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Climate and urbanization drive changes in
the habitat suitability of Schistosoma
mansoni competent snails in Brazil

Caroline K. Glidden 1,2 , Alyson L. Singleton3, Andrew Chamberlin 4,
Roseli Tuan5, Raquel G. S. Palasio 5, Roberta Lima Caldeira6,
Antônio Miguel V. Monteiro7, Kamazima M. M. Lwiza8, Ping Liu8, Vivian Silva7,
Tejas S. Athni 9, Susanne H. Sokolow10,11, Erin A. Mordecai 1,2 &
Giulio A. De Leo 4

Schistosomiasis is a neglected tropical disease caused by Schistosoma para-
sites. Schistosoma are obligate parasites of freshwater Biomphalaria and
Bulinus snails, thus controlling snail populations is critical to reducing trans-
mission risk. As snails are sensitive to environmental conditions, we expect
their distribution is significantly impacted by global change. Here, we used
machine learning, remote sensing, and 30 years of snail occurrence records to
map the historical and current distribution of forward-transmitting Biom-
phalaria hosts throughout Brazil. We identified key features influencing the
distribution of suitable habitat and determined how Biomphalaria habitat has
changed with climate and urbanization over the last three decades. Our
models show that climate change has driven broad shifts in snail host range,
whereas expansion of urban and peri-urban areas has driven localized
increases in habitat suitability. Elucidating change inBiomphalariadistribution
—while accounting for non-linearities that are difficult to detect from local case
studies—can help inform schistosomiasis control strategies.

Schistosomiasis is a globally distributed, debilitating, and sometimes
fatal, disease of poverty caused by Schistosoma blood flukes: parasitic
flatworms (class:Trematoda) of freshwater snails and vertebrates1,2.
Schistosomiasis currently affects over 250 million people in tropical
and subtropical regions of the Americas, Africa, and Asia1,2. With more
than 800 million people living in regions at risk for transmission,
schistosomiasis is one of the most important neglected tropical
diseases, second only to malaria in disease burden. In the Americas,
Brazil shoulders the largest burden of this disease with 2–6 million
people currently infected3. The World Health Organization includes

schistosomiasis in the new neglected tropical disease roadmap for
eliminationand control by20304. However, changes in thedistribution
of the disease havemade areas in need of public health interventions a
moving target5, thus investment in adaptive control efforts is
increasingly needed to make progress towards this goal.

A prerequisite for schistosomiasis transmission is the presence of
the obligate intermediate host of the parasite: freshwater snails of the
genus Biomphalaria (Preston, 1910)---hosts for Schistosoma mansoni,
the parasite causing intestinal schistosomiasis—and Bulinus (O.F.
Müller, 1781), hosts for S. haematobium, the parasite responsible of
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uro-genital schistosomiasis. In Brazil, an endemic country for intestinal
schistosomiasis, S. mansoni is transmitted via three species of Biom-
phalaria snails: Biomphalaria glabrata (Say, 1818), B. straminea (Dun-
ker, 1848), and B. tenagophila (D’Orbigny, 1835)6. Therefore, the
distribution and abundance of the snail host, at least in part, underlies
the observed spatiotemporal variation in schistosomiasis cases where
focal transmission occurs. As ectotherms, temperature strongly influ-
ences fundamental snail biological processes, including growth rates
and reproductive rates; as freshwater animals, precipitation can
influence habitat availability and phenology, all of which ultimately
impact snail fecundity and survival7,8. Schistosomiasis has historically
been considered a rural disease. However, in the 1990s, at the start of
our study, schistosomiasis began to emerge in some urban areas, such
as the Recife Metropolitan area in Pernambuco, Brazil9. Since then, a
growing portfolio of research in Brazil has demonstrated that Biom-
phalaria snails can thrive in human dominated environments within
urban and peri-urban areas, such as drainage ditches, irrigation sys-
tems for small-scale agriculture, and unpaved flooded roads, all of
which are often found in areas with marginalized populations and
informal settlementswith limited access to cleanwater, sanitation, and
wastewater treatment10–15.With climate changeand land-use changeon
the rise, we expect that the extent of snail habitat suitability has shifted
through time and will continue to shift with ongoing global change—
continuing tomove the target for public health interventions. As such,
understanding the spatial distribution of the intermediate host snails
and their environmental, ecological, and socioeconomic determinants
is a public health priority as it facilitates dynamic and precise identi-
fication of transmission hotspots to prioritize snail surveillance and
removal.

Brazil aims for schistosomiasis elimination by 2030 and indeed
has reduced transmission substantially since the inception of their
national surveillance system in the 1950s16. However, total elimination
remains elusive. Moreover, temporal trends in schistosomiasis related
deaths have remained stable from 1999 to 2018 throughout most of
the country, and has increased in the Northeast, where B. glabrata and
B. straminea are found17. Globally, schistosomiasis control has been
orchestrated through preventative and reactive medical treatment via
administration of the drug praziquantel2, WASH interventions (access
to safe water, sanitation, and hygiene)2, and environmental interven-
tions (e.g., water engineering and snail control)18,19. In Brazil, public
health professionals have found that mass drug administration has
temporary effects16. Therefore, current recommendations for risk
reduction include integration of water sanitation, community-educa-
tion, and removal of snail breeding sites through non-molluscicide
based environmental interventions, such as aquatic vegetation
removal, draining flooded areas, and modification of watercourses.
Mass drug administration is only suggested under exceptional
circumstances16. Elucidating how environmental variables have influ-
enced past changes in snail occurrence can help to anticipate which
areas may benefit from increased surveillance for disease emergence
and facilitate more precise allocation of resources.

