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ABSTRACT: Knowledge mining from synthetic biology journal articles for machine learning (ML) applications is a labor-intensive
process. The development of natural language processing (NLP) tools, such as GPT-4, can accelerate the extraction of published
information related to microbial performance under complex strain engineering and bioreactor conditions. As a proof of concept, we
proposed prompt engineering for a GPT-4 workflow pipeline to extract knowledge from 176 publications on two oleaginous yeasts
(Yarrowia lipolytica and Rhodosporidium toruloides). After human intervention, the pipeline obtained a total of 2037 data instances.
The structured data sets and feature selections enabled ML approaches (e.g., a random forest model) to predict Yarrowia
fermentation titers with decent accuracy (R2 of 0.86 for unseen test data). Via transfer learning, the trained model could assess the
production potential of the engineered nonconventional yeast, R. toruloides, for which there are fewer published reports. This work
demonstrated the potential of generative artificial intelligence to streamline information extraction from research articles, thereby
facilitating fermentation predictions and biomanufacturing development.
KEYWORDS: feature selection, natural language processing, human intervention, prompt engineering, transfer learning,
Yarrowia lipolytica

■ INTRODUCTION
Synthetic biology (SynBio) tools can engineer microbes for
sustainable biomanufacturing. To develop microbial work-
horses, researchers rely on trial and error for breakthroughs
due to the complex nature of biological systems. Model
predictions of cell performance are key to reducing the number
of experimental trials and improving the strain development
effectiveness. However, mechanistic models have difficulty
incorporating all influential factors to simulate microbial
production.1 On the other hand, machine learning (ML) has
been applied to predict fermentation titers,2−4 optimize
bioprocesses,5−7 and recommend engineering approaches.8,9

The drawback of ML is that it requires large sets of
experimental data for model training. Therefore, knowledge
mining from published journal articles can be an inexpensive
strategy for training ML models. However, manually extracting
data from a large number of articles is labor-intensive and
prone to human errors and inconsistencies in quality, because
reported data often lack a standardized format,10,11 and
substantial efforts are needed to interpret information and
organize it into ML-ready data.12

NLP, a branch of AI, can process text at a large scale,
enabling topic organization in published articles.13 It has also
been utilized to track adverse drug events from electronic

health record notes.14 A recent tipping point in the field of
NLP was the release of GPT-4,15 which shows 'sparks' of
artificial general intelligence16 to rapidly parse text based on
user-provided context.15 Leveraging GPT-4, relevant biopro-
cess features and outcomes from published papers can be
extracted for rapid database growth. Moreover, GPT-4 can
provide useful biomanufacturing guidelines, but its prediction
of production titers from nonmodel yeasts may give unrealistic
answers (Supplementary Figure 1). Therefore, this study aims
to integrate GPT-4 with ML to improve the prediction of yeast
fermentation titers.2,17

As a proof of concept, this study used GPT-4 to extract
knowledge from articles on the industrial yeast Yarrowia
lipolytica. Under human supervision, the published information
was transformed into data samples (i.e., instances). Each
instance included both outputs (product titers) and inputs
(i.e., features). Feature variables included bioprocess con-
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ditions, metabolic pathways, and genetic engineering methods.
All instances have been uploaded to a database for training ML
models. Moreover, Rhodosporidium toruloides is a novel yeast
that has recently gained research attention for its high lipid
content18,19 and native carotenoid production.20,21 However,
the literature on Rhodosporidium is sparse.22 Here, we
demonstrate that transfer learning can use knowledge from
well-studied domains (Yarrowia-trained model) to understand
less-studied scenarios and speed up the learning process.23,24 In
summary, for the first time, this study integrated the GPT with
knowledge engineering and ML for predicting microbial cell
factories. The lessons will improve human supervision and
prompt engineering, facilitating GPT and ML applications in
SynBio fields (Figure 1).

