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The episodic resurgence of highly pathogenic 
avian influenza H5 virus

Ruopeng Xie1,2, Kimberly M. Edwards1,2, Michelle Wille3,4, Xiaoman Wei1,2, Sook-San Wong1,2, 
Mark Zanin1,5, Rabeh El-Shesheny6, Mariette Ducatez7, Leo L. M. Poon1,2,5, Ghazi Kayali8, 
Richard J. Webby9 & Vijaykrishna Dhanasekaran1,2 ✉

Highly pathogenic avian influenza (HPAI) H5N1 activity has intensified globally since 
2021, increasingly causing mass mortality in wild birds and poultry and incidental 
infections in mammals1–3. However, the ecological and virological properties that 
underscore future mitigation strategies still remain unclear. Using epidemiological, 
spatial and genomic approaches, we demonstrate changes in the origins of resurgent 
HPAI H5 and reveal significant shifts in virus ecology and evolution. Outbreak data 
show key resurgent events in 2016–2017 and 2020–2021, contributing to the emergence  
and panzootic spread of H5N1 in 2021–2022. Genomic analysis reveals that the  
2016–2017 epizootics originated in Asia, where HPAI H5 reservoirs are endemic. In 
2020–2021, 2.3.4.4b H5N8 viruses emerged in African poultry, featuring mutations 
altering HA structure and receptor binding. In 2021–2022, a new H5N1 virus evolved 
through reassortment in wild birds in Europe, undergoing further reassortment with 
low-pathogenic avian influenza in wild and domestic birds during global dissemination. 
These results highlight a shift in the HPAI H5 epicentre beyond Asia and indicate that 
increasing persistence of HPAI H5 in wild birds is facilitating geographic and host 
range expansion, accelerating dispersion velocity and increasing reassortment 
potential. As earlier outbreaks of H5N1 and H5N8 were caused by more stable  
genomic constellations, these recent changes reflect adaptation across the domestic- 
bird–wild-bird interface. Elimination strategies in domestic birds therefore remain  
a high priority to limit future epizootics.

Influenza A viruses (genus Alphainfluenzavirus, family Orthomyxo­
viridae) are negative-sense, single-stranded, segmented ribonucleic 
acid viruses categorized into subtypes on the basis of the antigenicity 
of their two surface proteins. Sixteen out of 18 known hemagglutinin 
(HA) subtypes and 9 out of 11 neuraminidase (NA) subtypes are preva-
lent as low-pathogenic avian influenza (LPAI) viruses in wild aquatic 
birds worldwide.

Highly pathogenic avian influenza (HPAI) viruses evolve from LPAI 
viruses in poultry by acquiring HA cleavage site insertions that facilitate 
systemic infection4. Only H5 and H7 subtypes have evolved into HPAI, 
with most outbreaks contained through culling or die-offs, yielding 
limited opportunities for spillover. Although an HPAI H5N3 epizootic 
was reported in wild terns in South Africa as early as 19615, the HPAI H5N1 
virus that emerged in China in 1996 (goose/Guangdong (gs/Gd) lineage) 
was the first to establish sustained transmission in domestic poultry6. 
Early evolution of the gs/Gd lineage was characterized by the diversifica-
tion of the H5 HA gene into as many as ten main phylogenetic clades7, 
which, through extensive reassortment with LPAI viruses, acquired 
new combinations of internal genes. Ultimately, clade 2 proved most 

successful, and repeat spillover to wild aquatic birds since 20058 has 
enabled episodic dissemination across Asia, Europe, Africa and, most 
recently, North and South America6,9,10.

The scale of HPAI H5 outbreaks in wild birds has escalated beyond 
Asia since 201411, driven by the emergence of H5 HA clade 2.3.4.4 viruses 
with several NA subtypes including H5N2, H5N6 and H5N8 (collectively 
H5Nx) (Fig. 1)12. Before clade 2.3.4.4, HPAI H5 evolution was character-
ized by a relatively stable internal gene cassette that mainly derived 
from LPAI viruses in domestic birds (for example, H9N2), with the link-
age of H5 HA and N1 NA surface proteins, despite HA diversification 
(graphical summary in Fig. 6). Experimental animal infections showed 
that clade 2.3.4.4 viruses were associated with increased adaptation and 
reduced virulence in wild ducks compared to earlier H5N1 lineages13. 
From 2016, outbreaks in wild birds were repeatedly caused by clade 
2.3.4.4b H5N8 viruses that originated in China11, eliciting a relative 
increase in virulence for ducks14. Most recently, a reassortant HPAI H5N1 
virus, which evolved from clade 2.3.4.4b viruses, has almost entirely 
replaced the formerly dominant clade 2.3.4.4b H5N8 viruses (Fig. 1 
and Extended Data Fig. 1)15. Since November 2021, this H5N1 virus has 
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caused unprecedented outbreaks in diverse wild-bird species across 
five continents and a significant rise in incidental infections in wild 
carnivores3, mink farms16 and marine mammals17.

