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SUMMARY

Highly pathogenic avian influenza (HPAI) viruses have spread at an unprecedented scale, leading to mass
mortalities in birds andmammals. In 2023, a transatlantic incursion of HPAI A(H5N5) viruses into North Amer-
ica was detected, followed shortly thereafter by a mammalian detection. As these A(H5N5) viruses were
similar to contemporary viruses described in Eurasia, the transatlantic spread of A(H5N5) viruses was
most likely facilitated by pelagic seabirds. Some of the Canadian A(H5N5) viruses from birds and mammals
possessed the PB2-E627K substitution known to facilitate adaptation to mammals. Ferrets inoculated with
A(H5N5) viruses showed rapid, severe disease onset, with some evidence of direct contact transmission.
However, these viruses have maintained receptor binding traits of avian influenza viruses and were suscep-
tible to oseltamivir and zanamivir. Understanding the factors influencing the virulence and transmission of
A(H5N5) in migratory birds and mammals is critical to minimize impacts on wildlife and public health.

INTRODUCTION

The influenza A virus (IAV) genome comprises eight discrete seg-

ments of single-stranded negative-sense RNA that encode at

least 11 proteins. These include polymerase components (seg-

ments PB2, PB1, and PA), nucleoprotein (segment NP), matrix

proteins (segment M), non-structural proteins (segment NS),

and surface glycoproteins (segments HA andNA). The two struc-

tural surface glycoproteins, hemagglutinin (HA) and neuramini-

dase (NA), are associated with antigenicity and pathogenicity

in various hosts. In avian species, 16 HA and 9 NA subtypes

have been identified, with aquatic waterfowl having the most di-

versity.1 Typically, these avian viruses exist as low pathogenicity

avian influenza (LPAI) viruses. However, viruses of the H5 and H7

subtypes can become highly pathogenic avian influenza (HPAI)2

through the acquisition of multiple basic amino acids in the HA

cleavage site motif, which typically occurs following spillover in-

fections in gallinaceous poultry species.

Waterfowl (Anseriformes) and shorebirds (Charadriiformes)

serve as reservoir hosts for LPAI viruses and typically do not

display clinical signs upon infection.3,4 The distribution of IAV

subtypes varies across different species of migratory birds,5

and these birds can be simultaneously infected with more than

one virus, allowing viral evolution through genetic reassortment.
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Dense congregations of wild birds harboring different IAVs at

breeding or overwintering sites increase contact transmission

and the likelihood of generating reassortants.6 Reassortment

events select for the most fit gene combinations and lead to a

transient increase in putatively adaptive amino acid substitutions,

which may generate IAVs that are adapted to new hosts and can

spread readily.7,8 IAVs preferentially replicate in the avian host’s

intestinal tract, resulting in the shedding of virions9 into the envi-

ronment and potential infection of susceptible species.

HPAI A(H5N1) A/Goose/Guangdong/1/96 (GsGd) viruses were

detected in 1996 from domestic geese in southeast Asia and

have changed the landscape of avian influenza virus (AIV) epide-

miology and evolution. GsGd-lineage viruses10,11 caused mass

mortality in migratory waterfowl in April 2005 at Lake Qinghai,

China,12,13 highlighting the role of migratory birds in their

spread.13–16 The GsGd-lineage viruses subsequently spread to

over 80 countries17 throughout Asia, Europe, Africa,15,18 and

also North America in 2014.19

The GsGd-lineage clades 2.2,12 2.3.2,20 and 2.3.4.416 have

been reported to cause global epidemics in both wild birds

and poultry. Importantly, the clade 2.3.4.4 H5 viruses that

emerged in 200821 contained HA mutations, allowing reassort-

ment with numerous NAs, creating multiple A(H5Nx) subtype vi-

ruses.22–24 While clade 2.3.4.4 A(H5Nx) viruses are dispersed

globally and remain entrenched in Asia, Africa, Europe, and the

Middle East, their occurrence in the Americas is a recent phe-

nomenon.25 As of May 2023, more than 870 human infections

with GsGd-lineage A(H5N1) have been documented across 23

countries, resulting in over 450 fatalities.26 So far, only 7 human

deaths have been attributed to clade 2.3.4.4b.27

The emergence of clade 2.3.4.4b A(H5N8) HPAI viruses in

2016–2017 in Europe inflicted major and widespread outbreaks

in poultry andwild birds. This virus became the predominant sub-

type in Europe28 and parts of Asia29 until 2020,25 when a descen-

dant A(H5N1) reassortant was detected in the Netherlands that

eventually dominated globally.25,28,29 Almost 200 million poultry

died or were destroyed globally from 2020 to November 2022

due to clade 2.3.4.4b A(H5Nx) viruses, approximately the same

number as from 2005 to 2019. Of the 200 million poultry deaths,

54 million were fromNorth America30,31 following the virus’ intro-

duction in November 2021. The early North American 2.3.4.4b

A(H5N1) viruses contained a fully Eurasian (EA)-lineage genome

and were detected in Atlantic Canada and later throughout

North32,33 and South America.34 Only Oceania has yet to report

any cases of 2.3.4.4b.35,36 The geographic movement of

A(H5Nx) IAVs is important to track, since their widespread prev-

alence and incursions to new localities may pose a considerable

threat to economic and food security, as well as human health.

The current outbreak of HPAI in the Americas is dominated by

A(H5N1) viruses, with detections of A(H5N5) viruses rare.37

Clade 2.3.4.4 viruses are prone to frequent reassortment,38,39

a mechanism for rapid virus evolution.40 Recently, clade

2.3.4.4b A(H5N5) viruses were detected in Russia, Romania,

Bulgaria, and Norway, some containing an unreported NA stalk

deletion.41 Iceland is a known staging ground for IAV-infected

gulls and other water-associated birds42,43 and is implicated in

the possible spread of clade 2.3.4.4b from Europe to North

America,44,45 connecting the east Atlantic and north Atlantic

American Flyways.45 Greenland could also play a similar role in

the spread of IAV,32,46 along with Svalbard, a Norwegian high

arctic archipelago.32,47,48

In the present study, we describe the incursion of a fully EA

clade 2.3.4.4b A(H5N5) virus into North America, most likely

through the movement of seabirds across the Atlantic Flyway.

We also present cases of A(H5N5) in multiple species of meso-

carnivores—small mammals, like raccoons, skunks, and foxes.

We examine viral evolutionary relationships, possible transat-

lantic routes of incursion from Eurasia to North America, possible

intermediate hosts, in vitro antiviral susceptibility, and the viru-

lence exhibited by A(H5N5) in a ferret model.

RESULTS

Description and location of A(H5N5)-affected animal
species
A total of 41 cases of A(H5N5) have been detected in Canadian

wildlife as of June 2023, all occurring in the Maritime provinces

of Prince Edward Island (PEI), New Brunswick (NB), and Nova

Scotia (NS), on the east coast of Canada. The earliest Canadian

detection of A(H5N5) was in an American crow (A/American_

Crow/PEI/FAV-0035-6/2023) that was found dead on January

9, 2023 in Summerside, PEI. Subsequently, A(H5N5) viruses

were detected on January 31 in three additional American crows

(A/American_Crow/PEI/FAV-0068-3/2023, A/American_Crow/

PEI/FAV-0068-8/2023, and A/American_Crow/PEI/FAV-0068-

9/2023) that were also found dead in Summerside less than

100 m from the earliest case. Five infected mammals (four rac-

coons and one skunk) were found on PEI, while two foxes

were found in NS, near Halifax. The two initial raccoon samples

(A/Raccoon/PEI/FAV-0193-1/2023 and A/Raccoon/PEI/FAV-

0199-1/2023) were located in Sea View, PEI approximately

20 km away from the earliest Canadian case of A(H5N5). The

two raccoons were found dead on April 3 and 29, 1.4 km apart.

