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A B S T R A C T   

Wetlands are rich in biodiversity, provide habitats for many wildlife species, and play a vital role in the trans
mission of bird-borne infectious diseases (e.g., highly pathogenic avian influenza). However, wetlands worldwide 
have been degraded or even disappeared due to natural and anthropogenic activities over the past two centuries. 
At present, major data products of wetlands have large uncertainties, low to moderate accuracies, and lack 
regular updates. Therefore, accurate and updated wetlands maps are needed for the sustainable management and 
conservation of wetlands. Here, we consider the remote sensing capability and define wetland types in terms of 
plant growth form (tree, shrub, grass), life cycle (perennial, annual), leaf seasonality (evergreen, deciduous), and 
canopy type (open, closed). We identify unique and stable features of individual wetland types and develop 
knowledge-based algorithms to map them in Northeast China at 10 m spatial resolution by using microwave 
(PALSAR-2, Sentinel-1), optical (Landsat (ETM+/OLI), Sentinel-2), and thermal (MODIS land surface tempera
ture, LST) imagery in 2020. The resultant wetland map has a high overall accuracy of >95%. There were a total 
154,254 km2 of wetlands in Northeast China in 2020, which included 27,219 km2 of seasonal open-canopy 
marsh, 69,158 km2 of yearlong closed-canopy marsh, and 57,878 km2 of deciduous forest swamp. Our results 
demonstrate the potential of knowledge-based algorithms and integrated multi-source image data for wetlands 
mapping and monitoring, which could provide improved data for the planning of wetland conservation and 
restoration.   

1. Introduction 

Wetlands, characterized with a mix of plants, surface water, and/or 
water-saturated soils, provide vital habitats for various wildlife such as 
fishes, waterbirds, and frogs (Aiello-Lammens et al., 2011; Jansen and 
Healey, 2003; Murray et al., 2019), affect the atmosphere by seques
trating or emitting carbon (e.g., CO2 and CH4) (Brix et al., 2001; Lan 
et al., 2021; Picek et al., 2007; Tollefson, 2022), and play a significant 
role in the zoonotic disease transmission (Gilbert et al., 2008, 2014; 
Jourdain et al., 2007). However, over the last two centuries, wetlands 

worldwide have been changing rapidly, driven by human activities and 
climate and hydrological changes, such as population growth, agricul
ture reclamation, warmer temperatures, and changing precipitation 
patterns (Chen et al., 2018; Gong et al., 2010; Richards and Friess, 
2016). Several satellite-based global land cover data products (e.g., 
IGBP-DISCover and FROM-GLC) include a broad category for wetlands 
(Gong et al., 2013; Karra et al., 2021; Loveland et al., 2000; Zhang et al., 
2021). However, their classification algorithms were not specifically 
designed for wetlands, leading to low to moderate accuracies in iden
tifying wetlands. Furthermore, several wetland thematic products have 
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been generated at regional and global scales (Darrah et al., 2019; 
Davidson and Finlayson, 2018; Pickens et al., 2020; Slagter et al., 2020), 
such as the 30 m national wetland map of China in 2015 (CAS_Wetlands) 
(Mao et al., 2020). However, most of these wetland products are not 
regularly updated, and thus cannot meet the need of updated and ac
curate wetland maps for wetland monitoring, protection, and 
management. 

Optical images have been widely used for wetlands mapping 
(Table 1) (Davranche et al., 2010; Ghosh et al., 2016; Wang et al., 
2020b, 2020d). Landsat images with a 30 m spatial resolution are an 
important data source for large-scale and historical wetland mapping 
due to their global coverage, long-term time series, suitable resolution, 
and free availability (Amani et al., 2019; Mao et al., 2020). Landsat has a 
16-day revisit cycle and some events such as flooding in wetlands occur 
over short periods of time and are not frequently recorded by Landsat. 
Cloud, cloud shadow, and rainfall may limit the availability of 
good-quality Landsat observations for identifying specific events (Zhang 
et al., 2022). Moreover, small and narrow patches of natural wetlands 
with width <30 m are difficult to identify by Landsat images due to the 
mix of non-wetlands and wetlands within pixels. The new imagery from 
Sentinel-2A/B satellites with 10 m spatial resolution can partly reduce 
mixed pixel problem as compared to Landsat. Sentinel-2A/B images 
with 5-day revisit cycle, in combination with Landsat imagery, can in
crease the probability of cloud-free observations in the same period 
compared to Landsat alone (Pahlevan et al., 2019), which makes it 
possible to better capture phenological information or changes in land 
surface. 

Synthetic aperture radar (SAR) images offer an alternative data 
source for wetland mapping due to their independence from weather 
conditions and distinct backscattering characteristics for surface water 
and inundated vegetation (Amani et al., 2017; Li et al., 2020). L-band 
SAR systems with long wavelengths allow signals to penetrate vegeta
tion canopies to map underlying emergent herbaceous and woody 
wetland vegetation through double-bounce backscatter (Townsend, 
2002). With the launch of Sentinel-1, time series of high spatial reso
lution SAR data become available globally (Torres et al., 2012). The 
combination of SAR and optical data is expected to provide advantages 
of land surface reflectance and surface structure features, which has 
been demonstrated to improve classification accuracy of built-up area 
(Huang and Zhang, 2022; Qin et al., 2017), sugarcane (Wang et al., 
2020a), mangrove (Chen et al., 2017), and paddy rice (Huang and 
Zhang, 2023). However, the potential of combining SAR and optical 
images for wetland mapping at large scales remains unexplored fully. 

