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Corynebacterium glutamicum, a natural glutamate-producing
bacterium adopted for industrial production of amino acids,
has been extensively explored recently for high-level
biosynthesis of amino acid derivatives, bulk chemicals such
as organic acids and short-chain alcohols, aromatics, and
natural products, including polyphenols and terpenoids. Here,
we review the recent advances with a focus on biosystem
design principles, metabolic characterization and modeling,
omics analysis, utilization of nonmodel feedstock, emerging
CRISPR (Clustered Regularly Interspaced Short Palindromic
Repeats) tools for Corynebacterium strain engineering,
biosensors, and novel strains of C. glutamicum. Future
research directions for developing C. glutamicum cell
factories are also discussed.
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Introduction

The growing concerns on climate change and energy
supply have driven fast development of microbial man-
ufacturing of diverse bioproducts from renewable re-
sources [1-3]. One of the most commonly used industrial

microbes is Corynebacterium glutamicum, a Gram-positive
and nonpathogenic bacterium adopted industrially for
the production of amino acids. C. glutamicum demon-
strates several physiological properties advantageous to
fermentative production, such as high rates of sugar
consumption under either aerobic or anaerobic condi-
tions, regardless of cell density, high tolerance to osmotic
pressure and various chemicals (including the final pro-
ducts), and capability of simultancously utilizing mix-
tures of sugars without carbon catabolite repression [4].
Recently, the product portfolio of this host platform has
been expanded substantially to cover organic acids,
short-chain alcohols, phenolics, and plant natural pro-
ducts (Figure 1), attributed to the elucidation of more
physiological information, the establishment of genome-
scale models, and the development of sophisticated ge-
netic manipulation tools. In this review, we summarize
the latest progress on the engineering of C. glutamicum,
with a focus on biomanufacturing, utilization of various
substrates, emerging approaches of gene editing and
metabolic regulation, metabolic modeling and omics
analysis, and novel strains of C. glutamicum.

Production of primary metabolites, amino
acids, and amino acid derivatives

C. glutamicum has been applied industrially to produce 17
natural amino acids (except glycine, methionine, and as-
partate [5-8]) as well as amino acid derivatives such as 5-
aminovalerate and polyglutamic acid (Table 1) [9-11].
The general principles of strain engineering include (1)
introduction of the biosynthetic pathway consisting of
heterologous genes, (2) balancing of the amino acid bio-
synthetic pathway and the downstream pathway, and (3)
deletion or suppression of competing pathways. For ex-
ample, the heterologous pathway involving gene dav1BA
responsible for aminovaleramide formation from lysine
was overexpressed in a lysine-producing C. glutamicum
strain, followed by expression of various aldehyde re-
ductase orthologs for the generation of 5-hydroxyvaleric
acid. 'The resulting strain achieved a titer of 52 g/L. in fed-
batch fermentation [12]. Another example is the produc-
tion of glutaric acid. The L-lysine catabolic pathway from
P. putida was expressed in C. glutamicum, converting L-
lysine to glutaric acid, with a titer of 105 g/L. [13]. More-
over, C. glutamicum metabolism has been studied by C-
metabolic flux analysis (MFA). The metabolic knowledge
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The portfolio of typical chemicals produced by engineered C. glutamicum. The chemicals include amino acids, their derivatives, organic acids, short-
chain alcohols, fatty acids, aromatics, terpenoids, and polyphenols. The carbon sources for C. glutamicum include molasses and starch (common
industrial fermentation media), hemicellulosic hydrolysates, xylose, methanol, glycerol, aromatics, and so on.

led to heterologous expression of transhydrogenase and
site-directed mutagenesis of pentose phosphate pathway
enzymes to promote cofactor balance and 1.-methionine
production [14]. In addition to amino acids and their de-
rivatives, C. glutamicum is an excellent host to synthesize
various organic acids (i.e. lactate, succinate, pyruvate, and
o-ketoglutarate) [15,16] and  short-chain  alcohols
(Table 1) [17].