Past efforts have mapped the current climate envelope of snail
habitats at the national and regional scale as well as projected the
climate envelope of Biomphalaria under future climate conditions20,21.
The last publication of a national model of Brazil in 2012 included
climate variables and vegetation greenness to map the static dis-
tribution of Biomphalaria20. However, other environmental char-
acteristics critical to snail habitat, such as land-use, have yet to be
incorporated into snail habitat suitability maps. Since then, remote
sensing climate and environmental data has improved in both quality
and scale (i.e., it is available at finer temporal and spatial resolutions).
In particular, fine spatial and temporal resolution (e.g., 30m 1 km;
annual) land-use/land-cover, human population density, and hydro-
logical variables are now available at the continental to global scale22,23.
An increased number of spatially (100m) and temporally precise

(annual) georeferenced biodiversity data for Brazil, including presence
of Schistosoma parasite-competent snails, are now available from
several research databases and public collections. Finally, advances in
machine learning, particularly the accessibility of tree-based machine
learning models, allow us to not only identify important variables,
which is typical of machine learning models, but also to assess the
functional form of the relationship between the environmental vari-
able and habitat suitability (e.g, habitat suitability increases with pre-
cipitation seasonality)24,25, which was not explored in previous studies
mapping snail habitat suitability. Leveraging this new wealth of data
and interpretable yet innovative machine learning algorithm, it is now
possible to develop species distribution models (SDMs) of Biompha-
laria snails across multiple time steps across a large geographical
extent—all of Brazil—but also at a fine-scale spatial resolution (1 km2),
which was not possible ten years ago.

The goal of this paper is to map the historical and current dis-
tributions of the three competent snail intermediate hosts of Schisto-
soma mansoni in Brazil using a wide range of remotely sensed
climatological and land-use data, a cutting edge, powerful and highly
flexible machine learning model (Extreme Gradient Boosted Regres-
sion Trees), and a unique data set of over 11,000 georeferenced
records of Schistosomaparasite competent snail occurrences spanning
over three decades. Specifically, by identifying environmental vari-
ables that most contributed to the probability of snail occurrence and
using counterfactual analyses,we asked: (i) what are the key features of
the environment, and their functional response, that influence snail
habitat suitability? And (ii) how has snail habitat suitability shifted with
climate and urbanization throughout the last three decades? By doing
so we develop a nation-wide consensus on the relationship between
the environmental variables and snail habitat (e.g., determining if snail
habitat is closer to rural or urbanareas) and illuminate howdimensions
of global change have and will shift targets for snail management.

In contrast to projections of snail distributions under future cli-
mate change,which aredifficult to validate, the long timeseries of snail
data allowed us to (i) use hindcasting—i.e., the process of testing sta-
tistical models by comparing them to actual historical observations to
determine how well the models match the historical record—to vali-
date SDMs’ precision on the basis of actual field observations and (ii)
counterfactual analysis to determine the relative importance of spe-
cific climatological and land-use changes in explaining the observed
geographical range shift of Schistosoma parasite competent snails.
This work will help to formulate more reliable hypotheses about how
snail habitat suitability may change under current environmental tra-
jectories allowing us to evaluate whether future projections are in line
with what we expect based on the observed change through time.

In general, this study is one of the first to examine the com-
pounding impacts of climate and land-use change on the distribution
of infectious disease hosts at a national scale. Ultimately, it helps to
predict the potential outcomes of interactions among local (e.g.,
urbanization) and large-scale (e.g., climate) environmental factors on
environmentally transmitted disease risk.

Results
Model validation & hindcasting performance
We used spatial cross-validation to evaluate model performance.
Model performance was evaluated using sensitivity (i.e., the propor-
tion of occurrences the model correctly identifies as occurrences),
model specificity (i.e., the proportion of background points that the
model correctly identifies as background), and model area-under-the-
curve (AUC; i.e., ameasure that calculates howwell themodel correctly
distinguishes occurrence points from background points, where
AUC ≤0.5 indicates the model performs no better than a coin flip).
Performance was high for each snail species:mean AUC and sensitivity
was ≥0.80 andmodel sensitivity was ≥0.80 for all species. Meanmodel
specificity was ≥0.70 for all species (Table 1; supplement p 7). Model
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performancewas also high for the hindcasting analysis, where we used
the trained model to predict out-of-sample data collected between
1990 and 1999. For all species, AUC was >0.80 (B. glabrata =0.89; B.
straminea = 0.87; B. tenagophila = 0.81) and sensitivity was >0.80 (B.
glabrata = 0.93; B. straminea = 0.82; B. tenagophila = 0.89) (Table 1;
supplement p 7).

Feature contribution and functional response
Across the three species we found that, on average (i.e., across boot-
strapping iterations), the features associated with climate, urbaniza-
tion, and agricultural land-cover contributed themost to the predicted
probability of snail occurrence, as opposed to features associatedwith
hydrology or soil properties (Figs. 1–3).

For B. glabrata and B. straminea, we found that four out of the
top five predictors of snail occurrence were climate variables, with
three of these variables associated with precipitation (precipitation
seasonality, precipitation in the driest month, and precipitation in
the wettest quarter) and the fourth variable associated with tem-
perature (isothermality) (Figs. 1a and 2a). Our model indicates that,
for both species, snail habitat suitability peaked at high precipitation
seasonality (12 CV, i.e., the coefficient of variance of monthly pre-
cipitation over one year) but decreased in areas where, on average,
the mean monthly precipitation amount in the wettest quarter was
high (<6000 kgm−2 year−1) (Figs. 1b and 2b). For B. glabrata, habitat
suitability also decreased when precipitation amount was low in the
driest month of the year (<500 kgm−2 year−1) (Fig. 1b), while for B.
straminea, habitat suitability decreased when average annual pre-
cipitation amount was high (<6000 kgm−2 year−1) (Fig. 2b). In regard
to temperature, B.glabrata and B. straminea habitat suitability non-
linearly increased with isothermality, with respective peaks at 6 and
7 °C (ratio of diurnal variation in relation to annual variation in
temperature). In accordance with the known biology of B. tenago-
phila, which has lower thermal limits for survival and reproduction,
the climate profile for B. tenagophila significantly differed from that
of B. glabrata and B. straminea. Climate variables made up only two
of the top five predictors (Fig. 3a). B. tenagophila habitat suitability
non-linearly decreased with mean daily air temperature during the
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Fig. 1 | B. glabrata habitat suitability is most sensitive to climate and urbani-
zation variables. a Feature contribution for each feature. Points are the absolute
value of themean contribution to predictions (mean |SHAPValue|) for the covariate
across all data points (i.e., global feature contribution), bars represent the 95%
confidence interval across 25 bootstrapping iterations. b Response of snail habitat
suitability (partial dependence plots) to top six contributing variables. For each

