precipitation
ranges from 500 to 800 mm, most of which occurs in July and August.

Wetlands are a mixture of plants, surface water, and/or water-
saturated soil (Mehner, 2009), which are diverse and can be grouped
by plant growth form (grass, shrub, tree), life cycle (annual, perennial),
leaf seasonality (evergreen, deciduous), and canopy type (open, closed)
(Mao et al., 2020; Mehner, 2009; Wang et al., 2020d) (Table 2). Clas-
sification of wetlands based on morphological and phenological char-
acteristics will contribute to more accurate estimates of ecological and
environmental processes and ensure responsible conservation and
development to maximize ecological benefits. Plant growth forms and
their life cycle can influence the amount of carbon sequestered (Krauss
et al., 2021). It is also possible to identify and assess wetland habitats by
classifying and describing wetland vegetation, as wetlands with
different plant growth forms and canopy types can indicate the presence
of specific flora and fauna adapted to those conditions (Beedy, 1981;
Panda et al., 2021; Tanalgo et al., 2015). In addition, such classification
has the potential to help in evaluating their ability to filter pollutants
and excess nutrients as wetland vegetation type and its growth form can
impact its filtering capacity (Boto and Patrick Jr, 1979; Sandoval et al.,
2019). In this study we focused on grass wetland with perennial de-
ciduous grass and open canopy (seasonal open-canopy marsh), grass
wetland with perennial deciduous grass and closed canopy (yearlong
closed-canopy marsh), and forest wetland with perennial deciduous tree
and open canopy (deciduous forest swamp) (Fig. 1).

2.2. Datasets

2.2.1. ALOS PALSAR-2 data

We collected 25 m ALOS PALSAR-2 L-band (23.5 cm) imagery for
2020 and 2019 in GEE (Supplementary Fig. 2a). The released yearly
PALSAR-2 composite data were mosaic of strip data with minimal
response to surface moisture (Shimada et al., 2014), which were
ortho-rectified and slope-corrected using the 90 m SRTM digital eleva-
tion model (DEM). The PALSAR-2 data comprised two polarizations (HH
and HV). The digital numbers (DN) values in the two polarization bands
were converted to gamma naught (y°) values in decibel unit (dB) using
y°= 10log;,(DN?)—83 dB (Shimada et al., 2014). We calculated the
Ratio (HH/HV) and Difference (HH-HV) values. Approximately 5.5 x
107 pixels (1.9% of the total pixels) in Northeast China had no PALSAR-2
data in 2020, and they were filled using 2019 PALSAR-2 data (Supple-
mentary Fig. 2a). To avoid the impact of snow and ice, we replaced
observations outside of the 2020 growing season with good-quality (no
snow and/or ice) data acquired during the 2019 growing season (April
to September) (Supplementary Fig. 2b, c¢). The PLASAR-2 images were
resampled to 10 m using the nearest neighbor method to be spatially
consistent with the Sentine-1/2 images.

2.2.2. Sentinel-1 data

The C-band (~5.5 cm) Sentinel-1A/B Level 1 Ground Range Detected
(GRD) product in the Interferometric Wide (IW) swath model from
January 1, 2020, to December 31, 2020, was collected in GEE

Table 2
Wetland classification system for Northeast China in this study.
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(Supplementary Fig. 2d). Sentinel-1 imagery offers dual-polarization
with VV and VH bands (Torres et al., 2012). Sentinel-1 data in GEE
were pre-processed with the Sentinel-1 Toolbox using orbit metadata
update, GRD border noise removal, thermal noise removal, radiometric
calibration, and terrain correction. The final terrain-corrected values
were converted to dB via 10log10(DN).

2.2.3. Sentinel-2 data

We used all available Sentinel-2A/B Level-2A surface reflectance
(SR) data in GEE from January 1, 2020, to December 31, 2020. Good-
quality observations were defined as no clouds, cloud shadows, cirrus,
and snow/ice. Bad-quality observation with clouds, cloud shadows, and
cirrus were identified and removed by using the QA60 bitmask band.
Observations with snow/ice were identified and eliminated by using the
criteria of nir-infrared (NIR) >0.11 and Normalized Difference Snow
Index (NDSI) >0.4 (Zhang et al., 2015).

Normalized Vegetation Index (NDVI) (Tucker, 1979), Enhanced
Vegetation Index (EVI) (Huete et al., 1997, 2002), Land Surface Water
Index (LSWI) (Xiao et al., 2004, 2005b), and modified Normalized Dif-
ference Water Index (mNDWI) (Xu, 2006) were calculated for each
image using Egs. (1)-(4). NDVI and EVI are correlated with vegetation
detection and monitoring, LSWI captures vegetation and soil water
signals, and mNDWI is commonly used for surface water detection.

