

Biosystem design of *Corynebacterium glutamicum* for bioproduction

Jian Zha¹, Zhen Zhao¹, Zhengyang Xiao², Thomas Eng⁵,
Aindrila Mukhopadhyay⁵, Mattheos AG Koffas^{3,4} and
Yinjie J Tang²

Corynebacterium glutamicum, a natural glutamate-producing bacterium adopted for industrial production of amino acids, has been extensively explored recently for high-level biosynthesis of amino acid derivatives, bulk chemicals such as organic acids and short-chain alcohols, aromatics, and natural products, including polyphenols and terpenoids. Here, we review the recent advances with a focus on biosystem design principles, metabolic characterization and modeling, omics analysis, utilization of nonmodel feedstock, emerging CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) tools for *Corynebacterium* strain engineering, biosensors, and novel strains of *C. glutamicum*. Future research directions for developing *C. glutamicum* cell factories are also discussed.

Addresses

¹School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, China

²Department of Energy, Environmental and Chemical Engineering, Washington University in Saint Louis, MO 63130, USA

³Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, USA

⁴Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA

⁵Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA

Corresponding author: Tang, Yinjie J (yinjie.tang@seas.wustl.edu)

Current Opinion in Biotechnology 2023, 79:102870

This review comes from a themed issue on **Energy Biotechnology**

Edited by **Jun Park** and **David Nielsen**

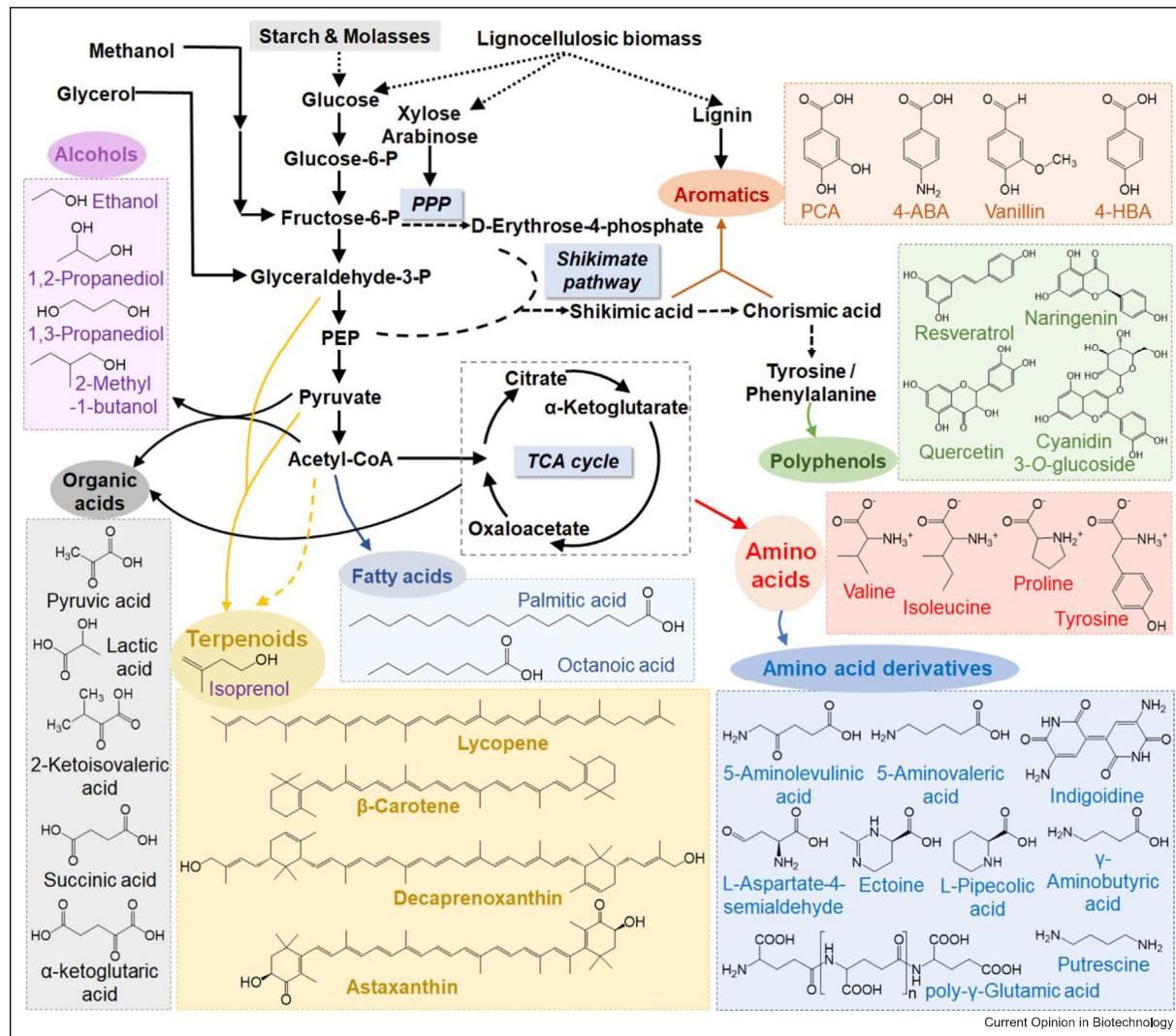
For complete overview of the section, please refer to the article collection, "[Energy Biotechnology \(2023\)](#)"

Available online 20 December 2022

<https://doi.org/10.1016/j.copbio.2022.102870>

0958-1669/© 2022 Elsevier Ltd. All rights reserved.

microbes is *Corynebacterium glutamicum*, a Gram-positive and nonpathogenic bacterium adopted industrially for the production of amino acids. *C. glutamicum* demonstrates several physiological properties advantageous to fermentative production, such as high rates of sugar consumption under either aerobic or anaerobic conditions, regardless of cell density, high tolerance to osmotic pressure and various chemicals (including the final products), and capability of simultaneously utilizing mixtures of sugars without carbon catabolite repression [4]. Recently, the product portfolio of this host platform has been expanded substantially to cover organic acids, short-chain alcohols, phenolics, and plant natural products (Figure 1), attributed to the elucidation of more physiological information, the establishment of genome-scale models, and the development of sophisticated genetic manipulation tools. In this review, we summarize the latest progress on the engineering of *C. glutamicum*, with a focus on biomanufacturing, utilization of various substrates, emerging approaches of gene editing and metabolic regulation, metabolic modeling and omics analysis, and novel strains of *C. glutamicum*.


