
Continual Release of Differentially Private Synthetic Data
from Longitudinal Data Collections

Mark Bun1, Marco Gaboardi1, Marcel Neunhoeffer2, 3, and Wanrong Zhang4

1Boston University, Boston, USA
2Institute for Employment Research, Nuremberg, Germany
3Ludwig-Maximilians-Universität, Munich, Germany
4Harvard University, Cambridge, USA

Abstract

Motivated by privacy concerns in long-term longitudinal studies in medical and social science
research, we study the problem of continually releasing differentially private synthetic data
from longitudinal data collections. We introduce a model where, in every time step, each
individual reports a new data element, and the goal of the synthesizer is to incrementally
update a synthetic dataset in a consistent way to capture a rich class of statistical properties.
We give continual synthetic data generation algorithms that preserve two basic types of
queries: fixed time window queries and cumulative time queries. We show nearly tight upper
bounds on the error rates of these algorithms and demonstrate their empirical performance
on realistically sized datasets from the U.S. Census Bureau’s Survey of Income and Program
Participation.

Please cite as: Mark Bun, Marco Gaboardi, Marcel Neunhoeffer, and Wanrong Zhang. 2024. Continual
Release of Differentially Private Synthetic Data from Longitudinal Data Collections. Proc. ACM Manag.
Data 2, 2, Article 94 (May 2024), 26 pages. https://doi.org/10.1145/3651595

1 Introduction

In a longitudinal study, research subjects are repeatedly observed over an extended period of time. Longi-
tudinal studies are essential in medicine and public health, where they are used to establish risk factors for
disease (indeed, the term “risk factor” itself comes from the influential Framingham Heart Study [36]); in
developmental psychology to track physical, social, and emotional development through childhood and aging;
in business studies to understand business growth and competition and how they affect the credit and labor
markets; and in economics to understand employment and income levels and their relation to education,
family, and significant life events. Longitudinal designs can be advantageous over single-shot designs in that
they provide insight into group and individual-level changes over time. As an example, this aspect of the
British Doctors’ survey led to the first conclusive evidence of the link between smoking and lung cancer [19].

Nevertheless, longitudinal studies come with several important practical challenges, as well as complexity in
devising sound statistical methodology. The challenge we address in this work is maintaining the privacy
of research subjects while accommodating the workflows and expectations of data analysts. Specifically, we
wish to understand when we can release longitudinal studies under the guarantees of differential privacy [20].
Toward achieving practical desiderata for analyzing longitudinal US Census Bureau data [49, 6, 5, 12], we
do so by generating differentially private synthetic data from longitudinal studies. We moreover track the
structure of the longitudinal Census studies [11, 10] by releasing synthetic data updates continuously over
time.

Analysts of privacy-protected datasets often want access in the form of synthetic data (a.k.a. synthesized
microdata), which are sets of individual records whose statistical properties are similar to those of the original
dataset. Synthetic data is a requirement for some releases, e.g., the 2020 Census of Population and Housing

1

ar
X

iv
:2

30
6.

07
88

4v
2

 [c
s.D

S]
 2

4
M

ay
 2

02
4

tabulations. In general, synthetic data facilitates exploratory data analysis and the use of existing analysis
pipelines. These are often the reasons that have motivated their use in longitudinal surveys [5, 12]. There is
a vast literature on differentially private synthetic data, starting with the work of Barak et al. [4] and Blum
et al. [7]. Ullman and Vadhan [47] showed that releasing differentially private synthetic is computationally
intractable in general, hence, most of the literature has focused on methods that are efficient in practical
scenarios [29, 27, 52, 48, 39, 42, 40, 38, 50]. These works developed a wide range of techniques for releasing
differentially private synthetic data, but none so far have addressed longitudinal studies and releasing them
continuously over time. This is what we aim to do here.

An important feature, specific to longitudinal data collections, is that every individual’s data is collected
over multiple reporting periods. Thus, changes to an individual’s data over time may be reflected in, and
can inform the study of, the population. For example, in longitudinal survey studies such as the US Census
Bureau’s Survey of Income and Program Participation (SIPP) [11], individuals are surveyed with the same
set of questions over a period of time spanning multiple reporting periods. Answers to these questions not
only summarize how the population changes over time, but also summarize the individual-level trends that
appear. For example, tracking responses to the question “Were you employed this month?” not only enables
estimating population-level unemployment and how that changes over time, but also enables monitoring
other statistics such as the lengths of unemployment spells. It is natural to require that differentially private
synthetic data from longitudinal data collections preserve this feature. This induces consistency constraints
on the way the synthetic data are generated. We will describe these constraints in more detail below, and
see the major role they play in our model.

The temporal aspect of longitudinal data collections that we just discussed also makes it natural to conduct
studies or release data repeatedly over time. For example, the results of several US Census longitudinal
studies are published continuously every year [11, 10]. While most algorithmic research in differential pri-
vacy focuses on single-shot data analysis, alternative models are well-equipped to address this aspect of
longitudinal data collections. For instance, in the continual observation model of Dwork, Naor, Pitassi, and
Rothblum [21] and Chan, Shi, and Song [15], individual data is presented to an algorithm in a streaming
fashion, and the goal of the algorithm is to produce an estimate of one or more summary statistics of the
data at every time step. In the continual observation model two notions of privacy have been considered:
"event-level" and "user-level". The latter guarantees that an algorithm’s entire sequence of outputs is insensi-
tive to changing any individual’s contribution, even if that individual’s data appears arbitrarily many times
in the stream. We will use a similar notion in our model to capture part of the longitudinal requirement.
Various problems have been studied in the continual observation model [41, 34, 8, 37, 16, 46, 33, 14, 2, 23],
primarily motivated by networking and internet monitoring applications with extremely long time horizons.
Here instead we focus on a shorter time horizon with the characteristics we discussed before.

Our model We propose the following model to formally capture the concept of continuously releasing
differentially private synthetic data from longitudinal studies. Let X be a data universe and let T be a time
horizon. In each round t = 1, . . . , T , a synthetic data generation algorithm A is given a vector of updates
Dt = (xt

1, . . . , xt
n) ∈ Xn, consisting of one update from each of n individuals, and is required to produce a

synthetic data vector D̂t = (x̂t
1, . . . , x̂t

m) ∈ Xm, consisting of one update for each of m synthetic individuals.
We consider m and n fixed over the whole time horizon. The size m of the synthetic output may differ from
the size n of the input data, as often happens in traditional differentially private synthetic data generation.

The sequence of synthetic data releases is generated with respect to a pre-specified class of queries Q =
∪T

t=1Qt = ∪T
t=1{q : (X t)n → } that is segmented according to time. Abusing notation slightly, we’ll assume

that the query segments are nested Qt ⊆ Qt+1 in that for every q ∈ Qt, the query q′(D1, . . . , Dt+1) :=
q(D1, . . . , Dt) is in Qt+1. Notice that results of queries may depend on the whole individuals’ history up to
time t.

The algorithm A should satisfy the following two requirements:

Differential privacy. A should be differentially private with respect to changing any individual’s entire
sequence of updates (x1

i , . . . , xT
i). This requirement is analogous to user-level privacy in the continual obser-

vation model. Our results are stated for a static (non-adaptive) adversary that selects neighboring datasets

2

at the beginning of the experiment but which are only revealed to the DP algorithm incrementally. This is
the original privacy model considered in the early continual release papers [21, 15].

Accuracy with respect to Q. For every t = 1, . . . , T and every query q ∈ Qt, it should hold that
q(D̂1, . . . , D̂t) ≈ q(D1, . . . , Dt). That is, the synthetic dataset produced up to time t should be accurate
with respect to the set of queries that are well-defined up to time t.

We remark once again that the accuracy requirement, combined with the fact that queries can explore the
whole individual’s history up to time t, imposes consistency constraints on the data of individuals across
the different synthetic data releases. This is necessary to capture the individual-level trends which are often
essential to longitudinal studies, as discussed above.

To see what can go wrong without explicitly incorporating consistency constraints, consider the following
first attempt at continually generating private synthetic data from longitudinal data collections: Simply
recompute a new synthetic dataset from scratch in every round. That is, in each time step t, one could apply
a single-shot synthetic data generator to the portion of the dataset observed up to time t that yields accurate
answers with respect to Qt (and, by our assumption that queries are nested, to Qt′ for every t′ < t as well).
Composition theorems for differential privacy show that the worst-case error incurred overall is roughly

√
T

times larger than the single-shot generator’s. But in addition to this automatic hit to accuracy, the synthetic
dataset produced at time t + 1 may consist of entirely different records than that at time t. This can create
inconsistency between analyses conducted on the synthetic data after each of these time steps, especially
when studying individual-level trends. For instance, without respecting consistency, it may be possible for
the number of synthetic individuals who have ever experienced a 6-month unemployment spell to decrease
from time step t to t + 1.

In contrast, our problem specification requires synthetic individuals to persist over time and for the longi-
tudinal synthetic data generator to update their records incrementally. This is challenging, as even at time
step t = 1, the synthetic data generator must prepare synthetic records (x̂t

1, . . . , x̂t
m) in anticipation of all

future queries and arbitrary future data records, as it cannot go back and change these values once they
are released. Our consistency requirement is not only natural from the standpoint of using synthetic data
from longitudinal data collections but as we shall see below, this way of thinking about the problem helps
us design algorithms whose accuracy does not need to incur a poly(T) overhead over the single-shot case.

Our results. We study continual differentially private synthetic data generation from longitudinal studies
for two fundamental classes of queries. We give theoretical error guarantees essentially matched by lower
bounds. Moreover, we apply our algorithms on several Census data examples to illustrate how these the-
oretical guarantees translate to reasonable accuracy levels for social science datasets. A motivating case
study for the problems in this paper is the US Census Bureau’s Survey of Income and Program Participation
(SIPP) [11]. The SIPP conducts monthly interviews of individuals to track income, employment, family
composition, and participation in food and unemployment assistance programs. The problem of generating
synthetic data for SIPP was previously considered in [6, 5], but without the formal protections of differential
privacy.

The two classes of queries we consider are part of the bigger class of counting queries, which are determined
by a predicate q : X t → {0, 1} and ask what fraction of the dataset satisfy q. That is, such a predicate
extends to a query defined over entire datasets D = (D1, . . . , Dt) where Di ∈ Xn by taking q(D1, . . . , Dt) =
1
n

∑n
i=1 q(x1

i , . . . , xt
i). For simplicity and clarity, we take X = {0, 1} for the classes of queries we consider.