NIR — R
NDyi = MR = Red )
NIR + Red
NIR — Red
EVI=25 2
" NIR+6Red—7.5Blue+1 2
NIR — SWIR
LSWI=——— 3
NIR + SWIR
Green — SWIR
mNDW] = 2Lt — o TR 4
Green + SWIR

where Blue, Green, Red, NIR, and SWIR are the SR values of blue (496.6
nm), green (560 nm), red (664.5 nm), near-infrared (835.1 nm), and
shortwave-infrared (1613.7 nm) bands for Sentinel-2A MultiSpectral
Instrument sensor.

2.2.4. Landsat data

We used Landsat 7/8 Level-2 SR data from January 1, 2020, to
December 31, 2020, in GEE. The BQA bitmask band was used to remove
clouds, cloud shadows, and cirrus. Snow/ice was removed using the
same algorithm described in Section 2.2.3. The spatial distribution of the
number and percentage of good-quality observations for Landsat and
Sentinel-2 images are presented in Supplementary Fig. 2e, f. NDVI, EVI,
LSWI, and mNDWI were calculated for each Landsat image using Eqgs.
(1)-(4). These vegetation indices collections were resampled to 10 m
using the nearest neighbor method.

2.2.5. MODIS land surface temperature data
The night land surface temperature (LST) data from MYD11A2 for
2020, which provide average 8-day data, were used to define the

Plant growth form Life cycle Leaf seasonality and canopy type
Grass (marsh) Perennial Deciduous grass, closed Deciduous grass, open
plants canopy canopy
Shrub Perennial Deciduous shrub, closed canopy Deciduous shrub, open canopy Evergreen shrub, closed Evergreen shrub, open
plants canopy canopy
Tree (forest Perennial Deciduous tree, closed canopy Deciduous tree, open canopy  Evergreen tree, closed canopy Evergreen tree, open canopy
swamp) plants

Open canopy - both plant and surface water under the canopy can be directly seen by sensors at least one time in a year; closed canopy - canopy are closed throughout

the year and no surface water can be directly seen by sensors throughout the year.
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Fig. 1. Satellite images (Sentinel-2 and Sentinel-1) and field photos of seasonal open-canopy marsh, yearlong closed-canopy marsh, and deciduous forest swamp.
Field photos of seasonal open-canopy marsh and yearlong closed-canopy marsh were downloaded from the Global Geo-Referenced Field Photo Library (https://www.
ceom.ou.edu/photos/). Field photo of deciduous forest swamp was provided by Dr. Chong Huang.

thermal growing season (TGS) by night LST threshold of 0 °C (TGS-0)
and 5 °C (TGS-5), i.e., the starting date, ending date, and the duration of
night LST above 0 °C and 5 °C (Linderholm et al., 2008) (Supplementary
Fig. 3). The non-thermal growing season below 0 °C (NTGS-0) was also
identified, i.e., the period from January 1 to the last date of night LST
being below 0 °C in spring and from the first date of night LST being
below 0 °C in winter until December 31. The digital number (DN) values
from MYD11A2 were converted to centigrade unit values using LST (°C)
=DN x 0.02-273.15 (Wan, 2008).

2.2.6. Digital elevation model data

The Shuttle Radar Topography Mission V3 product (SRTM Plus) in
GEE is DEM data provided by NASA JPL at a resolution of ~30 m (Farr
et al., 2007). A slope variable was derived from the DEM data. The DEM
and slope maps were resampled to 10 m using the nearest neighbor
method.

2.2.7. Ground reference data

Ground reference data include both validation samples for wetland
algorithm development and validation samples for available specific
land cover mapping algorithms. We used GPS-based field photos, Google
Earth VHSR images, and Sentinel-2 images taken circa 2020 to collect
ground reference data. First, field photos in Northeast China were
collected from the Global Geo-Referenced Field Photo Library (htt
ps://www.ceom.ou.edu/photos/). These photos were processed as
Keyhole Markup Language (KML) files, referred to as points of interest
(POIs), and then geo-linked with Google Earth. Besides the POIs ob-
tained from field photos, we first divided the study area into 122 1° x 1°
grid cells and randomly generated 5 POIs within each cell. Second, we
integrated field photos and Google Earth and Sentinel-2 images as
background references to manually digitalized ROIs around the POIs for
each land cover type. To ensure accurate sample selection, we consid-
ered three Sentinel-2 composites from early April to mid-June, early
July to late August, and mid-November to mid-January. POIs with
heterogeneous land cover surroundings were excluded. Given the rela-
tively small size of wetlands, we manually selected additional wetland
samples. Due to the difficulty of visually distinguishing between sea-
sonal open-canopy marsh and yearlong closed-canopy marsh, we only

collected samples for the broad category of marsh. Marsh with seasonal
open-canopy or yearlong closed-canopy will be identified by time series
satellite data in the classification process.