Wetland classification algorithms can be categorized into four ap
proaches: (1) visual interpretation and classification, (2) data-based 
unsupervised classification, (3) information-based supervised classifi
cation, and (4) knowledge-based supervised classification (Table 1). The 

visual interpretation and classification approach is time-consuming and 
labor-intensive. The data-based unsupervised classification approach 
calculates statistics of surface reflectance, vegetation indices, back
scatter coefficient, and/or texture for all pixels in single- or multi-date 
images, and then uses clustering algorithms to generate various clus
ters that are later interpreted as different land cover types (Gong et al., 
2010; Niu et al., 2009). The information-based supervised classification 
approach uses image data from regions of interest (ROIs) to train clas
sification algorithms and then applies the trained algorithms to generate 
wetland maps (Han et al., 2018; Vo et al., 2013; Xing and Niu, 2019). 
This approach requires a large amount of high-quality training data for 
the specific land cover types being classified. The knowledge-based su
pervised classification approach analyzes time series image data of 
selected pixels for specific land cover types and identifies unique and 
stable optical and/or microwave characteristics of those land cover 
types, which is considered as knowledge. The knowledge (e.g., object- 
and sensor-specific phenological traits), along with associated decision 
trees and rule-based algorithms, is applied to identify specific land cover 
types. Several studies have highlighted the potential of 
knowledge-based algorithms in generating annual maps of plantations, 
crops, surface water, and coastal wetlands (Chen et al., 2017; Dong 
et al., 2013; Helman et al., 2015; Massey et al., 2017; Wang et al., 2020a, 
2021; Xiao et al., 2005a, 2006; Zhang et al., 2023a). Despite these 
successful applications, the knowledge of inland wetlands is poorly 
explored and the knowledge-based algorithm has not been designed and 
applied for identifying and mapping inland wetlands. 

Northeast China is renowned for its abundant wetland ecosystems, 
characterized by a high concentration and diversity of wetlands. 
Currently, 15 sites in this region have been listed as internationally 
important wetlands, accounting for 26% of China. In this study, we in
tegrated all available microwave (PALSAR-2, Sentinel-1), optical 
(Landsat (ETM+/OLI), Sentinel-2), and thermal (MODIS land surface 
temperature) images over Northeast China in 2020 in Google Earth 
Engine (GEE) to (1) identify and evaluate unique and stable optical and/ 
or microwave signatures of wetlands based on their biophysical features; 
(2) develop knowledge-based algorithms for wetland classification; and 
(3) apply and evaluate these algorithms to generate a wetland map at 10 
m spatial resolution for Northeast China in 2020. 

2. Materials and methods 

2.1. Study area 

Northeast China encompasses Heilongjiang, Jilin, and Liaoning 
Provinces, and four municipalities in eastern Inner Mongolia Autono
mous Region (Supplementary Fig. 1). The region has a cold temperate 
and humid/sub-humid climate. Annual accumulated air temperatures 

Table 1 
A sample list of publications on image data sources and algorithms for wetland mapping from previous studies.  

Methods Optical SAR (RADARSAT, 
ERS-1, Sentinel-1) 

Optical + SAR (MODIS, 
Landsat, Sentinel-2, PALSAR, 
Sentinel-1) VHSR (<10 m; e.g., 

QuickBird, IKONOS, 
UAV) 

HSR (10 m–30 m; e.g., SPOT-5, 
Landsat) 

MSR (250 
m–500 m; e.g., 
MODIS) 

Visual interpretation and 
classification 

Liu et al. (2017) Gong et al. (2010)    

Data-based unsupervised 
classification (e.g., K-means, 
ISODATA)  

(Giri et al., 2015; Simard et al., 
2008)  

Parmuchi et al. (2002)  

Information-based supervised 
classification (e.g., MLC, NN, 
DT, SVM, RF) 

(Wang et al., 2004, 
2015) 

(Amani et al., 2019; Davranche 
et al., 2010; Han et al., 2018; Mao 
et al., 2020; Vo et al., 2013) 

Xing and Niu 
(2019) 

(Parmuchi et al., 2002; 
Simard et al., 2002) 

(Mahdianpari et al., 2020;  
Niculescu et al., 2020;  
Onojeghuo et al., 2021) 

Knowledge-based supervised 
classification  

(Wang et al., 2020d, 2021; Zhang 
et al., 2020)   

This study 

VHRS: Very High Spatial Resolution; HSR: High Spatial Resolution; MSR: Moderate Spatial Resolution; UAV: Unmanned Aerial Vehicle; MLC: Maximum Likelihood 
Classifier; NN: Neural Networks; DT: Decision Tree; SVM: Support Vector Machine; RF: Random Forest. 
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above 0 ◦C range from 2000 to 4200 ◦C⋅day, and above 10 ◦C range from 
1600 to 3600 ◦C⋅day (Dong et al., 2016). Frost-free periods vary between 
140 and 170 days (Dong et al., 2016). The average annual precipitation 
ranges from 500 to 800 mm, most of which occurs in July and August. 

Wetlands are a mixture of plants, surface water, and/or water- 
saturated soil (Mehner, 2009), which are diverse and can be grouped 
by plant growth form (grass, shrub, tree), life cycle (annual, perennial), 
leaf seasonality (evergreen, deciduous), and canopy type (open, closed) 
(Mao et al., 2020; Mehner, 2009; Wang et al., 2020d) (Table 2). Clas
sification of wetlands based on morphological and phenological char
acteristics will contribute to more accurate estimates of ecological and 
environmental processes and ensure responsible conservation and 
development to maximize ecological benefits. Plant growth forms and 
their life cycle can influence the amount of carbon sequestered (Krauss 
et al., 2021). It is also possible to identify and assess wetland habitats by 
classifying and describing wetland vegetation, as wetlands with 
different plant growth forms and canopy types can indicate the presence 
of specific flora and fauna adapted to those conditions (Beedy, 1981; 
Panda et al., 2021; Tanalgo et al., 2015). In addition, such classification 
has the potential to help in evaluating their ability to filter pollutants 
and excess nutrients as wetland vegetation type and its growth form can 
impact its filtering capacity (Boto and Patrick Jr, 1979; Sandoval et al., 
2019). In this study we focused on grass wetland with perennial de
ciduous grass and open canopy (seasonal open-canopy marsh), grass 
wetland with perennial deciduous grass and closed canopy (yearlong 
closed-canopy marsh), and forest wetland with perennial deciduous tree 
and open canopy (deciduous forest swamp) (Fig. 1). 

2.2. Datasets 

2.2.1. ALOS PALSAR-2 data 
We collected 25 m ALOS PALSAR-2 L-band (23.5 cm) imagery for 

2020 and 2019 in GEE (Supplementary Fig. 2a). The released yearly 
PALSAR-2 composite data were mosaic of strip data with minimal 
response to surface moisture (Shimada et al., 2014), which were 
ortho-rectified and slope-corrected using the 90 m SRTM digital eleva
tion model (DEM). The PALSAR-2 data comprised two polarizations (HH 
and HV). The digital numbers (DN) values in the two polarization bands 
were converted to gamma naught (γ0) values in decibel unit (dB) using 
γ0= 10log10(DN2)−83 dB (Shimada et al., 2014). We calculated the 
Ratio (HH/HV) and Difference (HH-HV) values. Approximately 5.5 ×

107 pixels (1.9% of the total pixels) in Northeast China had no PALSAR-2 
data in 2020, and they were filled using 2019 PALSAR-2 data (Supple
mentary Fig. 2a). To avoid the impact of snow and ice, we replaced 
observations outside of the 2020 growing season with good-quality (no 
snow and/or ice) data acquired during the 2019 growing season (April 
to September) (Supplementary Fig. 2b, c). The PLASAR-2 images were 
resampled to 10 m using the nearest neighbor method to be spatially 
consistent with the Sentine-1/2 images. 