univariate plot, light gray lines represent the probability of occurrence after con-
trolling for all other covariates for eachbootstrapping iteration and green (land-use
variable) or orange (climate variable) represent the average across 25 boot-
strapping iterations. *height above nearest drainage (vertical distance to nearest
stream surface or bed).

Table 1 | Model performance metrics for the three
Biomphalaria species

Species No. occurrence
points

AUC Sensitivity Specificity

Model validation: 5-fold spatial cross-validation

B. glabrata 165 0.85
(0.76–0.94)

0.85
(0.79–0.92)

0.80
(0.71–0.89)

B. straminea 283 0.91
(0.88–0.95)

0.85
(0.74–0.95)

0.86
(0.79–0.92)

B. tena-
gophila

173 0.80
(0.64–0.95)

0.92
(0.85–0.99)

0.66
(0.40–0.92)

Hindcasting: testing model on 1990–1999 data

B. glabrata 40 0.83 0.75 0.77

B. straminea 33 0.87 0.82 0.86

B. tena-
gophila

28 0.83 0.93 0.68

The results for 5-fold cross validation include the mean, with the 95% confidence interval in
parentheses. Formodel validation (5-fold cross validation), the number of background points were
2x the number of occurrence points. The number of background points used for hindcast testing,
which were based on retaining one point per 1 km2 grid cell, was 1688, 1691, and 1684 for B.
glabrata,B. straminea, andB. tenagophila, respectively. Notably, thesepointswere not used to train
the model but only to test model predictions, therefore, class imbalance does not impact results.
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driest quarter of the year (>20 °C) and peaked when precipitation
seasonality is low (7 CV) (Fig. 3b).

Globally, schistosomiasis is considered a rural disease but has
been observed close to or in urban areas in Brazil. To measure the
impact of urbanization on Biomphalaria occurrence, and because an
urban versus rural dichotomy does not capture the complexity of
urbanization in Brazil26, we derived an urban to rural gradient, where 0
indicated that the snail was observed in an urban area and 1 indicated
the snail was in a rural area, and continuous values from 0-1 indicated
the relative location of the snail along this gradient. For all three snail
species, we found that location along the urban (>300 per people per
km, with 2500 people in a contiguous area) to rural (<300 people per
1 km2) gradient was among the top five predictors, with location along
the high density urban (>1500 per people per km2 and >150,000 in a
contiguous area) to rural gradient also among the top five predictors
for B. tenagophila (Figs. 1a, 2a and 3a). Snail habitat suitability
increased for all snails within pixels closer to urban areas (0= in an
urban area) (Figs. 1b, 2b and 3b). The relationship between B. tenago-
phila and the urban to rural gradient followed a pattern of exponential
decay, whereas the change in probability was more gradual for B.
glabrata, and nearly linear for B. straminea. Agricultural crop cover
and temporary crop cover were among the top six predictors for B.
straminea and B. tenagopila, respectively, with habitat suitability
increasing with % area of crop cover (Figs. 2 and 3).

Changing snail distribution
According to model predictions, we found that habitat suitability of B.
glabrata decreased from 1992 to 2017 throughout western Brazil and
increased towards coastal areas of the Southeast and Northeast region
(Fig. 4a–c). In contrast, we found that habitat suitability of B. straminea
primarily expanded southward, whereas for B. tenagophila suitability
contracted within the state of São Paulo (Fig. 4d–i). In total, ourmodel

predicted a fairly large change in habitat suitability for each Biom-
phalaria host species: 58% (CI: 52–66%; CI is the 95% confidence
interval estimated from a bootstrapping procedure) of the area of
Brazil experienced a change in B. glabrata suitability, 55% (CI: 45–64%)
for B. straminea, and 28% (CI: 19–34%) for B. tenagophila (Table 2;
supplement p 23). For B. glabrata, the area that decreased in suitability
was equivalent to the area that increased, whereas for B. straminea the
increase in area of habitat suitability was greater than the decrease in
area, and for B. tenagophila the decrease in the area of habitat suit-
ability was marginally higher than the increase (Table 2; supplement
p 23).