That is, each individual contributes a new bit of data in each reporting period. The solutions we develop
for fixed time window queries (described below) naturally extend to handle categorical data with more than
2 categories.

Fixed time window queries. Suppose we wish to explore the incidence of various short-term trends
in the data. For instance, for some parameter k, we may be interested in understanding what fraction of
the population was below the poverty line in each consecutive window of k months and tracking how this
incidence changes in response to historical events (such as broader economic downturns). We study the class

3

of queries for which accuracy captures the following condition: When restricted to every time window of
width k (for every t ≥ k), the histogram of the synthetic data approximates the corresponding histogram on
the original dataset. That is, for every pattern s ∈ {0, 1}k and every time step t, the fraction of synthetic
individuals for whom (x̂t−k+1

i , . . . , x̂t
i) = s approximates the fraction of original dataset members for whom

(xt−k+1
i , . . . , xt

i) = s.

We give an algorithm for this problem that guarantees concentrated differential privacy (CDP) [22, 9], such
that the worst-case error for any histogram bin is Õ(2k

√
T/n), which improves to Õ(

√
kT/n) for “average”

bins containing at most an O(1/2k) fraction of the dataset. See Corollary 3.3 for the exact error guarantee.
Furthermore, we give a simple method by which an analyst can postprocess the generated synthetic data to
obtain estimates with significantly less bias and error Õ(

√
kT/n) for all bins. For constant k, these results

essentially match a lower bound of Ω(
√

T/n) that holds even for the easier single-shot problem of releasing
accurate answers with respect to QT when the entire dataset is revealed [9]. Moreover, accuracy for histogram
bins immediately implies accuracy for arbitrary queries defined over contiguous time windows of length k.
If a query q can be written as a linear combination q(xt−k+1, . . . , xt) =

∑
s∈{0,1}k ws ((xt−k+1, . . . , xt) = s),

then the synthetic data has error Õ(2k‖w‖2
√

T/n) with respect to q.

Cumulative time queries. In addition to understanding phenomena over fixed time windows, we may
also be interested in tracking longer-term trends over individual’s bitstrings. When X = {0, 1}, a natural
statistic to keep track of is the Hamming weight (cumulative number of 1’s) of individuals’ histories. This,
for instance, enables tracking, for every time step t and every value b, the fraction of individuals who have
been below the poverty line for at least b out of the first t months. We give a CDP algorithm for this
problem with worst-case error Õ(

√
T/n), which nearly matches a lower bound of Ω(

√
T/n) that again holds

even for the final single-shot problem.

Our algorithms for both problems follow a natural two-stage approach. For each time step t, in the first stage,
we privately compute noisy estimates for the new queries in Qt. In the second stage, we identify updates to
the synthetic data that make it approximately consistent with these noisy statistics. For both problems we
consider, the first stage is straightforward from standard techniques from the differential privacy literature:
Independent noise addition to producing noisy histograms in the case of fixed time window queries and an
adaptation of the classic tree-based aggregation mechanism [21, 15] for cumulative time queries.

The second stage, in each case, requires additional ideas. For the fixed time window problem, our ability to
generate synthetic bits that will fit the new noisy statistics requires us to post-process these statistics so that
they meet the following consistency constraints: For every z ∈ {0, 1}k−1, we have pt

z0 + pt
z1 = pt−1

0z + pt−1
1z ,

where pt
s denotes the number of synthetic records that end in the substring s at time t. That is, the number

of synthetic records ending with the suffix z at time t−1 must be identical to the number of synthetic records
ending with either z0 or z1 at time t.

We solve this set of consistency constraints such that the error on each histogram bin can be written as a
certain linear combination of errors of the noisy statistics generated in stage 1. We can then leverage the
independence of these errors to give a sharp bound on the post-processed errors.

Another issue in synthetic data generation is the possibility that noisy histogram bin counts may go negative.
Naïvely clamping counts to be nonnegative does not work, as we cannot resurrect nonzero counts from zero
counts at subsequent time steps. We overcome this issue by padding the initial synthetic dataset so that
every histogram bin is well-represented. With high probability over the entire run of the algorithm, no noisy
counts will ever go so negative to cancel out the padding completely. Note that while the padding introduces
bias into the estimates of each histogram bin, the amount of this bias is public information and can be
corrected in additional post-processing if the analyst chooses to do so.

Generating the next round of synthetic bits is somewhat simpler for cumulative time queries. But its
feasibility relies on the statistics computed in stage 1 to satisfy the following two monotonicity constraints:
For every value of b and t, the estimated count of individuals whose data has Hamming weight at least b
by time t must be (1) at least the estimate produced for weight ≥ b at time step t− 1 and (2) at most the
estimate produced for weight ≥ b − 1 at time step t − 1. The first condition corresponds to the fact that

4

(synthetic) individuals’ Hamming weights can only increase over time. The second corresponds to the fact
that Hamming weights can only increase by at most 1 each time step. Neither condition is automatically
guaranteed by the tree-based aggregation mechanism but can be ensured by an additional monotonization
procedure that adapts a technique from [15] for ensuring the monotonicity condition (1).

1.1 Related work

While, to our knowledge, the problem of continuously releasing differentially private synthetic data from
longitudinal studies has yet to be studied, solutions to related questions have previously appeared in the
differential privacy literature. Motivated by the problem of counting distinct elements in data streams,
Ghazi, Kumar, Manurangsi, and Nelson [28] studied variants of our cumulative time queries problem. In
their terminology, our cumulative time queries problem corresponds to answering CountOcc≥b queries, for
all b simultaneously, in their cumulative, item-level DP, bundle setting. Our solution also immediately
implies an Õ(

√
T/n)-error algorithm for answering CountOcc=b queries for all b simultaneously in their time

window, item-level DP, bundle setting that follows from the fact that the number of individuals producing
bit 1 exactly b times between time steps t1 < t2 can be expressed as the difference between the number of
individuals with Hamming weight at least b up to time t2 and the number of individuals with Hamming
weight at least b−1 up to time t1. Using similar constructions to ours (and also building on a prior reduction
of Bolot, Fawaz, Muthukrishnan, Nikolov, and Taft [8]), Ghazi, Kumar, Manurangsi, and Nelson [28] studied
these and related problems when the goal is to answer queries for any fixed single value of b. Our algorithm
simultaneously permits accurate estimation of these queries for all b while also incrementally generating
synthetic data matching these query answers.

Several works have studied how to privately release statistics of longitudinal data collections under the
stronger constraint of local differential privacy. Google’s RAPPOR system [25] enables tracking the
population-level average of a single Boolean statistic (corresponding to our fixed time windows problem
with k = 1) under a heuristic assumption that each individual’s bit flips its value only a small number of
times. These ideas were developed further by Erlingsson, Feldman, Mironov, Raghunathan, Talwar, and
Thakurta [24], who gave an algorithm with error that scales with an upper bound on the number of times
any individual’s bit can flip its value rather than the overall time horizon. And while it is not posed as
a synthetic data generation problem, the task of incrementally generating synthetic data from their noisy
estimates is immediate when k = 1. Joseph, Roth, Ullman, and Waggoner [35] studied a similar problem,
but in a model where it is further assumed that individuals come from distinct subpopulations, and in each
time step, each individual independently draws a fresh bit from their subpopulation-specific distribution.
Additional work on continual frequency estimation in the local model includes [18, 44, 51, 3].

For simplicity, we implement our algorithm for synthetic data release for cumulative time queries using the
classic binary tree counter in Section 5. However it could be implemented using an arbitrary differentially
private algorithm for tracking the sum of a stream of bits. Our formal description of Algorithm 2 is indeed
stated in terms of a generic stream counter algorithm. Stream counters enjoying improved concrete accuracy
guarantees have been the focus of recent attention [32, 17, 26, 31], and using them in place of the tree counter
in our work may yield improved practical results.

2 Preliminaries

2.1 Continual synthetic data

Let X be a data universe and T be a known time horizon. The data of an individual xi = (x1
i , . . . , xT

i) is a
sequence of universe items where each xt

i ∈ X is the report arriving at time t. For a dataset of n individuals,
let Dt = (xt

1, . . . , xt
n) be the vector of data reported at time t. The entire dataset may thus be written

as D = (D1, . . . , DT). For simplicity throughout the rest of this paper, we will take X = {0, 1} unless
otherwise stated. We are interested in releasing synthetic data that is accurate with respect to a class of
queries Q = ∪T

t=1Qt, where each Qt is a set of queries of the form q : (X t)∗ → that are defined on prefixes
of length t.

5

Continual release of synthetic data. The goal of a synthetic data generation algorithm is as follows.
In each round t, it receives as input a vector of reports Dt = (xt

1, . . . , xt
n). It then produces a synthetic

vector of reports D̂t = (x̂t
1, . . . , x̂t

m). For parameters α, β ∈ (0, 1), we say that the synthetic data generation
algorithm is (α, β)-accurate with respect to Q = ∪T

t=1Qt if, for every input dataset D, with probability
at least 1 − β over the coin tosses of the algorithm, it holds that for every t = 1, . . . , T and q ∈ Qt,
|q(D1, . . . , Dt)− q(D̂1, . . . , D̂t)| ≤ α.

In this work, we focus on releasing synthetic data for two basic classes of counting queries. A counting query
is specified by a predicate q : X t → {0, 1}, for some 1 ≤ t ≤ T , and extends to an entire dataset by averaging:
q(D1, . . . , Dt) = 1

n

∑n
i=1 q(x1

i , . . . , xt
i). The classes of queries we study are:

Fixed time window queries. Fix a parameter k ∈ {1, . . . , T}. For each string s ∈ {0, 1}k, and each
t = k, k + 1, . . . , T , define the query qt

s(x1, . . . , xt) = ((xt−k+1, . . . , xt) = s). The query qt
s indicates whether

the length-k suffix of data item x that has arrived by time t equals s. For each t, the set of queries {qt
s}s∈{0,1}k

jointly capture this histogram of k-bit suffixes of the portion of the data that has arrived by time t.

Cumulative time queries. For each b = 0, 1, . . . , T and each t = 1, . . . , T , define the query
ct

b(x1, . . . , xt) = (x1 + · · · + xt ≥ b). That is, ct
b indicates whether the portion of data item x that has

arrived by time t has Hamming weight at least b.

Reducing cumulative time queries to fixed time window queries. If we set k = T , observe that
each query ct

b may be written as ct
b(x) =

∑
s∈{0,1}k:|s|≥b qt

s(x). (Here, we are adopting the convention that
each xt

i = 0 for t ≤ 0.) This implies that an accurate synthetic data generator for fixed time window queries
with k = T implies one for the cumulative time queries problem with a roughly 2k-factor blowup in error.
While this shows that the problems are related, our algorithm which is tailored to cumulative time queries
achieves significantly better accuracy.