In this Article, we aim to address the uncertain origins of recent HPAI 
resurgences and the underlying evolution of HPAI H5Nx viruses in wild- 
and domestic-bird populations. We analysed outbreak data reported to 
the Food and Agricultural Organization of the United Nations (FAO) and 
World Organization for Animal Health (WOAH) since 2005 alongside 
more than 10,000 whole genomes to identify epidemic trends in HPAI 
ecology and evolution.

Epidemiology of resurgent HPAI H5
According to FAO and WOAH reports, since 2005, both wild and domes-
tic birds have experienced seasonal outbreaks, shifting from Asia and 
Africa towards Europe and North America (Fig. 1a). Four significant 
HPAI H5 wild-bird epizootics have occurred since the 2005–2006 
resurgence, caused by clade 2.3.4.4 in 2014–2015 and clade 2.3.4.4b 
in 2016–2017, 2020–2021 and 2021–2022 to the present (Fig. 1b)9,10. 
H5N8 viruses were responsible for the 2014–2015, 2016–2017 and 
2020–2021 outbreaks, while H5N6 only played a nominal role in the 

2016–2017 wild-bird resurgence (Fig. 1c)18. Since 2021–2022, a novel 
reassortant H5N1 virus has nearly replaced all other HPAI H5 viruses 
globally (Fig. 1c,d).

Although the 2014–2015 resurgence is notable for spreading across 
Asia to Europe and North America, resulting in a loss of more than 50 
million poultry in the USA19, poultry outbreaks in Europe and wild-bird 
detections globally were relatively minor (Fig. 1a). The 2016–2017 epi-
demic in wild birds lasted five months, with nearly 400 outbreaks per 
month at its peak (Fig. 1a). The 2017–2018 season saw fewer outbreaks, 
but a greater number of wild birds were affected across several regions. 
Following sporadic detections from 2018 to 2020, more than 200 out-
breaks per month were reported in 2020–2021, and more than 400 
outbreaks per month were recorded during the 2021–2022 season. 
Substantial outbreaks have continued into 2023. Additionally, the num-
ber of infected wild-bird species increased across all affected regions 
to varying degrees during the 2020–2021 and 2021–2022 seasons 
(Extended Data Fig. 2). The semiannual estimate of confirmed HPAI 
H5 cases in wild birds (predominantly dead birds) peaked at 34,000 
during the second half of 2021, although in many instances the number 
of wild-bird cases reported to WOAH/FAO includes only birds tested and 
positive for HPAI and is therefore a substantial underestimate (Fig. 1a). 
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Fig. 1 | HPAI H5 outbreak reports, subtypes and clades. a, Time series 
comparing HPAI H5 outbreaks in wild birds (top) and poultry (bottom) by 
geographic region reported to the FAO. Semiannual counts of HPAI H5–
affected birds reported to the WOAH are plotted on the right y axis. M, million. 
b, Temporal changes in HPAI H5 HA clade prevalence estimated using sample 
collection dates of sequences submitted to the GISAID and NCBI Influenza 
Virus Resource databases from January 2004 to June 2022. c, Temporal 
changes in HPAI H5Nx subtype prevalence estimated using observation dates 

of all reported cases submitted to the WOAH from January 2005 to January 
2022. d, Time-scaled maximum-likelihood tree of HPAI H5 HA on the basis of 
1,000 sequences subsampled from all available sequences (n = 10,602). Four 
main clades are labelled in red, and significant wild-bird resurgence events  
are highlighted with pink bars and denoted in black text. Tips representing 
wild-bird samples are colour-coded in blue. Host and region of isolation are 
shown as bars.
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The number of domestic-bird outbreaks generally corresponded to 
increases in wild-bird outbreaks. Between January and June 2022, more 
than 69 million domestic birds were culled. Notably, substantial num-
bers of poultry outbreaks were also recorded in early 2020, just before 
wild-bird epizootics spiked during April 2020 (Fig. 1a).

Wild-bird resurgence events exhibit seasonal patterns, with wide-
spread outbreaks beginning in November (Fig. 1a and Extended Data 
Fig. 3). This seasonality is attributed to the arrival of migratory birds 
from their arctic breeding grounds20, coinciding with the 0 °C iso-
therm21. Consistent seasonality has led reporting agencies to describe 
annual events in waves, starting in September; however, cases in Europe 
continued through the summer of 2022.