In total, we delineated 122 marsh, 49 deciduous forest swamp, 76
paddy rice, 26 grassland, and 76 dryland ROIs (Supplementary Fig. 4a)
to evaluate the stability of the unique optical and/or microwave char-
acteristics (knowledge) of wetlands identified in this study, and to set
thresholds for wetland mapping algorithms. Additionally, 69 forest, 17
evergreen vegetation, 30 sparse vegetation (saline and alkaline land,
built-up and barren land), and 23 surface water ROIs (Supplementary
Fig. 4b) were selected to evaluate the applicability of the existing spe-
cific land cover mapping algorithms in Northeast China.

2.3. Methods

Fig. 2 illustrates the workflow of the knowledge-based wetland
mapping algorithms for Northeast China. First, we identified and
masked out several non-wetland types by applying or modifying the
available specific land cover mapping algorithms which were developed
in our previous studies (Dong et al., 2015; Qin et al., 2015; Wang et al.,
2020c¢, 2020d; Zhang et al., 2015; Zou et al., 2018). Second, we iden-
tified and mapped seasonal open-canopy marsh and yearlong
closed-canopy marsh among the remaining pixels. Finally, the decidu-
ous forest swamp was delineated within the deciduous forest layer.

2.3.1. Application of available land cover mapping algorithms

In previous studies, we developed knowledge-based algorithms to
map specific land cover types with high accuracies, including forest (Qin
et al.,, 2015), evergreen vegetation (Dong et al., 2015; Wang et al.,
2020d), yearlong surface water (Wang et al., 2020c; Zou et al., 2018),
and sparse vegetation (Zhang et al., 2015). Here we used the same al-
gorithms and time series image data (Fig. 3) in 2020 to generate annual
maps of forest, evergreen vegetation, yearlong surface water, and sparse
vegetation in Northeast China in 2020. These maps served as masks for
wetland identification. Detailed description can be found in (Supple-
mentary Note 1).
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Fig. 2. The flowchart for identifying different types of wetland in Northeast China.

Fig. 3. Time series Landsat/Sentinel-2-based NDVI, EVI, LSWI, and MODIS night LST for (a) seasonal open-canopy marsh, (b) paddy rice, (c) yearlong closed-canopy
marsh, (d) deciduous forest swamp, (e) deciduous forest, (f) yearlong surface water body, (g) evergreen forest, (h) upland crop, (i) dryland, (j) saline and alkaline

land, and (k) built-up in 2020.
2.3.2. Development of new algorithms for wetlands mapping

2.3.2.1. Algorithm to identify seasonal open-canopy marsh. In the early
growing season, when snow/ice melts, seasonal open-canopy marshes
are observed as a mix of green plants and water. The open-canopy and
flooded (or inundated) marsh fields have a spectral signature of LSWI >
EVI or LSWI > NDVI (Fig. 3a), which is interpreted as water-related
vegetation index larger than greenness-related vegetation index (Xiao
et al., 2002). Paddy rice also has a flood/open-canopy stage in its
transplanting phase, leading to confusion between seasonal open canopy
marshes and paddy rice (Wang et al., 2020d; Zhou et al., 2016). How-
ever, the marshes, one of natural wetlands, have several unique features
compared to paddy rice. First, the marshes start to flood after snow/ice
starts to melt and temperature rises above 0 °C in early spring (Fig. 3a),
whereas rice fields are not irrigated or flooded until a specific

temperature threshold is reached in late spring (Fig. 3b). Second, the
marshes start to green up when air temperature is above 0 °C in early
spring (Fig. 3a), while rice transplanting occurs in late spring, when a
stable air temperature threshold is reached to avoid the cold tempera-
ture damage to rice seedlings (Fig. 3b). By late May, the marshes have
already developed into a closed canopy while paddy rice field is still in
the flooding stage (Dong et al., 2016; Mao et al., 2020). In other words,
the marshes green up much earlier than do paddy rice. Third, the
flooding period of the marshes is shorter compared to paddy rice.
Flooding signals in rice fields can persist for approximately 2 months-80
days after transplanting until the rice canopy becomes closed (Dong
et al., 2016; Xiao et al., 2005a).

To examine the generalizability of phenological distinctions between
seasonal open-canopy marshes and paddy rice, we analyzed three
phenological metrics: night LST of start of flooding (nLSTsop), night LST
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Fig. 4. Time series Sentinel-1 VV, VH, and MODIS night LST for (a) seasonal open-canopy marsh, (b) paddy rice, (c) yearlong closed-canopy marsh, (d) deciduous
forest swamp, (e) deciduous forest, (f) yearlong surface water body, (g) evergreen forest, (h) grassland, (i) upland crop, (j) saline and alkaline land, and (k) built-up

in 2020.