2.2.2. Sentinel-1 data 
The C-band (~5.5 cm) Sentinel-1A/B Level 1 Ground Range Detected 

(GRD) product in the Interferometric Wide (IW) swath model from 
January 1, 2020, to December 31, 2020, was collected in GEE 

(Supplementary Fig. 2d). Sentinel-1 imagery offers dual-polarization 
with VV and VH bands (Torres et al., 2012). Sentinel-1 data in GEE 
were pre-processed with the Sentinel-1 Toolbox using orbit metadata 
update, GRD border noise removal, thermal noise removal, radiometric 
calibration, and terrain correction. The final terrain-corrected values 
were converted to dB via 10log10(DN). 

2.2.3. Sentinel-2 data 
We used all available Sentinel-2A/B Level-2A surface reflectance 

(SR) data in GEE from January 1, 2020, to December 31, 2020. Good- 
quality observations were defined as no clouds, cloud shadows, cirrus, 
and snow/ice. Bad-quality observation with clouds, cloud shadows, and 
cirrus were identified and removed by using the QA60 bitmask band. 
Observations with snow/ice were identified and eliminated by using the 
criteria of nir-infrared (NIR) >0.11 and Normalized Difference Snow 
Index (NDSI) >0.4 (Zhang et al., 2015). 

Normalized Vegetation Index (NDVI) (Tucker, 1979), Enhanced 
Vegetation Index (EVI) (Huete et al., 1997, 2002), Land Surface Water 
Index (LSWI) (Xiao et al., 2004, 2005b), and modified Normalized Dif
ference Water Index (mNDWI) (Xu, 2006) were calculated for each 
image using Eqs. (1)–(4). NDVI and EVI are correlated with vegetation 
detection and monitoring, LSWI captures vegetation and soil water 
signals, and mNDWI is commonly used for surface water detection. 

NDVI =
NIR − Red
NIR + Red

(1)  

EVI= 2.5×
NIR − Red

NIR+6Red−7.5Blue+1
(2)  

LSWI =
NIR − SWIR
NIR + SWIR

(3)  

mNDWI =
Green − SWIR
Green + SWIR

(4)  

where Blue, Green, Red, NIR, and SWIR are the SR values of blue (496.6 
nm), green (560 nm), red (664.5 nm), near-infrared (835.1 nm), and 
shortwave-infrared (1613.7 nm) bands for Sentinel-2A MultiSpectral 
Instrument sensor. 

2.2.4. Landsat data 
We used Landsat 7/8 Level-2 SR data from January 1, 2020, to 

December 31, 2020, in GEE. The BQA bitmask band was used to remove 
clouds, cloud shadows, and cirrus. Snow/ice was removed using the 
same algorithm described in Section 2.2.3. The spatial distribution of the 
number and percentage of good-quality observations for Landsat and 
Sentinel-2 images are presented in Supplementary Fig. 2e, f. NDVI, EVI, 
LSWI, and mNDWI were calculated for each Landsat image using Eqs. 
(1)–(4). These vegetation indices collections were resampled to 10 m 
using the nearest neighbor method. 

2.2.5. MODIS land surface temperature data 
The night land surface temperature (LST) data from MYD11A2 for 

2020, which provide average 8-day data, were used to define the 

Table 2 
Wetland classification system for Northeast China in this study.  

Plant growth form Life cycle Leaf seasonality and canopy type 

Grass (marsh) Perennial 
plants 

Deciduous grass, closed 
canopy 

Deciduous grass, open 
canopy   

Shrub Perennial 
plants 

Deciduous shrub, closed canopy Deciduous shrub, open canopy Evergreen shrub, closed 
canopy 

Evergreen shrub, open 
canopy 

Tree (forest 
swamp) 

Perennial 
plants 

Deciduous tree, closed canopy Deciduous tree, open canopy Evergreen tree, closed canopy Evergreen tree, open canopy 

Open canopy - both plant and surface water under the canopy can be directly seen by sensors at least one time in a year; closed canopy - canopy are closed throughout 
the year and no surface water can be directly seen by sensors throughout the year. 
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thermal growing season (TGS) by night LST threshold of 0 ◦C (TGS-0) 
and 5 ◦C (TGS-5), i.e., the starting date, ending date, and the duration of 
night LST above 0 ◦C and 5 ◦C (Linderholm et al., 2008) (Supplementary 
Fig. 3). The non-thermal growing season below 0 ◦C (NTGS-0) was also 
identified, i.e., the period from January 1 to the last date of night LST 
being below 0 ◦C in spring and from the first date of night LST being 
below 0 ◦C in winter until December 31. The digital number (DN) values 
from MYD11A2 were converted to centigrade unit values using LST (◦C) 
＝DN × 0.02–273.15 (Wan, 2008). 

2.2.6. Digital elevation model data 
The Shuttle Radar Topography Mission V3 product (SRTM Plus) in 

GEE is DEM data provided by NASA JPL at a resolution of ~30 m (Farr 
et al., 2007). A slope variable was derived from the DEM data. The DEM 
and slope maps were resampled to 10 m using the nearest neighbor 
method. 

2.2.7. Ground reference data 
Ground reference data include both validation samples for wetland 

algorithm development and validation samples for available specific 
land cover mapping algorithms. We used GPS-based field photos, Google 
Earth VHSR images, and Sentinel-2 images taken circa 2020 to collect 
ground reference data. First, field photos in Northeast China were 
collected from the Global Geo-Referenced Field Photo Library (htt 
ps://www.ceom.ou.edu/photos/). These photos were processed as 
Keyhole Markup Language (KML) files, referred to as points of interest 
(POIs), and then geo-linked with Google Earth. Besides the POIs ob
tained from field photos, we first divided the study area into 122 1◦ × 1◦

grid cells and randomly generated 5 POIs within each cell. Second, we 
integrated field photos and Google Earth and Sentinel-2 images as 
background references to manually digitalized ROIs around the POIs for 
each land cover type. To ensure accurate sample selection, we consid
ered three Sentinel-2 composites from early April to mid-June, early 
July to late August, and mid-November to mid-January. POIs with 
heterogeneous land cover surroundings were excluded. Given the rela
tively small size of wetlands, we manually selected additional wetland 
samples. Due to the difficulty of visually distinguishing between sea
sonal open-canopy marsh and yearlong closed-canopy marsh, we only 

collected samples for the broad category of marsh. Marsh with seasonal 
open-canopy or yearlong closed-canopy will be identified by time series 
satellite data in the classification process. 