We conducted a counterfactual analysis to quantify the change in
habitat suitability associated with change in climate and urbanization.
In brief, our counterfactual analysis compared the observed change in
habitat suitability to the change in habitat suitability that would have
occurred if the climate or urban extent had not changed. This meth-
odology allowed us to isolate the change in habitat suitability asso-
ciated with the change in these different dimensions of global change.
Based on our counterfactual analysis, for each species, large-scale
changes in predicted habitat suitability were driven by regional varia-
tion in climate between the historical (1990–1999) and recent
(2000–2020) time periods (Table 2; Fig. 5). For all three species, the
climate-associated increases in suitability in some areas were offset by
climate-associated decreases in suitability in others (Table 2; supple-
ment p 23), indicating broad scale shifts as opposed to net increases
and decreases in suitability. Throughout the last three decades, the
greatest change in urbanizationwas the growth of small-medium sized
urban areas (300–1500 people per km2 with >2500 in a contiguous
area) (supplement p 26). As such, in contrast to larger-scale climate-
driven shifts, changes in the probability of snail occurrence associated
with urbanization were highly localized at the outskirts of existing
cities or new cities that emerged between the two time points (Fig. 6;
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Fig. 2 |B. stramineahabitat suitability ismost sensitive to climate and land-use.
a Feature contribution for each feature. Points are the absolute value of the mean
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above nearest drainage (vertical distance to nearest stream surface or bed).
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supplement pp 24), with a largely positive increase in suitability
(Table 2; supplement pp 23-24). For example, in the Vale doRioDoce, a
meso-region, i.e., an administrative level between municipality and
state, bordering Minas Gerais and Espírito Santo States where schis-
tosomiasis is endemic, there were numerous small-medium cities that
emerged (e.g., Baxio Gaundú, Inhapim), while the area of the dense
cities (Ipatinga and Governador Valadares) hardly changed (Fig. 6a, d).
As such, our model predicts that the most notable change in B. glab-
rata habitat suitability associated with urbanization is in the northeast
and south of this meso-region. In the meso-regions of the Recife
MetropolitanArea, an areawhereB. stramineahasbeen found infected
with S. mansoni27, and São Paulo Metropolitan area, an area where B.
tenagophila has been associated with foci of transmission28, the most
notable changes in B. straminea and B. tenagophila habitat suitability
were at city outskirts where new urban areas had developed around
the periphery of the cities (Fig. 6b, c, e, f).

Discussion
Schistosomiasis snail intermediate host habitat suitability depends
strongly on climate and land-use variation and, as a result, have shifted
substantially in the last 30 years in Brazil (Figs. 4–6). Using remotely
sensed data, machine learning, and a long-term dataset of expert-
collected snail occurrence data, we mapped the distribution of snail
habitat suitability at a fine spatial resolution (1 km2) and large geo-
graphic extent (national) with high accuracy (Fig. 4, supplement p 7).
We found that climate and urbanization features are the most impor-
tant predictors of Biomphalaria habitat suitability across all three
species, after controlling for sampling bias (Figs. 1–3). Large-scale
shifts in snail habitat suitability occurred due to regional changes in
climatic variables, whereas urbanization influenced fine-scale, highly
localized increases in habitat suitability within and around small-

medium sized urban areas perhaps due to lack of infrastructure in
rapidly growing informal settlement, as people move from rural to
urban areas both within and across Brazilian states29 (Figs. 5 and 6,
supplement pp 23–26).

With respect to climatological variables, snail habitat suitability
was primarily influenced by precipitation patterns for B. straminea and
B. glabrata and by temperature for B. tenagophila (Figs. 1–3). Coun-
terintuitively, as snails inhabit freshwater bodies, B. glabrata habitat
suitability was highest in areas with, on average, a low amount of
precipitation during the driest month of the year (Fig. 1b). Low pre-
cipitation may create small pockets of surface water ideal for snail
habitat, or, alternatively, concentrate B. glabrata water sources thus
making them easier to find. Additionally, B. glabrata habitat suitability
was highest in areas with high precipitation seasonality, i.e., a strong
difference in precipitation between the dry season and the wet season
(Fig. 2b). Perhaps freshwater habitats accumulate enoughwater during
the wet season to support snail survival and reproduction throughout
the dry season. Precipitation regimes have been rapidly changing, with
Brazil currently experiencing a long and severe drought throughout
regions of snail habitat30. As such, understanding the relationship
between dryprecipitation patterns andB. glabartamight be critical for
controlling snail populations. B. straminea habitat suitability was high
across a wide range of annual precipitation values but decreased at
extremely high volumes (Fig. 2b), indicating it can toleratemost annual
precipitation conditions but likely gets flushed out with intense pre-
cipitation. Further,B. glabrata andB. stramineahabitat ismost suitable
at high values of isothermality -- with B. straminea habitat associated
with higher isothermality than B. glabrata (Figs. 1b and 2b). Iso-
thermality is highest in northernBrazil, as such this variablemight best
reflect the unique climate conditions found towards equatorial Brazil.
Our model indicates that B. tenagophila has a distinct climatic niche as
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Fig. 3 | B. tenagophila habitat suitability is most sensitive to climate, land-use,
and soil clay. a Feature contribution for each feature. Points are the absolute value
of the mean contribution to predictions (mean |SHAP Value|) for the covariate
across all data points (i.e., global feature contribution), bars represent the 95%
confidence interval across 25 bootstrapping iterations. b Response of snail habitat
suitability (partial dependence plots) to top six contributing variables. For each
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trolling for all other covariates for eachbootstrapping iteration and green (land-use
variable) or orange (climate variable) represent the average across 25 boot-
strapping iterations. *height above nearest drainage (vertical distance to nearest
stream surface or bed).
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it is found in areas with, on average, low mean daily temperatures
during the driest quarter of the year, consistent with B. tenagophila
almost exclusively found in the south of Brazil (Fig. 3b). Our results for
B. tenagophila mirrored the previous national model of the Biompha-
laria climate envelope in Brazil: mean monthly temperature of the
driest quarter was one of the top predictors of snail occurrence20.
However, our results contrast previously published results for B.
glabrata and B. straminea as the previous national model found vari-
ables associated with temperature to be the strongest contributors to
model predictions as opposed to precipitation20. This may be related
to the mismatch of Biomphalaria occurrence points and the cli-
matologies used in previous studies, which were retrieved from
WorldClim that spans 1960–200031, whereas our climatologies overlap
the decade the snail was collected. Yet, because this analysis is corre-
lational, we cannot rule out the influence of unobserved variables that
are correlated with these climatic conditions and may drive the dis-
crepancy between the models. Further, it is difficult to comprehen-
sively compare our results as the previous publication did not quantify
the functional response between climate variables and probability of
occurrence20.