Resurgent HPAI H5 origins
Analysis of HPAI H5 genomes indicates the 2014–2015 and 2016–2017 
epidemics originated from independent viral lineages in China (Figs. 1d 
and 2a). By contrast, all eight genes involved in the 2020–2021 out-
breaks evolved from clade 2.3.4.4b H5N8 viruses first detected in 
Egyptian poultry in 2016–2017 (Fig. 3, Extended Data Figs. 4 and 5 and 
Supplementary Data 1). Despite limited HPAI H5 surveillance in sur-
rounding poultry networks, continuous detection of ancestral lineages 

in Egypt strongly implies regional evolution of the 2020–2021 resurgent 
viruses. The H5N1 viruses responsible for the 2021–2022 epizootic 
emerged from H5N8 viruses in Europe in 2020 (mean time of most 
recent common ancestor (tMRCA) of HA gene 17 August 2020, 95% 
higher posterior density (HPD) 13 June 2020, 14 October 2020), with an 
N1 NA and five internal genes (PB2, PB1, PA, NP and NS) derived through 
reassortment with LPAI circulating in European wild birds since 2019 
(Supplementary Data 1). Estimates of tMRCA showed ancestral genes 
of all three main resurgent lineages (clade 2.3.4.4b H5N8 in 2016–2017 
and 2020–2021 and clade 2.3.4.4b H5N1 in 2021–2022) circulated in 
wild birds for at least a year before causing widespread outbreaks from 
November onwards.

A separate clade 2.3.4.4b H5N8 virus lineage that derived from 
the 2016–2017 resurgence (hereafter termed JKE-2019) was initially 
reported in domestic poultry in central and southeastern Europe during 
2019 and early 2020 and later emerged in wild birds in Japan and Korea 
in 2020–2021 (Fig. 2a). JKE-2019 retained six of eight genes of clade 
2.3.4.4b viruses found in west and southern Africa during 2018–2019, 
whereas the PB1 and NP genes were obtained from LPAI viruses through 
reassortment22 (Extended Data Fig. 5).

We reconstructed the diffusion of HA clade 2.3.4.4b using discrete 
and continuous phylogeographic analyses and found that the initial 
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migration of 2.3.4.4b H5N8 from its inferred ancestors in Egyptian 
domestic poultry (posterior probability, 0.97, Extended Data Fig. 6) 
was through the Black Sea–Mediterranean flyway towards western Rus-
sia and eastern Europe during 2019 (Fig. 2c and Extended Data Fig. 7), 
following a pattern observed in previous resurgence events23. During 
mid to late 2019, 2.3.4.4b H5N8 was introduced to the northern coastal 
regions of central Europe (Fig. 2c). Epidemiological reports indicate 
local circulation before the resurgence in late 2020 (Extended Data 
Fig. 3). As sampling in non-endemic regions is often limited to outbreak 
response, early dissemination in Europe is unclear. Nevertheless, HPAI 
H5N8 spread rapidly across Eurasia and became established in wild 
birds and poultry during 2020. By October, clade 2.3.4.4b H5N8 viruses 
with an HA T204I mutation migrated east to China, acquiring an N6 NA 
and forming an Asian lineage (tMRCA 9 June 2020, 95% HPD 3 April, 
11 August) responsible for 41 of the 65 known human cases of H5N6 
infection so far24.

Continuous phylogeography indicates HPAI H5N1 emerged in east-
ern Europe during mid-2020, diversifying into two geographically 
separate lineages (Fig. 2a,d). The lineage that circulated across the 
northern coastal regions of central Europe in late 2020 (mean tMRCA 
of HA gene 27 November 2020, 95% HPD 30 September 2020, 24 January 
2021) seeded North American outbreaks by means of the East Atlantic 

flyway with two more HA mutations (L120M and I526V) in mid-2021 
(mean tMRCA of HA gene 24 July 2021, 95% HPD 27 May, 19 September). 
The other European lineage seeded introductions to Africa along the 
Adriatic flyway around the Mediterranean Sea (Fig. 2d). It acquired 
a further HA substitution (M548I) before causing outbreaks across 
Eurasia during 2021–2022, indicating the potential importance of this 
site for adaptation to rapid dispersal among wild birds. Discrete phy-
logeography confirmed that eastern Europe predominantly seeded 
HPAI H5N1 outbreaks in other regions (posterior probability, 0.83), with 
20.1% Markov rewards (denoting time spent in the region) and 42.2% of 
Markov jumps (denoting region transitions) (Supplementary Table 1). 
More than 20% of Markov jumps with definitive support (Bayes factors 
(BF) > 100) were between western Europe and northern Europe along 
the East Atlantic flyway (Supplementary Table 1 and Extended Data 
Fig. 6). From northern Europe to North America, two Markov jumps had 
sufficient evidence (BF = 75) (Supplementary Table 1), consistent with 
our continuous phylogeographic inference and previous studies25,26.