2.2 Differential privacy background

Differential privacy is a mathematical notion of privacy for statistical data analysis which bounds the amount
of information an adversary can learn about any individual. Given a space of datasets X T , we say that two
datasets D, D′ are neighboring if they differ in one individual’s information. Zero-concentrated differen-
tial privacy (zCDP) [22, 9] is a variant of differential privacy that quantifies the closeness of distributions
differently, and is especially amenable to analyzing Gaussian noise addition.

Definition 2.1 (Zero-Concentrated Differential Privacy (zCDP) [9]). A randomized algorithmM : X T → R
is ρ-zCDP if for every pair of neighboring datasets D, D′ ∈ X T , and for all α ∈ (1,∞), Dα(M(D)||M(D′)) ≤
ρα, where Dα denotes the Rényi divergence of order α.

Zero-concentrated differential privacy is also desirable for its straightforward and tight composition, which
characterizes how privacy degrades as performing more computations on the data.

Theorem 2.1 (zCDP Composition). Let M1 : X T → R is ρ-zCDP and M2 : X T → R is ρ′-zCDP, then
the mechanism defined as (M1,M2) satisfies (ρ + ρ′)-zCDP.

The discrete Gaussian mechanism [13] with parameter σ2 takes in a function q, dataset D, and outputs
q(D) +N (0, σ2). The noise scale is fully specified as σ2 = ∆q

2ρ , given the privacy parameter ρ and the query
sensitivity ∆q. The variance of N (0, σ2) is at most σ2.

Definition 2.2 (Discrete Gaussian [13]). The discrete Gaussian distribution with mean 0 and scale σ is
denoted N (0, σ2). It is a probability distribution supported on the integers and defined by Pr[X = x] =

exp(− x2
2σ2)∑

y∈Z
exp(− y2

2σ2)
.

6

3 Generating Synthetic Data for Fixed Time Window Queries

In this section, we consider fixed time window queries. The goal is to produce differentially private synthetic
data such that the histogram of the synthetic data approximates the corresponding histogram on the original
dataset for every time window of width k.

3.1 Algorithm

Algorithm 1 Private synthetic data generation preserving fixed time window queries
Input: Dataset consisting of n users/streams (D1, D2, . . . , DT) where Dt = (xt

1, . . . , xt
n) is the vector

related to the data produced at time t, a known time horizon T , the time window length k, privacy
parameter ρ, the number of padding records per bin npad.
Output: A starting dataset D̂k of n∗ people with k columns. Update vectors D̂t = (x̂t

1, . . . , x̂t
n∗) for all

steps t > k.
for t← k to T do

Calculate the count of individuals that have suffix (xt−k+1
i , . . . , xt

i) equal to s as Ct
s.

Construct a DP histogram consisting of 2k bins, where the value of each bin corresponding to
s ∈ {0, 1}k is the noisy count of individuals that have suffix (xt−k+1

i , . . . , xt
i) equal to s as

Ĉt
s = Ct

s + npad +N (0, T −k+1
2ρ).

if t = k then
Set pt

s = Ĉt
s for every s ∈ {0, 1}k.

Output any dataset Dk such that the number of people
that have string (x1

i , . . . , xk
i) equal to s is equal to Ĉt

s.
else

for every z ∈ {0, 1}k−1. do
Set ∆z = 1

2 (pt−1
0z + pt−1

1z − (Ĉt
z0 + Ĉt

z1))
if ∆z is not an integer then

Sample bz ∈ {−1/2, 1/2} uniformly at random.
Set pt

z0 = Ĉt
z0 + ∆z + bz and pt

z1 = Ĉt
z1 + ∆z − bz.

else
Set pt

z0 = Ĉt
z0 + ∆z and pt

z1 = Ĉt
z1 + ∆z.

end if
Select pt

z1 indices, denoted by Iz1 from the index set
Iz = {i | (xt−k+1

i , . . . , xt−1
i) = z}.

Update x̂t
i ← 1 for i ∈ Iz and x̂t

i ← 0 if i ∈ Iz \ Iz1.
end for
Output D̂t.

end if
end for

This section presents our algorithm (Algorithm 1) for generating differentially private synthetic data that
preserves the histogram over every fixed window of length k. Our algorithm consists of two phases at each
step. The first phase is to compute the noisy private statistics about the data in the most recent length-k
window. The second phase is to construct synthetic data according to the noisy statistics. We elaborate on
the details of each phase below.

Producing noisy statistics. At each update step of the algorithm, i.e., time steps t = k, k + 1, . . . , T ,
we represent (Dt−k+1, . . . , Dt) as a histogram with a bin for each string of length k, and the value of each
bin is the number of appearances of that string in this segment of the dataset. Our algorithm eventually
runs for a total of T − k + 1 update steps. So to privatize the statistics, we construct a DP histogram by
independently adding discrete Gaussian noise to each bin: Ĉt

s = Ct
s + npad +N (0, T −k+1

2ρ), where npad is a
padding parameter we will discuss later.

7

Generating synthetic data. At time t = k, we initialize the synthetic dataset to be any dataset such
that its histogram representation is consistent with the DP histogram at time t = k. For t > k, when we
move a sliding window from time t to time t + 1, the two windows overlap on a segment of length k − 1.
Given any overlapping segment z ∈ {0, 1}k−1, synthetic data ending in suffix z0 or z1 at time t+1 must arise
by extending synthetic data ending in suffix 0z or 1z at the previous time t. That is, the synthetic data we
generate to approximately fit the new noisy counts Ĉs must be consistent with this overlapping region. More
precisely, let pt

s denote the number of appearances of suffix s in the synthetic data in the window of time t.
Then the synthetic data histogram at t+1 must satisfy the consistency constraint that pt

0z +pt
1z = pt+1

z0 +pt+1
z1 .

To enforce this constraint, we introduce a correction term ∆z = 1
2 (pt

0z +pt
1z− (Ĉt+1

z0 + Ĉt+1
z1)), which depends

on the synthetic data histogram at time t, as well as the noisy DP histogram at time t+1. We set the target
synthetic data counts to

pt+1
z0 = Ĉt+1

z0 + ∆z (1)
pt+1

z1 = Ĉt+1
z1 + ∆z. (2)

To generate synthetic data, the algorithm then extends pt+1
z0 records that ended in z at time t by the bit 0,

and similarly, extends pt+1
z1 records ending in z by 1. Note that the correction term ∆z may be a half-integer.

If this is the case, we set

pt+1
z0 = Ĉt+1

z0 + ∆z + bz (3)
pt+1

z1 = Ĉt+1
z1 + ∆z − bz, (4)

where bz is a rounding term which takes value − 1
2 with probability 1

2 , and 1
2 with probability 1

2 .

We remark that it is possible to view one step of synthetic data generation in each of our algorithms as
projecting onto the space of valid synthetic datasets, which can be formulated as an optimization prob-
lem: Minimize the distance between the privatized query answers and the consistent query answers while
respecting all the consistency constraints. This bears conceptual similarity to classic projection techniques
in differential privacy [43, 30], with the key difference being that those algorithms can exploit the fact that
all of the data appears in a single batch, while our algorithm needs to perform projections incrementally.

Note also that adding noise could result in negative numbers in the DP histograms, which is invalid for
generating synthetic data. One possible way to address it is clamping the noisy counts to be non-negative,
but this will break the consistency guarantee when continually releasing the synthetic data.

Instead, we introduce a padding technique to avoid the possibility of negative noisy counts by adding npad
“fake” people to each histogram bin at the very beginning. The appropriate choice of npad depends on the
privacy parameter, time horizon, and the target error probability βtarget. Intuitively, when adding npad “fake”
people in each bin, a negative count still occurs if the noise random variable Yi goes below −npad. This small
error probability can be controlled by estimating the tail of the noise distribution. Since we are roughly adding
discrete Gaussian noise with variance σ2 = T −k+1

2ρ , we consider the maximal deviation of the independent

noise draws over the 2k(T − k + 1) bins. We have Pr(mini Yi ≤ −npad) ≤ 2k(T − k + 1) exp
(
− npadρ

T −k+1

)
.

Taking npad =
√

T −k+1
ρ log 2k(T −k+1)

βtarget
ensures that with probability at least 1− βtarget, the DP histograms

for all T − k + 1 update steps are all non-negative. Note that the more careful analysis of our algorithm also
needs to account for the correction terms ∆ and rounding terms b.

3.2 Theoretical guarantees

We now provide our theoretical analysis for Algorithm 1. We first argue its privacy and then describe the
accuracy guarantee which measures the additive error of the fraction of every substring within a fixed window
in the synthetic data.

Privacy. Privacy of Algorithm 1 follows from composition of the noise-adding mechanism. The sensitivity
of the count Ct

s is 1. Using the discrete Gaussian mechanism guarantees
(

ρ
T −k+1

)
-zCDP per update step.

By composition for zCDP, we have ρ-zCDP for the entire algorithm.

8

Theorem 3.1. Algorithm 1 satisfies ρ-zCDP.

Accuracy. For each z ∈ {0, 1}k−1 and c ∈ {0, 1}, denote the true count ending in zc in the original data at
time t be Ct

zc. We are interested in controlling the additive deviation |p̂t
zc − (Ct

zc + npad)| between the count
of any given suffix in the synthetic data and the padded count from the original data. Perhaps surprisingly,
we can maintain a time-uniform bound on the error with high probability. At a high level, we carefully
characterize the exact noise propagation and show that the errors are mean 0 with the same variance over
time. Then we can apply a Gaussian tail bound to analyze the error per histogram bin. An additional
log(2k(T − k + 1)) for the worst-case error comes from a union bound over at most 2k(T − k + 1) bins.
Theorem 3.2. Let Ct

s be the true count of data records ending in s at time step t, and pt
s be the count in the

synthetic data obtained by Algorithm 1. For every β ∈ (0, 1), with probability at least 1 − β, the maximum
additive error is bounded by

max
s,t
|pt

s − (Ct
s + npad)| ≤

(√
T − k + 1

ρ
+ 1√

2

)√
log
(

2k(T − k + 1)
β

)
. (5)

In particular, as long as npad is at least the expression on the right-hand-side of equation 5, the noisy counts
pt

s will all be non-negative and the algorithm will succeed at producing synthetic data.

Proof of Theorem 3.2. Let us briefly recall our quantities of interest and various intermediate quantities we
generate along the way:

1. Ct
s is the true count of data records ending in s at time step t.

2. C
t

s = Ct
s + npad is the true count on the padded dataset.