Samples were collected from a black-legged kittiwake, great

black-backed gulls (GBBGs), northern fulmars, and herring gulls

(n = 1, 7, 13, and 4, respectively) from Sable Island, NS (located

�290 km offshore from Halifax) between February 16 and April

30, 2023 (Figure 1). One additional herring gull with A(H5N5)

was found dead at Country Island, NS on June 2, 2023. Country

Island is 5 km off the coast of mainland NS, one of the closest

points to Sable Island.

Almost all animals thatwerediagnosedwithA(H5N5) virus infec-

tionwere founddead, except for a red foxpupnearHalifax,NS that

was found sick, displaying neurological signs such as disorienta-

tion, andbarelywalking.This foxpupdiedbeforearrival at awildlife

rehabilitation center. A(H5N5) viruses were isolated from three

raccoon brain samples. Species of animals infected with

A(H5N5) and their geographic locationare summarized inFigure 1.

Mutations associated with mammalian adaptation
A(H5N5) viruses isolated from both mammals and birds had mu-

tations associatedwithmammalian adaptation. Viruses from two

mammals (A/Raccoon/PEI/FAV-0199-1/2023 and A/Striped_

Skunk/PEI/FAV-0210-1/2023) and two gulls (A/Great_Black-

Backed_Gull/NS/FAV-0263-8/2023 and A/Herring_Gull/NS/FAV-

0263-6/2023) had the mammalian adaptive E627K mutation in
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the polymerase basic protein (PB2). PB2-E627K yields more effi-

cient IAV replication in mammalian cells. Viruses from the in-

fected mammals appeared to have acquired the E627K muta-

tions independently as they were phylogenetically distinct from

one another and clustered with other A(H5N5) viruses containing

PB2-E627, while the two gulls most likely acquired it from a com-

mon source due to sequence similarity (Figure S1).

Some viruses from Sable Island had mutations not seen in

other A(H5N5) isolates. A/Black-Legged_Kittiwake/NS/FAV-

0264-11/2023 had two mutations previously associated with

increased virulence in mammals, PB2-I292V and PB1-F2-

N66S. While no other viruses appeared to have descended

from this specific virus, it was more closely related to the

A(H5N5) from the only skunk sample (A/Striped_Skunk/PEI/

FAV-0210-1/2023).

Other experimentally supported amino acid substitutions

associated with adaptation in birds and mammals are summa-

rized in Table S1.

Phylogenetic analysis
BLAST and phylogenetic analyses were performed to probe the

origin of the Canadian A(H5N5) viruses. The NA segment of all

Canadian A(H5N5) viruses described in this study contained a

deletion of 22 amino acids in the stalk region (A(H5N5)-Dstalk;

Figure 2A).

Time-resolved and maximum-likelihood (ML) inferred using

partitioned full-genome sequences and individual genome seg-

ments demonstrated that the A(H5N5) virus sequences from

Norway and Atlantic Canada clustered together (Figures 2A

and S1). Based on the GenoFLU nomenclature, all A(H5N5)-

Dstalk viruses were classified as clade 2.3.4.4b genotype A6

with a fully EA genetic constellation (PB2:ea6, PB1:ea6,

PA:ea6, HA:ea6, NP:ea6, NA:ea6, MP:ea6, NS:ea6), with no ev-

idence of reassortment. In contrast, the clade 2.3.4.4b A(H5N1)

viruses currently circulating in the Americas have undergone re-

assortment, acquiring a variety of North American (NAm) lineage

gene segments (Figure S1).

In ML trees of individual segments, similar clustering patterns

were observed. Figures 2A and S1 show that the earliest

A(H5N5) detection in Canada (A/American_Crow/PEI/FAV-

0035-6/2023) and earliest mammal detection in raccoons

(A/Raccoon/PEI/FAV-0193-1/2023 and A/Raccoon/PEI/FAV-

0199-1/2023) were similar viruses (time of most recent common

ancestor [tMRCA] December 18, 2022; 95% highest posterior

density (HPD): November 21, 2022–January 8, 2023), even

though they were temporally separated by 3 months. This con-

trasted with the second detection in Canada only 3 weeks later

(A/American_Crow/PEI/FAV-0068-3/2023, A/American_Crow/

PEI/FAV-0068-8/2023, and A/American_Crow/PEI/FAV-0068-

9/2023) that was not closely related to A/American_Crow/PEI/

FAV-0035-6/2023, even though they were collected within

100 m of each other. The earliest Canadian and mammalian vi-

ruses clustered with A/Northern_Fulmar/NS/FAV-0264-12/2023

and A/Great_Black-Backed_Gull/NS/FAV-0264-15/2023, both

from Sable Island, and had a tMRCA of July 19, 2022 (95%

HPD: May 2, 2022–September 28, 2022). Together, these

data suggest that A(H5N5) was introduced to the same

geographic area twice, with Sable Island being the potential

source. The lone sample from NB was from an American

crow and clustered with A/Northern_Fulmar/NS/FAV-0264-1/

2023, also from Sable Island. A(H5N5) sequences (A/Herring_

Gull/NS/FAV-0263-2/2023, A/Great_Black-Backed_Gull/NS/FAV-

0263-3/2023, and A/Great_Black-Backed_Gull/NS/FAV-0263-

4/2023 versus A/Great_Black-Backed_Gull/NS/FAV-0263-5/

2023) from Sable Island did not cluster together consistently,

even when sampled on the same day (April 14, 2023). The

phylogenetic clustering patterns observed indicated that Sable

Island contained a pool of genetically diverse A(H5N5) viruses

within seabirds that subsequently spread the virus to other

Atlantic provinces.

Of note, A/Red-Tailed_Hawk/PEI/FAV-0165-1/2023 was

genetically distinct from the other Canadian A(H5N5) viruses

and was the only case detected in Charlottetown, PEI. It

clustered with two Norwegian isolates from June 2022 (A/Glau-

cous_gull/Norway/2022-07-1148/2022 and A/Great_black-

backed_gull/Norway/2022-07-1141-4T/2022), suggesting two

separate yet likely simultaneous incursions of A(H5N5)-Dstalk

viruses into Canada.
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Figure 1. A(H5N5) cases in the Atlantic provinces of Canada (n = 41)

(A) Locations where animals were collected.

(B) Type of wild bird and mammalian species that virus was detected in.
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Almost all of the Canadian and Norwegian A(H5N5) viruses

had HA-A156T (mature H5 numbering), a substitution that re-

stores HA-N154 glycosylation. One virus from Canada and two

viruses from Norway evolved an alternative substitution that re-

stores glycosylation, HA-A156S (Table S2). Two separate substi-

tutions independently gave rise to this phenotype. In contrast,

HA-A156 S/T mutations that restore HA-N154 glycosylation are

not seen in any Canadian clade 2.3.4.4b A(H5N1) isolates

(2,118 isolates from GISAID).

The Bayesian time-resolved tree (Figure 2A) shows a tMRCA

for the split between HA-A156 and HA-S/T156 on July 23,

2021 (95% HPD: April 26, 2021–October 16, 2021), while the

AAAAA

C

B

Figure 2. Bayesian analyses of viral WGS using BEAST to examine the relationship of A(H5N5) viruses

(A) Bayesian timescaled maximum clade credibility tree. Inset contains a tetrameric model of NA with the region containing the 22-amino acid stalk deletion

highlighted in red; PDB: 6CRD.