Phylodynamics of clade 2.3.4.4b viruses
The emergence of epizootic lineages in Africa and Europe signifies 
a shift away from Asia as the HPAI H5 epicentre. To infer changes 
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Fig. 3 | Geographic and host transmission patterns of principal HPAI H5 
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in dispersion and spillover dynamics, we applied an asymmetric 
discrete-trait model with Bayesian stochastic search variable selec-
tion to reconstruct diffusion of principal HPAI H5 clades among eight 
geographic regions (Africa, China, Europe, Japan and Korea, North 
America, South Asia, Southeast Asia and West Asia) and different hosts 
(domestic and wild birds and humans). In contrast to earlier HPAI H5 
clades (2.2, 2.3.2.1 and other 2.3.4.4 subclades including a,c–f, collec-
tively 2.3.4.4x), which primarily circulated regionally in domestic birds 
with brief periods of rapid dispersal by means of wild birds (Fig. 3), 
clade 2.3.4.4b viruses showed a considerably longer mean duration of 
persistence in wild birds (51.7% Markov rewards) than domestic birds, 
with 76.2% of Markov jumps going from wild birds to domestic birds and 
an epicentre shift from Asia to Europe (Fig. 3, Extended Data Fig. 8 and 
Supplementary Tables 2 and 3). Significant source populations of clade 
2.3.4.4b viruses were identified in Europe (43 Markov jumps, 44.5%), 
West Asia (22 Markov jumps, 23.3%) and China (11 Markov jumps, 12%) 
(Extended Data Fig. 8 and Supplementary Table 2). Lineages spent the 
most time in Europe (51.7% Markov rewards), followed by China (16.7% 
Markov rewards) and West Asia (10.9% Markov rewards), whereas Africa 
(13.6% Markov rewards) acted as a sink (Extended Data Fig. 8). However, 
clade 2.3.4.4b lineages persisted in Europe and Africa for around two 
years, compared to roughly one year in other regions. Furthermore, 
whereas domestic birds in China occupied the phylogenetic trunk 
until 2015 and were the probable source of the 2016–2017 wild-bird 
outbreaks, Europe represented the primary phylogenetic trunk since 
2016, with transmission primarily among wild birds. A notable excep-
tion occurred around 2019, when more than 50% of the phylogenetic 
trunk belonged to lineages circulating in domestic birds in Africa 

(Fig. 3). Several HA sublineages of the 2016–2017 resurgence spread 
from Europe to Africa and became established in both domestic- and 
wild-bird populations in South Africa and Nigeria. Iran, Denmark and 
Bulgaria also detected sustained transmission of 2016–2017-like viruses 
into 2019, whereas non-2.3.4.4b clades predominated in Asia until 2020. 
Notably, of the nine lineages detected in 2019–2020, five can be traced 
to poultry viruses detected in Egypt (Fig. 2a, https://nextstrain.org/
community/vjlab/episodic-h5/H5).

In comparison to earlier clades, dissemination routes of 2.3.4.4b 
viruses were notable. Clade 2.3.4.4b frequently transmitted between 
Asia and Europe and endured the longest migration route from China 
to the USA by means of Europe (Extended Data Fig. 7). Clade 2.3.4.4x 
disseminated frequently from China to Southeast Asia, sporadically to 
Japan and Korea (over five Markov jumps) and once to North America 
(Supplementary Table 2). Clade 2.3.2.1 migrated between China and 
Southeast Asia (over five Markov jumps) and, to a lesser extent, to Japan 
and Korea and Africa by means of West Asia (Extended Data Figs. 7 
and 8). Following the early dispersal of clade 2.2 to Europe and Africa, 
dispersal from West Asia to Africa by means of Europe was mainly asso-
ciated with domestic-bird networks, although wild-bird surveillance 
in Africa was sparse at the time. Wild birds were primarily responsible 
for transmission between West Asia and Europe. Most of the regional 
migration of clades 2.2, 2.3.2.1 and 2.3.4.4x probably occurred through 
domestic poultry networks and associated human activity (Extended 
Data Fig. 7); however, short-range spread through unsampled wild 
birds cannot be excluded.

To better understand the spatial epidemiology of resurgent HPAI H5 
clades, we estimated the wavefront distance and velocity27 from a joint 
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We recalculated the wavefront distance in the panzootic-2020 clade (including 
2020–2021 and 2021–2022 resurgences, shown in a thick line), in which Egypt 

