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Abstract

Influenza A viruses in wild birds pose threats to the poultry industry, wild

birds, and human health under certain conditions. Of particular importance

are wild waterfowl, which are the primary reservoir of low-pathogenicity influ-

enza viruses that ultimately cause high-pathogenicity outbreaks in poultry

farms. Despite much work on the drivers of influenza A virus prevalence, the

underlying viral subtype dynamics are still mostly unexplored. Nevertheless,

understanding these dynamics, particularly for the agriculturally significant

H5 and H7 subtypes, is important for mitigating the risk of outbreaks in

domestic poultry farms. Here, using an expansive surveillance database, we

take a large-scale look at the spatial, temporal, and taxonomic drivers in the

prevalence of these two subtypes among influenza A-positive wild waterfowl.

We document spatiotemporal trends that are consistent with past work, partic-

ularly an uptick in H5 viruses in late autumn and H7 viruses in spring. Inter-

estingly, despite large species differences in temporal trends in overall

influenza A virus prevalence, we document only modest differences in the rel-

ative abundance of these two subtypes and little, if any, temporal differences

among species. As such, it appears that differences in species’ phenology, phys-
iology, and behaviors that influence overall susceptibility to influenza A

viruses play a much lesser role in relative susceptibility to different subtypes.

Instead, species are likely to freely pass viruses among each other regardless of

subtype. Importantly, despite the similarities among species documented here,

individual species still may play important roles in moving viruses across large

geographic areas or sustaining local outbreaks through their different migra-

tory behaviors.
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INTRODUCTION

Influenza A viruses in wild bird populations pose risks
to the agricultural sector, as well as human health under
certain conditions (Clark & Hall, 2006). These risks
include direct losses to the poultry industry, in addition
to those of culling, response efforts, and trade restric-
tions (Seeger et al., 2021), as well as health risks associ-
ated with exposure of humans in direct contact with
infected poultry (Kim et al., 2021). Of particular interest
are wild waterfowl, which act as the primary reservoir
of low-pathogenicity viruses (Brown et al., 2006) that
ultimately become highly pathogenic in poultry farms
due to differences in mutation rates and evolutionary
trajectories in these aberrant hosts (Suarez, 2000), and
whose movement is linked to known spillovers into
domestic poultry operations (Humphreys et al., 2020).
Moreover, recent changes in avian influenza dynamics
have led to new concerns about its impacts on wild bird
populations (Harvey et al., 2022). The risk of these out-
breaks has motivated much work on the spatial, tempo-
ral, and taxonomic variation in influenza prevalence
among these waterfowl, with the goal of improving sur-
veillance strategies, risk mitigation, and response plan-
ning (Hill et al., 2019; Prosser et al., 2013). As such, it is
well established that influenza prevalence peaks in wild
waterfowl in the late summer and early autumn, partic-
ularly in some dabbling ducks (subfamily Anatinae;
Henaux et al., 2010; Keawcharoen et al., 2008; Kent,
Ramey, et al., 2022; Olsen et al., 2006).

Immunological work has pointed to the importance
of viral subtypes of influenza in dictating both viral
ecology and disease risk. Specifically, influenza A
viruses contain eight RNA segments, two of which reg-
ularly reassort in waterfowl and are central to our
understanding of the underlying viral ecology: hemag-
glutinin (HA) and neuraminidase (NA) surface proteins
(Diskin et al., 2020). However, probably due to large
amounts of spatial and annual variation, our under-
standing of the drivers of viral subtype composition
remains limited. Taxonomic variation certainly exists,
as variation in HA subtypes appear prominent between
waterfowl and other taxonomic groups (Pepin et al.,
2013; Stallknecht, 2003; Yamnikova et al., 2003),
although differences within waterfowl remain relatively
unknown. Yet, recent work has demonstrated that
annual variation in the common subtypes appears to be
cyclic (Diskin et al., 2020; Krauss et al., 2004), and
subtype diversity tends to increase as autumn pro-
gresses through winter and into spring, with an
increase in rare and mixed subtypes later in the season
(Diskin et al., 2020). These patterns may be linked to
waterfowl movements and congregation; however, how

these trends vary among species—as well as finer scale
spatial patterns—remain unexplored.