In total, we delineated 122 marsh, 49 deciduous forest swamp, 76 
paddy rice, 26 grassland, and 76 dryland ROIs (Supplementary Fig. 4a) 
to evaluate the stability of the unique optical and/or microwave char
acteristics (knowledge) of wetlands identified in this study, and to set 
thresholds for wetland mapping algorithms. Additionally, 69 forest, 17 
evergreen vegetation, 30 sparse vegetation (saline and alkaline land, 
built-up and barren land), and 23 surface water ROIs (Supplementary 
Fig. 4b) were selected to evaluate the applicability of the existing spe
cific land cover mapping algorithms in Northeast China. 

2.3. Methods 

Fig. 2 illustrates the workflow of the knowledge-based wetland 
mapping algorithms for Northeast China. First, we identified and 
masked out several non-wetland types by applying or modifying the 
available specific land cover mapping algorithms which were developed 
in our previous studies (Dong et al., 2015; Qin et al., 2015; Wang et al., 
2020c, 2020d; Zhang et al., 2015; Zou et al., 2018). Second, we iden
tified and mapped seasonal open-canopy marsh and yearlong 
closed-canopy marsh among the remaining pixels. Finally, the decidu
ous forest swamp was delineated within the deciduous forest layer. 

2.3.1. Application of available land cover mapping algorithms 
In previous studies, we developed knowledge-based algorithms to 

map specific land cover types with high accuracies, including forest (Qin 
et al., 2015), evergreen vegetation (Dong et al., 2015; Wang et al., 
2020d), yearlong surface water (Wang et al., 2020c; Zou et al., 2018), 
and sparse vegetation (Zhang et al., 2015). Here we used the same al
gorithms and time series image data (Fig. 3) in 2020 to generate annual 
maps of forest, evergreen vegetation, yearlong surface water, and sparse 
vegetation in Northeast China in 2020. These maps served as masks for 
wetland identification. Detailed description can be found in (Supple
mentary Note 1). 

Fig. 1. Satellite images (Sentinel-2 and Sentinel-1) and field photos of seasonal open-canopy marsh, yearlong closed-canopy marsh, and deciduous forest swamp. 
Field photos of seasonal open-canopy marsh and yearlong closed-canopy marsh were downloaded from the Global Geo-Referenced Field Photo Library (https://www. 
ceom.ou.edu/photos/). Field photo of deciduous forest swamp was provided by Dr. Chong Huang. 
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2.3.2. Development of new algorithms for wetlands mapping 

2.3.2.1. Algorithm to identify seasonal open-canopy marsh. In the early 
growing season, when snow/ice melts, seasonal open-canopy marshes 
are observed as a mix of green plants and water. The open-canopy and 
flooded (or inundated) marsh fields have a spectral signature of LSWI >
EVI or LSWI > NDVI (Fig. 3a), which is interpreted as water-related 
vegetation index larger than greenness-related vegetation index (Xiao 
et al., 2002). Paddy rice also has a flood/open-canopy stage in its 
transplanting phase, leading to confusion between seasonal open canopy 
marshes and paddy rice (Wang et al., 2020d; Zhou et al., 2016). How
ever, the marshes, one of natural wetlands, have several unique features 
compared to paddy rice. First, the marshes start to flood after snow/ice 
starts to melt and temperature rises above 0 ◦C in early spring (Fig. 3a), 
whereas rice fields are not irrigated or flooded until a specific 

temperature threshold is reached in late spring (Fig. 3b). Second, the 
marshes start to green up when air temperature is above 0 ◦C in early 
spring (Fig. 3a), while rice transplanting occurs in late spring, when a 
stable air temperature threshold is reached to avoid the cold tempera
ture damage to rice seedlings (Fig. 3b). By late May, the marshes have 
already developed into a closed canopy while paddy rice field is still in 
the flooding stage (Dong et al., 2016; Mao et al., 2020). In other words, 
the marshes green up much earlier than do paddy rice. Third, the 
flooding period of the marshes is shorter compared to paddy rice. 
Flooding signals in rice fields can persist for approximately 2 months–80 
days after transplanting until the rice canopy becomes closed (Dong 
et al., 2016; Xiao et al., 2005a). 

To examine the generalizability of phenological distinctions between 
seasonal open-canopy marshes and paddy rice, we analyzed three 
phenological metrics: night LST of start of flooding (nLSTSOF), night LST 

Fig. 2. The flowchart for identifying different types of wetland in Northeast China.  

Fig. 3. Time series Landsat/Sentinel-2-based NDVI, EVI, LSWI, and MODIS night LST for (a) seasonal open-canopy marsh, (b) paddy rice, (c) yearlong closed-canopy 
marsh, (d) deciduous forest swamp, (e) deciduous forest, (f) yearlong surface water body, (g) evergreen forest, (h) upland crop, (i) dryland, (j) saline and alkaline 
land, and (k) built-up in 2020. 
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of start of greening (nLSTSOG), number of floodings (NF) between the 
starting of night LST over 0 ◦C (TGS-0-S) and the end of June (DOY =
181). Using the NF layer to overlay marsh samples, we categorized 
marsh pixels that had at least one flooding signature as seasonal open- 
canopy marshes. The remaining pixels were labeled as yearlong 
closed-canopy marshes and were used for knowledge validation and 
mapping algorithm development for yearlong closed-canopy marshes. 
Then we overlaid paddy rice and seasonal open-canopy marsh samples 
with these three phenological metrics and evaluated their separability 
(Fig. 5a–c). The histograms showed that most seasonal open-canopy 
marsh pixels had NF of ≥1 (Fig. 5a), nLSTSOF of 0 ◦C–12 ◦C (Fig. 5b), 
and nLSTSOG of 0 ◦C–13 ◦C (Fig. 5c). While most paddy rice pixels had 
NF of ≥2 (Fig. 5a), nLSTSOF of ≥5 ◦C (Fig. 5b), and nLSTSOG of ≥10 ◦C 
(Fig. 5c). These unique phenological characteristics of seasonal open- 
canopy marsh are consistent with the knowledge obtained from the 
time series profile and phenological analysis (Fig. 3a and b). Therefore, 
we removed the paddy rice from flooded pixels using (NF ≥2, nLSTSOF 
≥5 ◦C, and nLSTSOG ≥10 ◦C). The remaining flooded pixels were used as 
baseline map for the seasonal open-canopy marsh identification. 