Production of primary metabolites, amino acids, and amino acid derivatives

C. glutamicum has been applied industrially to produce 17 natural amino acids (except glycine, methionine, and aspartate [5–8]) as well as amino acid derivatives such as 5-aminovalerate and polyglutamic acid (Table 1) [9–11]. The general principles of strain engineering include (1) introduction of the biosynthetic pathway consisting of heterologous genes, (2) balancing of the amino acid biosynthetic pathway and the downstream pathway, and (3) deletion or suppression of competing pathways. For example, the heterologous pathway involving gene *davTBA* responsible for aminovaleramide formation from lysine was overexpressed in a lysine-producing *C. glutamicum* strain, followed by expression of various aldehyde reductase orthologs for the generation of 5-hydroxyvaleric acid. The resulting strain achieved a titer of 52 g/L in fed-batch fermentation [12]. Another example is the production of glutaric acid. The L-lysine catabolic pathway from *P. putida* was expressed in *C. glutamicum*, converting L-lysine to glutaric acid, with a titer of 105 g/L [13]. Moreover, *C. glutamicum* metabolism has been studied by ¹³C-metabolic flux analysis (MFA). The metabolic knowledge

Introduction

The growing concerns on climate change and energy supply have driven fast development of microbial manufacturing of diverse bioproducts from renewable resources [1–3]. One of the most commonly used industrial

Figure 1

The portfolio of typical chemicals produced by engineered *C. glutamicum*. The chemicals include amino acids, their derivatives, organic acids, short-chain alcohols, fatty acids, aromatics, terpenoids, and polyphenols. The carbon sources for *C. glutamicum* include molasses and starch (common industrial fermentation media), hemicellulosic hydrolysates, xylose, methanol, glycerol, aromatics, and so on.

led to heterologous expression of transhydrogenase and site-directed mutagenesis of pentose phosphate pathway enzymes to promote cofactor balance and L-methionine production [14]. In addition to amino acids and their derivatives, *C. glutamicum* is an excellent host to synthesize various organic acids (i.e. lactate, succinate, pyruvate, and α-ketoglutarate) [15,16] and short-chain alcohols (Table 1) [17].

Biosynthesis of natural products

C. glutamicum is a generally regarded as safe microbe that can produce pharmaceuticals and nutraceuticals. It has a strong shikimate pathway for the synthesis of phenylalanine and tyrosine, which are primary building blocks for polyphenol biosynthesis. Polyphenols usually exhibit

antimicrobial properties. *C. glutamicum* is naturally more resistant to polyphenols than *E. coli*, and can even metabolize polyphenols as carbon sources under certain conditions. As a consequence, *C. glutamicum* has been recently engineered to produce diverse subgroups of flavonoid compounds, including naringenin, kaempferol, eriodictyol, and cyanidin-3-O-glucoside [18,19]. Moreover, *C. glutamicum* has been employed to produce aromatics, such as indole, protocatechuate, 4-hydroxybenzoate, and 4-aminobenzoate (Figure 1) [4]. *C. glutamicum* has also been used to synthesize various terpenoids, including astaxanthin, valencene, and lycopene [20]. However, its performance for the biosynthesis of natural products is generally lower than those obtained in *E. coli*, *S. cerevisiae*, or *Y. lipolytica* [21]. One

Table 1**Recent achievements in *C. glutamicum*-based biosynthesis of compounds.**

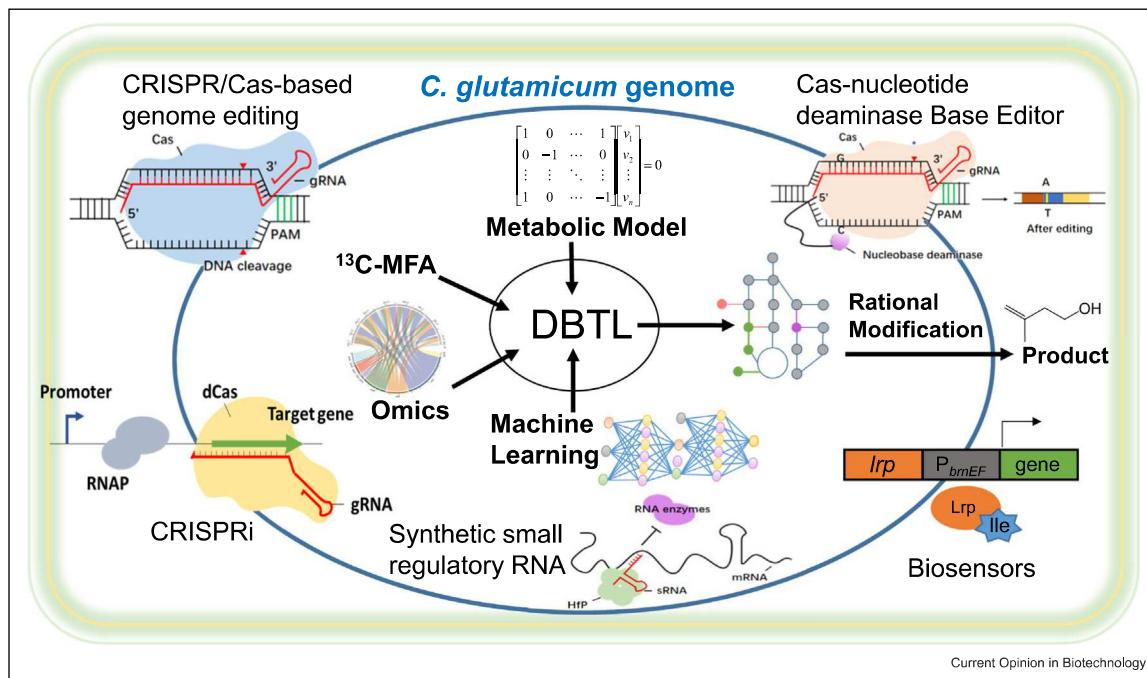
Classification	Chemicals	Titer	Culture conditions	Reference
<i>Amino acids and derivatives</i>	L-Leucine	40 g/L	Fermenter	[69]
	5-Hydroxyvaleric acid	52 g/L	Fermenter	[12]
	5-Aminolevulinic acid	16.3 g/L	Fermenter	[70]
	Poly- γ -glutamic acid	21.3 g/L	Fermenter	[71]
	Ectoine	65.3 g/L	Fermenter	[72]
	Putrescine	12.5 g/L	Fermenter	[56]
	Indigoidine	49.3 g/L	Fermenter	[73]
	Spider silk protein	0.56 g/L	Fermenter	[74]
<i>Aromatics</i>	Dipicolinic acid	2.5 g/L	Shake flask	[75]
	Protocatechuate	16 g/L	Fermenter	[76]
	Vanillin	0.31 g/L	Shake flask	[77]
<i>Alcohols</i>	1,3-Propanediol	98 g/L	Fermenter	[78]
	4-Amino-1-butanol	24 g/L	Fermenter	[79]
	Isoprenol (3-methyl-3-buten-1-ol)	1.25 g/L	Shake flask	[80]
<i>Organic acids</i>	Isobutanol	20.75 g/L	Shake flask	[81]
	Succinate	94 g/L	Fermenter	[15]
	Muconic acid	85 g/L	Fermenter	[82]
<i>Terpenoids</i>	Adipic acid	35 μ g/L	Shake flask	[83]
	Astaxanthin	22 mg/L	Shake flask	[84]
<i>Polyphenols</i>	CoQ10	0.4 mg/L	Shake flask	[85]
	Cyanidin-3-O-glucoside	40 mg/L	Shake flask	[18]
	Naringenin	37 mg/L	Shake flask	[86]
	Resveratrol	158 mg/L	Shake flask	[86]
	Salidroside	9.7 g/L	Fermenter	[87]

possible reason is that enzyme expression in *C. glutamicum* leads to insoluble inclusion bodies. To improve the expression of heterologous proteins, the fusion of a soluble peptide tag has been shown to be an effective approach [18].