(B) Chord diagram showing Bayesian host transition between species in Canadian A(H5N5) isolates; internal coloring matching the outer ring indicates the source

species. Outer rings not matching internal coloring indicate sink species. Chords are statistically supported (Bayes factor R3.0).

(C) Bayesian phylogeographic reconstruction of A(H5N5) dissemination (2020–2023) between European countries and the introduction of the virus into North

America.
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tMRCA between HA-T156 and HA-S156 was November 1, 2021

(95% HPD: August 13, 2021–January 16, 2022) when using the

whole-genome sequences (WGSs) partitioned by segment.

The A(H5N5)-Dstalk NA segments appeared similar to those

from A(H12N5) viruses that circulated in Russia from 2017 to

2018 and Belgium in 2018 (Figure S1). An A(H5N8) virus appears

to have reassorted with an A(HxN5) virus, possibly an A(H12N5)

to generate an A(H5N5) virus. At some point, the A(H5N5) viruses

acquired a 22-amino acid NA stalk deletion (positions 47–68 as

compared to A/swan/Rostov/2299-2/2020, EA N5 numbering)

before there was any spread detected beyond the Caspian

Sea region (August 31, 2019; 95% HPD: January 30, 2019–

March 11, 2020).

The H5ML tree (Figure S1) shows that the A(H5N1) (November

2021) and A(H5N5) (January 2023) viruses that entered Canada

were not closely related to each other.

Bayesian analysis of host and geographic
characteristics to infer migration dynamics
Local host dynamics

We examined Canadian host-transmission dynamics due to

greater sequence and metadata availability over a short time

period. Northern fulmars appeared to be a source of A(H5N5) vi-

rus,while herring gulls andGBBGswere sinks. Additionally, north-

ern fulmars were likely sources of virus for both American crows

and red foxes. Crows subsequently acted as the source of virus

for raccoons (Figure 2B). Bayesian stochastic search variable se-

lection (BSSVS) support for host transitions and phylogenetic to-

pology suggest that the species from Sable Island were involved

in the transmission of A(H5N5) viruses to mainland Canada.

Geographic spread

A(H5N5)-Dstalk viruses had the same genotype as A/swan/Ros-

tov/2299-2/2020. Viruses of the same genotypewere detected in

wild swans in Romania in January 2021, in a heron and a gull in

Bulgaria in March 2021, and again in Russia in both pelicans and

gulls in April 2021. The earliest A(H5N5)-Dstalk virus was de-

tected in Russian waterfowl in September 2021. The spread of

A(H5N5)-Dstalk viruses was detected in a white-tailed eagle in

Norway in February 2022, followed by the detection in American

crows and raccoons from Canada in January and April 2023,

respectively. Bayesian analysis supports the established time

line and the transatlantic migration of A(H5N5) viruses from Nor-

way to Canada (Figure 2C). Themost support is seen for a NS-to-

PEI transition. Again, Sable Island appeared to be the source of

all Canadian viruses other than that detected in Charlottetown,

PEI, which was the only Canadian isolate with an HA-A156S mu-

tation. The analysis was repeated, with NS separated into main-

land and Sable Island sampling locations. This, again, supported

Sable Island as a pool of viral diversity and the source of A(H5N5)

viruses in Atlantic Canada.

Antigenic analyses of A(H5N5) viruses

We next compared the antigenic properties of A(H5N5)

A/Raccoon/PEI/FAV-0193-1/2023 and A/American_Crow/PEI/

FAV-0035-6/2023 viruses to each other, to other H5 viruses,

and to existing World Health Organization (WHO) candidate vac-

cine viruses (CVVs) by hemagglutination inhibition (HI) assay (Ta-

ble 1). The two A(H5N5) viruses had similar antigenic profiles, as

determined by reactivity with post-infection ferret antiserum to

other H5 viruses. The A(H5N5) viruses reacted well with ferret

antisera generated to the clade 2.3.4.4b WHO CVV CBER-

RG8A (A/Astrakhan/3212/2020-like), but less well to antiserum

generated to the representative North American CVV A/Amer-

ican Wigeon/SC/22-000345-001/2021 (H5N1).

Pathogenicity and transmission of A(H5N5) viruses in

ferrets

To assess the pathogenicity and transmission potential of the

A(H5N5) viruses for mammals, we assayed two representative

viruses (A/Raccoon/PEI/FAV-0193-1/2023 and A/American_

Crow/PEI/FAV-0035-6/2023) in the ferret model (Figure 3A).

Rapid onset of severe clinical signs (100% of inoculated animals

met humane endpoints by 4–5 days post-infection [dpi]; Fig-

ure 3B), including elevated body temperature (Figure 3C) and

loss of body weight, were observed in both groups of infected

ferrets (Figure 3D). There was no significant difference in clinical

scores between animals infected with either virus (Figure 3E) or

differences in viral titers in nasal washes and tissues collected

from the respiratory system (Figures 3F and 3G). Peak mean

nasal wash titers were 5.75 and 5.25 log10 median tissue culture

infectious dose (TCID50)/mL for A/Raccoon/PEI/FAV-0193-1/

2023 and A/American_Crow/PEI/FAV-0035-6/2023, respec-

tively, on day 3 (Figure 3G). All ferrets infected with A/Raccoon/

PEI/FAV-0193-1/2023 showed systemic viral spread, with

Table 1. HI assay of early 2023 clade 2.3.4.4b A(H5N5) viruses using 0.5% chicken RBCs

Antigen Subtype Clade

A/Astrakhan/

3212/2020-like

A/American Wigeon/

South Carolina/22-

000345-001/21

A/Bald Eagle/

Florida/W22-

134-OP/2022

Collection

date

Passage

history

CBER-RG8A (A/Astrakhan/

3212/2020-like)

H5N8 2.3.4.4b 320a 40 160 V1E2/E1

A/American Wigeon/South

Carolina/22-000345-001/21

H5N1 2.3.4.4b 160 80a 160 E2/E1

A/Bald Eagle/Florida/W22-

134-OP/2022

H5N1 2.3.4.4b 80 40 80a E2

A/Raccoon/PEI/FAV-0193-1/2023 H5N5 2.3.4.4b 80 10 10 May 2023 E1/E1

A/American_Crow/PEI/FAV-

0035-6/2023

H5N5 2.3.4.4b 80 10 10 February 2023 E1/E1

aThe titers of serum samples with homologous viruses.
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considerable infectious virus in extra-pulmonary tissue,

including brain (5.75 log10 TCID50/mL), liver (4.41 log10 TCID50/

mL), and intestine (3.5 log10 TCID50/mL; Figure 3F). In compari-

son, the ferrets infected with A/American_Crow/PEI/FAV-0035-

6/2023 had less virus in extra-pulmonary tissues (Figure 3F).

While we were unable to detect infectious virus from nasal

washes of naive direct contact ferrets, one (of three) from each

virus group met humane endpoints by day 5 post-cohousing

(Figures 3B and 3G). These animals showed clinical signs,

including severe diarrhea, neurologic signs, and weight loss.

Additionally, one of two surviving ferrets from the A/Raccoon/

PEI/FAV-0193-1/2023 group seroconverted (HI = 320).