A fuller understanding of the drivers of variation in
the prevalence and composition of influenza A subtypes
in wild waterfowl will allow for stronger predictions of
spillover events into poultry facilities, application to
wild bird conservation, and a better understanding of
the underlying viral ecology. Although 16 HA and 9 NA
subtypes have been isolated from wild aquatic birds
(Diskin et al., 2020), of particular interest are the H5
and H7 subtypes, as these are the primary subtypes
likely to become highly pathogenic in poultry farms
(Olsen et al., 2006). Understanding patterns in the prev-
alence of these subtypes carries direct management
application in our understanding of the spatial and tem-
poral risk patterns, and thus planning mitigation and
response strategies.

Notably, current models of spillover risk can only
include overall influenza prevalence (e.g., Hill et al.,
2019; Prosser et al., 2013), even though only a small sub-
set of these viruses carrys the risk of becoming highly
pathogenic in poultry. Several studies have pointed to
an increase in the H5 and H7 subtypes in the late
autumn and early spring, respectively, in North America
(Bevins et al., 2014; Diskin et al., 2020). This rise in the
relative prevalence of these two subtypes is consistent
with the general increase in rare subtypes as the influ-
enza season progresses (Diskin et al., 2020), and the
increase in the H7 subtype may also be linked to migra-
tory blue-winged teal (Spatula discors) transmitting the
virus to the United States from their wintering grounds
(Ferro et al., 2010; Ramey et al., 2014). Moreover, both
subtypes appear to be more common in dabbling ducks
than in other waterfowl species (Bevins et al., 2014).
However, it remains unclear whether these temporal or
taxonomic patterns are driven by actual changes in the
composition of circulating subtypes or simply cumula-
tive fluctuations in influenza A prevalence across all
subtypes.

Here, we used a large dataset surveilling for influ-
enza in wild waterfowl across the continental
United States to examine spatial, temporal, and taxo-
nomic changes in the prevalence of H5 and H7 subtypes
among influenza-positive waterfowl. This work fills a
crucial knowledge gap in the temporal, spatial, and tax-
onomic variation in the relative composition of these
two important subtypes. In doing so, we seek to gener-
ate a better understanding of the composition of circu-
lating viruses to better predict spillover events, leading
to improved strategies for managing risk and staging
response resources, as well as a better understanding of
the underlying viral ecology and its potential impacts on
wild birds.
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METHODS

Surveillance data

Data came from the USDA as part of the United States
National Wild Bird Surveillance Program, with sampling
conducted between 2007–2011 and 2015–2019 (see
Bevins et al., 2014 and USDA, 2017 for methodological
details). Sampling efforts were stratified by flyway and
species with the goal of maximizing detections while
maintaining geographic coverage. Birds were sampled
with separate oropharyngeal and cloacal swabs, which
were then combined into a single cryovial with brain–
heart infusion medium. Samples were tested at the
National Animal Health Laboratory Network facilities for
influenza A virus using real-time reverse transcriptase
PCR (rRT-PCR; Spackman et al., 2002; Spackman, 2020).
Positive samples were then additionally tested for the H5
and H7 HA spike proteins using rRT-PCR. Here we
focused only on the birds that tested positive for some
form of influenza A virus, as we were primarily inter-
ested in changes to viral subtype composition. We then
subset this database to only include waterfowl species
that were well sampled, leaving us with 10 species, each
containing at least 450 influenza-positive samples. In
total, this resulted in 35,009 samples for analysis
(Table 1; Figure 1). We replaced the calendar year with a
new variable, biological year, beginning 1 June each year,
to better align with the seasonality of the viruses (Kent,
Ramey, et al., 2022), as well as the sampling protocols
(USDA, 2017).