Utilization of cellulosic sugars and nonmodel feedstock

C. glutamicum can use glucose, sucrose, and fructose but not pentoses [22,23]. Recent research to expand the spectrum of *C. glutamicum* carbon sources targets methanol, chitin, pentoses (xylose and arabinose) from hemicellulosic hydrolysates, galactose and lactose that are abundant in whey-based fermentation media, and glycerol that is a major by-product from the biodiesel industry [24] (Figure 1). The relevant strategies for strain engineering toward sugar utilization contain adaptive evolution, introduction of sugar transporters from other microbes, activation of cryptic transporters, and expression of sugar pathway genes for subsequent catabolism [25]. *C. glutamicum* contains an endogenous yet silent glycerol-catabolizing pathway. Earlier attempts regarding glycerol utilization in this bacterium involved activation of the endogenous pathway or introduction of heterologous pathways; however, these methods only led to limited success [26]. A recent study optimized the expression of the heterologous genes involving *glpF* (encoding aquaglyceroporin), *dhaD* (encoding glycerol dehydrogenase), and *dhaK* (encoding ATP(Adenosine triphosphate)-dependent dihydroxyacetone kinase). The best strain achieved a glycerol utilization rate of

1.34 g/g DCW/h and the maximum specific growth rate of 0.37 h^{-1} with glycerol as the sole carbon source [26].


A consolidated process using starch as the feedstock has been achieved in *C. glutamicum* that lacks hydrolases to decompose starch. Surface display of α -amylase from *Streptococcus bovis* enabled the engineered *C. glutamicum* to degrade starch into glucose, which is then metabolized to produce lysine [27,28]. On the other hand, a coculture approach has been applied. Through the division of labor [29], the partner strain (α -amylase-producing *E. coli*) is designed to digest starch into glucose, whereas *C. glutamicum* uses glucose to produce value-added chemicals [30].

Recently, new methods have been developed to depolymerize lignin [31]. While a range of molecules can be released from lignin, aromatic molecules such as *para*-coumarate and ferulate are natively catabolized by *C. glutamicum* [32,33]. Therefore, lignocellulosic biomass could release both monomeric sugars and aromatics as feedstock for this organism.

New tools to engineer *C. glutamicum*

Traditional gene knockout or knock-in in *C. glutamicum* uses allelic exchange plasmids, which is a multistep and overall inefficient process. Better gene modifications can be achieved by CRISPR/Cas9 (CRISPR-associated protein 9) in conjunction with ssDNA-binding repair protein RecT from *E. coli* (Figure 2) [34]. Adapting these techniques to *C. glutamicum* has required some optimization:

Figure 2

The new genetic tools and models developed for metabolic engineering of *C. glutamicum*.

expressing Cas9 alone can generate double-strand breaks that are highly toxic to the cell, thus leading to a low genome editing efficiency, especially when Cas9 is expressed constitutively. In contrast, Cas12a (Cpf1) from *Francisella novicida* is nontoxic and highly efficient in nucleotide modifications with the aid of single-stranded DNA [35]. Inspired by this, similar toolboxes have been developed for *C. glutamicum* genome editing through optimized expression of guide RNA and Cas9 and coexpression of recombinases [36]. Another newly developed tool is the adenine/cytosine base editor. In this system, the catalytically dead Cas9 is fused to a cytosine deaminase (CDA) or adenine deaminase (AID), which enables base pair transition from C:G to T:A or from A:T to G:C. Expression of the guide RNA and the fusion construct Cas9-CDA or Cas9-AID triggers precise base editing in either the genome or the plasmid [37]. By applying this tool to tune the sequences of ribosome-binding sites or promoter regions, the pathway genes can be regulated in parallel and their expression levels can be controlled in a large range [37]. Moreover, the genome-targeting scope of such base editors has been expanded by using the Cas9 variants, thus providing 3.9-fold more target loci for *C. glutamicum* gene modifications [36].

The CRISPR system has been investigated in the interference of gene expression (CRISPRi) (Figure 2). By employing a catalytically dead Cas9 endonuclease that binds to one or several target sequences simultaneously

with the aid of guide RNAs, the expression of the target gene(s) can therefore be repressed or, in some cases, activated [38]. For example, *C. glutamicum* was engineered for carotenoid production and CRISPRi tested 74 genes involved in its central metabolism, regulatory genes, and biosynthetic pathways. Such an effort led to the identification of new target genes for increased carotenoid bioproduction [39]. On the other hand, a synthetic small regulatory RNA (sRNA)-based gene knockout strategy has been developed in *C. glutamicum* (Figure 2). This system contains an RNA chaperone Hfq from *E. coli* and a rationally designed sRNA consisting of the *E. coli* MicC (mRNA-interfering complementary OmpC) scaffold and a target-binding site. Upon expression in *C. glutamicum*, the sRNA binds to the mRNA of the target genes, represses translation and enzyme synthesis, and regulates the production of the target compounds [40].

Biosensors are useful in metabolic engineering. *C. glutamicum* contains many native transcription factors that respond to amino acids to trigger the expression of exporters. In addition, some endogenous regulatory proteins are responsive to native metabolites or natural products [41,42]. For example, multiple antibiotic resistance regulator-type regulator CrtR (The gene that encodes cytochrome p450 reductase), which represses the transcription of the promoter of the *crt* operon (P_{crtE}) and its own gene (P_{crtR}), can sense intracellular

geranylgeranyl pyrophosphate (GGPP), and the CrtR/PctE switch can be used to screen GGPP-overproducing strains for the production of carotenoids [42]. Recently, other biosensors have been discovered in *C. glutamicum* such as ShiR, NCgl0581, and CgmR, in addition to previously identified biosensors such as Lrp, GlxR, and LysG [43]. They can be applied in the screening of efficient producers or as a switch to modulate biosynthetic pathways in a dynamic manner. For instance, various dynamic pathway regulation tools have been reported, including quorum-sensing-based genetic circuits [44] and synthetic metabolic switches (responsive to cell growth [26] or effector molecules such as gluconate [45] and ferulic acid [46]).