Slope and elevation were considered to exclude areas with high 
elevation and/or steep slope where wetlands are unlikely to occur. Most 
marsh and forest swamp sample pixels had slopes <6◦ (Supplementary 
Fig. 5a). Elevation, however, did not have a clear distributional pattern 
(Supplementary Fig. 5b). Thus slope <6◦ was used as a supplementary 
criterion to limit wetland boundaries. In summary, seasonal open- 
canopy marsh was delineated using Eq. (5). 

Seasonal open − canopy marsh = NF ≥ 1, 0 ◦C ≤ nLSTSOF ≤ 12 ◦C, 0 ◦C

≤ nLSTSOF ≤ 13 ◦C, and Slope < 6◦

(5)  

2.3.2.2. Algorithm to identify yearlong closed-canopy marsh. Yearlong 
closed-canopy marsh lacks a distinct spectral “flooding” signal due to the 
inability of optical sensors to detect surface water beneath the canopy. 
However, it still exhibits distinguishable microwave signals compared to 
non-flooded (or upland) vegetation due to the surface water or water- 
supersaturated soil under the canopy. Sentinel-1 is sensitive to mois
ture, capable of penetrating less dense vegetation and interacting with 
its structure, and has been successfully applied to monitor changes in 
vegetation and soil moisture (Geudtner et al., 2014). As illustrated in 

Fig. 4c, during TGS-0 period, yearlong closed-canopy marshes had a 
unique feature of −16< VV <−10. In comparison, grasslands had VV 
<−16 (Fig. 4h), and upland crops had VV >−10 (Fig. 4i). Furthermore, 
marsh plants exhibit earlier greening compared to upland crops (Fig. 3c, 
i), as upland crops in Northeast China are typically sown after average 
daily temperatures stabilize above 10 ◦C (Chu and Guo, 2018). 

We calculated the median values of VV during TGS-0 period, and the 
histograms suggested that −16< VV <−10 could discriminate yearlong 
closed-canopy marshes from upland vegetation (grassland and upland 
crop) (Fig. 5d), which is consistent with the knowledge for yearlong 
closed-canopy marsh discovered in the time series for individual pixels 
(Fig. 4c, h, i). Thus, we used −16< VV <−10 to identify wet vegetation 
in yearlong closed-canopy marshes. The wet vegetation frequency in 
TGS-0 (WVFTGS-0) was calculated as the ratio of the wet vegetation ob
servations to the Sentienl-1 observations in TGS-0, to maximize the 
benefit of time series images and reduce errors induced by noise. Most 
yearlong closed-canopy marshes had WVFTGS-0 ≥0.50 (Fig. 5e) and 
nLSTSOG of 2 ◦C–13 ◦C (Fig. 5f). Combining the analysis of slope (Sup
plementary Fig. 5a), the algorithm for identifying yearlong closed- 
canopy marsh was developed using Eq. (6). 

Yearlong closed − canopy marsh = WVFTGS−0 ≥ 0.50, 2 ◦C ≤ nLSTSOF

≤ 13 ◦C, and Slope < 6◦

(6)  

2.3.2.3. Algorithm to identify deciduous forest swamp. Although L-band 
PALSAR-2 is highly penetrating, the released yearly PALSAR data are 
mosaic of strip data with minimal response to surface moisture and is 
mostly concentrated in the growing season, making it difficult to detect 
surface water under the forest canopy. Dense time series Sentinel-1 
images have the potential to monitor the dynamic of the wetland 
moisture in a year. C-band Sentinel-1 backscatters reflect the top of the 
tree canopy (Geudtner et al., 2014), but for sparse forests, especially in 
leaf-off conditions, it can still interact with the surface water and/or ice 
on the ground (Martinis and Rieke, 2015). As depicted in Fig. 4, in 
NTGS-0 period, the seasonal dynamics of VH of deciduous forest swamp 
differed from those of deciduous forest: deciduous forest swamp had 
lower VH values (<−20) caused by the surface water and/or ice under 
the canopy (Fig. 4d), while the deciduous forest kept higher VH values 
(>−20) for most of the period (Fig. 4e). 

Fig. 4. Time series Sentinel-1 VV, VH, and MODIS night LST for (a) seasonal open-canopy marsh, (b) paddy rice, (c) yearlong closed-canopy marsh, (d) deciduous 
forest swamp, (e) deciduous forest, (f) yearlong surface water body, (g) evergreen forest, (h) grassland, (i) upland crop, (j) saline and alkaline land, and (k) built-up 
in 2020. 
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We calculated the median VH values during NTGS-0 period, and the 
histograms showed that VH <−20 could distinguish deciduous forest 
swamps from deciduous forests (Fig. 6a), which is consistent with the 
knowledge obtained from the time series of individual pixels illustrated 
in Fig. 4d and e. Hence, we used VH <−20 to identify surface water and/ 

or ice in the NTGS-0 period (Fig. 6a). Surface water and/or ice frequency 
in the NTGS-0 period (SWIFNTGS-0) was calculated as the ratio of surface 
water and/or ice observations to Sentinel-1 observations in NTGS-0. 
Notably, most of forest swamps had SWIFNTGS ≥0.40 (Fig. 6b). Due to 
the overlapping of SWIFNTGS-0 between deciduous forest swamps and 

Fig. 5. Index distributions of seasonal open-canopy marsh (a–c) and yearlong closed-canopy marsh (d–f). (a)–(c), Signature analysis of seasonal open-canopy marsh 
and paddy rice at (a) number of flooding, (b) night land surface temperature (LST) of start of flooding, and (c) night LST of start of greening. (d–f), Signature analysis 
of yearlong closed-canopy marsh and upland vegetation (grassland and dryland) at (d) VV values, (e) wet vegetation frequency, and (f) night LST of start of greening. 