was regarded as the epidemic’s origin. c, Median viral diffusion coefficient 
(km2 per day) over time for each clade. The diffusion velocity of wild birds in 
clade 2.3.2.1 during 2014 is not shown in the plot owing to abnormal estimation 
value, possibly caused by insufficient sampling. The shaded areas denote the 
95% confidence intervals, in which some extreme values are not shown.
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phylodynamic analysis that incorporated continuous spatial diffusion 
and discrete avian hosts (domestic/wild)28 (Fig. 4 and Extended Data 
Fig. 7). The diffusion velocity and coefficient in wild birds was greater 
than that of domestic birds for all principal gs/Gd clades, meaning 
that, as expected, wild birds are responsible for faster long-distance 
dissemination of HPAI H5 viruses. Although previous studies indicate 
that domestic waterfowl drove the slow but steady regional dissemina-
tion of pre-2.3.4.4 HPAI H5 as measured by the wavefront distance29, 
and despite a larger bias in wild-bird sampling, we find wild birds 
disseminated clades 2.3.4.4b (3,630 km, 95% HPD 1,381–6,977) and 
2.3.4.4x (4,517 km, 95% HPD 0–8,392) to a greater extent than clades 2.2 
(2,199 km, 95% HPD 2–5,097) and 2.3.2.1 (526 km, 95% HPD 0–1,364). Fur-
thermore, wild and domestic birds contributed almost equal wavefront 
distance (~5,000 km) since the 2.3.4.4b resurgence in wild birds begin-
ning in late 2019 (termed panzootic-2020 in Fig. 4). However, in 2020, 
the diffusion velocity of 2.3.4.4b from wild birds was nearly three times 
(5,474 km per year, 95% HPD 3,535–7,877) that of domestic birds, after 
which the diffusion velocities were similar (3,000–4,000 km per year).

Reassortment and antigenic evolution
Between 1996 and 2004, HPAI H5N1 became established in domestic 
poultry through extensive reassortment with poultry-adapted LPAI 
viruses, particularly H9N2 (ref. 30). The recent proliferation of clade 
2.3.4.4 also involved extensive reassortment (Extended Data Fig. 9), 
deriving NA subtypes and internal genes from Eurasian wild-bird LPAI 
viruses11. Strikingly, most HPAI H5N8 viruses collected in 2020–2021 
maintained a stable genotype with all genes originating from Egyptian 
poultry, except for one lineage in China that acquired N1 and N6 NA 
genes. Before the 2020–2021 wild-bird resurgence, several HA muta-
tions occurred in domestic birds in Egypt between 2017 and 2020, 
including T156A and N252D, as well as V538A and V548M mutations in 
the conserved HA stalk region (Fig. 2a). Notably, T156A enhances HA 
binding to sialic acid receptors31. The 2.3.4.4b H5N1 that subsequently 
emerged from 2.3.4.4b H5N8 acquired its NA and internal genes through 
reassortment with LPAI viruses (Fig. 5 and Supplementary Data 1). Novel 
2.3.4.4b H5N1 reassortants increasingly emerged during 2020–2021 and 

2021–2022, with several genotypes enduring into 2021–2022 (Fig. 5). 
These results indicate that although a predominantly clonal population 
of HPAI H5N8 caused the 2020–2021 outbreaks, the 2021–2022 H5N1 
virus has attained relaxed constraints for reassortment with wild-bird 
LPAI viruses.

Discussion
Analysis of HPAI H5 episodic resurgence reveals significant shifts in HPAI 
ecology and evolution, including geographic and host range expansion, 
increased dispersion velocity and increased reassortment (Fig. 6). 
The continuing epizootics are being caused by 2.3.4.4b H5 viruses 
with origins traced to poultry samples collected in Africa, following a 
significant wild-bird resurgence of HPAI H5N8 in 2016–2017. The disper-
sion velocity in wild birds increased substantially in 2020, spreading 
HPAI H5N8 viruses across Eurasia and leading to the subsequent emer-
gence of HPAI H5N1. Central to these findings is the observation that 
the 2.3.4.4b H5N8 virus that caused the 2020–2021 outbreaks across 
Eurasia and Africa was of a stable genotype, whereas the novel panzootic 
2.3.4.4b H5N1 viruses have attained relaxed constraints for extensive 
genetic reassortment, indicating potential for enhanced transmission 
and maintenance across the domestic-bird–wild-bird interface.

Whereas mammalian influenza viruses typically maintain a limited 
number of stable genome constellations, LPAI viruses in migratory 
aquatic birds undergo frequent reshuffling, resulting in transient 
genome constellations32. Poultry-adapted LPAI viruses exhibit genetic 
linkage of the HA and NA segments (for example, H9N2, H7N9), with 
limited internal gene-segment exchange33. The propensity for HPAI 
H5 to reassort with other domestic poultry viruses, as was recently 
observed between clade 2.3.4.4 and H9N2 in Burkina Faso34, and the 
recent surge in mammalian HPAI H5 infections are significant causes 
for concern.