Multiscale models and omics analysis to assist *C. glutamicum* engineering

A design-build-test-learn (DBTL) cycle for *C. glutamicum* engineering involves 1) *design* pathways, 2) *build* genetic constructs, 3) *test* strains for desired traits, and 4) *learn* new strategies for the next cycle of DBTL. In the design stage, metabolic modeling predicts strain metabolism and identifies biosynthesis bottlenecks. Several computational design tools, including models and algorithms, have been developed to greatly accelerate such a process. The recently updated genome-scale metabolic model of *C. glutamicum*, that is, model iCW773 established for strain ATCC 13032, consists of 773 genes, 950 metabolites, and 1207 reactions [47]. This model coupled with flux balance analysis and computational strain design could suggest the genetic interventions leading to hyaluronic acid overproduction. Engineering efforts following such predictions led to 28.7 g/L of hyaluronic acid (0.21–0.97 MDa) in fed-batch fermentation [48]. In another example, model-guided metabolic engineering reconstructed the TCA cycle, blocked product degradation, enhanced transport system, and improved gamma-aminobutyric acid production (achieving 23 g/L) [49]. Similarly, a pool influx kinetics (PIK) approach integrated dynamic ¹³C labeling with model-based analysis, leading to the identification of key genes for improving L-histidine production in *C. glutamicum* [50]. Recently, an enzyme-constrained metabolic model was developed [51]. This model improved the prediction of *C. glutamicum* phenotypes and revealed the trade-off between biomass yield and enzyme usage efficiency, which could guide strain engineering for L-lysine production. In parallel to mechanistic models, data-driven approaches (such as AI (Artificial intelligence)) have been reported to facilitate successful DBTL cycles in other model organisms such as *E. coli* [52] and *S. cerevisiae* [53]. Moreover, the Automated Recommendation Tool for machine learning applications has been built to design synthetic biology components (such as promoters) [54]. The same machine learning approaches

may enhance *C. glutamicum* strain development and biomanufacturing [55].

Omics analyses are important tools to facilitate DBTL strain development. In a putrescine-producing *C. glutamicum* strain obtained via adaptive evolution, key engineering loci were identified at the genetic level using whole-genome sequencing and at the protein level using comparative proteomics analysis. Subsequent engineering efforts guided by the omics studies further increased the titer of putrescine by 30% [56]. In another study, transcriptomic and metabolomic data were analyzed to uncover the association between cellular metabolism and the amino acid-producing phenotype, suggesting that active pentose phosphate pathway and glyoxylate cycle are correlated with efficient production of branched-chain amino acids [57]. On the other hand, bioproduction scale-up from laboratory flasks to industrial fermenters requires multiscale process analyses and optimizations. Thereby, various process models have been built to predict *C. glutamicum* fermentations [58], to gain insights into cell metabolism under bioreactor conditions [59], and to quantify bioreactor mass transfer, hydromechanics, and power input [60]. Moreover, the integration of process models with intracellular omics analysis under scale-down conditions provides valuable perspectives on *C. glutamicum* physiologies inside inhomogeneous industrial fermenters [61].

Novel *C. glutamicum* strains for metabolic engineering applications

While genomic tools and computational model development have reached maturity for the ATCC 13032-type strain, differences between the type strain and other *C. glutamicum* isolates remain an untapped reservoir of potential metabolic capacity. A phylogenetic analysis of the 26 most common *C. glutamicum* isolates described in the literature identified 9 distinct groups with unique genomic islands and complex polymorphisms that may be related to their specific amino acid secretion phenotypes [62]. These *C. glutamicum* isolates can have differing potentials to produce desirable heterologous bioproducts. *N*-acetylglucosamine (GlcNAc) is a monosaccharide with potential applications in human health. Deng and coworkers introduced the *Caenorhabditis elegans* *GNA1* gene (encoding glucosamine-6-phosphate acetyltransferase) into different *C. glutamicum* isolates and detected GlcNAc titers at 3.0 g/L in the S9114 isolate. In contrast, ATCC 13032 produced 0.5 g/L GlcNAc. The authors were able to adapt standard *C. glutamicum* gene modification tools in the S9114 isolate to further boost titers in batch mode to 6.9 g/L in rich media [63]. Similarly, Banerjee and coworkers tested the production of a 5-gene isoprenol production pathway in a transformation-improved Δmrr ATCC 13032 strain as well as in isolate BRC-JBEI 1.1.2, and found that isoprenol titers

were at the lower detection limit (15 mg/L) in the type strain but were twenty-fold higher in BRC-JBEI 1.1.2 [64]. Many (> 500) genes in these *C. glutamicum* isolates lack any functional characterization and have no known homologs in other species, and this trend will likely hold as more genomes from related *Corynebacteria* are identified from diverse microbiomes using high-quality metagenomic assembly approaches. Functional genomics approaches using parallel transposon-mutagenized mutant libraries that have been applied in other bacterial hosts will enable the comparison of gene function across these isolates, providing insights into the unknown genes harbored in these strains [65].

Conclusions and outlook for the industry

C. glutamicum has superior capability in the biosynthesis of diverse amino acids, organic acids, short-chain alcohols, and their derivatives, many of which are bulk chemicals. The fermentation facilities and bioseparation techniques for *C. glutamicum* factories have been established, facilitating the commercialization of other compounds beyond amino acids. Meanwhile, the development of omics analyses and high-throughput cultivation/screening [66] is momentously speeding strain characterization and development. Additionally, the existence of a natural aromatic-degrading pathway and the strong resistance to aromatic inhibitors in hemicellulosic hydrolysates suggest promising potentials of *C. glutamicum* for the utilization of lignocellulose to produce diverse chemicals [64]. On the other hand, it should be noted that *C. glutamicum* is not the best chassis organism for producing all compounds. For example, natural products are synthesized in this bacterium at low yields. To improve the functions of the plant-derived pathways in *C. glutamicum*, several approaches can be employed, including transporter engineering or cell wall remodeling to increase the efflux of the final products, enzyme modifications to enhance catalytic performances, and modular pathway engineering [67,68]. In addition, advanced metabolic modeling and emerging AI technologies may accelerate *C. glutamicum* engineering to synthesize various high-value products.

CRedit authorship contribution statement

Writing – original draft preparation: JZ, ZZ; Writing – review & editing: ZX, TE, AM, MK, and YT.

Conflict of interest statement

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Data Availability

Data will be made available on request.