3. Ĉt
s is the noisy count arising from the DP noisy histogram algorithm applied to the padded dataset.

4. pt
s is the corrected estimated count obtained using Equations 3 and 4.

To make the accuracy analysis easier to follow, we denote the total number of update steps of Algorithm 1
by R = T − k + 1. Let us also index update steps by r = 0, 1, . . . , R− 1, where update step r occurs at time
step t = r + k.

Our algorithm uses the update rule stated in Equations 3 and 4, where ∆z = 1
2 (pr

0z + pr
1z − (Ĉr+1

z0 + Ĉr+1
z1)),

for any r ≥ 1. This is equivalent to

pr+1
z0 = 1

2 Ĉr+1
z0 + 1

2 (pr
0z + pr

1z − Ĉr+1
z1) + bz · ez (6)

pr+1
z1 = 1

2 Ĉr+1
z1 + 1

2 (pr
0z + pr

1z − Ĉr+1
z0)− bz · ez, (7)

where bz ∈ {− 1
2 , 1

2} is a random rounding term, and ez = 1[∆z is not an integer]. Recalling that C̄r
s =

Cr
s + npad and using the identity C

r

0z + C
r

1z = C
r+1
z0 + C

r+1
z1 we can decompose the error as follows.

pr+1
z0 − C̄r+1

z0 = 1
2(Ĉr+1

z0 − C̄r+1
z0) + 1

2(pr
0z + pr

1z − (C̄r
0z + C̄r

1z))

− 1
2(Ĉr+1

z1 − C̄r+1
z1) + bz · ez.

(8)

For indices i = 1, . . . , r and j = 1, . . . , 2i+1, let Xi,j denote an independent random variable drawn from the
discrete Gaussian N (0, R

2ρ), and let Yi,j ∈ {−1, 1} denote an independent Rademacher random variable.

9

We claim that the error pr
s − C

r

s, denoted by Θr, is distributed as

Θr =



X1,1 r = 0
r−1∑
i=1

 2i∑
j=1

2−iXi,j +
2i−1∑
j=1

2−iYi,jEi,j


+

2r+1∑
j=1

2−rXr,j +
2r−1∑
j=1

2−rYr,jEr,j r ≥ 1,

(9)

for some random variables Ei,j ∈ {0, 1} that may be arbitrarily correlated with each other, with the Xi,j ’s,
and with the Yi′,j′ for i′ > i, but are independent from Yi′,j′ for i′ ≤ i.

We will prove Equation equation 9 by induction. It is easy to verify that when r = 0, we have Θ0 = X1,1,
and when r = 1, we have from Equation equation 8 that Θ1 =

∑4
j=1

1
2 X1,j + 1

2 Y1,1E1,1. Suppose Equation
equation 9 holds for update step r. Because of equation 8 and symmetry of the discrete Gaussian, we have

Θr+1 = 1
2X1,1 + 1

2(Θr
1 + Θr

2) + 1
2X1,2 + 1

2Y1,1E1,1

=
r∑

i=1

 2i∑
j=1

2−iXi,j +
2i−1∑
j=1

2−iYi,jEi,j


+

2r+2∑
j=1

2−(r+1)Xr,j +
2r∑

j=1
2−(r+1)Yr,jEr,j ,

where Θr
1, Θr

2 are independent and distributed as in equation 9. Note that E1,1 may depend arbitrarily on
Ei,j , Xi,j , Yi,j for i > 1, but is independent from Y1,1. Hence, Equation equation 9 holds for update step
r + 1, completing the inductive proof of the claim.

We now analyze the variance of Θr by analyzing the contributions of the discrete Gaussian terms Xi,j and
the rounding terms Yi,jEi,j separately. Letting

Gr =
r−1∑
i=1

2i∑
j=1

2−iXi,j +
2r+1∑
j=1

2−rXr,j

and using the fact that each Xi,j is an independent discrete Gaussian with variance σ2 = R
2ρ , we get that

the variance of Gr is

Var(Gr) =
r−1∑
i=1

2i∑
j=1

2−2iσ2 +
2r+1∑
j=1

2−2rσ2 =
(

2−r +
r∑

i=1
2−i

)
σ2 = σ2,

which is the same regardless of the update step r.

Denoting the contribution of the rounding terms by

Br =
r∑

i=1

2i−1∑
j=1

2−iYi,jEi,j ,

we observe that −1/2 ≤ Br ≤ 1/2 with probability 1. Moreover, by linearity of expectation and the fact
that every Yi,j is independent from Ei,j , we have that [Br] = 0. Therefore, Br is a subgaussian random
variable with variance at most 1/4, i.e., Pr[Br ≥ λ] ≤ e−8λ2 for all λ ≥ 0.

We now combine the two sources of errors. Since Gr and Br are (dependent) subgaussians with variances
σ2 = R/2ρ and 1/4 respectively, their summation is subgaussian with variance (σ + 1/2)2 [45]. Thus, we
have the following tail bound for every λ ≥ 0.

Pr(|pr
s − (Cr

s + npad)| ≥ λ) ≤ exp
(
− λ2

2(σ + 1/2)2

)
.

10

Applying a union bound over the total of 2kR bins, we have

Pr

 ∨
r=0,1,...,R−1

s∈{0,1}k

|pr
s − (Cr

s + npad)| ≥ λ

 ≤ 2kR exp
(
− λ2

2(σ + 1/2)2

)
.

To ensure 2kR exp
(
− λ2

2(σ2+1/2)

)
≤ β, it suffices to take

λ =
(√

R
ρ + 1√

2

)√
log(2kR

β). Substituting T − k + 1 back in for R gives: λ =(√
T −k+1

ρ + 1√
2

)√
log(2k(T −k+1)

β).

Corollary 3.3. Let β ∈ (0, 1) and
npad =

(√
T −k+1

ρ + 1√
2

)√
log(2k(T −k+1)

β). With probability at least 1−β, the maximum relative error (with
respect to the original fraction Ct

s/n) is bounded by

max
s,t

∣∣∣∣ pt
s

n∗ −
Ct

s

n

∣∣∣∣ ≤ O

(√
T (k + log(T/β))

n
√

ρ
(1 + 2kCt

s

n
)
)

.

Proof. For each s and t we may write∣∣∣∣ pt
s

n∗ −
Ct

s

n

∣∣∣∣ ≤ ∣∣∣∣ pt
s

n∗ −
(Ct

s + npad)
n∗

∣∣∣∣+ npad

n∗ +
∣∣∣∣Ct

s

n
− Ct

s

n∗

∣∣∣∣
Let λ =

(√
T −k+1

ρ + 1√
2

)√
log(2k(T −k+1)

β). Condition on the good event that |pt
s − (Ct

s + npad)| ≤ λ for
every s and t, which from the proof of Theorem 3.2, happens with probability at least 1 − β. Then in
particular, we have n ≤ n∗ ≤ n + 2k+1λ, which implies that for every s, t, this expression is at most

λ

n∗ + npad

n∗ + Ct
s

n

n∗ − n

n∗ ≤ 2λ

n
+ 2k+1λ

n

Ct
s

n
.

This statement gives an upper bound on the worst-case error of the synthetic dataset relative to the original
dataset. This 2k dependence affects multiplicative error, so its its main impact is on large histogram bins
(with larger Ct

s), where the signal is large anyway. On true bins which are “almost average” in the sense
that they contain O(n/2k) entries, the total additive error is only Õ(T

√
k/n).

This answer is biased due to the padding. However, note that the parameters npad and k are public.
So an analyst with knowledge of these parameters can debias each query answer by subtracting npad

from each noisy count. The resulting maximum relative error is bounded by maxs,t
|(pt

s−npad)−Ct
s|

n ≤(√
T −k+1

ρ + 1√
2

)√
log
(

2k(T −k+1)
β

)
n

.

An interesting feature of our accuracy analysis is that it makes some use of the distribution of errors intro-
duced in the noisy histogram computation, rather than just a black-box upper bound on the magnitude of
the error. Indeed, one could analyze accuracy by applying the triangle inequality to the magnitudes of these
errors, but it would lead to worse error bounds.

11

4 Generating Synthetic Data for Cumulative Time Queries

In this section, we consider cumulative time queries, which track the Hamming weight of each individual’s
history. Specifically, we would like the synthetic data to approximately preserve the fraction of people having
at least b 1’s in their data up to time t, i.e., ct

b(D1, . . . , Dt) = 1
n #{i|x1

i +x2
i + . . .+xt

i ≥ b} for t = 1, 2, . . . , T .
In Section 2.1, we reduced cumulative time queries to fixed-time window queries. The worst-case error is
Õ(T/n) when instantiating the algorithm for fixed-time window queries with k = T . Here, we provide a
CDP algorithm for this problem with a better accuracy guarantee of Õ(

√
T/n).

4.1 Algorithm

Our algorithm, presented formally in Algorithm 2, again consists of two phases: producing private statistics
about the cumulative queries and constructing synthetic data according to the noisy statistics.

Algorithm 2 Private synthetic data generation preserving cumulative queries.
Input: Dataset consisting of n users/streams (D1, D2, . . . , DT) where Dt = (xt

1, . . . , xt
n) is the t-th vector

of data produced at time t, time upper bound T , stream counter mechanismM with a sequence of privacy
parameters (ρ1, ρ2, . . . , ρT) such that

∑T
b=1 ρb = ρ.

Output: A vector D̂t = (x̂t
1, . . . , x̂t

n) at each time step t.

for t← 1 to T do
Initialize D̂t = (0, 0, . . . , 0)T

for b← 0 to t do
Set zt

b = #{i | {x1
i + . . . + xt−1

i = b− 1 and xt
i = 1}.

Invoke the stream counter Mb to calculate the noisy
counts at time t: S̃t

b ←Mb(z1
b , . . . , zt

b).
Set Ŝt

b = min{max{S̃t
b, Ŝt−1

b }, Ŝt−1
b−1}.

Calculate ẑt
b = Ŝt

b − Ŝt−1
b .