Data were provided at the county level, and county
centroids were used for the spatial coordinates. In gen-
eral, the use of county centroid where actual coordinates
are not available can lead to biases in spatial predictions
arising from two distinct lines. First, in analyses that rely

heavily on fine-grain environmental predictors, this can
lead to a mismatch between the environmental condi-
tions where the data were collected and the centroid of
the administrative unit. Second, as counties vary in size,
this can impact estimates of the distance over which
points are correlated. However, the impacts of analyzing
data at county centroids are minimal for models like the
one presented here that do not use fine-grain environ-
mental predictors and are instead geospatial and coarse
in nature (Barker & Maclsaac, 2022; Cheng et al., 2020;
Goovaerts, 2008).

Statistical analysis

To predict the probability of an influenza A-positive bird
testing positive for either the H5 or H7 subtypes, we fitted
separate sets of candidate models for each influenza
subtype using hierarchical spatiotemporal models with
integrated nest Laplace approximation (INLA, Rue et al.,
2009) using INLA version 20.10.12-1. See Appendix S1 for
full mathematical details. This approximate Bayesian
method provides a more computationally efficient
method for estimating large, spatiotemporal models. We
pooled samples by all predictor variables (month, species,
county, and year) to set up a binned binomial regression.
After preliminary analysis detected overdispersion in the
data for both subtypes, the probability that an influenza
A-positive bird tested positive for either the H5 or H7
subtypes was modeled as a beta-binomial process, where
the probability of success is itself drawn from a beta dis-
tribution (Harrison, 2015).

All candidate models contained an intercept, inde-
pendent and identically distributed (iid) effect of biologi-
cal year, and two spatial effects. The first spatial effect
was a spatially structured latent effect modeled using a

TAB L E 1 Number of influenza-positive birds, as well as those that tested positive for the H5 and H7 subtypes for each species.

Common name Scientific name N H5 H7

Canada Goose Branta canadensis 463 45 3

Wood Duck Aix sponsa 901 54 13

Blue-winged Teal Spatula discors 3249 177 51

Northern Shoveler Spatula clypeata 2204 187 160

Gadwall Mareca strepera 875 94 14

American Wigeon Mareca americana 913 127 16

Mallard Anas platyrhynchos 18,115 2179 555

American Black Duck Anas rubripes 812 134 20

Northern Pintail Anas acuta 2737 244 44

Green-winged Teal Anas carolinensis 4740 506 147

Abbreviations: H5, number of birds that tested positive for the H5 subtype; H7, number of birds that tested positive for the H7 subtype; N, total number of birds
that tested positive for influenza.

ECOLOGICAL APPLICATIONS 3 of 11
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spatiotemporal stochastic partial differential equation
(SPDE) approach to quantify spatial autocorrelation. It
used 12 monthly spatial realizations modeled as a cyclic
first-order autoregressive (ar1) model to account for

correlations in the spatial field between adjacent months
(Lindgren & Rue, 2015). This method used a continuous
Gaussian random field constructed with a three-
dimensional triangular mesh with 8202 nodes, which

F I GURE 1 Geographic distribution of influenza A-positive samples by subtype.
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captured the variation between small counties while
retaining computational efficiency (Lindgren & Rue,
2015). Because of the large spatial extent of the data, this
mesh was projected into a three-dimensional sphere and
scaled to one Earth radius. The second spatial effect was
an iid effect of the county to control for small-scale spa-
tial variation, such as the specific locations where birds
were sampled or potential variation in sampling methods
(Rue et al., 2009).