■ RESULTS AND DISCUSSION
Extraction of ML Features and Data Sets from SynBio

Papers via GPT-4 Workflow. ML approaches require a large
amount of experimental data to correlate ML inputs (features)
with outputs (productions). Since the biomanufacturing
literature presents a wealth of strain construction and
bioprocess engineering case studies, constructing a database
from published papers may broadly support ML applications.
Previous databases, like LASER,10 collected metabolic
engineering reports, but the stored information was not
organized and transformed for ML applications. In contrast,
this study performed knowledge mining and feature selection,
which could filter out erroneous/redundant information and
capture factors that independently affect bioproduction.
Moreover, SynBio papers describe bioreactor conditions,
metabolic pathways, and genetic engineering methods. Manual
information extraction is time-consuming. Here, GPT-4 was
used to overcome this challenge. Since GPT-4’s maximum
context window had 8,192 tokens, the sections of each

scientific article, including abstract, materials and methods,
results, and data tables, were manually separated into text files.
Prompts (questions for GPT) were then added to the
beginning of each section (Table 1) so that GPT-4 could
summarize the experiment results and methods into accessible
tables (See examples in Supplementary File 1, Screenshots).
Quality Tests for Data Extraction by ChatGPT. Data

extraction from publications without losing important knowl-
edge is challenging. To test GPT applicability, we started to
use GPT-3.5 API on March 15, 2023, to extract Rhodospori-
dium fermentation data from journal articles. The output of
one PhD student using the GPT-enhanced workflow for 1
week is illustrated (Figure 2a). When GPT-3.5 was used, on
average, 11.7 papers were extracted per day (8 work hours).
After the release of GPT-4 on 3/15, 25 papers were extracted
on 3/16. We tested the correctness of biomanufacturing data
extracted by GPT-3.5 in 10 Yarrowia papers. Via manual
examination, we found that the titer data extracted by GPT-3.5
were 74% correct. Some erroneous data were obvious as they
included numbers that were consecutive, repeated, or not
present in the article. With user discretion to fix the outputs,
the extracted titer data were ∼89% correct. When GPT-4 was
applied, the quality of the extracted data was significantly
improved. For example, GPT-4 accurately obtained fermenta-
tion titers from 10 Yarrowia papers (Figure 2b).
GPT-4 can retrieve experimental methods, engineering

strategies, and fermentation outcomes. Supplementary Table
1 summarizes the data location, output format, and correct-
ness. Although human supervision is a necessity to ensure the
quality of knowledge mining, our data extraction workflow is
an improvement over manual reading because: (1) it does not
rely on the expertise of a single person and can be parallelized
across a team, (2) it does not require high levels of effort for
data recording, (3) it extracts data reproducibly, and the

Figure 1. GPT-4 knowledge mining for ML (Left) and AI applications (Right: assist biomanufacturing design, commercial decision, or project
quality/risk assessment).
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extracted data can be checked for errors in a targeted manner
rather than laboriously reading each section,25 and (4) it is
adaptable to automation once the GPT-4’s Application
Programming Interface (API) is available.
GPT-4 Assisted Database Construction for Y. lip-

olytica Biomanufacturing. Yarrowia lipolytica is an indus-
trially important yeast for bioproductions.26 Our previous
study collected information manually from ∼100 Yarrowia
SynBio papers,2 which took a well-trained graduate student
over 400 working hours. In this study, the GTP-4 workflow
was used to obtain ∼1670 additional data instances from 115
Yarrowia papers within 40 working hours. To facilitate the
conversion of extracted information into ML inputs, we
developed two supporting tables. First, a feature table (Table
2) defined the ML features and the rules of feature selection.2

Second, we developed a molecule inventory (Supplementary
File 2) to convert certain reported information into numerical
or categorical feature variables. For instance, once GPT-4
identified the carbon source as glucose, this inventory table
would assign feature variables related to glucose, including
substrate’s category and heat of combustion. Both the feature
table and the molecule inventory will be continuously updated
to include broader biomanufacturing features.
For further validating the applicability of GPT-4, the

manually extracted data were compared with GPT-extracted
data by computing feature importance, feature variances, and
principal component analysis (PCA). The GPT-extracted data
had a distribution of feature importance similar to that of the
manually extracted data (Figure 3a), suggesting that the newly
extracted data followed patterns similar to those of the
manually extracted data. Interestingly, the GPT data sets had
higher feature variances than the manually extracted data set
for 19 of 28 features (Figure 3b). PCA showed that, with a
similar silhouette score after K-means converged to the optimal
solution, the data extracted by GPT had 7% higher mean
distance between clusters (Figure 4). The PCA loadings
further indicated that the clustering of the manually extracted
data set was governed by the carbon source and product
cofactor cost (Supplementary Figure 2). In contrast, GPT data
were clustered according to culture condition and genetic
engineering features in addition to the carbon source and
cofactor cost. Therefore, GPT-4 can capture more distinctive-
ness within papers and reason through complex contextual data
to generate less biased biomanufacturing instances.
Leveraging the GPT-Constructed Database To Pre-