Acknowledgements

JZ acknowledges startup funds from Shaanxi University of Science and Technology. TE and AM acknowledge funding from the DOE Joint BioEnergy Institute (<http://www.jbei.org>) supported by the US Department of Energy, Office of Science, through contract DE-AC02-05CH11231 between Lawrence Berkeley National Laboratory and the US Department of Energy. YT acknowledges funding from the National Science Foundation (NSF) (grant number 2225809).

References and recommended reading

Papers of particular interest, published within the period of review, have been highlighted as:

- of special interest
- of outstanding interest

1. Rischer H, Szilvay GR, Oksman-Caldentey KM: **Cellular agriculture - industrial biotechnology for food and materials.** *Curr Opin Biotechnol* 2020, **61**:128-134.
2. Fröhling M, Hiete M: **Sustainability and life cycle assessment in industrial biotechnology: a review of current approaches and future needs.** *Adv Biochem Eng Biotechnol* 2020, **173**:143-203.
3. Ko YS, Kim JW, Lee JA, Han T, Kim GB, Park JE, Lee SY: **Tools and strategies of systems metabolic engineering for the development of microbial cell factories for chemical production.** *Chem Soc Rev* 2020, **49**:4615-4636.
4. Kogure T, Inui M: **Recent advances in metabolic engineering of *Corynebacterium glutamicum* for bioproduction of value-added aromatic chemicals and natural products.** *Appl Microbiol Biotechnol* 2018, **102**:8685-8705.
5. Yu S, Zheng B, Chen Z, Huo YX: **Metabolic engineering of *Corynebacterium glutamicum* for producing branched chain amino acids.** *Microb Cell Fact* 2021, **20**:230.
6. Wendisch VF, Jorge JMP, Pérez-García F, Sgobba E: **Updates on industrial production of amino acids using *Corynebacterium glutamicum*.** *World J Microbiol Biotechnol* 2016, **32**:105.
7. Zhang X, Gao Y, Chen Z, Xu G, Zhang X, Li H, Shi J, Koffas MAG, Xu Z: **High-yield production of L-serine through a novel identified exporter combined with synthetic pathway in *Corynebacterium glutamicum*.** *Microb Cell Fact* 2020, **19**:115.
8. Zhang X, Lai L, Xu G, Zhang X, Shi J, Koffas MAG, Xu Z: **Rewiring the central metabolic pathway for high-yield L-serine production in *Corynebacterium glutamicum* by using glucose.** *Biotechnol. J.* 2019, **14**:e1800497.
9. Tsuge Y, Matsuzawa H: **Recent progress in production of amino acid-derived chemicals using *Corynebacterium glutamicum*.** *World J Microbiol Biotechnol* 2021, **37**:49.
10. Rohles C, Pauli S, Gießelmann G, Kohlstedt M, Becker J, Wittmann C: **Systems metabolic engineering of *Corynebacterium glutamicum* eliminates all by-products for selective and high-yield production of the platform chemical 5-aminovalerate.** *Metab Eng* 2022, **73**:168-181.
11. Xu G, Zha J, Cheng H, Ibrahim MHA, Yang F, Dalton H, Cao R, Zhu Y, Fang J, Chi K, et al.: **Engineering *Corynebacterium glutamicum* for the *de novo* biosynthesis of tailored poly- γ -glutamic acid.** *Metab Eng* 2019, **56**:39-49.
12. Sohn YJ, Kang M, Baritugo K-A, Son J, Kang KH, Ryu M-H, Lee S, Sohn M, Jung YJ, Park K, et al.: **Fermentative high-level production of 5-hydroxyvaleric acid by metabolically engineered *Corynebacterium glutamicum*.** *ACS Sustain Chem Eng* 2021, **9**:2523-2533.

This study shows high-level production of 5-hydroxyvaleric acid based on lysine-producing *C. glutamicum*. Via selection of optimal pathway enzymes in the artificial synthesis pathway of 5-hydroxyvaleric acid, and by decreasing the degradation of key intermediate, a hyperproducing strain was developed with a product titer of 52 g/L in fed-batch fermentation.

13. Han T, Kim GB, Lee SY: **Glutamic acid production by systems metabolic engineering of an L-lysine-overproducing**

Corynebacterium glutamicum. *Proc Natl Acad Sci* 2020, **117**:30328-30334.

14. Liu B, Sun X, Liu Y, Yang M, Wang L, Li Y, Wang J: **Increased NADPH supply enhances glycolysis metabolic flux and L-methionine production in *Corynebacterium glutamicum***. *Foods* 2022, **11**:1031.

C. glutamicum was engineered for L-methionine production and ^{13}C -MFA revealed the glycolysis flux changes and NADPH supplies in the engineered strain, leading to new strategies for strain improvement.

15. Briki A, Kaboré K, Olmos E, Bosselaar S, Blanchard F, Fick M, Guedon E, Fournier F, Delaunay S: ***Corynebacterium glutamicum*, a natural overproducer of succinic acid?** *Eng Life Sci* 2020, **20**:205-215.

16. Becker J, Rohles CM, Wittmann C: **Metabolically engineered *Corynebacterium glutamicum* for bio-based production of chemicals, fuels, materials, and healthcare products**. *Metab Eng* 2018, **50**:122-141.

This review summarizes recent trends in metabolic engineering of *C. glutamicum* for the bioproduction of diverse chemicals and basic tools used thereof.

17. Hasegawa S, Jojima T, Suda M, Inui M: **Isobutanol production in *Corynebacterium glutamicum*: suppressed succinate by-production by pckA inactivation and enhanced productivity via the Entner-Doudoroff pathway**. *Metab Eng* 2020, **59**:24-35.

18. Zha J, Zang Y, Mattozzi M, Plassmeier J, Gupta M, Wu X, Clarkson S, Koffas MAG: **Metabolic engineering of *Corynebacterium glutamicum* for anthocyanin production**. *Microb Cell Fact* 2018, **17**:143.

19. Kallscheuer N, Vogt M, Bott M, Marienhagen J: **Functional expression of plant-derived O-methyltransferase, flavanone 3-hydroxylase, and flavonol synthase in *Corynebacterium glutamicum* for production of pterostilbene, kaempferol, and quercetin**. *J Biotechnol* 2017, **258**:190-196.

20. Wolf S, Becker J, Tsuge Y, Kawaguchi H, Kondo A, Marienhagen J, Bott M, Wendisch VF, Wittmann C: **Advances in metabolic engineering of *Corynebacterium glutamicum* to produce high-value active ingredients for food, feed, human health, and well-being**. *Essays Biochem* 2021, **65**:197-212.

21. Mai J, Li W, Ledesma-Amaro R, Ji XJ: **Engineering plant sesquiterpene synthesis into yeasts: a review**. *J Agric Food Chem* 2021, **69**:9498-9510.

22. Choi JW, Jeon EJ, Jeong KJ: **Recent advances in engineering *Corynebacterium glutamicum* for utilization of hemicellulosic biomass**. *Curr Opin Biotechnol* 2019, **57**:17-24.