We then developed four candidate models for both
the H5 and H7 subtypes to handle potential species
differences. The first of these contained no species effect.
The second contained an iid species effect to allow
species to differ in the overall prevalence of each subtype
but assumed the same underlying seasonal patterns. The
third candidate model included a correlated species-
specific latent effect of month modeled as a cyclic ar1
process, which allowed species to differ in their temporal
trends, while assuming that these trends were correlated
(Riebler et al., 2012). Finally, the fourth model fitted a
separate month effect for each species, allowing their
patterns to fluctuate independently. We compared these
two sets of four candidate models using both the
Watanabe–Akaike Information Criterion (WAIC) and
the inverse sum of the logged conditional predictive ordi-
nate (CPO), similar to a leave-one-out cross-validation
(Hooten & Hobbs, 2015).

RESULTS

Model predictions of the proportion of influenza-positive
waterfowl testing positive for each subtype for each
month at the county level are available online for down-
load (Kent, Bevins, et al., 2022). Overall, 10.7% and 2.9%
of influenza A-positive birds tested positive for the H5
and H7 subtypes, respectively. For both the H5 and H7
models, selection methods preferred either the iid or cor-
related species effects over the models with either no or
fully independent species effects (Table 2). Specifically,
CPO showed a strong preference for the iid model for
both subtypes. WAIC also preferred the iid model for the
H7 subtype, but showed some preference for the corre-
lated model for the H5 subtype. However, it should be
noted that WAIC is prone to overfitting complex spatial
models (Hooten & Hobbs, 2015). Moreover, as the esti-
mated correlation among species was fairly high (0.76),
the actual predictions of these two models differed little,
so we present the iid model for both subtypes here.

Although these results generally point to limited spe-
cies effects, with very small, if any, species-specific differ-
ences in temporal trends (Figure 2), we did document
some species differences in the predominance of these

two subtypes after accounting for spatial and temporal
sampling differences. Specifically, we found higher
levels of the H5 subtype in American black duck
(Anas rubripes), American wigeon (Mareca americana),
and mallard (Anas platyrhynchos), with lower levels in
blue-winged teal and wood duck (Aix sponsa). Likewise,
we documented an elevated baseline prevalence for the
H7 subtype among influenza-positive blue-winged teal
and northern shoveler (Spatula clypeata; Figure 3).

We also documented clear overdispersion, as well as
variation in prevalence by biological year and month for
both models (Appendix S2: Table S1). Specifically, we
found a peak in the prevalence in the H5 subtypes among
influenza A-positive birds from October through
November, and in the H7 subtype from February
through April (Figure 2). However, the combination of low
influenza A prevalence and limited sampling in the spring
made predictions for this time period more uncertain.

We found clear spatial autocorrelation for both models.
During the autumn peak in H5 prevalence, we found ele-
vated levels of H5-positive birds in the Great Lakes region
as well as the Northwest (Figure 4a). Likewise, during the
spring peak in H7 prevalence, we documented elevated
levels of this subtype along the northern Gulf of Mexico
moving north along the Mississippi River, as well as in the
New Mexico and Utah areas (Figure 4b). These specific
trends appeared to be consistent and recurring across years
(Appendix S2: Figures S6 and S7).

DISCUSSION

Overall, we demonstrated broad temporal trends in the
prevalence of the H5 and H7 subtypes among influenza

TABL E 2 Model selection table for different species effects.

Subtype Species effect WAIC CPO

H5

Model 1: none 10,470.7 18.8961

Model 2: iid 10,442.6 −667.533

Model 3: correlated 10,438.4 −466.388

Model 4: independent 10,460.5 −499.096

H7

Model 1: none 3656.5 −13,881

Model 2: iid 3591.83 −15,402.5

Model 3: correlated 3608.89 −14,552.9

Model 4: independent 3613.17 −13,355.2

Abbreviations: CPO, conditional predictive ordinate; H5, number of birds
that tested positive for the H5 subtype; H7, number of birds that tested
positive for the H7 subtype; iid, independent and identically distributed;
WAIC, Watanabe–Akaike information criterion.
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F I GURE 2 Proportion (±95% credibility intervals) of influenza A-positive birds testing positive for the H5 and H7 subtypes by month of