of start of greening (nLSTsog), number of floodings (NF) between the
starting of night LST over 0 °C (TGS-0-S) and the end of June (DOY =
181). Using the NF layer to overlay marsh samples, we categorized
marsh pixels that had at least one flooding signature as seasonal open-
canopy marshes. The remaining pixels were labeled as yearlong
closed-canopy marshes and were used for knowledge validation and
mapping algorithm development for yearlong closed-canopy marshes.
Then we overlaid paddy rice and seasonal open-canopy marsh samples
with these three phenological metrics and evaluated their separability
(Fig. 5a—c). The histograms showed that most seasonal open-canopy
marsh pixels had NF of >1 (Fig. 5a), nLSTgor of 0 °C-12 °C (Fig. 5b),
and nLSTgpg of 0 °C-13 °C (Fig. 5¢). While most paddy rice pixels had
NF of >2 (Fig. 5a), nLSTsor of >5 °C (Fig. 5b), and nLSTsog of >10 °C
(Fig. 5¢). These unique phenological characteristics of seasonal open-
canopy marsh are consistent with the knowledge obtained from the
time series profile and phenological analysis (Fig. 3a and b). Therefore,
we removed the paddy rice from flooded pixels using (NF >2, nLSTsor
>5 °C, and nLSTgpg >10 °C). The remaining flooded pixels were used as
baseline map for the seasonal open-canopy marsh identification.

Slope and elevation were considered to exclude areas with high
elevation and/or steep slope where wetlands are unlikely to occur. Most
marsh and forest swamp sample pixels had slopes <6° (Supplementary
Fig. 5a). Elevation, however, did not have a clear distributional pattern
(Supplementary Fig. 5b). Thus slope <6° was used as a supplementary
criterion to limit wetland boundaries. In summary, seasonal open-
canopy marsh was delineated using Eq. (5).

Seasonal open — canopy marsh = NF > 1, 0°C < nLSTsor < 12°C, 0°C
< nLSTsor < 13 °C, and Slope < 6°
5)

2.3.2.2. Algorithm to identify yearlong closed-canopy marsh. Yearlong
closed-canopy marsh lacks a distinct spectral “flooding” signal due to the
inability of optical sensors to detect surface water beneath the canopy.
However, it still exhibits distinguishable microwave signals compared to
non-flooded (or upland) vegetation due to the surface water or water-
supersaturated soil under the canopy. Sentinel-1 is sensitive to mois-
ture, capable of penetrating less dense vegetation and interacting with
its structure, and has been successfully applied to monitor changes in
vegetation and soil moisture (Geudtner et al., 2014). As illustrated in

Fig. 4c, during TGS-0 period, yearlong closed-canopy marshes had a
unique feature of —16< VV <—10. In comparison, grasslands had VV
<—16 (Fig. 4h), and upland crops had VV >—10 (Fig. 4i). Furthermore,
marsh plants exhibit earlier greening compared to upland crops (Fig. 3c,
i), as upland crops in Northeast China are typically sown after average
daily temperatures stabilize above 10 °C (Chu and Guo, 2018).

We calculated the median values of VV during TGS-0 period, and the
histograms suggested that —16< VV <—10 could discriminate yearlong
closed-canopy marshes from upland vegetation (grassland and upland
crop) (Fig. 5d), which is consistent with the knowledge for yearlong
closed-canopy marsh discovered in the time series for individual pixels
(Fig. 4c, h, i). Thus, we used —16< VV <—10 to identify wet vegetation
in yearlong closed-canopy marshes. The wet vegetation frequency in
TGS-0 (WVFrgs.o) was calculated as the ratio of the wet vegetation ob-
servations to the Sentienl-1 observations in TGS-0, to maximize the
benefit of time series images and reduce errors induced by noise. Most
yearlong closed-canopy marshes had WVFrgso >0.50 (Fig. 5e) and
nLSTgog of 2 °C-13 °C (Fig. 5f). Combining the analysis of slope (Sup-
plementary Fig. 5a), the algorithm for identifying yearlong closed-
canopy marsh was developed using Eq. (6).

Yearlong closed — canopy marsh = WVFrgs_o > 0.50, 2 °C < nLSTsor
< 13 °C, and Slope < 6°
(6)

2.3.2.3. Algorithm to identify deciduous forest swamp. Although L-band
PALSAR-2 is highly penetrating, the released yearly PALSAR data are
mosaic of strip data with minimal response to surface moisture and is
mostly concentrated in the growing season, making it difficult to detect
surface water under the forest canopy. Dense time series Sentinel-1
images have the potential to monitor the dynamic of the wetland
moisture in a year. C-band Sentinel-1 backscatters reflect the top of the
tree canopy (Geudtner et al., 2014), but for sparse forests, especially in
leaf-off conditions, it can still interact with the surface water and/or ice
on the ground (Martinis and Rieke, 2015). As depicted in Fig. 4, in
NTGS-0 period, the seasonal dynamics of VH of deciduous forest swamp
differed from those of deciduous forest: deciduous forest swamp had
lower VH values (<—20) caused by the surface water and/or ice under
the canopy (Fig. 4d), while the deciduous forest kept higher VH values
(>—20) for most of the period (Fig. 4e).
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Fig. 5. Index distributions of seasonal open-canopy marsh (a—c) and yearlong closed-canopy marsh (d—f). (a)-(c), Signature analysis of seasonal open-canopy marsh
and paddy rice at (a) number of flooding, (b) night land surface temperature (LST) of start of flooding, and (c) night LST of start of greening. (d-f), Signature analysis
of yearlong closed-canopy marsh and upland vegetation (grassland and dryland) at (d) VV values, (e) wet vegetation frequency, and (f) night LST of start of greening.