Randomly select ẑt
b indices, denoted Ib, from the index

set I = {i | x1
i + . . . + xt−1

i = b− 1}.
Update x̂t

i ← 1 for i ∈ Ib and x̂t
i ← 0 for i ∈ I \ Ib.

end for
end for

Producing noisy statistics. Our algorithm relies on a stream counter mechanism M, which takes in a
stream of variables z1, z2, . . . , zT and produces a private estimate of the sum St =

∑t
j=1 zj at each time

t. For each b = 0, 1, . . . , T , we create an instance Mb of the stream counter to track the number of people
having at least b 1’s up to time t, denoted by St

b = #{i|x1
i + x2

i + . . . + xt
i ≥ b} for each t = 1, 2, . . . , T . To

see how to do this, let zt
b = #{i|{x1

i + . . . + xt−1
i = b− 1 and xt

i = 1}, which denotes the number of people
with exactly b− 1 1’s up to time t− 1, and also have a 1 at time t. This allows us to represent St

b as the sum
St

b =
∑t

j=1 zj
b . Note that for each value of b, every user contributes at most one value of zt

b. This ensures
that neighboring datasets induce neighboring streams for each stream counter. In Section 5, we instantiate
the stream counter using the tree-based aggregation mechanism in our experiments.

The true counts (S1
b , . . . , ST

b) are monotonically increasing because each zt
b is nonnegative. But adding noise

for privacy may violate the monotonicity of the stream. Maintaining monotonicity is essential for ensuring the
existence of consistent synthetic data in the next phase. To ensure monotonicity, we maintain a monotonized
stream as follows. In each time step t, let S̃t

b be the output of the stream counter Mb. Set the output Ŝt
b of

the monotonized counter to be Ŝt
b = min{max{S̃t

b, Ŝt−1
b }, Ŝt−1

b−1}, i.e., clamp it so that Ŝt−1
b ≤ Ŝt

b ≤ Ŝt−1
b−1. We

require the upper bound Ŝt
b ≤ Ŝt−1

b−1 because the number of people having b 1’s up to time t cannot exceed
the number of people having b−1 1’s up to time t−1. A similar idea for maintaining consistency for a single
stream counter was shown in [15] not to increase the error in any of the counts produced. Our generalization

12

of this fact shows that it continues to hold even when we require a natural monotonicity constraint across
different invocations of the stream counter.

Below, we show that our monotonization procedure does not increase the worst-case (`∞) error of the noisy
counts. In [30], it was shown how to use a different monotonization procedure to preserve the `2 error of
the vector of noisy counts. However, their procedure appears to make essential use of the fact that all of
the data is available at once, and it is an interesting question to determine whether one can obtain similar
guarantees using an algorithm that operates on data arriving incrementally.

Generating synthetic data. By post-processing, we may also privately reveal the statistics ẑt
b = Ŝt

b −
Ŝt−1

b . At time t, we update the synthetic dataset to maintain consistency with ẑt
b for every b = 1, . . . , t. To

be concrete, at time t, for the set of indices {i | x̂1
i + . . . + x̂t−1

i = b− 1}, the algorithm extends ẑt
b rows by

1, and the remaining Ŝt−1
b−1 − Ŝt

b rows by 0. This is possible because the monotonization procedure described
above ensures that ẑt

b ≥ 0 and Ŝt−1
b−1 − Ŝt

b ≥ 0.

4.2 Theoretical guarantees

Privacy. The privacy of Algorithm 2 follows from the composition of T stream counters.
Theorem 4.1. Algorithm 2 satisfies ρ-zCDP.

Accuracy. Our algorithm monotonizes the stream of counters to be Ŝt
b = min{max{S̃t

b, Ŝt−1
b }, Ŝt−1

b−1}. Our
proof relies on Lemma 4.2, showing that the error of the monotonized counter is at most that of the ordinary
stream counter, so this step will not incur additional error.
Lemma 4.2. Let the true count at time t be St

b = #{i|x1
i + x2

i + . . . + xt
i ≥ b}, the noisy count be S̃t

b, and
the monotonized noisy count be Ŝt

b. For every t = 1, 2, . . . , T , and every b = 1, 2, . . . , t, we have

|Ŝt
b − St

b| ≤ max{|S̃t
b − St

b|, |Ŝt−1
b − St−1

b |, |Ŝt−1
b−1 − St−1

b−1|}. (10)

For b = 0,
|Ŝt

b − St
b| ≤ max{|S̃t

b − St
b|, |Ŝt−1

b − St−1
b |}. (11)

Proof. The proof of Lemma 4.2 relies on the following simple inequality.

Claim 4.3. For real numbers A, B, C, D, if A ≤ B, and D ≤ C, then

|B − C| ≤ max{|A− C|, |B −D|}.

We first prove this claim. Fix A and B. Depending on C, we consider the following three cases. When A ≤
B ≤ C, |B − C| ≤ |A− C|. When C ≤ A ≤ B, |B − C| ≤ |B −D|. When A ≤ C ≤ B, |B − C| ≤ |B −D|
holds regardless of where D is relative to A, so we complete the proof for this claim.

Lemma 4.2 proceeds from Claim 4.3, which can be seen as follows. When Ŝt
b = S̃t

b, then accuracy follows
from that of the ordinary stream counter. Thus we only need to consider the two cases where Ŝt

b = Ŝt−1
b or

Ŝt
b = Ŝt−1

b−1. For the first case where Ŝt
b = Ŝt−1

b , we have S̃t
b ≤ Ŝt

b by the construction of Ŝt
b, and St−1

b ≤ St
b

because of the monotonicity of St
b. Instantiating Claim 4.3 with A = S̃t

b, B = Ŝt
b, C = St

b, and D = St−1
b ,

we have

|Ŝt
b − St

b| ≤ max{|S̃t
b − St

b|, |Ŝt
b − St−1

b |
= max{|S̃t

b − St
b|, |Ŝt−1

b − St−1
b |}.

(12)

Similarly, for the second case where Ŝt
b = Ŝt−1

b−1, we have S̃t
b ≥ Ŝt

b = Ŝt−1
b−1 by the construction of Ŝt

b, and
St−1

b−1 ≥ St
b because of the monotonicity of St

b. We then instantiate Claim 4.3 with A = −S̃t
b, B = −Ŝt−1

b−1,
C = −St

b and D = −St−1
b−1. and we have

|Ŝt−1
b−1 − St

b| ≤ max{|S̃t
b − St

b|, |Ŝt−1
b−1 − St−1

b−1|}. (13)

13

Since Ŝt
b = Ŝt−1

b−1, equation 13 is equivalent to

|Ŝt
b − St

b| ≤ max{|S̃t
b − St

b|, |Ŝt−1
b−1 − St−1

b−1|}. (14)

Combining equation 12 and equation 14, we obtain equation 10, completing the proof.

Lemma 4.2 implies that the worst-case error of Algorithm 2 is at most the worst-case error of T stream
counters, normalized by the dataset size n.
Theorem 4.4. When instantiated with an (α, β)-accurate stream counter M, Algorithm 2 is (α∗, β∗)-
accurate for
α∗ = 1

n maxb α (ρb, T − b + 1) and β∗ =
∑T

b=1 β(ρb, T − b + 1).

In the Appendix, we state the accuracy guarantee when we instantiate the tree-based aggregation mechanism
as the stream counter M.

5 Illustrating Examples

In this section, we provide examples to illustrate our approaches. We apply our algorithms to data from
the Survey of Income and Program Participation (SIPP) by the U.S. Census Bureau [11]. Unless otherwise
stated, we use noise-adding mechanisms with the variance σ2 calibrated to achieve overall 0.005-zCDP.
Further examples with simulated data and varying privacy parameters are included in the Appendix. Code
to replicate the experiments is part of the Supporting Information of this paper.

Real Data Application: Releasing Poverty Rates from the Survey of Income and Program
Participation (SIPP) We apply our Algorithm 1 to data collected in the SIPP [11]. We downloaded the
2021 sample from https://www2.census.gov/programs-surveys/sipp/data/datasets/2021/pu2021_
csv.zip and detail the pre-processing steps below. We aim to estimate the proportion of households in the
SIPP data that are in poverty.

We need to take a couple of data pre-processing steps to get the SIPP data into shape for our data synthesizer.
First, in the SIPP data, it is possible that multiple persons per household are surveyed. Thus, we first subset
the data to one longitudinal series per household. The SIPP variable ‘THINCPOVT2’ is coded as the
household income ratio to the household poverty threshold in a given month. We binarize this such that
any values of the ratio smaller than one are coded as 1 (indicating that a household was in poverty in a
given month). Finally, some households have missing values. We delete every household that has at least
one missing value.

Our final SIPP data sample consists of 23374 households (N = 23374) with 12 monthly measurements
(T = 12) for 2021 that indicate whether a household was in poverty in a given month. For our experiment,
we treat this SIPP sample as ground truth and we focus on one particular poverty indicator, “Household
income-to-poverty ratio in this month, including Type 2 individuals”.

Synthetic data for fixed time window queries. To answer fixed time window queries, we synthesize
the SIPP sample with a window size of 3 (k = 3), capturing quarterly trends. We repeat the synthesizer
1000 times. To estimate the proportion of households in poverty in a given quarter, it is natural to examine
four different quantities. First, the proportion of households in poverty for at least one month of the quarter.
Second, the proportion of households in poverty for at least two months of the quarter. Third, the proportion
of households in poverty for at least two consecutive months of the quarter. And fourth, the proportion of
households in poverty for all three months of the quarter. We present the answers based on the synthetic
data against the ground truth in Figure 1.

This shows that the synthetic data has some utility. However, ignoring the debiasing step can lead to
substantial bias. As the amount of padding is public information, applying the debiasing step is easy and

14

https://www2.census.gov/programs-surveys/sipp/data/datasets/2021/pu2021_csv.zip
https://www2.census.gov/programs-surveys/sipp/data/datasets/2021/pu2021_csv.zip

lets analysts recover unbiased results. In the Appendix, we show more results calculated directly on the
synthetic data and their debiased counterparts. A major advantage of our synthetic data approach is that
we can answer any such query written as a linear combination of histogram queries (with a fixed window
size of at most k) without any additional privacy cost.

•

Figure 1: Proportions of SIPP Households in poverty per quarter in 2021. Calculated on the synthetic data.
the density estimates show the empirical privacy noise distribution across 1000 repetitions of the experiments
with privacy parameter ρ = 0.005. X’s indicate the ground truth calculated from the SIPP data.

Synthetic data based on cumulative time queries. Finally, we apply Algorithm 2 to synthesize the
SIPP sample. With the DP synthetic data based on cumulative time queries, we can answer queries like
“How many households were at least three months in poverty in any given month”. In Figure 2, we again
repeat the synthesizer 1000 times and plot the answers to these queries using our generated DP synthetic data
versus the ground truth, with the x-axis denoting the time horizon. Our answers based on the synthetic data
averaged over 1000 repetitions accurately match the ground truth, indicating that our approach provides an
unbiased estimate of the cumulative time queries.