dict Y. lipolytica Fermentation Titer. Fermentation titer
determines the bioprocess economy. The GPT-assisted
database construction can support the quantitative prediction
of yeast fermentation titers under various conditions.
Specifically, Y. lipolytica fermentation instances formed a
comprehensive database to train ML models. We conducted
a comparative test of seven classical ML algorithms with data
scaling (Supplementary Figure 3, support vector machine
(SVM), Gaussian process (GP), multilayer perceptron (MLP),
random forest (RF), extreme gradient boosting (XGBoost), k-
nearest neighbors (KNN), and linear regression). Based on
unseen testing data and ML prediction (predicted titer vs
reported titer), linear regression and linear SVM performed
poorly, suggesting that a linear relationship cannot accurately
represent the titer prediction. A fully connected two-layer
neural network did not exhibit a good performance either. In
contrast, the RF model achieved the best accuracy: R2 of 0.86
on unseen test instances (Figure 5a). After this point, train/testT
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data were not scaled; therefore, their original physical
meanings were retained. The RF model still showed robust
performance for test data with an average R2 of 0.80 ± 0.04
across 50 random data splits. The test set performance of the
RF regressor was decent for nearly all product classes: organic
acid, lipid, terpene, flavonoid, fatty-acid-derived compound,
sugar alcohol, glycan, and polyketide (Figure 5b−k). The new
ML model, trained on a database approximately 50% larger
than the previous model,2 showed general improvements for
titer predictions of small terpene and polyketide products.
However, the ML model was still unable to explain the data
related to large terpenes, as indicated by the region with
horizontal consecutive dots in Figure 5e. This is because some
key biomanufacturing features are still missing from knowledge
mining. For instance, a recent study removed lycopene
substrate inhibition by site-mutagenesis enzyme engineering,
and it was able to achieve the highest β-carotene titer ever
reported, 39.5 g/L.27 Besides, another research showed that
fermentation yields were improved through cytoplasmic-
peroxisomal compartmentalization engineering.28−30 The
DNA sequences of key genes also affect pathway perform-
ances.31,32 However, the current database cannot obtain these
influential factors at the molecular level.
Transfer Learning From Y. lipolytica to R. toruloides

To Reveal the Genetic Engineering Effect on Produc-
tion Performance. Nonmodel cell factories have been rapidly
developing. For example, R. toruloides is a nonmodel yeast that
can convert cheap feedstock into high-value carotenoids.
However, this species has received few genetic engineering
reports. Transfer learning could leverage knowledge from the
Yarrowia data set to reveal the potential genetic engineering
outcomes. For instance, we extracted 366 Rhodosporidium
fermentation results from 60 articles to train the RF model for
predicting lipid and biomass production (R2 > 0.4)
(Supplementary Figure 4), but the database lacks genetic
engineering features. For instance, reports on astaxanthin
production in R. toruloides mainly focused on its native
pathways.33−35 Therefore, knowledge transferring from Y.
lipolytica reports is necessary to predict how genetic engineer-
ing affects astaxanthin production in R. toruloides and offers
guidelines for future strain development. Here, we utilized two
inductive learning approaches36: (1) a neural network with a
pretrained encoder-decoder structure to study the effect of the
number of gene expressions on the astaxanthin synthesis; (2)
an instance-based random forest TL approach to address the
source-target domain gap. We evaluated these two approaches

because they have different underlying assumptions. The
encoder−decoder structure is a type of neural network that
transforms the embedded data to a latent space, takes this
transform representation, and attempts to reconstruct the
original data set. A pretrained encoder implies that Yarrowia
and Rhodosporidium data are from the same knowledge domain
and have the same statistical distribution. In contrast, the
instance-based random forest model can handle data from two
different knowledge domains.
First, a pretrained encoder in an autoencoder37 was used to

reduce the number of features from 29 (original 28 features +1
categorical input of species, Yarrowia or Rhodosporidium) to
14. The resulting model predicted R. toruloides astaxanthin
production after 96 h of shake flask cultures with rich media.
However, the titer output from the trained model was
insensitive to genetic modification features (Supplementary
Figure 5). In the reported experiments, the titer for R.
toruloides astaxanthin was ∼1 mg/L. In contrast, the majority
of instances in the ML database for Y. lipolytica and R.
toruloides productions were at the g/L level. The order of
magnitude difference between astaxanthin and other products
(e.g., lipids and biomass training data) made predicting low-
titer products difficult. Besides, encoding input data might
impair the neural network’s ability to learn biological features
from complex and interconnected biological systems.
Second, a RF transfer learning was tested. This approach