We calculated the median VH values during NTGS-0 period, and the
histograms showed that VH <—20 could distinguish deciduous forest
swamps from deciduous forests (Fig. 6a), which is consistent with the
knowledge obtained from the time series of individual pixels illustrated
in Fig. 4d and e. Hence, we used VH <—20 to identify surface water and/

or ice in the NTGS-0 period (Fig. 6a). Surface water and/or ice frequency
in the NTGS-0 period (SWIFNTGs.o) was calculated as the ratio of surface
water and/or ice observations to Sentinel-1 observations in NTGS-0.
Notably, most of forest swamps had SWIFNtgs >0.40 (Fig. 6b). Due to
the overlapping of SWIFyrgs.o between deciduous forest swamps and

Fig. 6. Index distributions of deciduous forest swamp and deciduous forest at (a) VH values and (b) surface water and/or ice frequency.
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deciduous forests, we applied a relatively strict threshold (SWIFyrgs
>0.45) for deciduous forest swamp to avoid confusion with deciduous
forest. Finally, the algorithm described in Eq. (7) was implemented to
distinguish deciduous forest swamp from deciduous forest layer.

Deciduous forest swamp = SWIFyrgs—o > 0.45 and slope < 6° @)

2.4. Validation of wetland map for Northeast China in 2020

To develop the validation dataset, we first divided the study area into
122 1° x 1° grid cells. Ten random points and square buffers with 60 m
by 60 m were generated in each grid cell. Each buffer was visually
checked with VHSR images in Google Earth and Sentinel-2 images in
2020. We only collected validation samples of the broad category of
marshes due to the difficulty of identifying seasonal open-canopy marsh
and yearlong closed-canopy marsh by visual interpretation. Finally, 144
polygons (31,252 pixels) for marsh, 60 polygons (12,815 pixels) for
deciduous forest swamp, and 958 polygons (161,253 pixels) for non-
wetland were collected (Supplementary Fig. 4c) to generate a confu-
sion matrix to evaluate our resultant wetland map.

2.5. Comparison with other wetland datasets

We collected three wetland datasets to assess the consistency and
differences with the results in this study. Mao et al. (2020) produced a
nationwide wetland map (CAS_Wetlands) by analyzing Landsat 8 images
circa 2015, using a hybrid object-based and hierarchical classification
approach. We merged inland marsh and coastal marsh in the CAS_-
Wetlands as marsh, inland swamp and coastal swamp as swamp for
comparison with our marsh and swamp data.

Zhang et al. (2023b) generated a global 30 m wetland map for 2020
(GWL_FCS30) by integrating various wetland data products, time-series
satellite images from Landsat and Sentinel-1, and a stratified classifi-
cation strategy. We merged marsh and salt marsh in the GWL_FCS30 into
marsh, swamp and mangrove into swamp.

The third national land survey (NLS3) of China used satellite images
with finer than 1 m spatial resolution as the base maps to generate land
cover maps and calculate their areas in 2019-2021. We used the NLS3
data in 2020 to do the area comparison with our wetland datasets.
Wetlands in NLS3 include seven secondary categories: mangrove, forest
swamp, shrub swamp, marsh meadow, inland mudflats, coastal mud-
flats, and marshland. We summed the areas of marsh meadow and
marshland as marsh area, and the areas of mangrove, forest swamp, and
shrub swamp as swamp area.

3. Results
3.1. Accuracy assessment for the wetland map in 2020
The confusion matrix showed a good consistency between the

mapped pixels and the ground reference pixels in our wetland map for
Northeast China in 2020, with an overall accuracy (OA) and Kappa

Table 3
Confusion matrix for the wetlands map in 2020.
Classification Ground references Total UA
Marsh Deciduous Non-
forest swamp wetland
Marsh 28,319 511 2595 31,425 0.90
Deciduous 589 10,921 1755 13,265 0.82
forest swamp
Non-wetland 2344 1383 193,808 197,535 0.98
Total 31,252 12,815 198,158 242,225 OA =
0.96
PA 0.90 0.85 0.98 Kappa
=0.88
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coefficient of 0.96 and 0.88, respectively (Table 3). The accuracy of the
marsh category showed high accuracy with a producer’s accuracy (PA)
and user’s accuracy (UA) both at 0.90. Deciduous forest swamp had a
slightly lower accuracy with a PA of 0.85 and a UA of 0.82, respectively,
primarily due to the confusion between some of the deciduous forest
swamp pixels and non-wetlands (mainly deciduous forest).