year and species. Circles along the x-axis indicate the number of birds that tested positive for influenza A virus regardless of subtype. Note

that low sample size in spring, particularly April, led to wide confidence intervals for the H7 subtype.
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A-positive birds that were largely consistent with past
findings (Bevins et al., 2014; Diskin et al., 2020), with the
H5 subtype showing an uptick in late fall and the H7
subtype becoming more common in early spring. Addi-
tionally, we documented broad spatial trends for both
agriculturally important subtypes; however, we found
generally limited evidence of taxonomic variation in

these trends among waterfowl, finding only small varia-
tion in the baseline composition of different subtypes by
species and little to no differences in species-specific tem-
poral trends for either subtype. Last, we found some level
of overdispersion in the data, where birds sampled at the
same time and place were more likely than random to
have the same subtypes, probably because they were

F I GURE 3 Species effect (±95% credibility interval) in logit space for each waterfowl species on the prevalence of (a) H5 and (b) H7

subtypes among influenza A-positive birds. Points to the right indicate elevated prevalence rates.

F I GURE 4 The spatial effect, modeled using stochastic partial differential equations with correlated monthly realizations, for the

prevalence of (a) H5 and (b) H7 subtypes among influenza A-positive birds. Yellow indicates increased prevalence rate. Only months during

which there were elevated levels of each subtype are shown (i.e., September–December for H5, December–March for H7). Plots containing

all months and associated standard deviations are available in Appendix S2.
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passing the same influenza strains among each other, as
well as variation in relative prevalence by biological year,
possibly indicating some periodicity in these patterns
(Diskin et al., 2020; Krauss et al., 2004). We have
expanded on each of these patterns in the following
paragraphs.

As a component of the project, we generated maps at
monthly intervals showing the predicted proportion of
influenza A-positive waterfowl testing positive for each
of these two viruses (Kent, Bevins, et al., 2022). In addition
to improving our basic understanding of the underlying
viral ecology, these maps may inform management deci-
sions. Much work in recent years has focused on
predicting the spillover of avian influenza viruses into
domestic poultry operations (e.g., Hill et al., 2019; Prosser
et al., 2013). Such models are often based on the number
of waterfowl in an area and the proportion of them carry-
ing avian influenza. However, without detailed informa-
tion on the prevalence of these important subtypes in the
literature, such models have been forced to focus only on
avian influenza viruses in general, even though the bulk
of these pose little risk of becoming highly pathogenic
(Diskin et al., 2020). As such, the models and their predic-
tions presented here make data available for improved
outbreak prediction and the staging of response resources.

Species trends

Although species certainly differ in their overall rate of
influenza A virus infection through time (Kent, Ramey,
et al., 2022; Olsen et al., 2006), we found only limited evi-
dence for any species difference in the composition of H5
and H7 subtypes among influenza A-positive wild water-
fowl (Table 2). Specifically, CPO preferred the iid model
over both alternatives that allowed for different temporal
trends by species. Additionally, although WAIC narrowly
preferred one of these more complex models for the H5
subtype, this method can be biased toward more complex
models in large spatial applications (Hooten & Hobbs,
2015), and the strong among-species correlation led to
very small differences between these two models. This
contrasts with past work, which has found that viral sub-
types differed greatly between waterfowl and other taxo-
nomic groups, such as gulls and shorebirds (Hill et al.,
2022; Stallknecht, 2003; Yamnikova et al., 2003), but
from our work it appears that these subtype differences
are small within waterfowl, at least for these two particu-
larly important subtypes. Notably, some of this may be
due to the subtypes examined here, as the work did point
to the H5 subtype being general in host susceptibility
(Pepin et al., 2013), and it may be that other, less
economically important subtypes vary among species.