Fig. 6. Index distributions of deciduous forest swamp and deciduous forest at (a) VH values and (b) surface water and/or ice frequency.  
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deciduous forests, we applied a relatively strict threshold (SWIFNTGS 
≥0.45) for deciduous forest swamp to avoid confusion with deciduous 
forest. Finally, the algorithm described in Eq. (7) was implemented to 
distinguish deciduous forest swamp from deciduous forest layer. 

Deciduous forest swamp = SWIFNTGS−0 ≥ 0.45 and slope < 6◦ (7)  

2.4. Validation of wetland map for Northeast China in 2020 

To develop the validation dataset, we first divided the study area into 
122 1◦ × 1◦ grid cells. Ten random points and square buffers with 60 m 
by 60 m were generated in each grid cell. Each buffer was visually 
checked with VHSR images in Google Earth and Sentinel-2 images in 
2020. We only collected validation samples of the broad category of 
marshes due to the difficulty of identifying seasonal open-canopy marsh 
and yearlong closed-canopy marsh by visual interpretation. Finally, 144 
polygons (31,252 pixels) for marsh, 60 polygons (12,815 pixels) for 
deciduous forest swamp, and 958 polygons (161,253 pixels) for non- 
wetland were collected (Supplementary Fig. 4c) to generate a confu
sion matrix to evaluate our resultant wetland map. 

2.5. Comparison with other wetland datasets 

We collected three wetland datasets to assess the consistency and 
differences with the results in this study. Mao et al. (2020) produced a 
nationwide wetland map (CAS_Wetlands) by analyzing Landsat 8 images 
circa 2015, using a hybrid object-based and hierarchical classification 
approach. We merged inland marsh and coastal marsh in the CAS_
Wetlands as marsh, inland swamp and coastal swamp as swamp for 
comparison with our marsh and swamp data. 

Zhang et al. (2023b) generated a global 30 m wetland map for 2020 
(GWL_FCS30) by integrating various wetland data products, time-series 
satellite images from Landsat and Sentinel-1, and a stratified classifi
cation strategy. We merged marsh and salt marsh in the GWL_FCS30 into 
marsh, swamp and mangrove into swamp. 

The third national land survey (NLS3) of China used satellite images 
with finer than 1 m spatial resolution as the base maps to generate land 
cover maps and calculate their areas in 2019–2021. We used the NLS3 
data in 2020 to do the area comparison with our wetland datasets. 
Wetlands in NLS3 include seven secondary categories: mangrove, forest 
swamp, shrub swamp, marsh meadow, inland mudflats, coastal mud
flats, and marshland. We summed the areas of marsh meadow and 
marshland as marsh area, and the areas of mangrove, forest swamp, and 
shrub swamp as swamp area. 

3. Results 

3.1. Accuracy assessment for the wetland map in 2020 

The confusion matrix showed a good consistency between the 
mapped pixels and the ground reference pixels in our wetland map for 
Northeast China in 2020, with an overall accuracy (OA) and Kappa 

coefficient of 0.96 and 0.88, respectively (Table 3). The accuracy of the 
marsh category showed high accuracy with a producer’s accuracy (PA) 
and user’s accuracy (UA) both at 0.90. Deciduous forest swamp had a 
slightly lower accuracy with a PA of 0.85 and a UA of 0.82, respectively, 
primarily due to the confusion between some of the deciduous forest 
swamp pixels and non-wetlands (mainly deciduous forest). 

3.2. Spatial and area distribution of wetlands in 2020 over Northeast 
China 

In 2020, there were a total of 154,254 km2 of wetlands, covering 
12.4% of the land area of Northeast China (Fig. 7, Table 4). Out of the 
total wetland area in 2020, 17.7% were seasonal open-canopy marshes, 
44.8% yearlong closed-canopy marshes, and 37.5% deciduous forest 
swamps. Seasonal open-canopy marsh was mainly found along rivers in 
plains and estuaries with gentle terrain (i.e., Sanjiang Plain, Songnen 
Plain, and Liaohe Plain) (Fig. 7). Yearlong closed-canopy marsh was 
predominantly observed in western and northwestern region of North
east China with higher elevations (e.g., Hulunbuir Grasslands and 
Greater Khingan Mountains). Deciduous forest swamp was mainly 
distributed along the rivers in the mountainous areas with gentle slopes, 
such as Greater and Lesser Hinggan Mountains. 

Among the provinces in Northeast China, Heilongjiang had the most 
extensive wetland coverage, followed by Inner Mongolia, Jilin, and 
Liaoning. Marsh (seasonal open-canopy marsh and yearlong closed- 
canopy marsh) was primarily concentrated in Heilongjiang and Inner 
Mongolia Provinces. Specifically, Heilongjiang Province had the largest 
areas of seasonal open-canopy marsh and deciduous forest swamp, while 
Inner Mongolia Province had the largest extent of yearlong closed- 
canopy marsh. 

3.3. Inter-comparison with wetland datasets 

We compared the estimated wetland areas of this study and 
compared them to CAS_Wetlands, GWL_FCS30, and NLS3 datasets 
(Fig. 8). The total marsh area in the Northeast China from our study was 
96,376 km2, which was 37.1% larger than that from the CAS_Wetlands 
(70,272 km2), 627.5% larger than that from GWL_FCS30 (13,248 km2), 
and 173.0% larger than that from the NLS3 (35,297 km2). At the 
municipal scale, our marsh areas matched well with the area of CAS_
Wetlands with a slope of 0.89 and R2 of 0.94 (Fig. 8c), while the 
agreements between our marsh datasets and GWL_FCS30, and NLS3 
were relatively low. In particular, we detected much more marshes 
(33,207 km2) than GWL_FCS30 (1988 km2) and NLS3 (14,964 km2) in 
Hulunbuir City (Figs. 8c and 9). The vast majority of marshes in 
Hulunbuir City were not identified by GWL_FCS30 (Fig. 9a4, b4, c4). 