3.2. Spatial and area distribution of wetlands in 2020 over Northeast
China

In 2020, there were a total of 154,254 km? of wetlands, covering
12.4% of the land area of Northeast China (Fig. 7, Table 4). Out of the
total wetland area in 2020, 17.7% were seasonal open-canopy marshes,
44.8% yearlong closed-canopy marshes, and 37.5% deciduous forest
swamps. Seasonal open-canopy marsh was mainly found along rivers in
plains and estuaries with gentle terrain (i.e., Sanjiang Plain, Songnen
Plain, and Liaohe Plain) (Fig. 7). Yearlong closed-canopy marsh was
predominantly observed in western and northwestern region of North-
east China with higher elevations (e.g., Hulunbuir Grasslands and
Greater Khingan Mountains). Deciduous forest swamp was mainly
distributed along the rivers in the mountainous areas with gentle slopes,
such as Greater and Lesser Hinggan Mountains.

Among the provinces in Northeast China, Heilongjiang had the most
extensive wetland coverage, followed by Inner Mongolia, Jilin, and
Liaoning. Marsh (seasonal open-canopy marsh and yearlong closed-
canopy marsh) was primarily concentrated in Heilongjiang and Inner
Mongolia Provinces. Specifically, Heilongjiang Province had the largest
areas of seasonal open-canopy marsh and deciduous forest swamp, while
Inner Mongolia Province had the largest extent of yearlong closed-
canopy marsh.

3.3. Inter-comparison with wetland datasets

We compared the estimated wetland areas of this study and
compared them to CAS Wetlands, GWL_FCS30, and NLS3 datasets
(Fig. 8). The total marsh area in the Northeast China from our study was
96,376 kmz, which was 37.1% larger than that from the CAS_Wetlands
(70,272 km?), 627.5% larger than that from GWL_FGS30 (13,248 km?),
and 173.0% larger than that from the NLS3 (35,297 km?). At the
municipal scale, our marsh areas matched well with the area of CAS -
Wetlands with a slope of 0.89 and R? of 0.94 (Fig. 8c), while the
agreements between our marsh datasets and GWL_FCS30, and NLS3
were relatively low. In particular, we detected much more marshes
(33,207 km?) than GWL_FCS30 (1988 km?) and NLS3 (14,964 km?) in
Hulunbuir City (Figs. 8c and 9). The vast majority of marshes in
Hulunbuir City were not identified by GWL_FCS30 (Fig. 9a4, b4, c4).

Our dataset has a total of 57,877 km? of deciduous forest swamp in
the Northeast China, which was 780.0% larger than that from the
CAS_Wetlands (6577 krnz), 3273.9% larger than that from GWL_FCS30
(1715 km?), and 126.5% larger than that from the NLS3 (25,551 km?).
The consistency of our deciduous forest swamps is high with NLS3 and
low with CAS_Wetlands and GWL_FCS30 at the municipal level (Fig. 8d).
In Hulunbuir City, we detected much more swamps (18,482 km?) than
the CAS Wetlands (641 km?), GWL_FCS30 (271 km?), and NLS3 (8827
km?) datasets (Figs. 8d and 9). A large percentage of swamp pixels in
CAS_Wetlands in Hulunbuir City were merged into surrounding marsh
patches due to the object-based approach used in CAS_Wetlands
(Fig. 9a3, b3, ¢3). GWL_FCS30 did not identify the vast majority of
swamps in Hulunbuir City (Fig. 9a4, b4, c4).

4. Discussion
4.1. Knowledge-based mapping algorithms for marshes

The confusion between seasonal open-canopy marsh and paddy rice
has been a major challenge in both paddy rice mapping (Son et al., 2014;
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Fig. 7. (a) Spatial distribution of wetlands in Northeast China in 2020. (b-d), Zoom-in views of typical regions and corresponding Sentinel-2 images.

Table 4
Wetland areas (km?) and percent of corresponding provinces and Northeast
China in 2020.

Province Seasonal Yearlong Deciduous Marsh Wetland
open- closed- forest
canopy canopy swamp
marsh marsh
Heilongjiang* 18,087 19,280 31,065 37,367 68,432
(4.0%) (4.3%) (6.9%) (8.3%) (15.1%)
Jilin* 1543 3874 3862 5417 9279
(0.8%) (2.0%) (2.0%) (2.8%) (4.9%)
Liaoning* 849 3367 1937 4215 6152
(0.6%) (2.3%) (1.3%) (2.9%) (4.2%)
Inner 6740 42,637 21,014 49,377 70,391
Mongolia* (1.5%) (9.4%) (4.6%) (10.9%) (15.5%)
Total** 27,219 69,158 57,878 96,376 154,254
(2.2%) (5.6%) (4.7%) (7.8%) (12.4%)
Marsh = seasonal open-canopy marsh + yearlong closed-canopy marsh.