6 Conclusion

In this work we have studied the problem of continuously releasing differentially private synthetic data from
longitudinal studies. We have defined a formal model for this problem and showed two instances for two
class of queries inspired by census-like longitudinal data. We have provided theoretical upper bounds for
these two classes of queries and showed through examples how they can be used in practice on census data.

Synthetic data can enable analysts to answer supported queries without prior knowledge and without mod-
ifying their analysis pipelines. This is the main reason behind the demand for tabular synthetic data and
why it is a legal requirement for certain data releases. Nevertheless, synthetic data is intrinsically limited
in the scope of analyses it permits. It is important to acknowledge that synthetic data may not always
match the accuracy of DP query answers that can be released through some other data structure [1]. Our
work identifies restricted but expressive classes of queries that permit accurate synthetic data generation
algorithms. This approach aligns with the existing literature on DP single-shot synthetic data release, which
provides theoretical accuracy guarantees for specific query classes. We envision restricted synthetic data as

15

•

Figure 2: Proportion of SIPP Households in poverty for at least three months up to any given month in 2021.
In both panels, the density estimates show the empirical privacy noise distribution across 1000 repetitions of
the experiments with privacy parameter ρ = 0.005. X’s indicate the ground truth calculated from the SIPP
data.

just part of a larger privacy-preserving data access system, where after performing initial exploratory data
analysis on synthetic data, analysts may then decide to go through additional approvals to access the original
data or to more accurate estimates.

Acknowledgments

We thank Salil Vadhan for helpful comments on the presentation of this paper. The research presented in
this paper was supported by the U.S. Census Bureau Cooperative Agreement CB20ADR0160001. W.Z. is
supported in part by a Computing Innovation Fellowship from the Computing Research Association (CRA)
and the Computing Community Consortium (CCC). M.N. started to work on this project while at Boston
University.

16

References

[1] John Abowd et al. 2021. An uncertainty principle is a price of privacy-preserving microdata. In Ad-
vances in Neural Information Processing Systems. M. Ranzato, A. Beygelzimer, Y. Dauphin, P. S.
Liang, and J. Wortman Vaughan, (Eds.) Vol. 34. Curran Associates, Inc., 11883–11895. https://pro
ceedings.neurips.cc/paper_files/paper/2021/file/639d79cc857a6c76c2723b7e014fccb0-Pap
er.pdf.

[2] Daniel Alabi, Omri Ben-Eliezer, and Anamay Chaturvedi. 2022. Bounded space differentially private
quantiles. CoRR, abs/2201.03380.

[3] Héber H. Arcolezi, Carlos Pinzón, Catuscia Palamidessi, and Sébastien Gambs. 2022. Frequency esti-
mation of evolving data under local differential privacy. arXiv preprint arXiv:2210.00262.

[4] Boaz Barak, Kamalika Chaudhuri, Cynthia Dwork, Satyen Kale, Frank McSherry, and Kunal Talwar.
2007. Privacy, accuracy, and consistency too: a holistic solution to contingency table release. In Pro-
ceedings of the Twenty-Sixth ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database
Systems (PODS ’07). Association for Computing Machinery, New York, NY, USA, 273–282. isbn:
9781595936851. doi: 10.1145/1265530.1265569.

[5] Gary Benedetto, Stanley Jordan C., and Totty Evan. 2018. The creation and use of the {sipp} synthetic
beta v7.0. https://www.census.gov/library/working-papers/2018/adrm/SIPP-Synthetic-Beta
.html.

[6] Gary Benedetto, Martha H. Stinson, and John M. Abowd. 2013. The creation and use of the {sipp}
synthetic beta. https://www.census.gov/content/dam/Census/programs-surveys/sipp/methodo
logy/SSBdescribe%7B%5C_%7Dnontechnical.pdf.

[7] Avrim Blum, Katrina Ligett, and Aaron Roth. 2008. A learning theory approach to non-interactive
database privacy. In Proceedings of the 40th Annual ACM Symposium on Theory of Computing, Vic-
toria, British Columbia, Canada, May 17-20, 2008. Cynthia Dwork, (Ed.) ACM, 609–618.

[8] Jean Bolot, Nadia Fawaz, S. Muthukrishnan, Aleksandar Nikolov, and Nina Taft. 2013. Private decayed
predicate sums on streams. In Proceedings of the 16th International Conference on Database Theory
(ICDT ’13). Association for Computing Machinery, Genoa, Italy, 284–295. isbn: 9781450315982. doi:
10.1145/2448496.2448530.

[9] Mark Bun and Thomas Steinke. 2016. Concentrated differential privacy: simplifications, extensions,
and lower bounds. In Theory of Cryptography Conference. Springer, 635–658.

[10] U.S. Census Bureau. 2021. Longitudinal Business Database. Tech. rep. https://www.census.gov/pr
ograms-surveys/ces/data/restricted-use-data/longitudinal-business-database.html.

[11] U.S. Census Bureau. 2021. Survey of Income and Program Participation Data. Tech. rep. https://w
ww2.census.gov/programs-surveys/sipp/data/datasets/2021/pu2021_csv.zip.

[12] U.S. Census Bureau. 2023. Synthetic Longitudinal Business Database. Tech. rep. https://www.cens
us.gov/programs-surveys/ces/data/public-use-data/synthetic-longitudinal-business-dat
abase.html.

[13] Clément L. Canonne, Gautam Kamath, and Thomas Steinke. 2020. The discrete gaussian for differential
privacy. Advances in Neural Information Processing Systems, 33, 15676–15688.

[14] Adrian Rivera Cardoso and Ryan Rogers. 2022. Differentially private histograms under continual ob-
servation: streaming selection into the unknown. In International Conference on Artificial Intelligence
and Statistics, {AISTATS} 2022, 28-30 March 2022, Virtual Event (Proceedings of Machine Learning
Research). Gustau Camps-Valls, Francisco J. R. Ruiz, and Isabel Valera, (Eds.) Vol. 151. {PMLR},
2397–2419.

[15] T-H Hubert Chan, Elaine Shi, and Dawn Song. 2011. Private and continual release of statistics. ACM
Transactions on Information and System Security (TISSEC), 14, 3, 1–24.

[16] Yan Chen, Ashwin Machanavajjhala, Michael Hay, and Gerome Miklau. 2017. Pegasus: data-adaptive
differentially private stream processing. In Proceedings of the 2017 {ACM} {SIGSAC} Conference on
Computer and Communications Security, {CCS} 2017, Dallas, TX, USA, October 30 - November 03,
2017. Bhavani Thuraisingham, David Evans, Tal Malkin, and Dongyan Xu, (Eds.) {ACM}, 1375–1388.

17

https://proceedings.neurips.cc/paper_files/paper/2021/file/639d79cc857a6c76c2723b7e014fccb0-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/639d79cc857a6c76c2723b7e014fccb0-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/639d79cc857a6c76c2723b7e014fccb0-Paper.pdf
https://doi.org/10.1145/1265530.1265569
https://www.census.gov/library/working-papers/2018/adrm/SIPP-Synthetic-Beta.html
https://www.census.gov/library/working-papers/2018/adrm/SIPP-Synthetic-Beta.html
https://www.census.gov/content/dam/Census/programs-surveys/sipp/methodology/SSBdescribe%7B%5C_%7Dnontechnical.pdf
https://www.census.gov/content/dam/Census/programs-surveys/sipp/methodology/SSBdescribe%7B%5C_%7Dnontechnical.pdf
https://doi.org/10.1145/2448496.2448530
https://www.census.gov/programs-surveys/ces/data/restricted-use-data/longitudinal-business-database.html
https://www.census.gov/programs-surveys/ces/data/restricted-use-data/longitudinal-business-database.html
https://www2.census.gov/programs-surveys/sipp/data/datasets/2021/pu2021_csv.zip
https://www2.census.gov/programs-surveys/sipp/data/datasets/2021/pu2021_csv.zip
https://www.census.gov/programs-surveys/ces/data/public-use-data/synthetic-longitudinal-business-database.html
https://www.census.gov/programs-surveys/ces/data/public-use-data/synthetic-longitudinal-business-database.html
https://www.census.gov/programs-surveys/ces/data/public-use-data/synthetic-longitudinal-business-database.html

[17] Serguei Denissov, Hugh Brendan McMahan, J. Keith Rush, Adam Smith, and Abhradeep Guha
Thakurta. 2022. Improved differential privacy for {sgd} via optimal private linear operators on adap-
tive streams. In Advances in Neural Information Processing Systems. Alice H. Oh, Alekh Agarwal,
Danielle Belgrave, and Kyunghyun Cho, (Eds.) https://openreview.net/forum?id=i9XrHJoyLqJ.

[18] Bolin Ding, Janardhan Kulkarni, and Sergey Yekhanin. 2017. Collecting telemetry data privately. In
Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information
Processing Systems 2017, December 4-9, 2017, Long Beach, CA, {USA}. Isabelle Guyon, Ulrike von
Luxburg, Samy Bengio, Hanna M. Wallach, Rob Fergus, S. V. N. Vishwanathan, and Roman Garnett,
(Eds.), 3571–3580.

[19] Richard Doll and A. Bradford Hill. 1956. Lung cancer and other causes of death in relation to smoking.
British Medical Journal, 2(5001), 1071–1081.

[20] Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam Smith. 2006. Calibrating noise to sensitivity
in private data analysis. In Proceedings of the 3rd Conference on Theory of Cryptography (TCC ’06),
265–284.

[21] Cynthia Dwork, Moni Naor, Toniann Pitassi, and Guy N. Rothblum. 2010. Differential privacy under
continual observation. In Proceedings of the 42nd ACM Symposium on Theory of Computing (STOC
’10), 715–724.

[22] Cynthia Dwork and Guy N. Rothblum. 2016. Concentrated differential privacy. arXiv preprint
arXiv:1603.01887.

[23] Alessandro Epasto, Jieming Mao, Andres Muñoz Medina, Vahab Mirrokni, Sergei Vassilvitskii, and
Peilin Zhong. 2023. Differentially private continual releases of streaming frequency moment estima-
tions. In 14th Innovations in Theoretical Computer Science Conference, {ITCS} 2023, January 10-13,
2023, MIT, Cambridge, Massachusetts, {USA} (LIPIcs). Yael Tauman Kalai, (Ed.) Vol. 251. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 48:1–48:24.

[24] Úlfar Erlingsson, Vitaly Feldman, Ilya Mironov, Ananth Raghunathan, Kunal Talwar, and Abhradeep
Thakurta. 2019. Amplification by shuffling: from local to central differential privacy via anonymity.
In Proceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms. SIAM, 2468–
2479.