Our dataset has a total of 57,877 km2 of deciduous forest swamp in 
the Northeast China, which was 780.0% larger than that from the 
CAS_Wetlands (6577 km2), 3273.9% larger than that from GWL_FCS30 
(1715 km2), and 126.5% larger than that from the NLS3 (25,551 km2). 
The consistency of our deciduous forest swamps is high with NLS3 and 
low with CAS_Wetlands and GWL_FCS30 at the municipal level (Fig. 8d). 
In Hulunbuir City, we detected much more swamps (18,482 km2) than 
the CAS_Wetlands (641 km2), GWL_FCS30 (271 km2), and NLS3 (8827 
km2) datasets (Figs. 8d and 9). A large percentage of swamp pixels in 
CAS_Wetlands in Hulunbuir City were merged into surrounding marsh 
patches due to the object-based approach used in CAS_Wetlands 
(Fig. 9a3, b3, c3). GWL_FCS30 did not identify the vast majority of 
swamps in Hulunbuir City (Fig. 9a4, b4, c4). 

4. Discussion 

4.1. Knowledge-based mapping algorithms for marshes 

The confusion between seasonal open-canopy marsh and paddy rice 
has been a major challenge in both paddy rice mapping (Son et al., 2014; 

Table 3 
Confusion matrix for the wetlands map in 2020.  

Classification Ground references Total UA 

Marsh Deciduous 
forest swamp 

Non- 
wetland 

Marsh 28,319 511 2595 31,425 0.90 
Deciduous 

forest swamp 
589 10,921 1755 13,265 0.82 

Non-wetland 2344 1383 193,808 197,535 0.98 
Total 31,252 12,815 198,158 242,225 OA =

0.96 
PA 0.90 0.85 0.98  Kappa 

= 0.88  
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Xiao et al., 2005a; Zhang et al., 2015) and marsh mapping (Mao et al., 
2020), due to their similar spectral or backscatter signals of inundation 
or flooding. In this study, we developed a knowledge-based seasonal 
open-canopy marsh mapping algorithm by analyzing time series 
Landsat/Sentinel-2 images. Seasonal open-canopy marsh and paddy rice 
differed notably in the three unique phenological metrics (NF, nLSTSOF, 
and nLSTSOG) designed in this study. NF and nLSTSOF can characterize 
the differences between seasonal open-canopy marsh and paddy rice in 
terms of flooding, while nLSTSOG not only captures their distinctions in 
terms of greening but also ensures that the identified pixels contain 
green vegetation, effectively eliminating the influence of non-vegetated 
flooded areas due to snow and ice melting and short-term heavy rainfall. 
In addition, our study used all available optical data (Landsat and 
Sentinel-2) to increase the numbers of good-quality observations for 
seasonal open-canopy marsh mapping algorithm. Compared to the 
previous studies using only Landsat (Mao et al., 2020; Zhang et al., 

2023b), the combination of Landsat and Sentinel-2 substantially 
increased the number of good-quality observations in a single year, 
allowing us to better track the phenology of natural marshland and 
paddy rice at a higher spatial resolution (10 m) and a shorter temporal 
resolution (<5 days). 

The knowledge-based yearlong closed-canopy marsh mapping algo
rithm developed in this study demonstrated the potential of combing 
time series Sentinel-2/Landsat and Sentinel-1 images for identifying 
yearlong closed-canopy marshes accurately. Notably, we identified a 
distinct VV value range for wet vegetation due to the higher soil mois
ture content of yearlong closed-canopy marshes, especially during the 
thermal growing season over 0 ◦C. The resulting wet vegetation fre
quency, together with nLSTSOG, can effectively separate yearlong closed- 
canopy marshes from upland vegetation. Several studies have also 
emphasized the significance of utilizing Sentinel-1 VV and VH polari
zation bands in mapping both coastal and inland wetlands (Hu et al., 
2021; Zhang and Lin, 2022). Some studies have incorporated the dif
ference, sum, normalized difference, and sum of squares of VV and VH 
bands into wetland mapping approaches (Hemati et al., 2023; Hu et al., 
2021), so we can also investigate the use of these metrics in the future 
work. 

4.2. Comparison of deciduous forest swamp maps 

Comparison of our deciduous swamp map with the other datasets 
showed some differences among these datasets in area estimates 
(Fig. 8b, d) and spatial distribution (Fig. 9). The input image data from 
different years and forest swamp mapping algorithms contributed to the 
inconsistency between our deciduous forest swamp map and CAS_Wet
lands. The CAS_Wetlands used Landsat 8 images acquired at peak 
growing season (July to August) circa 2015 (Mao et al., 2020). Forests in 
the peak growing season have closed canopies, and thus forest swamps 
are unavoidably difficult to distinguish from unflooded forest and other 
vegetation types that have similar spectral characteristics. In our study, 
we first identified deciduous forest using PALSAR-2 and time series 
Landsat/Sentinel-2 data, and then used surface water and/or ice 

Fig. 7. (a) Spatial distribution of wetlands in Northeast China in 2020. (b–d), Zoom-in views of typical regions and corresponding Sentinel-2 images.  

Table 4 
Wetland areas (km2) and percent of corresponding provinces and Northeast 
China in 2020.  

Province Seasonal 
open- 
canopy 
marsh 

Yearlong 
closed- 
canopy 
marsh 

Deciduous 
forest 
swamp 

Marsh Wetland 

Heilongjiang* 18,087 
(4.0%) 

19,280 
(4.3%) 

31,065 
(6.9%) 

37,367 
(8.3%) 

68,432 
(15.1%) 

Jilin* 1543 
(0.8%) 

3874 
(2.0%) 

3862 
(2.0%) 

5417 
(2.8%) 

9279 
(4.9%) 

Liaoning* 849 
(0.6%) 

3367 
(2.3%) 

1937 
(1.3%) 

4215 
(2.9%) 

6152 
(4.2%) 

Inner 
Mongolia* 

6740 
(1.5%) 

42,637 
(9.4%) 

21,014 
(4.6%) 

49,377 
(10.9%) 

70,391 
(15.5%) 

Total** 27,219 
(2.2%) 

69,158 
(5.6%) 

57,878 
(4.7%) 

96,376 
(7.8%) 

154,254 
(12.4%) 

Marsh = seasonal open-canopy marsh + yearlong closed-canopy marsh. 
Wetland = marsh + deciduous forest swamp. * Percent of corresponding prov
ince; ** Percent of land area of Northeast China. 
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Fig. 8. The comparison of wetland areas estimated by this study and other datasets. (a)–(b), Comparison of (a) marsh and (b) deciduous forest swamp areas at 
provincial level. (c)–(d), Comparison of (c) marsh and (d) deciduous forest swamp areas at municipal level using the linear regression method. 