23. Zhang B, Jiang Y, Li Z, Wang F, Wu XY: **Recent progress on chemical production from non-food renewable feedstocks using *Corynebacterium glutamicum***. *Front Bioeng Biotechnol* 2020, **8**:606047.

24. Wendisch VF, Nampoothiri KM, Lee J-H: **Metabolic engineering for valorization of agri- and aqua-culture sidestreams for production of nitrogenous compounds by *Corynebacterium glutamicum***. *Front Microbiol* 2022, **13**:835131.

25. Stella RG, Wiechert J, Noack S, Frunzke J: **Evolutionary engineering of *Corynebacterium glutamicum***. *Biotechnol J* 2019, **14**:e1800444.

26. Wei L, Zhao J, Wang Y, Gao J, Du M, Zhang Y, Xu N, Du H, Ju J, Liu Q, et al.: **Engineering of *Corynebacterium glutamicum* for high-level γ -aminobutyric acid production from glycerol by dynamic metabolic control**. *Metab Eng* 2022, **69**:134-146.

27. Tateno T, Fukuda H, Kondo A: **Production of L-lysine from starch by *Corynebacterium glutamicum* displaying alpha-amylase on its cell surface**. *Appl Microbiol Biotechnol* 2007, **74**:1213-1220.

28. Tateno T, Okada Y, Tsuchidate T, Tanaka T, Fukuda H, Kondo A: **Direct production of cadaverine from soluble starch using *Corynebacterium glutamicum* coexpressing alpha-amylase and lysine decarboxylase**. *Appl Microbiol Biotechnol* 2009, **82**:115-121.

29. Roell GW, Zha J, Carr RR, Koffas MA, Fong SS, Tang YJ: **Engineering microbial consortia by division of labor**. *Microb Cell Fact* 2019, **18**:35.

30. Sgobba E, Stumpf AK, Vortmann M, Jagmann N, Krehenbrink M, Dirks-Hofmeister ME, Moerschbacher B, Philipp B, Wendisch VF: **Synthetic *Escherichia coli*-*Corynebacterium glutamicum* consortia for L-lysine production from starch and sucrose**. *Bioresour Technol* 2018, **260**:302-310.

This work shows the construction of a mutualistic *E. coli*-*C. glutamicum* consortium to achieve lysine production from starch.

31. Zhang J, Zou D, Singh S, Cheng G: **Recent developments in ionic liquid pretreatment of lignocellulosic biomass for enhanced bioconversion**. *Sustain Energy Fuels* 2021, **5**:1655-1667.

32. Kallscheuer N, Vogt M, Kappelmann J, Krumbach K, Noack S, Bott M, Marienhagen J: **Identification of the phd gene cluster responsible for phenylpropanoid utilization in *Corynebacterium glutamicum***. *Appl Microbiol Biotechnol* 2016, **100**:1871-1881.

33. Mhatre A, Shinde S, Jha AK, Rodriguez A, Wardak Z, Jansen A, Gladden JM, George A, Davis RW, Varman AM: ***Corynebacterium glutamicum* as an efficient omnivorous microbial host for the bioconversion of lignocellulosic biomass**. *Front Bioeng Biotechnol* 2022, **10**:827386.

34. Wang Y, Liu Y, Zheng P, Sun J, Wang M: **Microbial base editing: a powerful emerging technology for microbial genome engineering**. *Trends Biotechnol* 2021, **39**:165-180.

35. Zhang J, Yang F, Yang Y, Jiang Y, Huo YX: **Optimizing a CRISPR-Cpf1-based genome engineering system for *Corynebacterium glutamicum***. *Microb Cell Fact* 2019, **18**:60.

36. Wang Y, Liu Y, Li J, Yang Y, Ni X, Cheng H, Huang T, Guo Y, Ma H, Zheng P, et al.: **Expanding targeting scope, editing window, and base transition capability of base editing in *Corynebacterium glutamicum***. *Biotechnol Bioeng* 2019, **116**:3016-3029.

37. Wang Y, Cheng H, Liu Y, Liu Y, Wen X, Zhang K, Ni X, Gao N, Fan L, Zhang Z, et al.: **In-situ generation of large numbers of genetic combinations for metabolic reprogramming via CRISPR-guided base editing**. *Nat Commun* 2021, **12**:678.

This study shows the application of Cas/nucleotide deaminase base editors to modify in situ the sequences of ribosome binding sites, 5' untranslated regions, or promoters of genes in target pathways simultaneously, generating thousands of mutants with varied performances in the production of target compounds. This work provides a useful method for large-scale fine-tuning of multigene expression.

38. Cress BF, Toparlak ÖD, Guleria S, Lebovich M, Stieglitz JT, Englaender JA, Jones JA, Linhardt RJ, Koffas MAG: **CRISPRPathBrick: modular combinatorial assembly of type II-A CRISPR arrays for dCas9-mediated multiplex transcriptional repression in *E. coli***. *ACS Synth Biol* 2015, **4**:987-1000.

39. Göttl VL, Schmitt I, Braun K, Peters-Wendisch P, Wendisch VF, Henke NA: **CRISPRi-library-guided target identification for engineering carotenoid production by *Corynebacterium glutamicum***. *Microorganisms* 2021, **9**:670.

40. Sun D, Chen J, Wang Y, Li M, Rao D, Guo Y, Chen N, Zheng P, Sun J, Ma Y: **Metabolic engineering of *Corynebacterium glutamicum* by synthetic small regulatory RNAs**. *J Ind Microbiol Biotechnol* 2019, **46**:203-208.

41. Zhao N, Song J, Zhang H, Lin Y, Han S, Huang Y, Zheng S: **Development of a transcription factor-based diamine biosensor in *Corynebacterium glutamicum***. *ACS Synth Biol* 2021, **10**:3074-3083.

42. Henke NA, Austermeier S, Grothaus IL, Götker S, Persicke M, Peters-Wendisch P, Wendisch VF: ***Corynebacterium glutamicum* CrtR and its orthologs in Actinobacteria: conserved function and application as genetically encoded biosensor for detection of geranylgeranyl pyrophosphate**. *Int J Mol Sci* 2020, **21**:5482.

43. Wang Y, Zheng P, Sun J: **Recent advances in developing enabling technologies for *Corynebacterium glutamicum* metabolic engineering**. *Chin J Biotechnol* 2021, **37**:1603-1618.

44. Liu H, Shi F, Tan S, Yu X, Lai W, Li Y: **Engineering a bifunctional ComQXPA-PsrfA quorum-sensing circuit for dynamic control of gene expression in *Corynebacterium glutamicum***. *ACS Synth Biol* 2021, **10**:1761-1774.