The location along the urban to rural gradient was among the top
three predictors of habitat suitability for all three species (Figs. 1–3).
The distance to a small-medium urban area (300–1500 people per
1 km2 with >2500 people in contiguous pixels) was important for all
three snail species, and distance to high density urban area (>1500

people per 1 km2 with >150,000 people in contiguous pixels) was
among the top five predictors of B. tenagophila habitat suitability.
Although the rate of change in snail habitat suitability and urban to
rural gradient differed between the three snail species, in general,
habitat suitability for the three species is higher closer to urban areas
than rural areas (Figs. 1–3). Case studies indicate that schistosomiasis, a
disease that has been historically associated with rural areas, is urba-
nizing in Brazil9,10, with empirical evidence supporting the hypothesis
that urban and peri-urban areas provide the necessary abiotic factors
for snail survival, while reducing the number of snail competitors and
predators, ultimately increasing snail habitat suitability10,32. Small scale
agricultural land-use found in peri-urban and urban areas33—agri-
cultural mosaics and temporary crops—were top predictors of snail
habitat suitability, providing some insight on the types of habitats that
peri-urban andurban areas provide. However, as the location along the
urban to rural gradient contributed more to model predictions than
agricultural land-use and land-cover, there are likely other aspects of
urban and peri-urban infrastructure that provide snail habitat, such as
sewage systems that outflow into open ditches and unpaved streets in
rapidly growing settlements34, which also favor the dispersion in the
environment of S. mansoni eggs with fecal waste27,34. For example15,
found that snails use sediment fromusedwater andopen-air sewage as
a food source as opposed to aquatic plants. Critically, the population
derived location along the urban to rural gradient is a rough proxy for
estimating the impact of urban dynamics and should be updated in

Fig. 4 | Predicted habitat suitability of the three competent snail hosts shifted
over 25 years.Thefigure includes the distribution of each snail species in 1992 (aB.
glabrata; d B. straminea; g B. tenagophila). and 2017 (b B. glabrata; e B. straminea;
h B. tenagophila), where light green indicates low suitability and dark purple indi-
cates high suitability. Panels (cB. glabrata; fB. straminea; i B. tenagophila) show the

change in habitat suitability between the two time points, where red indicates an
increase in habitat suitability and blue indicates a decrease in habitat suitability.
Spatial resolution is 1 km2. Figures are mean values per pixel across 25 boot-
strapping iterations. For each species, predicted values are scaled from0 to 1 using
a min-max transformation.
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future studies to better incorporate specific infrastructure (e.g., waste
management and resulting prevalence of organic pollution) and land
cover composition of urban and peri-urban areas and estimate edge
effects, especially as theymay lag behind change in population density
and size.

Our models suggest that climate and urbanization have sig-
nificantly contributed to a shift in Biomphalaria habitat suitability over
the last three decades (Figs. 4 and 5, supplement 23–25). Distributions
of B. glabrata, the most competent intermediate host, have shifted to
coastal areas, particularly towards the southeast (Fig. 4), with our
counterfactual analysis supporting the hypothesis that this shift is
driven by both climate, particularly increased precipitation seasonality
and drier dry seasons, and urbanization (Figs. 5 and 6, supplement p
24). Of the three host snails, the distribution of the habitat suitability
forB. straminea has changed themost, with a large southward increase
in habitat suitability, reflective of decreasing annual precipitation and
increasing isothermality within Central West and southern Brazil
across the two time points, and local changes associated with

urbanization (Figs. 2, 5, and 6, supplement pp 15–16).WhileB. glabrata
is the most competent host, the expansive and moving habitat suit-
ability of B. straminea suggests that this species may play a larger role
in schistosomiasis persistence under a changing environment. In
contrast, the geographic extent ofB. tenagophilahabitat suitability has
decreased over the last three decades, most likely due to temporal
variation in temperatures and reduced precipitation seasonality in
Southeast Brazil (Figs. 2 and 5, supplement pp 15-16). These findings
are in line with local Biomphalaria surveillance, which have observed
that B. straminea has replaced B. tenagophila in some areas of São
Paulo state35.

While this analysis indicates large geographic shifts in snail habitat
suitability, on-the-ground observations may not detect this shift
because land-use, particularly urbanization, may create localized
pockets that amplify or dilute snail habitat suitability in adjacent areas
(Fig. 6; supplement pp 24-25). For example, around some new cities we
observed increases, roughly 10 km wide, in suitable habitat associated
with both climate and urbanization. For instance, the cities of Inhapim
and Baixo Guandú grew from rural areas to small cities with >20,000
people between thehistorical and recent timeperiods. Both cities have
reported some of the highest numbers of schistosomiasis cases
between 2007 and 2017 in their respective states (Minas Gerais and
Espírito Santo)36,37. Notably, our analysis shows that there has been a
decrease in suitability associated with the “disappearance” of small-
medium urban areas between the time points. This warrants further
on-the-ground investigation and validation as this result may be
reflective of change in infrastructure associated with population size
or might be an artifact of our definition of urbanization, where the
population size and/or density only marginally drops below our urban
population size and density thresholds, thus showing up on maps as a
dissolved urban area when in reality there has been little change in
infrastructure that impacts schistosomiasis risk.

Overall, this analysis provides a fine scale yet bird’s-eye view of
changing snail habitat suitability, allowing us to tease apart these
interactions and better understand change in snail distribution
through time. These findings may guide future management and pol-
icy work, such as allocating resources to control schistosomiasis in
urban and peri-urban areas, and monitoring snail occurrence at the
edge of the described climate envelopes. An important next step is
identifying the mechanistic underpinnings of snail occurrence in peri-
urban and urban settings, which will enable even higher precision
mapping of snail habitat and the development of ecological interven-
tions that facilitate sustainable snail removal. For example, in
Senegal38, found specific species of aquatic vegetation that are strong

b B. straminea c B. tenagophila

−0.50

−0.25

0.00

0.25

change in
suitability

a B. glabrata

Fig. 5 | Climate drives large scale changes in suitability for all three species. The
difference in distribution between the predicted distribution of 2017 and the
counterfactual: the 2017 prediction estimated when holding climate features as
they were observed in 1992. Panel a is for B. glabrata, b is for B. straminea, and c is

forB. tenagophila. Red indicates the habitat that becamemore suitablewith change
in climate and blue indicates the climate became less suitable with the observed
change in climate (i.e., the change in predicted distribution is due to the change in
climate). Figures are mean values per pixel across 25 bootstrapping iterations.