Fig. 9. Zoom-in views of wetlands from our study, CAS_Wetlands, and GWL_FCS30 in Hulunbuir City.  
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frequency derived from time series Sentinel-1 data to identify forest 
swamps from the deciduous forest layer. By identifying deciduous for
ests first largely reduced the confusion between woody swamps and 
herbaceous marshes. Moreover, the use of entire-year time series data 
better captured the phenological information of various land cover 
types. In the leaf-off phase of deciduous forests, Sentinel-1 images show 
the information of surface water and/or ice under the canopy. The 10 m 
spatial resolution of our forest swamp map and the 30 m of CAS_Wet
lands dataset also contributed to the area differences. Forest swamps 
mainly form along streams in valleys in Northeast China, where limited 
water level fluctuations due to rainfall and seasonal flooding lead to 
fragmented and complex swamps with widths less than 30 m, observed 
through visual and manual measurements on Google Earth. The 30 m 
resolution in CAS_Wetlands may result in mixed pixel phenomena, 
detecting forest swamps only if they cover a significant portion of the 
pixel size (30 m), affecting the spectral signal. In contrast, our study with 
finer 10 m Sentinel-1 images can reduce mixed pixels and thus identify 
forest swamps more accurately (Fig. 9a–c). 

In mapping algorithms, we used pixel- and knowledge-based 
approach to detect deciduous swamps, while CAS_Wetlands map used 
object-based image analysis (Mao et al., 2020). The smoothing effect of 
object-based analysis tends to assign mixed Landsat pixels containing 
forest swamps to surrounding non-swamp categories, causing an un
derestimation of forest swamp area (Fig. 9). Moreover, CAS_Wetlands 
map set a single segmentation scale for each path/row, which may not 
adequately represent the properties of real objects of the fragmented and 
complex wetland landscapes within such large areas of a Landsat 
path/row (approximately 182 km × 185 km) (Song et al., 2005). Some 
empirical values were used in the segmentation and classification rules 
in CAS_Wetlands classification process due to limited field samples, 
which might also introduce uncertainties. In contrast, our pixel- and 
knowledge-based algorithm analyzed the spectral and structural infor
mation of individual pixels over time, effectively avoiding the influence 
of surrounding pixels on forest swamp identification. 

Several factors may contribute to the inconsistency between our 
deciduous forest swamp map and GWL_FCS30 (Fig. 8b, d, Fig. 9). First, 
GWL_FCS30 initially determined the maximum wetland extents by 
combining multiple prior wetland data products. Any pixels classified as 
a forest swamp outside the maximum extent were identified as a 
misclassification. This scheme might overlook areas with actual forest 
swamps, leading to an underestimation of the true extent. Second, 
GWL_FCS30 used random forest method to identify wetlands, and we 
used knowledge-based algorithm. Third, the different spatial resolutions 
between our swamp map (10 m) and GWL_FCS30 (30 m) also contribute 
to the forest swamp area differences. 

4.3. Potential sources of error in the wetlands map 

The accuracy of the wetlands map can be affected by various factors, 
including image data, training data, algorithms, and land cover classi
fication scheme and definition. Some bad-quality observations in 
Landsat and Sentinel-2 imagery may remain after quality filtering due to 
the quality of QA band (Zhu and Woodcock, 2012; Zou et al., 2018), 
which might introduce low-frequency flooding noise over non-wetland 
pixels, leading to uncertainties in the resultant maps. Although we 
maximized the number of observations by combining all available 
Landsat 7/8 and Sentinel-2, some pixels may still have a limited number 
of good-quality observations between the start date of 0 ◦C and the end 
of June, and thus may not detect flooding signals in seasonal 
open-canopy marshes. 

Limited in-situ (ground) reference data and visual interpretation and 
delineation of the regions of interest (ROIs) may introduce errors into 
the classification process and accuracy assessment. In particular, few 
field photos and in-situ data were available for wetlands in the Greater 
Khingan Mountains area due to its less accessible nature and the com
plex boundaries of wetland landscape. To reduce such uncertainties, 

extensive efforts were devoted to generating numerous random poly
gons to assess wetland maps for 2020. Historical datasets like China’s 
wetland map can be important reference data for future effort (Mao 
et al., 2020). Additionally, marsh samples were not divided into seasonal 
open-canopy marsh and yearlong closed-canopy marsh for validation in 
this study, as there were no field samples available for either category 
since people often conduct field surveys during the peak growing season 
when the canopy is closed, and the human eye can hardly distinguish 
these two categories from images. Our study demonstrated that the 
time-series remote sensing method has the capacity to distinguish these 
two types of marshes, but there is still a need to increase the number of 
field observations to verify the classification methods. 

The seasonal dynamics of natural wetlands are relatively consistent 
in normal years, and thus the knowledge-based mapping algorithm can 
be applied in other years. However, extreme climate events such as 
flooding events during the flooding/transplanting period, may affect NF 
of paddy rice and natural wetlands. When applying these mapping al
gorithms to other regions with different climates and agricultural 
practice, careful study of NF of paddy rice and natural wetlands in the 
study regions would be helpful and should be carried out. Additionally, 
irrigation or flooding events in non-water related land cover types 
during the flooding period of wetlands might introduce uncertainties to 
the annual maps of seasonal open-canopy marshes. 

5. Conclusions 

Accurate and up-to-date large-scale annual maps of wetlands, 
including seasonal open-canopy marsh, yearlong closed-canopy marsh, 
and deciduous forest swamp, have been very limited in China. We 
proposed and applied knowledge-based algorithms to map wetlands in 
Northeast China at 10 m spatial resolution by using all available L-band 
PALSAR-2, C-band Sentinel-1, Landsat, Sentinel-2, and MODIS land 
surface temperature images in 2020. Optical images can be used to 
identify those grass wetlands with open canopies. C-band SAR images 
can be used to identify marshes with closed canopies. A combination of 
C-band and L-band SAR images can be used to identify those wetlands 
dominated by woody plants with open canopies. The Kappa, overall, 
producer’s, and user’s accuracies indicated that our resultant wetland 
map were reasonably accurate. The knowledge-based wetland mapping 
algorithms highlight the potential for identifying and mapping wetlands 
at annual scales over large spatial domain using multiple sources of 
remote sensing data. Such classification considers the capacity of remote 
sensing technology, which is a viable way to characterize wetlands. Our 
resultant wetland maps could provide essential information for policy 
development and wetland conservation and management in the North
east China. 
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