Biosynthesis of natural products

C. glutamicum is a generally regarded as safe microbe that
can produce pharmaceuticals and nutraceuticals. It has a
strong shikimate pathway for the synthesis of phenyla-
lanine and tyrosine, which are primary building blocks
for polyphenol biosynthesis. Polyphenols usually exhibit

antimicrobial properties. C. glutamicum is naturally more
resistant to polyphenols than K. ¢o/i, and can even me-
tabolize polyphenols as carbon sources under certain
conditions. As a consequence, (. glutamicum has been
recently engineered to produce diverse subgroups of
flavonoid compounds, including naringenin, kaecmpferol,
eriodictyol, and cyanidin-3-O-glucoside [18,19]. More-
over, C. glutamicum has been employed to produce aro-
matics, such as indole, protocatechuate, 4-
hydroxybenzoate, and 4-aminobenzoate (Figure 1) [4].
C. glutamicum has also been used to synthesize various
terpenoids, including astaxanthin, valencene, and lyco-
pene [20]. However, its performance for the biosynthesis
of natural products is generally lower than those ob-
tained in E. coli, S. cerevisiae, or Y. lipolytica [21]. One
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Table 1
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Recent achievements in C. glutamicum-based biosynthesis of compounds.

Classification Chemicals Titer Culture conditions Reference
Amino acids L-Leucine 40 g/L Fermenter [69]
and derivatives 5-Hydroxyvaleric acid 52 g/L Fermenter [12]
5-Aminolevulinic acid 16.3g/L Fermenter [70]
Poly-y-glutamic acid 21.3g/L Fermenter [71]
Ectoine 65.3 g/L Fermenter [72]
Putrescine 12.59/L Fermenter [56]
Indigoidine 49.3g/L Fermenter [73]
Spider silk protein 0.56 g/L Fermenter [74]
Aromatics Dipicolinic acid 2.5¢/L Shake flask [75]
Protocatechuate 16 g/L Fermenter [76]
Vanillin 0.31g/L Shake flask [77]
Alcohols 1,3-Propanediol 98 g/L Fermenter [78]
4-Amino-1-butanol 24 g/L Fermenter [79]
Isoprenol (3-methyl-3-buten-1-ol) 1.25¢g/L Shake flask [80]
Isobutanol 20.75g/L Shake flask [81]
Organic acids Succinate 94 g/L Fermenter [15]
Muconic acid 85g/L Fermenter [82]
Adipic acid 35 pg/L Shake flask [83]
Terpenoids Astaxanthin 22 mg/L Shake flask [84]
CoQ10 0.4 mg/L Shake flask [85]
Polyphenols Cyanidin-3-O-glucoside 40 mg/L Shake flask [18]
Naringenin 37 mg/L Shake flask [86]
Resveratrol 158 mg/L Shake flask [86]
Salidroside 9.79g/L Fermenter [87]

possible reason is that enzyme expression in C. gluta-
micum leads to insoluble inclusion bodies. To improve
the expression of heterologous proteins, the fusion of a
soluble peptide tag has been shown to be an effective
approach [18].

Utilization of cellulosic sugars and nonmodel
feedstock

C. glutamicum can usc glucose, sucrose, and fructose but
not pentoses [22,23]. Recent research to expand the
spectrum of C. glutamicum carbon sources targets me-
thanol, chitin, pentoses (xylose and arabinose) from
hemicellulosic hydrolysates, galactose and lactose that
arc abundant in whey-based fermentation media, and
glycerol that is a major by-product from the biodiesel
industry [24] (Figure 1). The relevant strategies for
strain engineering toward sugar utilization contain
adaptive evolution, introduction of sugar transporters
from other microbes, activation of cryptic transporters,
and expression of sugar pathway genes for subsequent
catabolism [25]. C. glutamicum contains an endogenous
yet silent glycerol-catabolizing pathway. Earlier attempts
regarding glycerol utilization in this bacterium involved
activation of the endogenous pathway or introduction of
heterologous pathways; however, these methods only
led to limited success [26]. A recent study optimized the
expression of the heterologous genes involving glpF
(encoding aquaglyceroporin), dkaD (encoding glycerol
dehydrogenase), and dhaK (encoding ATP(Adenosine
triphosphate)-dependent  dihydroxyacetone  kinase).
The best strain achieved a glycerol utilization rate of

1.34 g/g DCW/h and the maximum specific growth rate
of 0.37 h™! with glycerol as the sole carbon source [26].