Notably, this finding of limited differences in
temporal trends among species contrasts with large and
consistent differences in temporal trends in overall influ-
enza A virus prevalence across these birds (Kent, Ramey,
et al., 2022). That is, although differences in behavior,
phenology, physiology, or immunology appear to poten-
tially impact overall patterns in influenza A virus preva-
lence (Costa et al., 2010; Hill et al., 2010; Keawcharoen
et al., 2008; Kim et al., 2009; Latorre-Margalef et al.,
2017; Olsen et al., 2006), we have little evidence that
these differences impact subtype composition, at least as
far as the two subtypes examined here are concerned.
Interestingly, this large-scale trend is also consistent with
previous, local-scale work in Minnesota, where samples
of only mallards were sufficient to describe the observed
subtype diversity across the whole waterfowl community
(Wilcox et al., 2011). As such, it appears that there are
limited differences in subtype composition by species, at
either small local scales or the continental scale shown
here, presumably because these species are easily able
to pass these various subtypes among each other
(Hill et al., 2016).

These limited differences point to two direct lines of
application in surveilling waterfowl for avian influenza.
First, as there are some minor differences in subtype
composition among species, it may be of use in manage-
ment applications to focus on the species we demonstrate
to have a higher baseline prevalence of these two sub-
types. However, contrasting with this, it appears that spe-
cies are likely to pass various subtypes freely among each
other, leading to limited variation in subtype composition
among species. As such, managers might surveil for spe-
cies within broader taxonomic groups (e.g., dabbling
ducks, diving ducks, geese, etc.) that are more feasible to
capture and sample, with limited concern that they will
be missing subtypes that may be more prevalent in spe-
cies that they fail to sample. Spatial, temporal, and taxo-
nomic sampling strategies will depend on the objectives
of the surveillance, for example, early detection of highly
pathogenic viruses versus research to understand virus
evolution and spread.

As mentioned above, we did document some modest
differences in the relative prevalence of these two sub-
types by species. Most interestingly, both species in the
genus Spatula (blue-winged teal and northern shoveler;
Sun et al., 2017), showed a higher proportion of
influenza-positive individuals testing positive for the H7
subtype compared with the other species. For blue-
winged teal, these findings were consistent with
published literature showing blue-winged teal with ele-
vated levels of the H7 subtype compared with other spe-
cies (Diskin et al., 2020; Ferro et al., 2010; Ramey et al.,
2014). One mechanism for this pattern in the previous
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research proposed that long-distance migration of blue-
winged teal brought new subtypes to North American
sampling areas from Central and South American winter-
ing locations. Long-distance migration is not as distinct
in the northern shoveler, which mostly winters in the
southern United States and northern Mexico, potentially
pointing to some other phylogenetic cause for the higher
proportion of birds carrying the H7 subtype, such as dif-
fering physiology, behavior, or immunology. Consistent
with this phylogenetic hypothesis (similar subtype preva-
lence in taxonomically related species), we also
documented increased levels of the H5 subtype primarily
between the closely related American black duck and
mallard (Sun et al., 2017). As such, a more complete phy-
logenetic study, as well as additional immunological
work may help to shed light on these species’ differences.

Spatiotemporal trends

As expected from past work, we found an uptick in
influenza-positive birds testing positive for the H5
subtype during late autumn (Bevins et al., 2014; Diskin
et al., 2020). This trend was especially evident in the
Great Lakes and Northwest, which are both important
staging areas for migrating waterfowl. That is, both
regions draw a large number of waterfowl from a wide
range of breeding areas. As the mixing of birds from dif-
ferent breeding populations at these staging areas is
important for overall viral diversity (Gunnarsson et al.,
2012), the mixing also probably leads to an increase in
less-common subtypes such as H5 (Diskin et al., 2020)
and transmission of those subtypes is further facilitated
due to elevated duck densities (Papp et al., 2017).