Histopathology and immunohistochemistry findings from tis-

sues collected from infected ferrets showed neuro-tropism of

both viruses. Viral antigen was detected in different parts of

the brain in cells, including neurons, microglia, ependyma, and

cells within themeninges and choroid plexus. Viral antigen distri-

bution in the CNS of A/Raccoon/PEI/FAV-0193-1/2023-infected

ferrets suggested that multiple routes of neuroinvasion were

involved, including direct spread from infected cells in the

meninges (Figure 4A) to microglia and neurons, with secondary

spread via neuronal axons (Figure 4B). The widely scattered

foci of infection in other areas of the brain, including the cortex

(Figure 4C) and cerebellum (Figure 4D), suggest hematogenous

spread. Lastly, the extensive infection of ependymal cells (Fig-

ure 4E) with associated infection of subependymal neurons sug-

gests CNS viral entry via the choroid plexus. Interestingly, viral

infection of olfactory bulbs was detected in only one ferret (Fig-

ure 4F). Infection of the subependymal zone and diffuse infection

of ependymal cells in the ventricular system indicate that infec-

tion likely originated in the lateral ventricle and spread to the sub-

ependymal zone via the rostral migratory stream. The overall dis-

tribution and cell tropism in the CNS of A/American_Crow/PEI/

FAV-0035-6/2023-infected ferrets were essentially the same.

There was evidence of local spread from infected meninges to

adjacent neuropil (Figure 5A), widely scattered foci of infected

microglia and neurons in other areas of the brain (Figure 5B),

extensive infection of ependymal cells (Figure 5C), and scattered

infected cells in the choroid plexus and subependymal zone

located near ventricles (Figure 5D).

Antiviral susceptibility

The susceptibility of the A(H5N5) viruses to NA inhibitors (NAIs)

and the cap-dependent endonuclease inhibitor (CENI) baloxavir

was assessed by genotypic and phenotypic approaches. Anal-

ysis of all A(H5N5) virus sequences from 2021 through 2023

did not identify any of the established NAI resistance markers.

All 41 viruses isolated in Canada in 2023 contained the NA-

I117T substitution that has been previously shown to confer

reduced inhibition (RI) to oseltamivir/zanamivir in HPAI A(H5N1)

viruses.49 Substitutions in the polymerase acidic (PA) protein

associated with RI by CENI (PA-E23 G/K, PA-K34R, PA-A36V,

PA-A37T, PA-I38 M/T, and PA-E199G) were absent from the Ca-

nadian A(H5N5) viruses. One virus isolated from a swan in Swe-

den (A/Mute Swan/Sweden/SVA210303SZ0392/KN000806/Kal/

2021) had the PA-E199G substitution, which may cause >3-fold

reduced sensitivity to baloxavir.50 The Canadian viruses did have

a PA-T40A substitution that is located close to the highly

conserved isoleucine residue (I38) in the PA catalytic site. While

this substitution is also prevalent among European A(H5N5) vi-

ruses (24.1%; 13/54), the frequencies are low among HPAI

A(H5N1) (0.07%; 4/6,162), and seasonal H3N2 (0.02%;

9/38,741) viruses.

The in vitro susceptibility of A/Raccoon/PEI/FAV-0193-1/2023

and A/American_Crow/PEI/FAV-0035-6/2023 to the NAIs

oseltamivir, zanamivir, and peramivir was determined by NA in-

hibition fluorometric assays using fluorogenic 20-(4-methylum-

belliferyl)-a-D-N-acetylneuraminic acid substrate.51 Plaque

reduction assays and Influenza replication inhibition NA-based

assays were used for measuring sensitivity to baloxavir.52

Phenotypic testing confirmed both viruses to be susceptible to

antivirals with half-maximal inhibitory concentration/half-

maximal effective concentration values being %2-fold higher

than clade 2.3.4.4.b reference viruses (Table S3). As such, NA-

I117T and PA-T40A do not confer RI to NAIs and CENI, respec-

tively, in the context of A(H5N5) viruses.

Receptor binding properties

Both A(H5N5) isolates examined preferentially bound sialic acid

receptors with a 30SLN-linked sialic acid (preferred AIV receptor),

rather than 60SLN-linked sialic acid (preferred human influenza

virus receptor) (Figure S2).

DISCUSSION

In the present study, we document the incursion of GsGd-line-

age A(H5N5) viruses into the Atlantic provinces of Canada, in-

fecting wild birds, and subsequent spillover, causing fatal infec-

tions in numerous mammalian species.

Transatlantic migration
Millions of pelagic seabirds from different continents congregate

in the North Atlantic year-round,53 suggesting a possible route

for the spread of A(H5N5) viruses from Europe to North

Figure 3. Pathogenicity and transmission potential of the A(H5N5) viruses in ferrets

(A) Experimental design of ferret pathogenesis and transmission of A/American_Crow/PEI/FAV-0035-6/2023 (H5N5, Crow) and A/Raccoon/PEI/FAV-0193-1/

2023 (H5N5, Raccoon) viruses. At 0 dpi, 9 ferrets were inoculated with 106 median egg infectious doseunits of each A(H5N5) virus. Three inoculated ferrets

(Donor) were individually co-housed with 3 naive contact ferrets (Direct contact) on 1 dpi. Six ferrets were euthanized at 4 dpi for viral titration in tissues and

pathology (n = 3 each). All ferrets were monitored for clinical signs of infection until day 14. Nasal wash samples were collected from both infected and direct

contact ferrets at the indicated time points for virus titration. Serum samples were collected from all surviving ferrets at 25 dpi for seroconversion assays.

(B–E) Survival curve (B), (C) temperature change of inoculated ferrets (values are the average ±SE for each group), (D) weight changes (ferret weight values are the

average ± SE for each group), and (E) clinical scores of inoculated ferrets (n = 3 per virus).

(F) Infectious viral titers from collected tissues (n = 3 ferrets).

(G) Infectious viral titers from nasal washes (mean virus titer ± SD). Symbols represent each individual animal’s titer. Dashed lines indicate the lower limit of virus

titer detection (1.0 log10 TCID50/mL).
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America.32 Mapping (Figure 6; Norwegian SEATRACK project

http://www.seapop.no/en/seatrack/) transatlantic migration

routes of northern fulmar and black-legged kittiwakes54 shows

that Sable Island is within the range of pelagic seabirds fromNor-

way. Earlier IAV sequences from gulls sampled in Newfoundland

grouped with virus sequences from Norwegian gulls, suggesting

virus transmission has previously occurred between these

locales.55

GBBGs are one possible host for carrying A(H5N5) viruses

from Europe to Canada,32,56 as they are known to travel across

the Atlantic Ocean and are susceptible to IAV. Although a defin-

itive role for these birds in the transatlantic spread of IAV is

missing due to inadequate sampling depth,57 evidence is build-

ing for their role as spreaders. Four GBBGs infected with

A(H5N5) virus were detected at the end of January and beginning

of February 2023 in Cape Cod, Massachusetts, a peninsula that

extends into the Atlantic Ocean.56 Further evidence comes from

the fact that in both instances of clade 2.3.4.4b virus (A(H5N1)

and A(H5N5)) spread to North America, the earliest detections

in migratory birds were in GBBGs (November 2021, H5N1;

January 2023, H5N5).

Figure 4. Ferrets infected with the

A/Raccoon/PEI/FAV-0193-1/2023 (H5N5) vi-

rus

(A–F) Histopathology and immunohistochemistry

showing widespread CNS infection in several lo-

cations and cell types, including (A) meninges and

submeningeal neuropil, (B) cortical astrocytes and

neurons, (C) perivascular neuropil in cortex, (D)

Purkinje cells and glial cells in cerebellum,

(E) ventricular ependyma and subependymal cells

(arrow) in midbrain, and (F) infection extending

from the olfactory ventricle (arrow) into surround-

ing layear of the olfactory bulb. Granule cell layer

(gcl); mitral cell layer (mcl); external plexiform layer

(epl); glomerular layer (gl).