Table 2 | The proportion of the area of Brazil that is predicted
to have experienced a change in habitat suitability between
1992 and 2017

Predicted distribution (proportion of change in area)

Total change Positive change Negative change

B. glabrata 0.58 (0.52–0.66) 0.29 (0.36–0.34) 0.29 (0.24–0.36)

B. straminea 0.55 (0.4–0.64) 0.31 (0.27–0.34) 0.24 (0.16–0.30)

B. tenagophila 0.28 (0.19–0.34) 0.12 (0.08–0.16) 0.25 (0.11–0.19)

Climate counterfactual (proportion of change in area)

Total change Positive change Negative change

B. glabrata 0.54 (0.46–0.62) 0.25 (0.21–0.30) 0.29 (0.23–0.37)

B. straminea 0.45 (0.33–0.56) 0.24 (0.17–0.30) 0.21 (0.12–0.29)

B. tenagophila 0.18 (0.13–0.24) 0.07 (0.04–0.10) 0.11 (0.08–0.16)

Urban counterfactual (proportion of change in area)

Total change Positive change Negative change

B. glabrata 0.16 (0.12–0.20) 0.11 (0.08–0.14) 0.05 (0.03–0.07)

B. straminea 0.20 (0.15–0.24) 0.14 (0.11–0.18) 0.06 (0.04–0.07)

B. tenagophila 0.04 (0.02–0.07) 0.03 (0.05–0.04) 0.01 (0.006–0.024)

The counterfactuals indicate the percent of area change associated with those features. The
table presents the mean values, with the 95% confidence intervals in parentheses across 25
bootstrap iterations.
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predictors of Bulinus (the Schistosoma snail host in Senegal) abun-
dance and schistosomiasis infection. Satellite imagery and deep
learningmodels have been developed to identify this vegetation at <2-
m resolution39, providing a tool for highly targeted habitat control at a
large geographic extent. Identifying fine-resolution biotic and abiotic
drivers of snail habitat in peri-urban and urban Brazil will support
similar precision mapping and resource-effective habitat removal.
Importantly, Schistosoma parasites may have different environmental
needs. Another necessary next step is to identify how snail habitat
translates to human infection rates, and the environmental drivers of
parasite presence that overlap with snail presence. This will enable
identification of transmission hotspots as opposed to only snail
habitat.

Beyond Brazil, our study may help to inform spatial-temporal
variation of snail habitat at a global scale. For instance, B. straminea in
South China, where it is an invasive species, has demonstrated similar
changes in distribution over time: the snail’s distribution has expanded
away from the equator towards historicallymore temperate habitats40.
Our results suggest that this pattern is likely due to changing climate,
with localized suitability amplified or diluted by changing patterns in
the extent of small tomedium sized urban areas. Further, urban foci of
transmission have emerged in Asia and Africa, such as in Ethiopia and
Nigeria10. Our study emphasizes the need to evaluate the role urbani-
zation might be playing in schistosomiasis persistence on a
global scale.

Despite the three intermediate host snails having distinct socio-
ecological niches within Brazil, our work underscores the importance
of species-specific combinations of temperature, precipitation, and
urban conditions that are highly predictive of snail occurrence, and
therefore important indicators of schistosomiasis risk. Proactively
anticipating shifts in snail habitat suitability and schistosomiasis risk is
a major priority for targeting snail control and public health services
and for mitigating disease emergence. Long-term snail surveillance
and control programs face shifting demands as the seasonality,
intensity, and geography of snail populations change with climate,

land-use, and socio-ecological conditions. Our study shows that snail
habitat suitability has changed throughout the last three decades and
provides profiles of baseline exposure risk that can help shift the
spatial priorities of control efforts with changing socio-ecological
conditions, land-use, and climate.

Methods
We used machine-learning based (XGBoost) Species Distribution
Models (SDMs), 30 years of expert-collected occurrence data, and
remote sensing data tomap the habitat suitability for each of the three
Schistosoma parasite competent Biomphalaria species. SDMs use
species occurrence coordinates and corresponding environmental
variables to interpolate habitat suitability across large geographic
extents. Machine learning SDMs are particularly flexible models that
canhandle non-linear relationships, collinear features (covariates), and
complex interactions among features25,41. We trained the models on
data collected from 2000 to 2020. Using data collected from 1990 to
1999 as a hold-out test set, we used a hindcasting approach to test
the model.

Occurrence points and data thinning
We used a combination of snail occurrence points collected by the
Brazilian government programs, Medical Malacology Collection
(CMM-Fiocruz) Minas Gerais and São Paulo Department of Public
Health. In total, the programs collected 11,299 snail records that
spanned 1990–2020 (supplement pp 1;8). For our analysis, for each
focal species, we thinned data so that only one occurrence point was
retained per 1 km2 grid cell using the R package dismo42. Thinning data
is essential to control for pseudo-replication43.