Wetland = marsh + deciduous forest swamp. * Percent of corresponding prov-
ince; ** Percent of land area of Northeast China.

Xiao et al., 2005a; Zhang et al., 2015) and marsh mapping (Mao et al.,
2020), due to their similar spectral or backscatter signals of inundation
or flooding. In this study, we developed a knowledge-based seasonal
open-canopy marsh mapping algorithm by analyzing time series
Landsat/Sentinel-2 images. Seasonal open-canopy marsh and paddy rice
differed notably in the three unique phenological metrics (NF, nLSTsop,
and nLSTgpg) designed in this study. NF and nLSTgor can characterize
the differences between seasonal open-canopy marsh and paddy rice in
terms of flooding, while nLSTgog not only captures their distinctions in
terms of greening but also ensures that the identified pixels contain
green vegetation, effectively eliminating the influence of non-vegetated
flooded areas due to snow and ice melting and short-term heavy rainfall.
In addition, our study used all available optical data (Landsat and
Sentinel-2) to increase the numbers of good-quality observations for
seasonal open-canopy marsh mapping algorithm. Compared to the
previous studies using only Landsat (Mao et al., 2020; Zhang et al.,

2023b), the combination of Landsat and Sentinel-2 substantially
increased the number of good-quality observations in a single year,
allowing us to better track the phenology of natural marshland and
paddy rice at a higher spatial resolution (10 m) and a shorter temporal
resolution (<5 days).

The knowledge-based yearlong closed-canopy marsh mapping algo-
rithm developed in this study demonstrated the potential of combing
time series Sentinel-2/Landsat and Sentinel-1 images for identifying
yearlong closed-canopy marshes accurately. Notably, we identified a
distinct VV value range for wet vegetation due to the higher soil mois-
ture content of yearlong closed-canopy marshes, especially during the
thermal growing season over 0 °C. The resulting wet vegetation fre-
quency, together with nLSTsog, can effectively separate yearlong closed-
canopy marshes from upland vegetation. Several studies have also
emphasized the significance of utilizing Sentinel-1 VV and VH polari-
zation bands in mapping both coastal and inland wetlands (Hu et al.,
2021; Zhang and Lin, 2022). Some studies have incorporated the dif-
ference, sum, normalized difference, and sum of squares of VV and VH
bands into wetland mapping approaches (Hemati et al., 2023; Hu et al.,
2021), so we can also investigate the use of these metrics in the future
work.

4.2. Comparison of deciduous forest swamp maps

Comparison of our deciduous swamp map with the other datasets
showed some differences among these datasets in area estimates
(Fig. 8b, d) and spatial distribution (Fig. 9). The input image data from
different years and forest swamp mapping algorithms contributed to the
inconsistency between our deciduous forest swamp map and CAS_Wet-
lands. The CAS_Wetlands used Landsat 8 images acquired at peak
growing season (July to August) circa 2015 (Mao et al., 2020). Forests in
the peak growing season have closed canopies, and thus forest swamps
are unavoidably difficult to distinguish from unflooded forest and other
vegetation types that have similar spectral characteristics. In our study,
we first identified deciduous forest using PALSAR-2 and time series
Landsat/Sentinel-2 data, and then used surface water and/or ice
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Fig. 8. The comparison of wetland areas estimated by this study and other datasets. (a)-(b), Comparison of (a) marsh and (b) deciduous forest swamp areas at
provincial level. (¢)-(d), Comparison of (c) marsh and (d) deciduous forest swamp areas at municipal level using the linear regression method.

Fig. 9. Zoom-in views of wetlands from our study, CAS_Wetlands, and GWL_FCS30 in Hulunbuir City.
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frequency derived from time series Sentinel-1 data to identify forest
swamps from the deciduous forest layer. By identifying deciduous for-
ests first largely reduced the confusion between woody swamps and
herbaceous marshes. Moreover, the use of entire-year time series data
better captured the phenological information of various land cover
types. In the leaf-off phase of deciduous forests, Sentinel-1 images show
the information of surface water and/or ice under the canopy. The 10 m
spatial resolution of our forest swamp map and the 30 m of CAS_Wet-
lands dataset also contributed to the area differences. Forest swamps
mainly form along streams in valleys in Northeast China, where limited
water level fluctuations due to rainfall and seasonal flooding lead to
fragmented and complex swamps with widths less than 30 m, observed
through visual and manual measurements on Google Earth. The 30 m
resolution in CAS_Wetlands may result in mixed pixel phenomena,
detecting forest swamps only if they cover a significant portion of the
pixel size (30 m), affecting the spectral signal. In contrast, our study with
finer 10 m Sentinel-1 images can reduce mixed pixels and thus identify
forest swamps more accurately (Fig. 9a—c).