combined Y. lipolytica engineering experiences with the
reported growth characteristics of R. toruloides, which predicts
R. toruloides biomanufacturing potentials once its genetic tools
are developed. Specifically, the training instances were labeled
as either Yarrowia or Rhodosporidium (categorical input
feature), and a weight of 3× was assigned to the
Rhodosporidium data. The model trained on data from both
species was used to predict R. toruloides astaxanthin titers.
Again, the inputs corresponded to a 96 h fermentation in shake
flasks containing rich media. The model predicted that wild-
type R. toruloides without genetic engineering would likely
produce an astaxanthin titer below 4.2 mg/L after process
optimizations (Figure 6a). This result is comparable with a
recent publication (not used in the model training) reporting
astaxanthin production of 1.3 mg/L by R. toruloides in shake
flasks.35 With successful gene expressions, the engineered
strains were predicted to increase their titers (Figure 6b−d). A
strain might achieve an average of 39.5 mg/L astaxanthin if six
key genes could be optimized (Figure 6d). Moreover, the
broad distribution of astaxanthin production observed in the

Figure 2. Data extraction effectiveness of GPT-3.5 and GPT-4. (a) Number of Rhodosporidium papers processed in 5 days by a single user. (b)
Correctness of fermentation data extracted from a test set of 10 Yarrowia articles (note: extracted data were manually inspected).
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bootstrapping analysis suggests that there is a significant level
of uncertainty when predicting titers. In summary, RF with an
instance-transfer method can give reasonable generalization
predictions when the database is incomplete.
GPT-4’s Limitations and Future Directions for SynBio

Studies. This study has several limitations. First, GPT-4 is
unable to extract graphical data. In the future, multimodal
language models will be necessary to interpret images and
figures.15,38 Second, GPT-4 would stop after several rows due
to token limitations (around 8k), and the context length is a
bottleneck for large-scale GPT applications. Third, during our
data extraction process, we encountered instances when GPT-
4 could not differentiate between promoters and genes or
mixed up native and heterologous genes. Without knowledge

of GPT-4’s self-supervised learning mechanism, it is difficult to
explain its performance because of its nondeterministic nature
(multiple potential outputs for identical input prompts). This
problem is common to generative AIs because of their complex
network parameters during training. Besides, GPT occasionally
provides seemingly plausible yet nonfactual answers because of
misunderstanding the prompt. To resolve these problems, few-
shot prompt engineering, human intervention, and reinforce-
ment learning through human feedback should be devel-
oped.15,39 Fourth, feature selection in this study is still
insufficient and suboptimal. For example, Y. lipolytica terpenoid
titer was typically achieved by employing heterologous
enzymes with high activities.40,41 However, our database
lacks a quantitative knowledge of enzyme activities. Finally,

Table 2. Conversion of GPT Information Into Biomanufacturing Featuresa

no feature type feature name data type description

1 substrates and
products

carbon source 1 categorical the primary carbon source used in the yeast growth media. for example, we assigned
categorical numbers: glucose as 1, glycerol as 2, citrate as 3, and so on.

2 carbon source 1
concentration, g/L

numeric the concentration of primary carbon source.

3 carbon source 1 heat of
combustion, kJ/mol

numeric the energy content of primary carbon source.

4 carbon source 1 heat of
combustion, kJ/g

numeric the energy content of primary carbon source when complex feedstock (organic waste, oil,
or whey) was used.

5 carbon source 2 categorical the secondary carbon source used in the growth media.
6 carbon source 2

concentration, g/L
numeric the concentration of secondary carbon source.

7 carbon source 2 heat of
combustion, kJ/mol

numeric the energy content of secondary carbon source.

8 carbon source 2 heat of
combustion, kJ/g

numeric the energy content of secondary carbon source when complex feedstock (organic waste, oil,
or whey) was used.

9 product class categorical 10 product categories: organic acid, lipid, small terpene, large terpene, flavonoid, fatty acid-
derived, sugar alcohol, glycan, polyketide, and biomass.

10 product Gibbs energy of
formation, kJ/mol

numeric the thermodynamic energy barrier to form the product.

11 stoichiometry number of carbon atoms
in the product

numeric number of carbon atoms in one product molecule.

12 number of hydrogen
atoms in the product

numeric number of hydrogen atoms in one product molecule.

13 number of oxygen atoms
in the product

numeric number of oxygen atoms in one product molecule.