Background points
There is often a lack of true species absence data for model input and
thus background points or pseudo-absences are used as a proxy for
where the focal species does not occur25. To generate background
points, we created a background mask using species records from the
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Fig. 6 | An example of how urbanization affects habitat suitability on small
scales. The change in urban extent for the Vale do Rio Doce (a, d), Recife Metro-
politan (b, e), and São Paulo Metropolitan (c, f) mesoregions between 1992 and
2017. g, i The difference in snail probability for 2017 when using urban-rural gra-
dient values for 2017 versus 1992 (i.e, the change in snail probability attributed to
change in urban distribution and extent) for B. glabrata in Vale do Rio Doce (g), B.
straminea in Recife (h), and B. tenagophila in São Paulo (i). The Vale de Rio Doce
region is much larger than the other two mesoregions, but the change in urban

extent highlights that there was a significant amount of emergence of small-
medium cities (300–1500 people per 1 km2 pixel, with >2500 people in contiguous
pixels) and this is associated with a significant change in habitat suitability. We
chose the mesoregion for each snail based on evidence that the species is asso-
ciated with foci of transmission and/or have been found infected with Schistsoma
mansoni in that area. Figures g–i aremean values per pixel across 25 bootstrapping
iterations.
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Global Biodiversity Information Facility (GBIF)44 as well as expert col-
lected snails that were not the focal species. Specifically, fromGBIF, we
used georeferenced records from all freshwater animals in Brazil. We
downloaded 55,057 coordinates, spanning 1990–2020, for 2135 spe-
cies. Records from all freshwater animals allowed us to create a land-
scape of freshwater animal sampling locations and, thus, where snail
species could plausibly have been sampled. These methods help to
account for sampling bias, such as bias that may arise if sampling of
ecological communities is concentrated around human population
centers. We first overlaid a 1 km2 resolution grid over Brazil. Each cell
was then assigned a probability value based on the number of back-
ground points (records) within each grid cell. Using these prob-
abilities, we selected the background points by probabilistically
sampling twice the number of occurrence points from unique 1 km2

grid cells. This procedure was repeated for each of the three compe-
tent host snail species.

Environmental data processing
We included features related to climate, land-use/land cover (LULC),
hydrology, topography, and soil properties in our distributionmodels
(supplement pp 1–6). We used the CHELSA v2.1 monthly products to
calculate 10-year climatologies spanning four decades (1980–1989,
1990–1999, 2000–2009, 2010–2017)45. The CHELSA dataset occurred
at the coarsest spatial resolution: 1 km2. Tominimize issueswith spatial
autocorrelation, we aggregated all other spatial covariates to a spatial
resolution of 1 km2.

To estimate land-use and land-cover (LULC) variables,we used the
MAPBIOMAS land-cover raster collection 7.0 v223 to calculate the
percent cover of temporary crops (excluding monocultured crops:
soy, sugarcane, rice, and cotton) and mosaic of use—two land-use
types associatedwith free standing freshwater inurban andperi-urban
farms —within the 1 km2 grid cell during the year the data point was
collected. We also incorporated hydrology and water availability using
the Global Surface Water dataset46, MERIT Hydro data (100m
resolution)47, and WWF HydroSHEDS Free Flowing River dataset48,
topography using the NASA NASADEM Digital Elevation dataset (30m
resolution)49, and the OpenLandMap dataset (250m resolution) to
calculate soil properties50–54. We removed highly correlated features
(r >0.75) (supplement pp 1–6).

Urban-to-Rural gradient index
We defined urban and rural areas using population density and
population size as a proxy. First, we defined an urban area based on an
aggregation of urban definitions throughout South America: an urban
area had population densities from 300 to 1500 people within 1 km2

with contiguous pixels totaling at least 2500 people55. Next, we
included high density urban areas in both analyses: >1500 people per
grid cell with contiguous grid cells totaling more than 150,000
people56. As population-based definitions of urban areas are incon-
sistent, as a separate analysis, we repeated the analysis with alternative
definitions of urbanization as described in supplement p 2, and the
results yielded similar results (supplement pp 7, 17–22). We used
WorldPop to estimate population size and cumulative cost mapping—
where every pixel is assigned the total cost of the lowest cost path
(distance) to an urban pixel—to estimate the distance to the nearest
urban and rural pixels for points collected between 2000 and 2020.
WorldPop data is not available before 2000; as such, we derived
population estimates from 1990 to 1999 by linearly interpolating
between the 2000 WorldPop raster and the Global Human Develop-
ment Layer, Population Grid 1975 raster57. To calculate the final vari-
able—location along the urban to rural gradient—we divided distance
to an urban area by distance to a rural area and standardized it from 0
to 1 using a max-min transformation. All environmental data was
processed and aggregated to 1 km2 grid cells around each data point
using Google Earth Engine58 and the GEE Python API in Google Co-

Laboratory, with the exception of CHELSA, which was downloaded
from their AWS repository59.

Extreme gradient boosted regression tree SDMs
We used extreme gradient boosted regression tree models, using
package Xgboost60, for each SDM as boosted regression models were
determined to yield the best performance and interpretability for
modeling snail habitat in Brazil41. Specifically, when compared to
MaxEnt and Random Forest models, gradient boosted machine pre-
dictions of snail habitat suitability performed with comparable accu-
racy but better aligned with expert knowledge of Biomphalaria’s
known distribution41. Extreme gradient boosted regression is a
machine learning algorithm that creates an ensemble of weak decision
trees to form a stronger prediction model by iteratively learning from
weak classifiers and combining them into a strong classifier (i.e.,
boosting). Xgboost is flexible in that it allows for non-linearity, both
among features (i.e., interactions) and between features and the
response variable, higher collinearity among features than traditional
statistical models, and non-random patterns of missing data, char-
acteristics frequently observed in ecological data. Spatial cross-
validation (5-fold), using the R package blockCV61, was used to esti-
mate the model’s out-of-sample predictive power. Out-of-sample
testing ultimately tests our model’s ability to generalize biological
patterns as opposed to the ability to predict complex patterns of the
training dataset. We used spatial cross-validation so to minimize
inflating model performance values due to spatial autocorrelation of
environmental predictors61. In brief, we first split our dataset into five
distinct geographic regions (5 folds). We then trained our model on
four folds and validated themodel (testedmodel performance) on the
hold out fold. We repeated this process until all five geographic
regions were tested as the hold-out dataset. For each spatial-cv step,
model parameterswere tuned and trainedusingBayesianoptimization
via the R package rBayesianOptimization62. Specifically, we tuned: the
learning parameter (“eta”; controls howmuch information from a new
tree will be used for boosting), maximum depth of the trees (“max_-
depth”), the minimum weight necessary to create a new node (“min_-
child_weight”), the fraction of data used to grow each tree
(“subsample”), and the fraction of features used to train each tree
(“colsample_bytree”). We tuned the model by using 5-fold cross-vali-
dation to select the hyperparameters thatminimized the loss function.
We controlled the balance of negative to positive weights by setting
“scale_pos_weight” to 2 as there were 2x as many background samples
(0) as presence samples (1). All other model parameters were set at
default settings. Model sensitivity, model specificity, and model area-
under-the-curve (AUC) were calculated using the R package pROC63

and caret64. Model training and validation was conducted using data
from 2000 to 2020.