Our findings show clade 2.3.4.4b emergence is shifting from Asia 
to Africa, underscoring the need for expanded surveillance capac-
ity. Globally, genomic surveillance is limited and biased across time, 
geography and host species. Despite the substantial number of HPAI 
H5 outbreaks reported to FAO and WOAH, only 50% of outbreaks and 
0.2% of cases were sequenced (Extended Data Fig. 10). Although HPAI 
H5 sequence availability generally corresponded to regional outbreaks 
(Fig. 1a and Extended Data Fig. 10), sampling bias was observed at the 
country level, especially in Africa (Supplementary Data 2). Some coun-
tries with endemic HPAI H5 conduct routine poultry surveillance, but 
many only sample following mass-mortality events. Wild-bird sampling 
is of lower priority and is often biased towards species that are eas-
ily sampled. Despite efforts to subsample equitably (Supplementary 
Tables 4–8), biased sampling could affect ancestral reconstruction35, 
especially for long-distance dispersal events. Additionally, the use of 
centroid coordinates may skew continuous phylogeography inferences. 
Nevertheless, our findings are consistent with the timing of reports 
emerging from new areas.

Despite the sampling bias towards poultry, we found that the dissemi-
nation of clade 2.3.4.4b H5 viruses by wild birds was similar to that of 
domestic birds, which were previously inferred as key drivers of HPAI H5 
spread29. Domestic birds’ dispersal velocity reflects and is constrained by 
poultry trade and associated human activity, whereas that of migratory 
birds is more influenced by ecological determinants such as seasonality, 
migratory flyways and climate. For example, the primary wild-bird resur-
gence events in Europe are consistently seasonal (Fig. 1a and Extended 
Data Fig. 3) and correspond with increased wild-bird HPAI H5 dispersion 
velocity (Fig. 4). Further, several migration routes of HPAI H5 virus were 
identified along the Black Sea–Mediterranean, East Atlantic and Adriatic 
flyways, with reports increasing along the Pacific flyway in South America 
since late 202236. There is also evidence that migratory behaviour and 
breeding patterns have recently been affected by climatic variation37,38. 
Expansion and persistence of HPAI H5 viruses in wild birds may therefore 
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continue to be exacerbated by climate change. Future studies will ben-
efit from the integration of host ecology such as species composition, 
population size and demography and migration patterns (for example, 
using banding or telemetry data) to inform risk39,40.

Sustained HPAI H5N1 wild-bird epizootics repeatedly spill over and 
spill back from domestic birds, increasing zoonotic and pandemic 
risks. Culling is commonly used to curb HPAI spread in poultry41,42, and 
millions of poultry have been culled to stamp out HPAI H5 outbreaks 
(Fig. 1). However, continuous culling is unsustainable as HPAI H5 is 
increasingly persistent in wild birds. Mass mortality in wildlife raises 
concern around a loss of biodiversity and disruption of ecosystem 
homoeostasis43. Subsidized poultry vaccination is therefore increas-
ingly being considered for outbreak prevention in Europe and North 
America. Several countries in Asia and Africa use vaccination with vari-
able effects44, whereas Hong Kong and parts of China and Southeast Asia 
combine vaccination with other control methods45,46. A key concern is 
the role of poultry vaccination in driving endemicity and evolution of 
HPAI H5 lineages47. The proximity of poultry networks to significant 
flyways in northern Africa, the Middle East and eastern Europe, where 
vaccination practices are diverse and incomplete, is also concerning. To 
address these issues, it is necessary to enhance global surveillance and 
improve multifaceted mitigation strategies for outbreak prevention 
and response. A better understanding of the ecological properties that 
enhance and sustain transmission in wild birds and the consequences 
of poultry vaccination with variable uptake will be crucial to mitigate 
future HPAI outbreaks, which pose unpredictable epizootic, zoonotic 
and pandemic threats.
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Methods

Data source and preparation
HPAI H5 genomes with at least HA gene and sample information includ-
ing collection date, location and host species, were obtained from 
the Global Initiative on Sharing All Influenza Data (GISAID) (https://
platform.epicov.org/) and National Center for Biotechnology Informa-
tion (NCBI) Influenza Virus Resource (https://www.ncbi.nlm.nih.gov/
genomes/FLU/) databases on 11 July 2022. After removing duplicate 
isolates, laboratory-derived and mixed-subtype isolates, sequences 
with less than 85% gene coverage and sequences with incomplete col-
lection dates, H5 clades on the basis of the World Health Organization 
(WHO) gs/Gd H5N1 nomenclature system50 were determined using 
LABEL v.0.6.3 (ref. 51). Clade 2.3.4.4 was further assigned into sub-
clades 2.3.4.4a–h on the basis of phylogenetic relationships to WHO 
H5 candidate vaccine viruses, with known clade assignment estimated 
using a maximum-likelihood phylogenetic tree generated using the 
Jukes–Cantor nucleotide substitution model in FastTree v.2.1.1.