[25] Úlfar Erlingsson, Vasyl Pihur, and Aleksandra Korolova. 2014. {rappor:} randomized aggregatable
privacy-preserving ordinal response. In Proceedings of the 2014 {ACM} {SIGSAC} Conference on
Computer and Communications Security, Scottsdale, AZ, USA, November 3-7, 2014. Gail-Joon Ahn,
Moti Yung, and Ninghui Li, (Eds.) {ACM}, 1054–1067.

[26] Hendrik Fichtenberger, Monika Henzinger, and Jalaj Upadhyay. 2022. Constant matters: fine-grained
complexity of differentially private continual observation. (2022).

[27] Marco Gaboardi, Emilio Jesús Gallego Arias, Justin Hsu, Aaron Roth, and Zhiwei Steven Wu. 2014.
Dual query: practical private query release for high dimensional data. In Proceedings of the 31th Inter-
national Conference on Machine Learning, {ICML} 2014, Beijing, China, 21-26 June 2014 ({JMLR}
Workshop and Conference Proceedings). Vol. 32. JMLR.org, 1170–1178. http://proceedings.mlr.p
ress/v32/gaboardi14.html.

[28] Badih Ghazi, Ravi Kumar, Pasin Manurangsi, and Jelani Nelson. 2022. Private counting of distinct
and k-occurring items in time windows. arXiv preprint arXiv:2211.11718.

[29] Moritz Hardt and Guy N. Rothblum. 2010. A multiplicative weights mechanism for privacy-preserving
data analysis. In 2010 IEEE 51st annual symposium on foundations of computer science. IEEE, 61–70.

[30] Michael Hay, Vibhor Rastogi, Gerome Miklau, and Dan Suciu. 2010. Boosting the accuracy of differ-
entially private histograms through consistency. Proc. VLDB Endow., 3, 1, 1021–1032.

[31] Monika Henzinger, Jalaj Upadhyay, and Sarvagya Upadhyay. 2023. Almost tight error bounds on
differentially private continual counting. In Proceedings of the 2023 {ACM-SIAM} Symposium on Dis-
crete Algorithms, {SODA} 2023, Florence, Italy, January 22-25, 2023. Nikhil Bansal and Viswanath
Nagarajan, (Eds.) {SIAM}, 5003–5039. doi: 10.1137/1.9781611977554.ch183.

[32] James Honaker. 2015. Efficient use of differentially private binary trees. In.
[33] Palak Jain, Sofya Raskhodnikova, Satchit Sivakumar, and Adam D. Smith. 2021. The price of differ-

ential privacy under continual observation. CoRR, abs/2112.00828.

18

https://openreview.net/forum?id=i9XrHJoyLqJ
http://proceedings.mlr.press/v32/gaboardi14.html
http://proceedings.mlr.press/v32/gaboardi14.html
https://doi.org/10.1137/1.9781611977554.ch183

[34] Prateek Jain, Pravesh Kothari, and Abhradeep Thakurta. 2012. Differentially private online learning.
In {COLT} 2012 - The 25th Annual Conference on Learning Theory, June 25-27, 2012, Edinburgh,
Scotland ({JMLR} Proceedings). Shie Mannor, Nathan Srebro, and Robert C. Williamson, (Eds.)
Vol. 23. JMLR.org, 24.1–24.34.

[35] Matthew Joseph, Aaron Roth, Jonathan Ullman, and Bo Waggoner. 2018. Local differential privacy
for evolving data. Advances in Neural Information Processing Systems, 31.

[36] W. B. Kannel, Dawber T. R., A. Kagan, N. Revotskie, and J. Stokes 3rd. 1961. Factors of risk in
the development of coronary heart disease–six year follow-up experience. {t}he {f}ramingham study.
Annals of Internal Medicine, 55, 33–50.

[37] Georgios Kellaris, Stavros Papadopoulos, Xiaokui Xiao, and Dimitris Papadias. 2014. Differentially
private event sequences over infinite streams. Proc. {VLDB} Endow., 7, 12, 1155–1166.

[38] Terrance Liu, Jingwu Tang, Giuseppe Vietri, and Steven Wu. 2023. Generating private synthetic data
with genetic algorithms. In Proceedings of the 40th International Conference on Machine Learning
(Proceedings of Machine Learning Research). Andreas Krause, Emma Brunskill, Kyunghyun Cho,
Barbara Engelhardt, Sivan Sabato, and Jonathan Scarlett, (Eds.) Vol. 202. PMLR, (23–29 Jul 2023),
22009–22027. https://proceedings.mlr.press/v202/liu23ag.html.

[39] Ryan McKenna, Gerome Miklau, and Daniel Sheldon. 2021. Winning the {nist} contest: {a} scalable
and general approach to differentially private synthetic data. J. Priv. Confidentiality, 11, 3. doi: 10.2
9012/jpc.778.

[40] Ryan McKenna, Brett Mullins, Daniel Sheldon, and Gerome Miklau. 2022. {aim:} an adaptive and
iterative mechanism for differentially private synthetic data. Proc. {VLDB} Endow., 15, 11, 2599–2612.
doi: 10.14778/3551793.3551817.

[41] Darakhshan J. Mir, S. Muthukrishnan, Aleksandar Nikolov, and Rebecca N. Wright. 2011. Pan-private
algorithms via statistics on sketches. In Proceedings of the 30th {ACM} {SIGMOD-SIGACT-SIGART}
Symposium on Principles of Database Systems, {PODS} 2011, June 12-16, 2011, Athens, Greece.
Maurizio Lenzerini and Thomas Schwentick, (Eds.) {ACM}, 37–48.

[42] Marcel Neunhoeffer, Steven Wu, and Cynthia Dwork. 2021. Private post-gan boosting. In International
Conference on Learning Representations. https://openreview.net/forum?id=6isfR3JCbi.

[43] Aleksandar Nikolov, Kunal Talwar, and Li Zhang. 2013. The geometry of differential privacy: the sparse
and approximate cases. In Symposium on Theory of Computing Conference, STOC’13, Palo Alto, CA,
USA, June 1-4, 2013. Dan Boneh, Tim Roughgarden, and Joan Feigenbaum, (Eds.) ACM, 351–360.

[44] Olga Ohrimenko, Anthony Wirth, and Hao Wu. 2022. Randomize the future: asymptotically optimal
locally private frequency estimation protocol for longitudinal data. In {PODS} ’22: International Con-
ference on Management of Data, Philadelphia, PA, USA, June 12 - 17, 2022. Leonid Libkin and Pablo
Barceló, (Eds.) {ACM}, 237–249.

[45] Omar Rivasplata. 2012. Subgaussian random variables: an expository note. Available at:
http://www.stat.cmu.edu/ arinaldo/36788/subgaussians.pdf.

[46] Shuang Song, Susan Little, Sanjay Mehta, Staal A. Vinterbo, and Kamalika Chaudhuri. 2018. Differ-
entially private continual release of graph statistics. CoRR, abs/1809.02575.

[47] Jonathan Ullman and Salil Vadhan. 2011. Pcps and the hardness of generating private synthetic data.
In Theory of Cryptography. Yuval Ishai, (Ed.) Springer Berlin Heidelberg, Berlin, Heidelberg, 400–416.
isbn: 978-3-642-19571-6.

[48] Giuseppe Vietri, Grace Tian, Mark Bun, Thomas Steinke, and Zhiwei Steven Wu. 2020. New oracle-
efficient algorithms for private synthetic data release. In Proceedings of the 37th International Con-
ference on Machine Learning, ICML 2020, 13-18 July 2020, Virtual Event (Proceedings of Machine
Learning Research). Vol. 119. PMLR, 9765–9774. http://proceedings.mlr.press/v119/vietri20b
.html.

[49] Lars Vilhuber, John M. Abowd, and Jerome P. Reiter. 2016. Synthetic establishment microdata around
the world. Statistical Journal of the International Association for Official Statistics, 32, 65–68. doi:
10.3233/SJI-160964.

19

https://proceedings.mlr.press/v202/liu23ag.html
https://doi.org/10.29012/jpc.778
https://doi.org/10.29012/jpc.778
https://doi.org/10.14778/3551793.3551817
https://openreview.net/forum?id=6isfR3JCbi
http://proceedings.mlr.press/v119/vietri20b.html
http://proceedings.mlr.press/v119/vietri20b.html
https://doi.org/10.3233/SJI-160964

[50] Hao Wang, Shivchander Sudalairaj, John Henning, Kristjan Greenewald, and Akash Srivastava. 2023.
Post-processing private synthetic data for improving utility on selected measures. In Thirty-seventh
Conference on Neural Information Processing Systems. https://openreview.net/forum?id=neu9Jl
NweE.

[51] Qiao Xue, Qingqing Ye, Haibo Hu, Youwen Zhu, and Jian Wang. 2022. Ddrm: a continual frequency
estimation mechanism with local differential privacy. IEEE Transactions on Knowledge and Data En-
gineering, 1–1. doi: 10.1109/TKDE.2022.3177721.

[52] Jun Zhang, Graham Cormode, Cecilia M. Procopiuc, Divesh Srivastava, and Xiaokui Xiao. 2017.
Privbayes: private data release via bayesian networks. ACM Trans. Database Syst., 42, 4, Article 25,
(Oct. 2017), 41 pages. doi: 10.1145/3134428.

A Preliminaries on Stream Counters

Our algorithm for cumulative time queries relies on the following important primitive from the literature on
private continual release. A stream counter takes as input a stream of values z1, . . . , zT , where each zt is
a natural number. At every time step t, it releases an approximation Ŝt to the partial sum St =

∑t
k=1 zt.

Two streams (z1, . . . , zT), ((z1)′, . . . , (zT)′) are neighbors if they differ in only one entry, and by magnitude
1 in that entry. That is, there exists an index t such that |zt − (zt)′| ≤ 1 and zk = (zk)′ for all k 6= t. We
are interested in stream counters whose sequence of outputs (S̃1, . . . , S̃T) guarantee ρ-zCDP with respect to
this neighboring relation. Moreover, we define accuracy for stream counters as follows.
Definition A.1. A stream counter is (α(ρ, T), β(ρ, T))-accurate if for every stream of length T and every
ρ, it holds that

Pr[|S̃t − St| ≤ α(ρ, T)] ≥ 1− β(ρ, T),
for every 1 ≤ t ≤ T .

Note that in contrast to our definition of (α, β)-accuracy for synthetic data generation, here α(ρ, T) is
generally in the range [0, T], i.e., it represents error with respect to counts rather than with respect to
fractions.