To evaluate the average contribution of each covariate to model
predictions, we first identified important features using SHAP Values
(Shapley Additive Explanations) calculated via the R package
SHAPforxgboost65. Next, to generate environmental profiles for each
snail, we constructed partial dependence plots (PDPs) using the R
package pdp66. PDPs illustrate the average relationship between habi-
tat suitability and the feature of interest. The average relationship is
calculated by fitting models with all combinations of the non-focal
variables for each value of the focal feature. To account for uncertainty
in the model, feature contribution (SHAP Values) and PDPs were cal-
culated 25 times, where, for each iteration, the model was trained on a
randomly selected 80% of the data (bootstrapping). Data and code are
available at https://github.com/ckglidden/biomphalaria-sdm-brazil.

Hindcasting & counterfactuals
Our ultimate objective was to use historical information to estimate
how Biomphalaria species distributions have changed with land-use
and climate. To evaluate whether our model could track changes in
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snail distribution through time, we trained the model on all data from
2000 to 2020 and tested the model on data collected from 1990 to
1999. We calculatedmodel sensitivity, specificity, and AUC to evaluate
how well the model could predict suitable snail habitats on historic
out-of-sample data.

We then conducted a counterfactual analysis to examine how
changes in climate and urbanization contributed to observed changes
in Biomphalaria distribution over time. First, using the model trained
on 2000–2020 data, we created prediction maps for the historical
distribution of each snail (using data from 1992) and the current dis-
tribution of the snail (using data from 2017).We then created a climate
counterfactual map by estimating model predictions using current
data for all variables except climate, for which we used historical data
(i.e., predicted what the current distribution would be if all variables
but climate changed between the two time points). We repeated this
process for urban variables to create an urban counterfactual. Finally,
we compared the observed change in distribution between 1992 and
2017with the observed change in distributionusing the counterfactual
scenario to estimate the change in distribution that was correlated
with each set of features (i.e., climate or urban). For example, in a given
location, if the change of probability of occurrence in the observed
map is higher than change in probability in the counterfactual map
(when climatology remained at historical values), then we infer that
change in climatology is, at least in part, correlated with the increased
probability observed between the two observed time periods. We
created prediction maps for each of the 25 iterations described in the
bootstrapping protocol above.

All figures were created using the R packages ggplot267, geobr68,
and raster69.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Data is available on https://github.com/ckglidden/biomphalaria-sdm-
brazil/ and via Zenodo using the doi 10.5281/zenodo.10975612. The
repository contains the data used for training the SDM for each snail
species (“glabrata_brt_data_april7.rds”; (“straminea_brt_data_a-
pril7.rds”; “tenagophila_brt_data_april7.rds”) as well as the data used to
test model accuracy at predicting historical data (“glabrata_1999-
test_data.rds”; (“straminea_1999test_data.rds”; “tenagophila_1999-
test_data.rds”). We obtained data from CHELSA, WorldPop (https://
developers.google.com/earth-engine/datasets/catalog/WorldPop_GP_
100m_pop), Global Human Settlement Layer (https://human-
settlement.emergency.copernicus.eu/ghs_pop2019.php),
MAPBIOMAS, JRC Global Surface Water Mapping Layers (https://
developers.google.com/earth-engine/datasets/catalog/JRC_GSW1_4_
GlobalSurfaceWater), Merit Hydro: Global Hydrography Dataset
(https://developers.google.com/earth-engine/datasets/catalog/
MERIT_Hydro_v1_0_1), NASADEM: NASA Digital Elevation (https://
developers.google.com/earth-engine/datasets/catalog/NASA_
NASADEM_HGT_001), WWF HydroSheds Free Flowing River Networks
v1(https://developers.google.com/earth-engine/datasets/catalog/
WWF_HydroSHEDS_v1_FreeFlowingRivers), OpenLandMap Soil Prop-
erties (clay: https://developers.google.com/earth-engine/datasets/
catalog/OpenLandMap_SOL_SOL_CLAY-WFRACTION_USDA-3A1A1A_
M_v02; sand: https://developers.google.com/earth-engine/datasets/
catalog/OpenLandMap_SOL_SOL_SAND-WFRACTION_USDA-3A1A1A_
M_v02; water: https://developers.google.com/earth-engine/datasets/
catalog/OpenLandMap_SOL_SOL_WATERCONTENT-33KPA_USDA-
4B1C_M_v01; carbon: https://developers.google.com/earth-engine/
datasets/catalog/OpenLandMap_SOL_SOL_ORGANIC-CARBON_USDA-
6A1C_M_v02; pH: https://developers.google.com/earth-engine/
datasets/catalog/OpenLandMap_SOL_SOL_PH-H2O_USDA-4C1A2A_M_

v02; bulk density: https://developers.google.com/earth-engine/
datasets/catalog/OpenLandMap_SOL_SOL_BULKDENS-FINEEARTH_
USDA-4A1H_M_v02).

Code availability
Glidden, CK, Singleton AL, Chamberlin A; Climate and urbanization
drive changes in the habitat suitability of Schistosoma mansoni com-
petent snails in Brazil; https://github.com/ckglidden/biomphalaria-
sdm-brazil/; https://doi.org/10.5281/zenodo.10975595, 202470.
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