14 Mw of the product numeric the molecular weight of the product.
15 metabolic pathway number of pathway

enzymatic steps
numeric the number of enzymatic steps to form the product counting from the closest central

metabolic precursor.
16 ATP cost per product

molecule
numeric the number of ATP required to form one product molecule from the closest central

metabolic pathway precursor.
17 NADH/NADPH cost per

product molecule
numeric reducing equivalence required to form one product molecule from the closest central

metabolic pathway precursor.
18 growth and

bioreactor
condition

fermentation time, h numeric total time of yeast growth.
19 reactor type nategorical shake flask = 1, batch reactor = 2, chemostat = 3, fed batch = 4
20 culture volume, L numeric working volume of the cultivation vessel.
21 medium type categorical the type of medium used (e.g., rich medium, defined medium and minimal medium).
22 temperature, °C numeric cultivation temperature.
23 pH numeric cultivation pH.
24 nitrogen sources categorical nitrogen content in the growth media (on a scale of 1−3, 3 is the most sufficient).
25 genetic engineering number of genes modified numeric the total number of genes modified, including deletion of native genes, overexpression of

native genes, and expression of heterologous genes.
26 number of genes deleted numeric the number of genes knockout.
27 number of native genes

overexpressed
numeric the number of native genes overexpressed.

28 number of heterologous
genes

numeric the number of heterologous genes expressed.

aNote: Numbers 1, 2, 5, 6, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, and 28 are directly from GPT-4 output. Numbers 3, 4, 7, 8, 10, 11, 12, 13, 14, 15,
16, and 17 require molecule inventory for converting GPT information into feature variables. Numbers 24, 26, 27, and 28 require manual
correction. If one feature was not stated in the article, it was left blank in the data set. Supplementary File 2 describes categorical number
assignment.
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our ML model does not use metabolic flux features. By
integration with genome-scale models, ML may combine with
flux balance analysis for computational strain design.2

■ CONCLUDING REMARKS
Our work aims to leverage the power of GPT to automate
knowledge mining from the existing literature for supporting
ML applications. Here, GPT-4 can process vast amounts of
information, reducing the effort researchers need to spend on
literature analysis. Particularly, model microbial hosts, such as
S. cerevisiae and E. coli, have tens of thousands of relevant
articles. There are great opportunities to use GPT to
revolutionize biomanufacturing data science and implement
ML/transfer learning to accelerate design-build-test-learn for
microbial factory development.

■ METHODS
Data Extraction From Journal Articles. The GPT-3.5

version39 used was between the dates 3/10 to 3/15/2023. The
GPT-4 version was between 3/16 and 4/2/2023. Data
extraction and feature organizations were done in a semi-
automated fashion because GPT-4 was only available through
OpenAI’s website. The workflow can be summarized as
follows: Label article sections + enter prompts → Record GPT
response → Manual quality check → Convert the information
into ML-ready data set based on molecule inventory and
feature table
First, text files for the article sections (title, abstract, method,

results, and text-based tables) were labeled and then input into
GPT along with the corresponding prompt sentence (Table 1,
the prompt sentences were designed based on our previous
study).2 Second, GPT-4’s responses were recorded, and the

Figure 3. Comparison of the manually extracted Yarrowia data set with the GPT-4 extracted Yarrowia data set. (a) Feature importance determined
by using a random forest regressor, ranked from high to low. (b) Normalized feature variance. Legend: In our visualizations, the manually extracted
data set is purple, the GPT-4 extracted data set is yellow, and their overlap appears brown.

Figure 4. PCA using K-means unsupervised learning. (a) PCA of the manually extracted data set. (b) PCA of GPT-4 extracted data set. Note the
axis scale difference between panels a and b.
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data correctness was checked manually. Third, the extracted
information was transformed into an ML-ready format via the
feature table. The extracted data and study citations were
deposited in both Supplementary File 2 and an online database
ImpactDB (https://impact-database.com/, currently under
development). To build the molecule inventory, thermody-
namics data for substrates and products were obtained from
the NIST webbook (https://webbook.nist.gov/chemistry/) or
eQuilibrator 3.0 (https://equilibrator.weizmann.ac.il/). Path-
way enzyme steps, ATP, and NAD(P)H costs were estimated
either by consulting KEGG42 (https://www.genome.jp/kegg/)
or reading the pathway map in relevant journal articles.
Manual and AI-Extracted Data Analysis, Data Pre-