In mapping algorithms, we used pixel- and knowledge-based
approach to detect deciduous swamps, while CAS_Wetlands map used
object-based image analysis (Mao et al., 2020). The smoothing effect of
object-based analysis tends to assign mixed Landsat pixels containing
forest swamps to surrounding non-swamp categories, causing an un-
derestimation of forest swamp area (Fig. 9). Moreover, CAS_Wetlands
map set a single segmentation scale for each path/row, which may not
adequately represent the properties of real objects of the fragmented and
complex wetland landscapes within such large areas of a Landsat
path/row (approximately 182 km x 185 km) (Song et al., 2005). Some
empirical values were used in the segmentation and classification rules
in CAS_Wetlands classification process due to limited field samples,
which might also introduce uncertainties. In contrast, our pixel- and
knowledge-based algorithm analyzed the spectral and structural infor-
mation of individual pixels over time, effectively avoiding the influence
of surrounding pixels on forest swamp identification.

Several factors may contribute to the inconsistency between our
deciduous forest swamp map and GWL_FCS30 (Fig. 8b, d, Fig. 9). First,
GWL_FCS30 initially determined the maximum wetland extents by
combining multiple prior wetland data products. Any pixels classified as
a forest swamp outside the maximum extent were identified as a
misclassification. This scheme might overlook areas with actual forest
swamps, leading to an underestimation of the true extent. Second,
GWL_FCS30 used random forest method to identify wetlands, and we
used knowledge-based algorithm. Third, the different spatial resolutions
between our swamp map (10 m) and GWL_FCS30 (30 m) also contribute
to the forest swamp area differences.

4.3. Potential sources of error in the wetlands map

The accuracy of the wetlands map can be affected by various factors,
including image data, training data, algorithms, and land cover classi-
fication scheme and definition. Some bad-quality observations in
Landsat and Sentinel-2 imagery may remain after quality filtering due to
the quality of QA band (Zhu and Woodcock, 2012; Zou et al., 2018),
which might introduce low-frequency flooding noise over non-wetland
pixels, leading to uncertainties in the resultant maps. Although we
maximized the number of observations by combining all available
Landsat 7/8 and Sentinel-2, some pixels may still have a limited number
of good-quality observations between the start date of 0 °C and the end
of June, and thus may not detect flooding signals in seasonal
open-canopy marshes.

Limited in-situ (ground) reference data and visual interpretation and
delineation of the regions of interest (ROIs) may introduce errors into
the classification process and accuracy assessment. In particular, few
field photos and in-situ data were available for wetlands in the Greater
Khingan Mountains area due to its less accessible nature and the com-
plex boundaries of wetland landscape. To reduce such uncertainties,
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extensive efforts were devoted to generating numerous random poly-
gons to assess wetland maps for 2020. Historical datasets like China’s
wetland map can be important reference data for future effort (Mao
etal., 2020). Additionally, marsh samples were not divided into seasonal
open-canopy marsh and yearlong closed-canopy marsh for validation in
this study, as there were no field samples available for either category
since people often conduct field surveys during the peak growing season
when the canopy is closed, and the human eye can hardly distinguish
these two categories from images. Our study demonstrated that the
time-series remote sensing method has the capacity to distinguish these
two types of marshes, but there is still a need to increase the number of
field observations to verify the classification methods.

The seasonal dynamics of natural wetlands are relatively consistent
in normal years, and thus the knowledge-based mapping algorithm can
be applied in other years. However, extreme climate events such as
flooding events during the flooding/transplanting period, may affect NF
of paddy rice and natural wetlands. When applying these mapping al-
gorithms to other regions with different climates and agricultural
practice, careful study of NF of paddy rice and natural wetlands in the
study regions would be helpful and should be carried out. Additionally,
irrigation or flooding events in non-water related land cover types
during the flooding period of wetlands might introduce uncertainties to
the annual maps of seasonal open-canopy marshes.

5. Conclusions

Accurate and up-to-date large-scale annual maps of wetlands,
including seasonal open-canopy marsh, yearlong closed-canopy marsh,
and deciduous forest swamp, have been very limited in China. We
proposed and applied knowledge-based algorithms to map wetlands in
Northeast China at 10 m spatial resolution by using all available L-band
PALSAR-2, C-band Sentinel-1, Landsat, Sentinel-2, and MODIS land
surface temperature images in 2020. Optical images can be used to
identify those grass wetlands with open canopies. C-band SAR images
can be used to identify marshes with closed canopies. A combination of
C-band and L-band SAR images can be used to identify those wetlands
dominated by woody plants with open canopies. The Kappa, overall,
producer’s, and user’s accuracies indicated that our resultant wetland
map were reasonably accurate. The knowledge-based wetland mapping
algorithms highlight the potential for identifying and mapping wetlands
at annual scales over large spatial domain using multiple sources of
remote sensing data. Such classification considers the capacity of remote
sensing technology, which is a viable way to characterize wetlands. Our
resultant wetland maps could provide essential information for policy
development and wetland conservation and management in the North-
east China.
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