A consolidated process using starch as the feedstock has
been achieved in C. glutamicum that lacks hydrolases to
decompose starch. Surface display of a-amylase from
Streptococcus bovis enabled the engineered C. glutamicum
to degrade starch into glucose, which is then metabo-
lized to produce lysine [27,28]. On the other hand, a
coculture approach has been applied. Through the di-
vision of labor [29], the partner strain (a-amylase-pro-
ducing E. co/i) is designed to digest starch into glucose,
whereas C. glutamicum uses glucose to produce value-
added chemicals [30].

Recently, new methods have been developed to depo-
lymerize lignin [31]. While a range of molecules can be
released from lignin, aromatic molecules such as para-
coumarate and ferulate are natively catabolized by C.
Glutamicum 32,33]. Therefore, lignocellulosic biomass
could release both monomeric sugars and aromatics as
feedstock for this organism.

New tools to engineer C. glutamicum

T'raditional gene knockout or knock-in in C. glutamicum
uses allelic exchange plasmids, which is a multistep and
overall inefficient process. Better gene modifications can
be achieved by CRISPR/Cas9 (CRISPR-associated pro-
tein 9) in conjunction with ssDNA-binding repair protein
RecT' from E. coli (Figure 2) [34]. Adapting these tech-
niques to C. glutamicum has required some optimization:
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The new genetic tools and models developed for metabolic engineering of C. glutamicum.

expressing Cas9 alone can generate double-strand breaks
that are highly toxic to the cell, thus leading to a low
genome editing efficiency, especially when Cas9 is ex-
pressed constitutively. In contrast, Cas12a (Cpfl) from
Francisella novicida is nontoxic and highly efficient in
nucleotide modifications with the aid of single-stranded
DNA [35]. Inspired by this, similar toolboxes have been
developed for C. glutamicum genome editing through op-
timized expression of guide RNA and Cas9 and coex-
pression of recombinases [36]. Another newly developed
tool is the adenine/cytosine base editor. In this system,
the catalytically dead Cas9 is fused to a cytosine deami-
nase (CDA) or adenine deaminase (AID), which enables
base pair transition from C:G to T:A or from A:'l" to G:C.
Expression of the guide RNA and the fusion construct
Cas9-CDA or Cas9-AID triggers precise base editing in
either the genome or the plasmid [37]. By applying this
tool to tune the sequences of ribosome-binding sites or
promoter regions, the pathway genes can be regulated in
parallel and their expression levels can be controlled in a
large range [37]. Moreover, the genome-targeting scope of
such base editors has been expanded by using the Cas9
variants, thus providing 3.9-fold more target loci for C.
glutamicum gene modifications [306].

The CRISPR system has been investigated in the in-
terference of gene expression (CRISPRi) (Figure 2). By
employing a catalytically dead Cas9 endonuclease that
binds to one or several target sequences simultaneously

with the aid of guide RNAs, the expression of the target
gene(s) can therefore be repressed or, in some cases,
activated [38]. For example, C. glutamicum was en-
gineered for carotenoid production and CRISPRI tested
74 genes involved in its central metabolism, regulatory
genes, and biosynthetic pathways. Such an effort led to
the identification of new target genes for increased car-
otenoid bioproduction [39]. On the other hand, a syn-
thetic small regulatory RNA (sRNA)-based gene
knockdown strategy has been developed in C. gluta-
micum (Figure 2). This system contains an RNA cha-
perone Hfq from E. co/i and a rationally designed sRNA
consisting of the E. co/i MicC (mRNA-interfering com-
plementary OmpC) scaffold and a target-binding site.
Upon expression in C. glutamicum, the SRNA binds to the
mRNA of the target genes, represses translation and
enzyme synthesis, and regulates the production of the
target compounds [40].