45. Wiechert J, Gätgens C, Wirtz A, Frunzke J: **Inducible expression systems based on xenogeneic silencing and counter-silencing**

and design of a metabolic toggle switch. *ACS Synth Biol* 2020, **9**:2023-2038.

46. Siebert D, Altenbuchner J, Blombach B: **A timed off-switch for dynamic control of gene expression in *Corynebacterium glutamicum*.** *Front Bioeng Biotechnol* 2021, **9**:704681.

47. Zhang Y, Cai J, Shang X, Wang B, Liu S, Chai X, Tan T, Zhang Y, Wen T: **A new genome-scale metabolic model of *Corynebacterium glutamicum* and its application.** *Biotechnol Biofuels* 2017, **10**:169.

This study reports a new and accurate genome-scale metabolic model of ATCC 13032, i.e. iCW773, for the prediction of potential targets for L-proline production. This model provides a high-quality platform for strain design to conduct efficient bio-production by *C. glutamicum*.

48. Cheng F, Yu H, Stephanopoulos G: **Engineering *Corynebacterium glutamicum* for high-titer biosynthesis of hyaluronic acid.** *Metab Eng* 2019, **55**:276-289.

Model iCW773 was applied coupled with flux balance analysis and algorithm OptForceMUST for hyaluronic acid biosynthesis to predict genetic interventions in *C. glutamicum* leading to the overproducing phenotype. By following the prediction, the production titer reached 28.7 g/L with 50% less production of the byproduct.

49. Zhang Y, Zhao J, Wang X, Tang Y, Liu S, Wen T: **Model-guided metabolic rewiring for gamma-aminobutyric acid and butyrolactam biosynthesis in *Corynebacterium glutamicum* ATCC13032.** *Biology* 2022, **11**:846.

50. Feith A, Schwentner A, Teleki A, Favilli L, Blombach B, Takors R: **Streamlining the analysis of dynamic ¹³C-labeling patterns for the metabolic engineering of *Corynebacterium glutamicum* as L-histidine production host.** *Metabolites* 2020, **10**:458.

The PIK approach was built to assist DBTL cycles for identifying promising metabolic engineering targets to improve L-histidine production.

51. Niu J, Mao Z, Mao Y, Wu K, Shi Z, Yuan Q, Cai J, Ma H: **Construction and analysis of an enzyme-constrained metabolic model of *Corynebacterium glutamicum*.** *Biomolecules* 2022, **12**:1499.

52. Opgenorth P, Costello Z, Okada T, Goyal G, Chen Y, Gin J, Benites V, de Raad M, Northen TR, Deng K, et al.: **Lessons from two design-build-test-learn cycles of dodecanol production in *Escherichia coli* aided by machine learning.** *ACS Synth Biol* 2019, **8**:1337-1351.

Two cycles of DBTL were performed with machine learning algorithms integrated in between for the engineering of *E. coli* to produce dodecanol.

53. Zhang J, Petersen SD, Radivojević T, Ramirez A, Pérez-Manríquez A, Abeliuk E, Sánchez BJ, Costello Z, Chen Y, Fero MJ, et al.: **Combining mechanistic and machine learning models for predictive engineering and optimization of tryptophan metabolism.** *Nat Commun* 2020, **11**:4880.

54. Radivojević T, Costello Z, Workman K, Garcia, Martin H: **A machine learning Automated Recommendation Tool for synthetic biology.** *Nat Commun* 2020, **11**:4879.

55. Liao X, Ma H, Tang YJ: **Artificial intelligence: a solution to involution of design-build-test-learn cycle.** *Curr Opin Biotechnol* 2022, **75**:102712.

This review article describes the applications of machine learning and data mining for metabolic engineering and strain development by following the DBTL cycle.

56. Li Z, Shen YP, Jiang XL, Feng LS, Liu JZ: **Metabolic evolution and a comparative omics analysis of *Corynebacterium glutamicum* for putrescine production.** *J Ind Microbiol Biotechnol* 2018, **45**:123-139.

57. Ma Y, Chen N, Cui Y, Du L, Ma Q, Xie X: **Transcriptomic and metabolomics analyses reveal metabolic characteristics of L-leucine- and L-valine-producing *Corynebacterium glutamicum* mutants.** *Ann Microbiol* 2019, **69**:457-468.

58. Lira-Parada PA, Pettersen E, Pérez-García F, Bar N: **The development of a fed-batch *Corynebacterium glutamicum* fermentation model.** *IFAC-Pap* 2019, **52**:231-237.

59. Lira-Parada PA, Sinner P, Kohlstedt M, Kager J, Wittmann C, Hervig C, Bar N: **Linking process and metabolic modelling for the estimation of carbon flux distribution in *Corynebacterium glutamicum* growth in spent sulfite liquor.** *IFAC-PapersOnLine* 2022, **55**:228-233.

60. Seletzky JM, Noak U, Fricke J, Welk E, Eberhard W, Knocke C, Büchs J: **Scale-up from shake flasks to fermenters in batch and continuous mode with *Corynebacterium glutamicum* on lactic acid based on oxygen transfer and pH.** *Biotechnol Bioeng* 2007, **98**:800-811.

61. Limberg MH, Schulte J, Aryani T, Mahr R, Baumgart M, Bott M, Wiechert W, Oldiges M: **Metabolic profile of 1,5-diaminopentane producing *Corynebacterium glutamicum* under scale-down conditions: blueprint for robustness to bioreactor inhomogeneities.** *Biotechnol Bioeng* 2017, **114**:560-575.

62. Yang J, Yang S: **Comparative analysis of *Corynebacterium glutamicum* genomes: a new perspective for the industrial production of amino acids.** *BMC Genom* 2017, **18**:940.

63. Deng C, Lv X, Liu Y, Li J, Lu W, Du G, Liu L: **Metabolic engineering of *Corynebacterium glutamicum* S9114 based on whole-genome sequencing for efficient N-acetylglucosamine synthesis.** *Synth Syst Biotechnol* 2019, **4**:120-129.

This study reports a new *C. glutamicum* strain for efficient N-acetylglucosamine synthesis.

64. Banerjee D, Eng T, Sasaki Y, Srinivasan A, Oka A, Herbert RA, Trinh J, Singan VR, Sun N, Putnam D, et al.: **Genomics characterization of an engineered *Corynebacterium glutamicum* in bioreactor cultivation under ionic liquid stress.** *Front Bioeng Biotechnol* 2021, **9**:766674.

65. Swaney MH, Sandstrom S, Kalan LR: **Cobamide sharing is predicted in the human skin microbiome.** *mSystems* 2022, **7**:e0067722.

66. Täuber S, Blöbaum L, Steier V, Oldiges M, Grünberger A: **Microfluidic single-cell scale-down bioreactors: a proof-of-concept for the growth of *Corynebacterium glutamicum* at oscillating pH values.** *Biotechnol Bioeng* 2022, **119**:3194-3209.