Scale bars: (A), (B), and (D) 200 mm; (C) and (F)

1 mm; (E) 100 mm.

Sable Island also appears to be a

source of A(H5N5) virus, acting as the

likely origin of Canadian spread (Figure 2)

after the transatlantic migration of pelagic

seabirds. Of note, while Sable Island is

home to the largest colony of gray seals

in theworld,58 a host known to be suscep-

tible to IAV,59 no reports of H5 infection

have been made in these animals, unlike

the situation reported elsewhere.31

While Iceland could be geographically

implicated in the Eurasia to North America

spread of A(H5N5) viruses, the virus was

not reported there until September

202360 (this detection was followed by

others in theUnited Kingdom61). Similarly,

A(H5N5) viruses were detected in a north-

ern fulmar and glaucous gull in

September and October, respectively, in

Disko Bay, Greenland.60 These detections suggest that the

spread of IAV can also be mediated via shorebirds,32 although

more intensive sampling is needed to support this assertion.

Clade 2.3.4.4b A(H5N5) viruses had caused several previous

outbreaks in Europe (2016–2017, 2020–2021).62 In the 2016–

2017 European outbreak, the viruses were detected in Kam-

chatka, Russia,63 followed by the Netherlands and Germany.64

Possibly due to the timing of the outbreak relative to bird migra-

tion, these viruses did not spread further.64 A(H5N5) viruses

were next detected in Germany and Denmark during the

2020–2021 outbreak. While the 2020–2021 A(H5N5) viruses

spread across Europe,62,65 they did not reach North America66

(Table S4). Of note, the 2021 A(H5N1) viruses were detected in

the Netherlands in months similar to those in the 2022 A(H5N5)

viruses in Norway, being early in the year (Table S3). In both in-

stances, early virus detection in Europe led to late detections of

similar viruses in Canada. In the 2016 and 2020 European

A(H5N5) outbreaks, which did not spread to Canada, virus de-

tections were made late in the season, which is supportive of

the importance of outbreak timing in risk of intercontinental

spread.
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Mutations in NA and HA
A characteristic feature of the 2023 A(H5N5) viruses was the

presence of the same 22-amino acid deletion in the NA stalk

as described in earlier studies.41 Only one instance of a stalk

deletion in N5 subtype viruses has been described.67 There is

no overlap with the contemporary N5 deletion. Such deletions

in other IAV NA subtypes are typically associated with adapta-

tion to gallinaceous hosts,67,68 and HPAI A(H5N1) viruses with

NA deletions display higher pathogenicity in chickens, ducks,

andmice.69–72 According to previous studies, viruses with partial

stalk truncations have increased thermal and low-pH stability,

yet reduced NA activity.71,73 NA truncation and NA deglycosyla-

tion reduce virus transmissibility in ferrets andmice,74,75 but pro-

mote the systemic spread of HPAI viruses, increasing pathoge-

nicity.75 It is unclear what role the deletion has played in

replication of the A(H5N5) viruses in shorebirds and gulls or in

their intercontinental spread.

The HA-T156A (mature H5 numbering) substitution, present

in some 2.3.4.4 A(H5) viruses, has been linked to dual recep-

tor binding properties.76 HA-T156A destroys the glycosylation

sequon Asn-X-Ser/Thr,77 impacting immunogenicity,78 antige-

nicity,79,80 and host immune response escape.81 The HA-

T156A mutation has also been associated with the emergence

of clade 2.3.4.4 viruses that are paired with NA segments

other than N1.82,83 As the A(H5N5)-Dstalk virus spread from

Norway to Canada, it acquired the reverse HA-A156T muta-

tion, restoring the glycosylation motif. Almost all global 2023

A(H5N5) isolates (41 Canadian and 1 Norwegian) contained

this mutation (Table S1). One exception is the A(H5N5)-Dstalk

virus, isolated from the Canadian red hawk sample (A/Red-

Tailed_Hawk/PEI/FAV-0165-1/2023), which has an HA-

A156S mutation, also restoring the N-glycosylation sequon.

This hawk sample shared similarity with two Norwegian iso-

Figure 5. Ferrets infected with the A/Ameri-

can_Crow/PEI/FAV-0035-6/2023 virus

(A–D) Histopathology and immunohistochemistry

showing widespread CNS infection in several lo-

cations and cell types, including (A) meninges

(arrow) and neuropil, (B) glial cells and some neu-

rons in the cortex, (C) ependymal cells (arrow), and

(D) choroid plexus (arrow) and periventricular

ependyma/subependyma.

Scale bars: (A) 200 mm; (B) and (D) 100 mm; (C)

50 mm.

lates from 2022 (A/Glaucous_gull/Nor-

way/2022-07-1148/2022 and A/Great_

black-backed_gull/Norway/2022-07-1141-

4T/2022; Figure 2A). When ancestral

sequence reconstruction and BSSVS

(Table S2) were combined with phyloge-

netic topology (Figure 2A), both HA-A156

S/T mutations appeared to have

occurred independently, indicating two

separate incursions of A(H5N5) viruses

into Canada from Norway. This HA-

A156 S/T mutation is not seen in any

clade 2.3.4.4b A(H5N1) viruses currently circulating in Canada

(2,118 isolates).

Recently, A(H5N1) isolates from Nigeria with an N1 stalk dele-

tion84 and HA-A156S substitution were detected. In Europe,

1,956 A(H5Nx) viruses from 2020 to 2022 have been character-

ized.85 The majority of these viruses (1,939) harbored HA-

A156, while only 7 viruses contained an NA stalk deletion. This

contrasts reports from earlier years where the majority of NAs

from A(H5N1) contained stalk deletions.69,71,73 This change

might be associated with the proliferation and dominance of

clade 2.3.4.4 viruses with HA-T156A substitutions. As balanced

HA-NA activity is critical for IAV86 replication, it is tempting to

speculate that the HA-A156T mutation balances the N5 stalk

deletion. Increased HA glycosylation has been shown to lead

to more viral shedding in the poultry respiratory tract.71 While

HA-A156 can bind a-2,6-linked glycans, resulting in increased

virulence,87 the HA-A156T reversion could allow avian species

to shed virus more readily, and still maintain virulence. Support-

ive of this, we could show that the Canadian A(H5N5) viruses

bound 30SLN-linked sialic acid but not 60SLN-linked sialic acid.

While reassortants were detected in the 2016–2017 and 2020–

2021 European A(H5N5) outbreaks,24,64–66 the A(H5N5)-Dstalk

descendants do not appear to have reassorted over the past 2

years.88

Risk for mammals
While infections with IAV containing N5 have been described in

seals (H4N5)89 and swine (H10N5),90 to our knowledge there

have been no previously reported cases of A(H5N5) infection in

mammals. In the present study, we have 7 confirmed cases of

mammalian A(H5N5) infections leading to deaths (4 raccoons,

2 red foxes, 1 striped skunk).While it is concerning that individual

mammalian-adaptive mutations were detected in these animals,
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there was no evidence of mammal-to-mammal transmission.

The high proportion of Canadian A(H5N5) detections in mam-

mals (7 of the 41, 17%, total detections) is surprising. In contrast,

of the 2,118 Canadian A(H5N1) detections, only 96 were from

mammals (4.5%).