Avian hosts were classified as domestic and wild birds using strain 
names, associated metadata and original publications (https://doi.
org/10.5281/zenodo.8251324). Location coordinates were used to ana-
lyse diffusion in continuous space and were accurate at least to the 
province/state level for China, Russia and the United States. For discrete 
analysis and visualization, locations were classified into countries and 
regions according to the country–region list in NextStrain52.

To mitigate sampling bias for phylogeographic analyses, curated 
datasets were subsampled by either epidemiological information 
(including country, host and sampling date) or phylogenetic relation-
ship. HPAI H5 HA datasets were subsampled randomly with at most two 
sequences for clade 2.3.4.4b, five sequences for clade 2.3.4.4x, three 
sequences for clade 2.3.2.1 and six sequences for clade 2.2 per country 
per host per season of each year (season 1, January–March; season 2, 
April–June; season 3, July–September; and season 4, October–Decem-
ber). The final subsampled HA datasets contained 715, 617, 579 and 563 
sequences for the four clades.

The R package ‘ggstream’ v.0.1 was used to map temporal changes 
in the sampling of HPAI H5 clades, and ‘rworldmap’ v.1.3 and ‘rnatu-
ralearth’ v.0.3 were used to plot world maps using world vector map 
data from R package ‘rnaturalearthdata’ v.0.1.

Phylogenetic analyses
Gene sequences were aligned using MAFFT v.7.490 (ref. 53) and trimmed 
using trimAL v.1.4 (ref. 54) with a 50% gap threshold followed by manual 
trimming to the open-reading frame. Maximum-likelihood (ML) trees 
were generated using IQ-TREE v.2.1.4 (ref. 55) with the best-fit nucleo-
tide substitution model. The ML phylogenies were used to check each 
dataset for molecular clock outliers (sequences that have dispropor-
tionately too much or too little root-to-tip divergence for their sampling 
time) using TempEst v.1.5.3 (ref. 56). The time-scaled ML trees in this 
study were generated with TreeTime v.0.9.1 (ref. 49). HA phylogeny 
showing sampling location (country/region), host and clade details of 
all sequences are available as NextStrain52 builds at https://nextstrain.
org/community/vjlab/episodic-h5/H5.

Reassortment analyses
To compare reassortment events that occurred among major clades, 
including clades 2.3.4.4b, 2.3.4.4x, 2.3.2.1 and 2.2, we first constructed 
ML trees for each gene using IQ-TREE v.2.1.4. At most 200 isolates with 
eight segments were subsampled using the Phylogenetic Diversity 
Analyzer tool v.1.0.3 (http://www.cibiv.at/software/pda)57 for each 
major clade and the minor clade, finally resulting in 909 sequences 
for each HA, PB2, PB1, PA, NP, MP and NS dataset and 897 sequences for 
NA dataset, which excluded minor subtypes of NA genes (N3, N4, N5 
and N9). Baltic v.0.1.5 (https://github.com/evogytis/baltic) was used 
to visualize the incongruence between phylogenetic trees of eight 

genes. The HA tree was rooted using clade 0, and the remaining genes 
were midpoint rooted. Isolates were coloured according to the HA 
clade. Furthermore, the timeline of reassortment of 2020–2021 and 
2021–2022 viruses was inferred using divergence times summarized 
in Supplementary Data 1 and Fig. 5.

HPAI H5 poultry and wild-bird outbreaks
All reported and confirmed infections of HPAI H5 viruses in humans 
were obtained from WHO (https://www.who.int/emergencies/
disease-outbreak-news). Confirmed detections/outbreaks in domestic 
and wild birds globally were obtained from World Animal Health Infor-
mation System, WOAH (https://wahis.woah.org/) and EMPRES-i+ Global 
Animal Disease Information System, Food and Agriculture Organization 
(https://empres-i.apps.fao.org/).

Bayesian evolutionary inference
Divergence times and evolutionary rates were estimated using an uncor-
related relaxed clock model under a Bayesian framework using Markov 
chain Monte Carlo (MCMC) sampling in BEAST v.1.10.4 (ref. 48) and 
the BEAGLE high-performance library58. A flexible Gaussian Markov 
random field skyride coalescent model and a general time reversible 
nucleotide substitution model were used with a gamma distribution 
of substitution rates. At least two independent MCMC chains with 
100 million states were performed for each lineage, sampling every 
20,000 and discarding 10% as burn-in. Runs were combined to ensure 
an effective sample size of more than 200 in Tracer v.1.7.1. A subset 
of 500 trees randomly selected from the posterior distribution was 
used to generate an empirical tree distribution used in the subsequent 
phylogeographic analysis, an approach that reduced computational 
time and burden28,29. We used the BaTS59 to investigate the degree of 
phylogeographic structure (phylogenetic clustering by sampling loca-
tion and host), which was compared to a null hypothesis generated by 
tip randomization with 1,000 replicates.