Biosensors are useful in metabolic engineering. C. g/u-
famicum contains many native transcription factors that
respond to amino acids to trigger the expression of ex-
porters. In addition, some endogenous regulatory pro-
teins are responsive to native metabolites or natural
products [41,42]. For example, multiple antibiotic re-
sistance regulator-type regulator CrtR (The gene that
encodes cytochrome p450 reductase), which represses
the transcription of the promoter of the ¢77 operon
(PertE) and its own gene (PcrtR), can sense intracellular
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geranylgeranyl pyrophosphate (GGPP), and the CrtR/
PcrtE switch can be used to screen GGPP-over-
producing strains for the production of carotenoids [42].
Recently, other biosensors have been discovered in C.
glutamicum such as ShiR, NCgl0581, and CgmR, in ad-
dition to previously identified biosensors such as Lrp,
GIxR, and LysG [43]. They can be applied in the
screening of efficient producers or as a switch to mod-
ulate biosynthetic pathways in a dynamic manner. For
instance, various dynamic pathway regulation tools have
been reported, including quorum-sensing-based genetic
circuits [44] and synthetic metabolic switches (re-
sponsive to cell growth [26] or effector molecules such as
gluconate [45] and ferulic acid [46]).

Multiscale models and omics analysis to
assist C. glutamicum engineering

A design-build-test-learn (DBTL) cycle for C. gluta-
micum engineering involves 1) design pathways, 2) build
genetic constructs, 3) Zesz strains for desired traits, and 4)
learn new strategies for the next cycle of DBTL. In the
design stage, metabolic modeling predicts strain meta-
bolism and identifies biosynthesis bottlenecks. Several
computational design tools, including models and algo-
rithms, have been developed to greatly accelerate such a
process. The recently updated genome-scale metabolic
model of C. glutamicum, that is, model /CW773 estab-
lished for strain ATCC 13032, consists of 773 genes, 950
mectabolites, and 1207 reactions [47]. This model cou-
pled with flux balance analysis and computational strain
design could suggest the genetic interventions leading to
hyaluronic acid overproduction. Engineering efforts fol-
lowing such predictions led to 28.7 g/LL of hyaluronic acid
(0.21-0.97 MDa) in fed-batch fermentation [48]. In an-
other example, model-guided metabolic engineering
reconstructed the TCA cycle, blocked product de-
gradation, enhanced transport system, and improved
gamma-aminobutyric acid production (achieving 23 g/L.)
[49]. Similarly, a pool influx kinetics (PIK) approach
integrated dynamic "*C labeling with model-based ana-
lysis, leading to the identification of key genes for im-
proving L-histidine production in C. glutamicum [50].
Recently, an enzyme-constrained metabolic model was
developed [51]. This model improved the prediction of
C. glutamicum phenotypes and revealed the trade-off
between biomass yield and enzyme usage efficiency,
which could guide strain engineering for L-lysine pro-
duction. In parallel to mechanistic models, data-driven
approaches (such as Al (Artificial intelligence)) have
been reported to facilitate successful DBTL cycles in
other model organisms such as E. coli [52] and §. cere-
visiae |53]. Moreover, the Automated Recommendation
T'ool for machine learning applications has been built to
design synthetic biology components (such as pro-
moters) [54]. The same machine learning approaches

Biosystems Design of Corynebacterium Zhaetal. 5

may enhance C. glutamicum strain development and
biomanufacturing [55].