Ferrets have been the benchmark model for assessing risk to

humans. In our hands, the A(H5N5)-Dstalk viruses were highly

virulent in ferrets (100% mortality; Figure 3B) and transmitted,

albeit inefficiently, to direct contact animals (as measured by

clinical signs and seroconversion). Inefficient viral detection in

nasal washes of directly contacted ferrets, together with

observed clinical signs, including severe diarrhea, neurologic

signs, and weight loss, suggest that infection may have initiated

in the lower respiratory tract through small infectious droplets or

extrapulmonary sites like the digestive system or nervous sys-

tem, although tissue was not available to confirm this. A total

of three amino acid substitutions were found in A/Raccoon/

PEI/FAV-0193-1/2023 compared to A/American_Crow/PEI/

FAV-0035-6/2023: PB2 (T271A), PB1 (N328K), and HA (I200V).

These three mutations have previously been characterized with

mammalian adaptation of IAVs and are possibly linked to the

more robust systemic replication of A/Raccoon/PEI/FAV-0193-

1/2023 in ferrets. Transmission of the A(H5N5)-Dstalk viruses is

consistent with previous reports linking HA-T156A to airborne

transmission among ferrets87,91 and guinea pigs.92 Similar ferret

studies with the EA A(H5N1) viruses A/Fancy Chicken/

Newfoundland/FAV-0033/2021 and A/American Wigeon/South

Carolina/22-000345-001/2021 led to no mortality or transmis-

sion in infected ferrets.93

The A(H5N5)-Dstalk viruses appear to be neurotropic in mam-

mals, as seen from the histologic lesions and immunostaining in

ferret brain tissues (Figures 4 and 5). Neuroinvasion is known to

occur in mammalian A(H5Nx) infection,94 and our ferret data are

consistent with other cases of Canadian mesocarnivores from

which clade 2.3.4.4b A(H5N1) viruses were isolated from brain

samples.55 While the A(H5N5)-Dstalk viruses exhibit highmortal-

ity in the ferret model, they remained susceptible to antivirals

such as NAIs and CENI (Table S3). Although the NA subtypes

differ, results are consistent with clade 2.3.4.4b A(H5N1) resis-

tance data.95

Although influenza viruses are well studied, many gaps in our

knowledge remain. As IAV represents a global risk, intensive sur-

veillance is required, especially in bird species found inmigratory

stopovers, wheremingling of birds from different flyways occurs.

Our data implicate pelagic seabirds in the transatlantic and local

Canadian spread of A(H5N5) viruses that have maintained an NA

stalk deletion. These viruses have been detected in wild mam-

mals, where markers for mammalian adaptation (PB2-E627K)

have been detected. Ferret pathogenesis studies with the EA ge-

notype A(H5N5) viruses demonstrated their high virulence, which

is in contrast to the early North American A(H5N1) viruses that

required North American segments to induce mortality. Thus,

while A(H5N5) viruses are comparably uncommon, their high

virulence and mortality potential demand global surveillance

and further studies to untangle themolecularmarkers influencing

virulence, transmission, adaptability, and host susceptibility.

Limitations of the study
In this study, we examined the genetic relationship between

A(H5N5) viruses and the transmission capability of the earliest

detected Canadian avian and mammalian A(H5N5) viruses in a

ferret model. A limitation of this study is that no in vitro experi-

ments were performed to examine the enzymatic activity and

growth kinetics comparing truncated NA stalk and full-length

stalk A(H5N5) viruses. Clade 2.3.4.4b A(H5N1) virus reassorted

with NAm lineage IAVs shortly after its incursion. However, the

clade 2.3.4.4b A(H5N5) has been circulating in Canada for over

a year and has not reassorted with local NAm lineage IAVs. We

have not confirmed if the stalk deletion and HA glycosylation

led to a stable virus that is less likely to reassort.
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T.M., Mortensen, Å.K., Lundgren, S.S., and Waugh, C.A. (2020). Evi-

dence of avian influenza virus in seabirds breeding on a Norwegian

high-Arctic archipelago. BMC Vet. Res. 16, 48. https://doi.org/10.1186/

s12917-020-2265-2.

48. European Food Safety Authority; European Centre for Disease Preven-

tion and Control; European Union Reference Laboratory for Avian Influ-

enza; Adlhoch, C., Fusaro, A., Gonzales, J.L., Kuiken, T., Marangon,
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STAR+METHODS

KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Anti-influenza A virus (A/USSR/1977

(H1N1) primary goat polyclonal

US Biological Life Sciences I7650-05E

Donkey anti-goat biotinylated secondary US Biological Life Sciences I1904-28B

CBER-RG8A In house N/A

A/American wigeon/South

Carolina/22-000345-001/21

In house N/A

A/bald eagle/Florida/W22-134-OP/2022 In house N/A

Bacterial and virus strains

A/American_Crow/PEI/FAV-0035-6/2023 (H5N5) This study N/A

A/Raccoon/PEI/FAV-0193-1/2023 (H5N5) This study N/A

Influenza A/CA/04/2009 (H1N1) CDC

Biological samples

Tissue and swab samples This study N/A

Chemicals, peptides, and recombinant proteins

Chicken Red Blood Cells Rockland Immuno. R202-0050

EZ prep solution Roche Ventana 950–102

Cell Conditioning Solution 1 Roche Ventana 950–124

DISCOVERY ChromoMap DAB detection kit Roche Ventana 760–159

Hematoxylin II solution Roche Ventana 790–2208

4-methylumbelliferone (4-MU) Sigma M1508

2�[4-methylumbelliferyl]-a-D-N-

acetylneuraminic acid

Sigma M8639

Oseltamivir carboxylate Medchem Express HY-13318

Zanamivir Medchem Express HY-13210

Peramivir Medchem Express HY-17015A

Baloxavir acid Medchem Express HY-109025A

TPCK-treated trypsin Fisher Scientific PI20233

30SLN-C3-PAA-biot GlycoNZ 0036-BP

60SLN-C3-PAA-biot GlycoNZ 0997-BP

Critical commercial assays

MagMAX-96 Viral RNA Isolation Kit ThermoFisher Scientific AMB18365

Rapid Barcoding Kit 96 Oxford Nanopore Technologies SQK-RBK110.96

MinION R9.4.1 Flow Cells Oxford Nanopore Technologies FLO-MIN106D

Deposited data

A(H5N5)-Dstalk virus consensus sequences This paper GISAID: EPI_ISL_18702952 to 18702992

Influenza A sequences GenBank See Table S5

Influenza A sequences GISAID See Table S6

Experimental models: Cell lines

MDCK cells ATCC CCL-34; RRID:CVCL_0422

Experimental models: Organisms/strains

Ferrets - male Triple F Farms RRID:NCBITaxon_9669

Oligonucleotides

Primer: Inf-A-2009

F: AGATGAGTCYTCTAACCGAGGTCG

Weingartl et al.96 N/A

(Continued on next page)
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RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the lead contact, Yohannes

Berhane (Yohannes.Berhane@inspection.gc.ca).

Materials availability
The full genome sequences of the 41 A(H5N5) cases from Canada generated in this study have been deposited at GISAID and are

publicly available as of the date of publication under the Isolate IDs: EPI_ISL_18702952 to EPI_ISL_18702992. This study did not

generate new unique reagents.

Data and code availability
This paper does not report original code. This paper analyzes existing, publicly available data. These accession numbers for the data-

sets are listed in the key resources table. Any additional information required to reanalyze the data reported in this paper is available

from the lead contact upon request.

EXPERIMENTAL MODEL AND SUBJECT PARTICIPANT DETAILS

Male Ferrets (Triple F Farms, Sayre, PA, USA). Procedures used in this study were reviewed and approved by the St. Jude Children’s

Research Hospital Institutional Animal Care and Use Committee (IACUC, Protocol number 428). Madin–Darby canine kidney (MDCK)

cells (ATCC) were used.

Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

Primer: Inf-A-2009

R: TGCAAARACAYYTTCMAGTCTCTG

Weingartl et al.96 N/A

Probe: M +64

P: FAM-TCAGGCCCCCTCAAAGCC

GA-BHQ1

Weingartl et al.96 N/A

Primer: H5

Protected by supplier MTA

Modified Spackman et al.97 N/A

Primer: H5

Protected by supplier MTA

Modified Spackman et al.97 N/A

Probe: H5

Protected by supplier MTA

Modified Spackman et al.97 N/A

Software and algorithms

Guppy v6.3.9 Oxford Nanopore Technologies https://community.nanoporetech.com/downloads

nf-flu v3.3.5 CFIA-NCFAD https://github.com/CFIA-NCFAD/nf-flu

Geneious Prime 2023.0.4 GraphPad Software Inc. https://www.geneious.com/

Minimap2 v2.2.0 Li98 https://www.geneious.com/plugins/minimap2/

MAFFT v7.490 Katoh and Standley99 https://www.geneious.com/plugins/mafft-plugin/

RDP5 v5.46 Martin et al.100 http://web.cbio.uct.ac.za/�darren/rdp.html

GenoFLU Youk et al.101 https://github.com/USDA-VS/GenoFLU

IQ-TREE v2.2.2.7 (ModelFinder) Nguyen et al.102;

Kalyaanamoorthy et al.103
https://github.com/iqtree/iqtree2

TreeTime v0.11.1 Sagulenko et al.104 https://github.com/neherlab/treetime

BEAST (LogCombiner,

TreeAnnotator) v1.10.4

Suchard et al.105 https://beast.community/

Tracer v1.7.2 Rambaut et al.106 https://github.com/beast-dev/tracer/

SpreaD3 v0.9.7.1 Bielejec et al.107 https://rega.kuleuven.be/cev/ecv/software/SpreaD3

R The R Foundation https://www.r-project.org/

ggtree Yu et al.108 https://bioconductor.org/packages/ggtree/

circlize v0.4.15 Gu et al.109 https://github.com/jokergoo/circlize

GraphPad Prism v8.4.3 GraphPad Software Inc. https://graphpad.com
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METHOD DETAILS

Clinical samples from animals
Samples, including swabs and tissues were collected between January 9th, 2023 and June 9th, 2023 from animals found dead or

euthanized at various rehabilitation centers or at Canadian Wildlife Health Cooperative regional center wildlife clinics in the Atlantic

provinces of Canada. Species of animals and their geographic locations are depicted in Figure 1B. Clinical samples collected from

animals were tested at regional Animal Health Laboratories or provincial Canadian Animal Health Network (CAHSN) laboratories. All

IAV matrix-positive samples were submitted to the National Centre for Foreign Animal Disease laboratory in Winnipeg for confirma-

tory testing.

RNA extraction and virus detection
Total RNA was extracted from clinical samples (swabs and tissues) and virus isolates using the MagMAX-96 Viral RNA Isolation Kit

with the KingFisher Duo Prime platform (ThermoFisher Scientific, Waltham, MA, USA). The presence of IAV genomic material was

verified using the matrix gene-specific qRT–PCR, followed by H5-specific qRT–PCR.96,97

Virus isolation and titration
For virus isolation, IAV PCR positive samples from submissions were propagated through the allantoic cavities of 9 to 11-day-old

embryonated specific pathogen-free (SPF) chicken eggs. Viral titers for the A/American_Crow/PEI/FAV-0035-6/2023 (H5N5) and

A/Raccoon/PEI/FAV-0193-1/2023 (H5N5) viruses were determined by the 50% egg infectious dose (EID50).

Viral sequencing and assembly
Amplicon samples were subject to library preparation using the Oxford Nanopore Rapid Barcoding Kit (SQK-RBK110.96) and

sequenced using MinION R9.4.1 Flow Cells (FLO-MIN106D) on an Oxford Nanopore GridION sequencer (Oxford Nanopore Technol-

ogies).94 The raw Nanopore signal data was basecalled and demultiplexed with Guppy (v6.3.9) using the super-accurate basecalling

model. Raw sequence data was processed using nf-flu (v3.3.5; https://github.com/CFIA-NCFAD/nf-flu) and Geneious Prime

2023.0.4 with Minimap2 (v2.2.0).98

Sequence collection
All A(H5N5) sequences, other than those generated for this study, were retrieved from the National Center for Biotechnology Infor-

mation (NCBI) Influenza Virus Sequence Database and the Global Initiative on Sharing All Influenza Data (GISAID) EpiFlu database

(https://gisaid.org)99 from 2015-01-01 until 2023-08-31. Reference sequences of A(H5N1) viruses from GenoFLU100 and the top 25

non-A(H5N5) hits to A/American_Crow/PEI/FAV-0035-6/2023 (H5N5) virus from aBasic Local Alignment Search Tool (BLAST) search

on both GISAID and NCBI were included in phylogenetic analysis. Sequences were aligned using MAFFT v7.490101 and trimmed to

contain major open reading frames except for M and NS segments, which were trimmed to 982 and 838 nucleotides, respectively.

Sequences were manually cleaned and those containing at least 90% of the ORF were screened for recombinants with RDP5

(v5.46)102 using default settings with linear sequences, and results were retained for further phylogenetic analysis.

Maximum-likelihood phylogenetics
Maximum-likelihood (ML) trees and best-fitting nucleotide substitution models (using ModelFinder103) were inferred using IQ-TREE

v2.2.2.7104 and 1000 replicates were used for the Shimodaira–Hasegawa approximate likelihood ratio test. TreeTime (v0.11.1)105 was

used to reconstruct the most likely ancestral sequence for HA. Genome constellations for contemporary A(H5N5) viruses are named

for consistency with GenoFLU.100 All resultant phylogenetic trees were visualized using ggtree.106

Bayesian phylogenetics
A(H5N5) viruses similar to A/swan/Rostov/2299-2/2020 and possessing eight segments were examined and reassortants were

removed (n= 8; noNA stalk deletion) resulting in 62whole-genome sequences (WGS). These sequenceswere partitioned by segment

and used to estimate the timing and likelihood of transmissions between geographic locations and hosts by phylogeographic diffu-

sion in discrete space using BEAST v1.10.4.107,108 The partitioned WGS alignments were used to estimate a time-scaled phyloge-

netic tree under the SRD06 model of nucleotide substitution (HKY112 + CP112 + G4112)
109 except for M and NS, which used a GTR

nucleotide substitution model, a relaxed molecular clock with lognormal distribution and an exponential population coalescent

tree prior. Sampling location [the Canadian provinces of New Brunswick (NB), Nova Scotia (NS), and Prince Edward Island (PEI),

and the countries Norway, Bulgaria, Romania and Russia], viral host (Northern fulmar, American crow, gray heron, eagle, swan, shel-

duck, herring gull, pelican, red-tailed hawk, gull, great black-backed gull, red fox, raccoon, Northern goshawk, striped skunk, black-

legged kittiwake and common tern), and the residue at HA-156 (mature H5 numbering; alanine or A, serine or S, threonine or T) were

attached to each tree tip as discrete character states. Ancestral character states for location, host and HA-156 residue were recon-

structed by the asymmetric substitution model and social networks were inferred with the Bayesian stochastic search variable se-

lection (BSSVS) procedure. Two independent Markov Chain Monte Carlo chains (400,000,000 steps, sampled every 10,000) were

run. The first 10% of samples from each chain were burned and assessed for convergence (effective sample size >200) using Tracer
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v1.7.2.110 Post burn-in samples from independent chains were combined using LogCombiner v1.10.4 and a maximum clade cred-

ibility (MCC) tree was produced using TreeAnnotator v1.10.4.108 The posterior distribution of indicator values from the BSSVS pro-

cedure was used to conduct Bayes factor (BF) tests to garner statistical support for location, host, and HA-156 residue transitions

using SpreaD3 (v0.9.7.1).111 Transitions with BF < 3.0 and/or posterior probabilities <0.60 were discarded from the dataset, along

with non-Canadian host transition species. The MCC tree was used to plot location state transitions on a world map with

SpreaD3. The width of each transition line was manually adjusted to represent the underlying BF support (substantial support:

3.0% BF < 10.0, very strong support: 10.0% BF < 100.0, and decisive support: BFR 100.0).107,112 Relative median host transition

rates were calculated using Tracer v1.7.2 and visualized using the circlize (v0.4.15) package113 in R v4.3.2.