Discrete phylogeography
To reconstruct spatial diffusion among a set of eight geographic regions 
(Africa, China, Europe, Japan and Korea, North America, South Asia, 
Southeast Asia and West Asia) and different hosts (domestic birds, 
wild birds and humans), we conducted asymmetric discrete-trait phy-
logeographic analyses with Bayesian stochastic search variable selec-
tion in BEAST v.1.10.4 (ref. 48). SpreadD3 v.0.9.6 (ref. 60) was used to 
estimate BF to determine statistical significance (‘definitive’ (BF > 100) 
or ‘sufficient’ (100 > BF > 3)). To count all the transitions between states 
and the time spent in states between transitions, we again applied 
the continuous-time Markov chains model61 to complete the Markov 
jump history over time. We combined three independent chains with 
five million MCMC steps for each lineage and sampled every 10,000 
states. The first 10% of each run was discarded as burn-in, resulting in 
1,350 posterior trees with estimates of the ancestral region and host 
for each internal node. The trunk region/host through time and per-
sistence were measured from these posterior phylogenies using PACT 
v.0.9.5 (https://github.com/trvrb/PACT), where the trunk consists of 
all branches ancestral to a virus that was sampled within one year of 
the most recent sample and the persistence is measured by how long a 
tip takes to leave its sampled location, counting backwards in phyloge-
netic trees62. To further reveal and quantify the transmission patterns 
of the panzootic-2020 clade (including 2020–2021 and 2021–2022 
resurgences) in Europe, we partitioned Europe and repeated the analy-
sis among eight geographic regions (Africa, Asia outside West Asia, 
West Asia, eastern Europe, western Europe, southern Europe, northern 
Europe, Africa and North America).

Phylodynamics incorporating geography and host
To complement the discrete spatial diffusion analysis and reconstruct 
a more detailed geographic history, we estimated the HPAI H5 diffusion 
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in continuous space (latitude and longitude of country level) using a 
Cauchy relaxed random walk model63 with 0.001 jitter window size. 
Moreover, following the Bayesian method proposed by ref. 28, we 
incorporated a continuous spatial diffusion process and a discrete 
host transmission process in a single Bayesian analysis to quantify 
host-specific diffusion rates and geographic expansion (wavefront 
distance) for each lineage (https://github.com/vjlab/episodic-h5). 
At least two independent MCMC chains were performed, sampling 
every 10,000 steps and discarding 10% as burn-in to ensure effective 
sample size >200 for each parameter. The continuous phylogeographic 
analysis was visualized using the R package ‘seraphim’64 and codes from  
refs. 65,66 using the Python library ‘matplotlib’.

Reporting summary
Further information on research design is available in the Nature  
Portfolio Reporting Summary linked to this article.

Data availability
The avian influenza virus sequences and associated metadata used in 
this study were downloaded from GISAID and NCBI GenBank. Acces-
sion numbers and acknowledgements are provided in Supplementary 
Data 3. Details of confirmed detections/outbreaks in domestic and 
wild birds globally are available from World Animal Health Informa-
tion System, WOAH (https://wahis.woah.org/) and EMPRES-i+ Global 
Animal Disease Information System, Food and Agriculture Organization 
(https://empres-i.apps.fao.org/).

Code availability
Data, code and analysis files are available at https://doi.org/10.5281/
zenodo.8251324.
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Extended Data Fig. 5 | Evolutionary relationships of Panzootic-2020 (including 2020/21 and 2021/22 resurgence) and JKE-2019 lineage. Maximum-likelihood 
tree of Panzootic-2020 (a) and JKE-2019 (b) for each of the eight gene segments. Samples collected in Africa are highlighted in red.



Extended Data Fig. 6 | Maximum clade credibility tree of panzootic-2020 clade with branches coloured by geographic region. The posterior probabilities of 
regions over 0.8 are annotated in the nodes.
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continuous phylogeographic analysis for each clade.
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Extended Data Fig. 9 | Tanglegram of HPAI H5 virus reassortment. Coloured lines connect each virus across all eight genes, showing incongruence between 
and within major clades.



Extended Data Fig. 10 | Genomic surveillance of HPAI H5 viruses by 
geographic region from 2005 to 2022. (a) Temporal changes of all HPAI H5 
sequences available on the Global Initiative for Sharing All Influenza Data 
(GISAID) and NCBI Influenza Virus Resource databases from January 2005 to 

June 2022 using collection dates. (b) Temporal changes of HPAI H5 sequences 
per outbreak reported to the Food and Agriculture Organization of the United 
Nations (FAO). (c) Temporal changes of HPAI H5 sequences per case reported to 
the World Organization for Animal Health (WOAH).
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