The tree-based aggregation mechanism [21, 15] was the first implementation of a private stream counter. The
algorithm works roughly as follows. Consider a complete binary tree, in which each leaf node is labeled by
zt and represents the data arriving single time step. Each internal node tracks the sum of all leaves in its
sub-tree. To ensure privacy, we add fresh discrete Gaussian noise with scale σ2 = log T/(2ρ), denoted as
N (0, log T/(2ρ)) to each internal node. Because every time step only affects O(log T) nodes in this binary
tree, the complete tree is ρ-zCDP by composition.
Theorem A.1. The tree-based aggregation mechanism is ρ-zCDP.

Every partial sum St can be expressed as a sum of O(log t) nodes in this tree, and each such node introduces
fresh noise N (0, log T/(2ρ)). Therefore, the error for computing a private version of the partial sum |S̃t − St|
is O(

√
log T

ρ

√
log t) with high probability. We formally describe the algorithm in Algorithm 3. (Note that

the tree-based aggregation algorithm was initially described using Laplace noise, resulting a pure (ε, 0)-DP
algorithm [21, 15].)
Theorem A.2. For each t = 1, . . . , T individually, with probability at least 1−β, the error of the tree-based
aggregation mechanism is bounded as follows:

|S̃t − St| ≤ O

(√
log T

ρ
·
√

log t · log 1
β

)
.

B Accuracy guarantee for instantiation using the tree-based aggregation mechanism

We now state the accuracy guarantee when we instantiate the tree-based aggregation mechanism as the
stream counter M. For the b-th tree-based counter, we add N (0, σ2

b) to the internal nodes. The partial

20

https://openreview.net/forum?id=neu9JlNweE
https://openreview.net/forum?id=neu9JlNweE
https://doi.org/10.1109/TKDE.2022.3177721
https://doi.org/10.1145/3134428

Algorithm 3 Tree-based aggregation
Input: Time upper bound T , privacy parameter ρ, and a stream z = (z1, z2, . . . , zT) ∈ T .
Output: a noisy partial sum S̃t at each time step t.
Initialization: Each αi and α̃i are initialized to 0.
for t← 1 to T do

Express t in binary form: t =
∑

j Binj(t) · 2j .
Let i = min{j : Binj(t) 6= 0}.
Set αi ←

∑
j<i αj + zt.

for j ← 0 to i− 1 do
Update αj ← 0 and α̂j ← 0.

end for
Update α̃i ← αi +N (0, log T

2ρ).
Calculate the noisy partial sum at time t: S̃t ←

∑
j:Binj(t)=1 α̃j .

end for

sum Ŝt
b is the summation of at most max(dlog2(t− b + 1)e, 1) i.i.d. discrete Gaussian random variables with

scale σ2
b , which is also Gaussian distributed with variance at most σ2

b max(dlog2(t− b + 1)e, 1), where dxe is
the ceiling function. By Gaussian tail bound, for every α > 0, we have

Pr(|Ŝt
b − St

b| ≥ α) ≤ exp
(
− α2

2σ2
b max(dlog2(t− b + 1)e, 1)

)
.

By a union bound over all t = 1, . . . , T , with probability at least 1− β, we have that
|Ŝt

b − St
b| ≤ max(dlog2(t− b + 1)e, 1)

√
max(dlog2(T −b+1)e,1)

ρb
log 1

β for all t simultaneously. We will choose the
privacy parameter for each tree-based counter ρb, for b = 1, 2, . . . , T , to equalize the upper bounds of the
worst-case errors of all the counters:

ρ1

max(dlog2(T − 1 + 1)e, 1)3 = ρ2

max(dlog2(T − 2 + 1)e, 1)3 = . . . = ρT

1 .

Hence, we set ρb = ρ max(dlog2(T −b+1)e,1)3∑T

b=1
max(dlog2(T −b+1)e,1)3

.

Corollary B.1. When instantiated with tree-based stream counters with ρb = ρ max(dlog2(T −b+1)e,1)3∑T

b=1
max(dlog2(T −b+1)e,1)3

,

b = 1, 2, . . . , T , for every β ∈ (0, 1), Algorithm 2 is (α∗, β∗)-accurate for

α∗ = 1
n

√∑T
b=1 max(dlog2(T − b + 1)e, 1)3

ρ
log 1

β

β∗ = Tβ.

C Further Illustrating Examples

C.1 Simulated Data

We evaluate Algorithm 1 on rather extreme simulated data. We set the number of observations n to 25000
and the time horizon T to 12. We choose these values to demonstrate typical data sizes in longitudinal
studies (e.g., 25000 survey respondents with monthly measurements for one year). In the extreme setting,
all data updates are set to 1. We then generate synthetic data to preserve fixed-time window queries using
a window size k of 3 (e.g., to reflect an interest in quarterly statistics).

Figure 3 summarizes the results of 1000 repeated runs of Algorithm 1. In the top panel of Figure 3, we show
the (desired) scenario where the fixed window size k specified to the synthesizer coincides with the window
size of the query we are evaluating. As predicted by Theorem 3.2, the empirical error remains constant across

21

time. In the middle panel, we highlight an advantage of releasing synthetic and padding data. Since all fixed
time window queries with a window size at most k of the synthesizer can be written as a low-weight linear
combination of width-k queries, the synthesized data remains accurate for these queries as well. Finally, we
display what happens if the window size of the query exceeds k of the synthesizer. Given our algorithm, we
do not expect the synthetic data to preserve queries of longer window sizes. Indeed, we can observe that
the empirical error increases substantially. We suggest that this warrants a word of caution for synthetic
data analysts: Only queries supported by the synthesizer can be answered accurately. We cannot expect
reasonable accuracy guarantees for queries not specifically supported by the synthesizer.

In Figure 4, we show that the debiasing step is essential. Calculating the proportions on the synthetic data
directly leads to a substantially larger error.

2 4 6 8 10 12

0.000
0.004
0.008

Matching Queries (synthesizer k = 3, query k = 3)

Timestep T

Er
ro

r

2 4 6 8 10 12

0.000
0.004
0.008

Smaller Query (synthesizer k = 3, query k = 2)

Timestep T

Er
ro

r

2 4 6 8 10 12

0.000
0.004
0.008

Larger Query (synthesizer k = 3, query k = 4)

Timestep T

Er
ro

r

Figure 3: Empirical evaluation of the error of Algorithm 1 on simulated data. The solid line shows the
median error at each timestep across 1000 repetitions of the algorithm. The proportions are calculated with
the debiasing step. The dotted lines show the 2.5 and 97.5 percentile. The horizontal dashed line shows the
theoretical error bound.

2 4 6 8 10 12

0.00
0.04
0.08
0.12

Matching Queries (synthesizer k = 3, query k = 3)

Timestep T

Er
ro

r

2 4 6 8 10 12

0.00
0.04
0.08
0.12

Smaller Query (synthesizer k = 3, query k = 2)

Timestep T

Er
ro

r

2 4 6 8 10 12

0.00
0.04
0.08
0.12

Larger Query (synthesizer k = 3, query k = 4)

Timestep T

Er
ro

r

Figure 4: Empirical evaluation of the error of Algorithm 1 on simulated data. The solid line shows the
median error at each timestep across 1000 repetitions of the algorithm. The dotted lines show the 2.5 and
97.5 percentile. The horizontal dashed line shows the theoretical error bound for proportions calculated on
the synthetic data without the debiasing step.

22

C.2 Synthetic data for fixed time window queries

In Figures 5-7 we present our results for different values of the privacy parameter ρ. In the right panels of
Figures 5-7, we show that our answers based on the synthetic data averaged over 1000 repetitions accurately
match the ground truth, indicating that our approach provides an unbiased estimate of the fixed time queries
(by subtracting the query answer on the padding data from the query answer on the complete synthetic data).

• •

Figure 5: Left Panel: Proportions of SIPP Households in poverty per quarter in 2021. Calculated on the
synthetic data, no debiasing step. Right Panel: Proportions of SIPP Households in poverty per quarter
in 2021. Calculated on the synthetic data, debiased by subtracting the result of the query run on the
padding data.The density estimates show the empirical privacy noise distribution across 1000 repetitions of
the experiments with privacy parameter ρ = 0.001. X’s indicate values calculated from the SIPP data.

• •

Figure 6: Left Panel: Proportions of SIPP Households in poverty per quarter in 2021. Calculated on the
synthetic data, no debiasing step. Right Panel: Proportions of SIPP Households in poverty per quarter
in 2021. Calculated on the synthetic data, debiased by subtracting the result of the query run on the
padding data.The density estimates show the empirical privacy noise distribution across 1000 repetitions of
the experiments with privacy parameter ρ = 0.005. X’s indicate values calculated from the SIPP data.

23

• •

Figure 7: Left Panel: Proportions of SIPP Households in poverty per quarter in 2021. Calculated on the
synthetic data, no debiasing step. Right Panel: Proportions of SIPP Households in poverty per quarter
in 2021. Calculated on the synthetic data, debiased by subtracting the result of the query run on the
padding data.The density estimates show the empirical privacy noise distribution across 1000 repetitions of
the experiments with privacy parameter ρ = 0.05. X’s indicate values calculated from the SIPP data.

C.3 Synthetic data based on cumulative time queries

In Figure 8, we again repeat the synthesizer 1000 times and plot the answers to these queries using our
generated DP synthetic data versus the ground truth, with the x-axis denoting the time horizon. Our
answers based on the synthetic data averaged over 1000 repetitions accurately match the ground truth,
indicating that our approach provides an unbiased estimate of the cumulative time queries.

While Algorithm 2 generates synthetic data for all time thresholds b from 1, . . . , T simultaneously, we here
focus on the results for setting the threshold to b = 3.

•

Figure 8: Proportion of SIPP Households in poverty for at least three months (b = 3) up to any given month
in 2021. The density estimates show the empirical privacy noise distribution across 1000 repetitions of the
experiments with privacy parameter ρ = 0.005. X’s indicate values calculated from the SIPP data.

24

	Introduction
	Related work

	Preliminaries
	Continual synthetic data
	Differential privacy background

	Generating Synthetic Data for Fixed Time Window Queries
	Algorithm
	Theoretical guarantees

	Generating Synthetic Data for Cumulative Time Queries
	Algorithm
	Theoretical guarantees

	Illustrating Examples
	Conclusion
	Preliminaries on Stream Counters
	Accuracy guarantee for instantiation using the tree-based aggregation mechanism
	Further Illustrating Examples
	Simulated Data
	Synthetic data for fixed time window queries
	Synthetic data based on cumulative time queries