processing, and ML. All classical ML algorithms were
implemented using the scikit-learn Python package. The
parameters chosen for the ML model comparative test were
tabulated in Supplementary Table 2. For the calculation of
feature variances in comparing manually extracted data and AI-
extracted data, features were normalized with their mean values
and then the variances were calculated. The feature importance
was determined by training an RF regressor and extracting the
corresponding weights. The clustering of PCA space was done
by K-means unsupervised learning using a cluster number of 6,
and Euclidean distance was used to determine the distance
between cluster centroids. Data preprocessing for both ML and
TL are specified in the following steps. A simple imputation
was performed, with missing values as zero to maintain its

biological meaning. A stratified data split was performed to
ensure that at least 20% data of each product class were
included in the testing data. Categorical data were encoded
using ordinal encoding, enabling feature comparison after
training and testing.
Transfer Learning via Pretrained-encoder and RF

with Instance-transfer. Transfer learning leverages knowl-
edge gained from solving one task and applies it to improve the
performance of a related but distinct task. It uses the learned
representations or knowledge acquired during the training of a
pre-existing model, often referred to as the “source” task, and
applies this knowledge to a different, “target” task. In this work,
we adopted two approaches: fine-tuning a pretrained encoder−
decoder and instance transfer on RF. When tuning the
pretrained encoder−decoder, we used a slow learning rate, so
the model updated on the new learning task while retaining
knowledge from the previous task. Conversely, instance
transfer primarily combines the source and target data sets.
We first trained the autoencoder structure on all Y. lipolytica as
source data, then transferred the encoder by freezing the layers
to retrain it on R. toruloides data without astaxanthin data. The
resulting embedding was then used to test the RF model. The
best result for predicting different numbers of heterologous
genes used the first encoder-decoder model in Table 3. We
implemented three distinct encoder−decoder structures to
predict the product titer. Each structure varied in terms of the
loss functions, their overall structure, and the methods

Figure 5. Y. lipolytica titer predictions in the test dataset using a random forest ensemble learner.
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employed for dimensionality reduction. Note that all layers
were fully connected, and early stopping was applied in both
pretraining and retraining to prevent overfitting due to noise
and outliers. The model architectures were summarized in
Table 3 and illustrated in Supplementary Figure 6. The loss
equation is a quality measure of the model. Reconstruction loss
was calculated as the MSE between the original x and
embedded x, and the l1 loss (absolute error loss) was the
regression score calculated after encoding. Triplet loss was
calculated as the Euclidean distances between the negative
sample/positive sample and the anchor, then applying the
Rectified Linear Unit on the difference between the distances
added by the margin. The weights of the neurons with ReLU
activation were initialized using 'He' initialization37 for all
experiments. Latent space dimension reduction was the
percentage of features reduced from the original data set.
The resulting performance metrics for the regression task to

predict astaxanthin product titers are shown in Supplemental
File 1.
The corresponding 0, 2, and 4 heterologous gene

expressions samples were encoded as input data, and the

prediction was performed by training a separate RF on a
synthetic data set obtained by bagging with replacement 100
times on all astaxanthin data since the sample size for
astaxanthin is small. The RF instance transfer was performed
by the following steps. To balance the R. toruloides’ effect on
the prediction due to its small size, we augmented the R.
toruloides data to three times its initial size to form the
combined data set. The same data preprocessing was followed.
The model was then tuned on the new training set, and
prediction is done using Astaxanthin samples with 0, 2, 4, and
6 heterologous genes expressed respectively. The trained
model was used to make predictions about the product titer.
All ML and TL codes are available at https://github.com/
wenyuli23/SyntheticBiologyTL.

■ ASSOCIATED CONTENT
*sı Supporting Information
The Supporting Information is available free of charge at
https://pubs.acs.org/doi/10.1021/acssynbio.3c00310.

GPT-4’s response screenshots and additional details of
the machine learning workflow (PDF).

Figure 6. TL prediction for astaxanthin production in R. toruloides. (a) Zero heterologous gene expressed. (b) Two heterologous genes expressed.
(c) Four heterologous genes expressed. (d) Six heterologous genes expressed.

Table 3. Details of the Encoder−Decoder Structure

loss equation model structure latent space dimension reduction

1 L_tot = L_Reconst + l1_weight × L_l1 2-layer encoder +2-layer decoder with normalization 50% reduction
2 L_tot = triplet loss + l1_weight × l1_penalty 50% reduction
3 L_tot = L_Reconst + l1_weight × L_l1 0% reduction
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GPT-4-extracted Y. lipolytica and R. toruloides biopro-
duction database (XLSX).
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