Omics analyses are important tools to facilitate DBTL
strain development. In a putrescine-producing C. gluta-
micum strain obtained via adaptive evolution, key en-
gineering loci were identified at the genetic level using
whole-genome sequencing and at the protein level using
comparative proteomics analysis. Subsequent en-
gineering efforts guided by the omics studies further
increased the titer of putrescine by 30% [56]. In another
study, transcriptomic and metabolomic data were ana-
lyzed to uncover the association between cellular meta-
bolism and the amino acid-producing phenotype,
suggesting that active pentose phosphate pathway and
glyoxylate cycle are correlated with efficient production
of branched-chain amino acids [57]. On the other hand,
bioproduction scale-up from laboratory flasks to in-
dustrial fermenters requires multiscale process analyses
and optimizations. Thereby, various process models
have been built to predict C. glutamicum fermentations
[58], to gain insights into cell metabolism under bior-
eactor conditions [59], and to quantify bioreactor mass
transfer, hydromechanics, and power input [60]. More-
over, the integration of process models with intracellular
omics analysis under scale-down conditions provides
valuable perspectives on C. glutamicum physiologies in-
side inhomogencous industrial fermenters [61].

Novel C. glutamicum strains for metabolic
engineering applications

While genomic tools and computational model devel-
opment have reached maturity for the ATCC 13032-
type strain, differences between the type strain and
other C. glutamicum isolates remain an untapped reservoir
of potential metabolic capacity. A phylogenetic analysis
of the 26 most common C. glutamicum isolates described
in the literature identified 9 distinct groups with unique
genomic islands and complex polymorphisms that may
be related to their specific amino acid secretion pheno-
types [62]. These C. glutamicum isolates can have dif-
fering potentials to produce desirable heterologous
bioproducts. N-acetylglucosamine (GIcNAc) is a mono-
saccharide with potential applications in human health.
Deng and coworkers introduced the Caenorhabditis ele-
gans GNAI gene (encoding glucosamine-6-phosphate
acetyltransferase) into different C. glutamicum isolates
and detected GlcNAc titers at 3.0 g/LL in the S9114 iso-
late. In contrast, ATCC 13032 produced 0.5 g/I. GlcNAc.
The authors were able to adapt standard C. glutamicum
gene modification tools in the S9114 isolate to further
boost titers in batch mode to 6.9 g/L. in rich media [63].
Similarly, Banerjee and coworkers tested the production
of a 5-gene isoprenol production pathway in a transfor-
mation-improved Amrr ATCC 13032 strain as well as in
isolate BRC-JBEI 1.1.2, and found that isoprenol titers
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were at the lower detection limit (15 mg/L.) in the type
strain but were twenty-fold higher in BRC-JBEI 1.1.2
[64]. Many (> 500) genes in these C. glutamicum isolates
lack any functional characterization and have no known
homologs in other species, and this trend will likely hold
as more genomes from related Corynebacteria are identi-
fied from diverse microbiomes using high-quality me-
tagenomic assembly approaches. Functional genomics
approaches using parallel transposon-mutagenized mu-
tant libraries that have been applied in other bacterial
hosts will enable the comparison of gene function across
these isolates, providing insights into the unknown
genes harbored in these strains [65].

Conclusions and outlook for the industry

C. glutamicum has superior capability in the biosynthesis
of diverse amino acids, organic acids, short-chain alco-
hols, and their derivatives, many of which are bulk
chemicals. The fermentation facilities and bioseparation
techniques for C. glutamicum factories have been estab-
lished, facilitating the commercialization of other com-
pounds beyond amino acids. Meanwhile, the
development of omics analyses and high-throughput
cultivation/screening [66] is momentously speeding
strain characterization and development. Additionally,
the existence of a natural aromatic-degrading pathway
and the strong resistance to aromatic inhibitors in
hemicellulosic hydrolysates suggest promising potentials
of C. glutamicum for the utilization of lignocellulose to
produce diverse chemicals [64]. On the other hand, it
should be noted that C. glutamicum is not the best chassis
organism for producing all compounds. For example,
natural products are synthesized in this bacterium at low
yields. To improve the functions of the plant-derived
pathways in C. glutamicum, several approaches can be
employed, including transporter engineering or cell wall
remodecling to increase the efflux of the final products,
enzyme modifications to enhance catalytic perfor-
mances, and modular pathway engineering [67,68]. In
addition, advanced metabolic modeling and emerging Al
technologies may accelerate C. glutamicum engineering to
synthesize various high-value products.
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