Hemagglutination inhibition (HI)
A(H5N5) isolates were analyzed by a hemagglutination inhibition (HI) assay against reference ferret antisera raised against CBER-

RG8A (A/Astrakhan/3212/2020-like), A/American wigeon/SC/22-000345-001/2021, and A/Bald eagle/FL/W22-134-OP/2022 vi-

ruses. HI assays were performed with 0.5% chicken red blood cells.

Pathogenesis and transmission in ferrets
Six-month-old male ferrets (n = 9; Triple F Farms, Sayre, PA, USA) were infected intranasally with 106 EID50 of A(H5N5) viruses diluted

in 500 mL of phosphate-buffered saline (PBS). Virus inoculation of ferrets was performed under light anesthesia of inhalant isoflurane

vaporized in O2. After one day post-infection (dpi), three naive ferrets were placed in the same cages with infected ferrets as the con-

tact recipient ferrets. Ferrets were monitored daily for any clinical signs including body temperature changes, body weight loss, res-

piratory disorders, stool consistency, and neuropathologic signs. Nasal washes were collected from all surviving ferrets at 1, 3, 5, 7,

and 10 dpi and ketamine was used to induce sneezing. At 4 dpi ferrets (n = 3) were euthanized, and tissue samples (nasal turbinates,

trachea, lung, brain, liver, and intestine) were collected for virus titration in MDCK cells (American Type Culture Collection, Manassas,

VA, USA) usingmedian tissue culture infectious dose (TCID50) assays. Animals reaching the humane endpoint were euthanized. At 25

dpi, sera was collected from all surviving ferrets for seroconversion an using HI assay. Another 3 infected ferrets from each group

were euthanized and fixed tissues were subjected to histopathology and immunohistochemistry (IHC) - see Immunohistochemistry

section.

Ethics approval
Animal experiments were approved by the St. Jude Children’s Research Hospital Institutional Animal Care and Use Committee

(IACUC, Protocol number 428).

Immunohistochemistry
IHC was performed using the Ventana Discovery Ultra Autostainer (Roche Ventana, Tucson, Arizona, USA) following the manufac-

turer’s instructions. Five mm formalin-fixed and paraffin-embedded sections were initially heated for 4 min at 72�C and placed in EZ

prep solution (#950-102, Roche Ventana) for deparaffinization. Antigen retrieval was performed at 95�C in Cell Conditioning Solution

1 (CC1, #950-124, Roche Ventana) for 56 min. A polyclonal primary goat polyclonal antibody (US Biological, Swampscott, MA)

against influenza A, USSR (H1N1) at 1:1000 and a secondary biotinylated donkey anti-goat antibody (US Biological) at 1:200 were

used on tissue sections. The DISCOVERY ChromoMap DAB detection kit (#760-159, Roche Ventana) was used as detection system.

Tissue counterstaining was performed with Hematoxylin II solution (#790–2208, Roche Ventana).

NA-inhibitor susceptibility assays
Enzymatic inhibition assays

A fluorescence-based NA inhibition assay was conducted.51 The NA activity of each virus was standardized to relative fluorescent

unit equivalents of 10 mM 4-methylumbelliferone (4-MU).114 Fluorescent NA-cleaved MUNANA (20�[4-methylumbelliferyl]-a-D-N-

acetylneuraminic acid) substrate was measured with a range of NA inhibitors or NAI (oseltamivir carboxylate [oseltamivir], zanamivir

and peramivir) concentrations. The half-maximal inhibitory concentrations (IC50) were determined in GraphPad Prism 8.4.3 software

from the sigmoidal dose-response (variable slope) equation. IC50-fold changes were calculated relative to the reference virus of the

respective subtype/clade/lineage. The NAI susceptibility phenotypes were defined according to the World Health Organization Anti-

viral Working Group criteria: normal inhibition (NI), <10-fold; reduced inhibition (RI), 10- to 100-fold; highly reduced inhibition (HRI),

>100-fold.

Replication inhibition assays

Influenza Replication Inhibition NA-based Assay (IRINA) was implemented according the Centers for Disease Control and Prevention

protocol.52 Virus inoculum was normalized to 1.9 nM/well of 4-MU and incubated for 24 h with the cap-dependent endonuclease

inhibitor (CENI), baloxavir, in MDCK cells without TPCK-treated trypsin to achieve a single-cycle virus replication. NA activity from

the infected cells was measured and half-maximal effective concentrations (EC50) were calculated as described for NA Inhibition.

EC50-fold changes were derived by comparison to the reference viruses without potential CENI RI-associated substitutions. An arbi-

trary threshold of a R3-fold increase in median EC50 was used as RI phenotype.115
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Endonuclease inhibitor susceptibility

MDCK cells at confluence (13106 cells/well) were inoculated with influenza viruses, yielding 50 to 100 plaque-forming units (PFUs)

per well. After a 1 h incubation at 37�C, the monolayer was overlaid with 0.45% immunodiffusion-grade agarose (MP Biomedical)

in DMEM supplemented with 4% bovine serum albumin, 1 mg/mL TPCK-treated trypsin, and baloxavir at a range of concentrations

(1 p.m.–10 mM). At 60 to 72 hpi, the cells were stained with 0.7% crystal violet in 10% formaldehyde. PFU/well were enumerated, and

EC50s were determined using the log (inhibitor) versus response logistic nonlinear regression.

Receptor binding assay

Fetuin-coated 96-well plates were washed using washing buffer (0.23X PBS with 0.01% Tween 80) then blocking solution (1X PBS

containing 1%BSA) was added to all coated wells. 100mL of wash virus containing 64 HA units of each virus was added and all plates

were incubated overnight at 4 �C. Biotinylated sialylglycopolymers, 30SLN-C3-PAA-biot (30SLN) or 60SLN-C3-PAA-biot (60SLN)
(GlycoNZ), were serially diluted from 10 to 0.156 mg/well in reaction buffer (1X PBS with 0.02% Tween 80, 0.02% BSA, and 5 mM

Zanamivir) then added to the washed plates containing bound virus and incubated overnight at 4 �C. Plates were washed 4 times

then horseradish peroxidase-conjugated streptavidin (1:2000) was added to the plates and incubated for 1 h. Substrate was added

to the plates and kept for 10 min at room temperature followed by the addition of 1 N H2SO4 to stop the reaction.

QUANTIFICATION AND STATISTICAL ANALYSIS

Data were analyzed using two-way ANOVAwith Tukey’s multiple-comparison post hoc test, and univariant log rank analysis (survival

curves) in GraphPad Prism v10.

ADDITIONAL RESOURCES

Norwegian SEATRACK project: http://www.seapop.no/en/seatrack/
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