67. Banerjee D, Eng T, Lau AK, Sasaki Y, Wang B, Chen Y, Prahl J-P, Singan VR, Herbert RA, Liu Y, et al.: **Genome-scale metabolic rewiring improves titers rates and yields of the non-native product indigoidine at scale.** *Nat Commun* 2020, **11**:5385.

68. Keasling J, Garcia Martin H, Lee TS, Mukhopadhyay A, Singer SW, Sundstrom E: **Microbial production of advanced biofuels.** *Nat Rev Microbiol* 2021, **19**:701-715.

69. Wang Y, Xu J, Jin Z, Xia X, Zhang W: **Improvement of acetyl-CoA supply and glucose utilization increases L-leucine production in *Corynebacterium glutamicum*.** *Biotechnol J* 2022, **17**:e2100349.

70. Chen J, Wang Y, Guo X, Rao D, Zhou W, Zheng P, Sun J, Ma Y: **Efficient bioproduction of 5-aminolevulinic acid, a promising biostimulant and nutrient, from renewable bioresources by engineered *Corynebacterium glutamicum*.** *Biotechnol Biofuels* 2020, **13**:41.

71. Xu G, Zha J, Cheng H, Ibrahim MHA, Yang F, Dalton H, Cao R, Zhu Y, Fang J, Chi K, et al.: **Engineering *Corynebacterium glutamicum* for the de novo biosynthesis of tailored poly-γ-glutamic acid.** *Metab Eng* 2019, **56**:39-49.

72. Giebelmann G, Dietrich D, Jungmann L, Kohlstedt M, Jeon EJ, Yim SS, Sommer F, Zimmer D, Mühlhaus T, Schröder M, et al.: **Metabolic engineering of *Corynebacterium glutamicum* for high-level ectoine production: design, combinatorial assembly, and implementation of a transcriptionally balanced heterologous ectoine pathway.** *Biotechnol J* 2019, **14**:e1800417.

73. Ghiffary MR, Prabowo CPS, Sharma K, Yan Y, Lee SY, Kim HU: **High-level production of the natural blue pigment indigoidine from metabolically engineered *Corynebacterium glutamicum* for sustainable fabric dyes.** *ACS Sustain Chem Eng* 2021, **9**:6613-6622.

The blue pigment indigoidine was synthesized by *C. glutamate* with the highest titer. Strain engineering involved systems metabolic engineering of the biosynthesis pathway and expression of indigoidine synthetase.

74. Jin Q, Pan F, Hu C-F, Lee SY, Xia X-X, Qian Z-G: **Secretory production of spider silk proteins in metabolically engineered *Corynebacterium glutamicum* for spinning into tough fibers.** *Metab Eng* 2022, **70**:102-114.

75. Schwardmann LS, Dransfeld AK, Schäffer T, Wendisch VF: **Metabolic engineering of *Corynebacterium glutamicum* for sustainable production of the aromatic cicarboxylic acid dipicolinic acid.** *Microorganisms* 2022, **10**:730.

76. Labib M, Götz J, Brüsseler C, Kallscheuer N, Gätgens J, Jupke A, Marienhagen J, Noack S: **Metabolic and process engineering for microbial production of protocatechuate with *Corynebacterium glutamicum*.** *Biotechnol Bioeng* 2021, **118**:4414-4427.

77. Kim HS, Choi JA, Kim BY, Ferrer L, Choi JM, Wendisch VF, Lee JH: **Engineered *Corynebacterium glutamicum* as the platform for the production of aromatic aldehydes.** *Front Bioeng Biotechnol* 2022, **10**:880277.

78. Li Z, Dong Y, Liu Y, Cen X, Liu D, Chen Z: **Systems metabolic engineering of *Corynebacterium glutamicum* for high-level production of 1,3-propanediol from glucose and xylose.** *Metab Eng* 2022, **70**:79-88.

79. Prabowo CPS, Shin JH, Cho JS, Chae TU, Lee SY: **Microbial production of 4-amino-1-butanol, a four-carbon amino alcohol.** *Biotechnol Bioeng* 2020, **117**:2771-2780.

80. Sasaki Y, Eng T, Herbert RA, Trinh J, Chen Y, Rodriguez A, Gladden J, Simmons BA, Petzold CJ, Mukhopadhyay A: **Engineering *Corynebacterium glutamicum* to produce the biogasoline isopentenol from plant biomass hydrolysates.** *Biotechnol Biofuels* 2019, **12**:41.

81. Hasegawa S, Jojima T, Suda M, Inui M: **Isobutanol production in *Corynebacterium glutamicum*: suppressed succinate by-production by pckA inactivation and enhanced productivity via the Entner-Doudoroff pathway.** *Metab Eng* 2020, **59**:24-35.

82. Becker J, Kuhl M, Kohlstedt M, Starck S, Wittmann C: **Metabolic engineering of *Corynebacterium glutamicum* for the production of cis, cis-muconic acid from lignin.** *Microb Cell Fact* 2018, **17**:115.

83. Shin JH, Andersen AJC, Achterberg P, Olsson L: **Exploring functionality of the reverse β -oxidation pathway in *Corynebacterium glutamicum* for production of adipic acid.** *Microb Cell Fact* 2021, **20**:155.

84. Henke NA, Wendisch VF: **Improved astaxanthin production with *Corynebacterium glutamicum* by application of a membrane fusion protein.** *Mar Drugs* 2019, **17**:621.

85. Burgardt A, Moustafa A, Persicke M, Sproß J, Patschkowski T, Risse JM, Peters-Wendisch P, Lee JH, Wendisch VF: **Coenzyme Q (10) biosynthesis established in the non-ubiquinone containing *Corynebacterium glutamicum* by metabolic engineering.** *Front Bioeng Biotechnol* 2021, **9**:650961.

86. Kallscheuer N, Vogt M, Stenzel A, Gätgens J, Bott M, Marienhagen J: **Construction of a *Corynebacterium glutamicum* platform strain for the production of stilbenes and (2S)-flavanones.** *Metab Eng* 2016, **38**:47-55.

This is the first report on flavonoid or stilbene production in *C. glutamicum*. This work reports the natural aromatic degradation pathway and its effect on the production of flavonoids. The *de novo* biosynthesis of naringenin and resveratrol was achieved through metabolic engineering modifications of the tyrosine biosynthetic pathway.

87. Kallscheuer N, Menezes R, Foito A, da Silva MH, Braga A, Dekker W, Sevillano DM, Rosado-Ramos R, Jardim C, Oliveira J, et al.: **Identification and microbial production of the raspberry phenol salidroside that is active against Huntington's Disease.** *Plant Physiol* 2019, **179**:969-985.