Also consistent with past literature, we found an
uptick in influenza-positive birds with the H7 subtype
during the spring (Diskin et al., 2020). Spatially, this
increase is strongest along the northern Gulf of Mexico as
well as in the New Mexico and Utah areas. These two
areas are important flyways for migrating waterfowl,
especially the blue-winged teal and the northern shov-
eler, respectively, both of which were more likely to be
infected with the H7 subtype. However, as this uptick
was present in all species, not just those two; these spe-
cies may be important for bringing such viruses into
these geographic regions where it is quickly passed
among all other waterfowl.

Methodological considerations

The scope of this work was limited by the low number of
influenza A-positive birds collected during the spring and

summer months. This was a result of two
nonindependent sources. First, spring and summer repre-
sent a well documented period of low overall influenza A
virus prevalence, such that a very large number of birds
would have needed to be sampled to obtain even a mod-
est number of influenza-positive birds. Coupled with the
low prevalence was the limited sampling effort during
that time. Generally, sampling is done with the intent of
maximizing detections, so sampling was lower during
this time of low prevalence. Additionally, that time
period is outside the hunting season, removing hunter
harvests as a potential method for data collection; north-
ward duck migration in the spring compounds that prob-
lem by complicating any active trapping of waterfowl. As
such, we caution against drawing any major conclusions
from our findings during those specific time periods,
especially in the interpretation of spatial patterns that are
more impacted by limited data.

Conclusions

Overall, we documented clear seasonal patterns in the
proportion of the H5 and H7 subtypes among influenza
A-positive wild waterfowl, as well as provide spatial and
temporal estimates of relative subtype prevalence. These
model outputs directly inform management regarding
potential mitigation and response strategies, as these two
subtypes are particularly important for addressing both
agricultural and conservation concerns. Moreover, we
were the first group to examine differences in subtype
composition among diverse waterfowl species on the
large temporal and spatial scales, finding only limited dif-
ferences among species despite their large differences in
susceptibility to influenza A viruses.

However, this does not mean that these species play
similar roles in the movement of viral subtypes across the
continent through migration. As such, additional work
may support a better understanding of the role of differ-
ent members of the waterfowl community in driving the
spatiotemporal patterns in these agriculturally and eco-
nomically important subtypes, including how the pheno-
logical, physiological, and immunological traits of these
species may influence subtype composition.

ACKNOWLEDGMENTS
The authors would like to thank all those who contrib-
uted to the collection of samples included in the US
Department of Agriculture database. This research was
supported by the US Geological Survey Ecosystems Mis-
sion Area and USDA’s Animal and Plant Health Inspec-
tion Service under Cooperative Agreement 6000001762.
Minor support was also provided by the National Science

ECOLOGICAL APPLICATIONS 9 of 11

 19395582, 2023, 7, D
ow

nloaded from
 https://esajournals.onlinelibrary.w

iley.com
/doi/10.1002/eap.2906 by Shenglai Y

in - U
niversity O

f O
klahom

a , W
iley O

nline Library on [19/07/2024]. See the Term
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline Library for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons License



Foundation (NSF) “PIPP Phase 1: International Center
for Avian Influenza Pandemic Prediction and Preven-
tion” (no. 2200310). Any use of trade, firm, or product
names is for descriptive purposes only and does not imply
endorsement by the US Government.

CONFLICT OF INTEREST STATEMENT
The authors declare no conflicts of interest.

DATA AVAILABILITY STATEMENT
Data supporting this research are restricted and not
available publicly. Wild bird influenza data collected
between August 2007 and March 2020 are available from
the Wildlife Services National Wildlife Disease Program
of the US Department of Agriculture by contacting
the National Wildlife Disease Program at nwdpdata@
usda.gov.

ORCID
Cody M. Kent https://orcid.org/0000-0002-6764-8050
Jennifer M. Mullinax https://orcid.org/0000-0003-4695-
059X

REFERENCES
Barker, J. R., and H. J. Maclsaac. 2022. “Species Distribution Models:

Administrative Boundary Centroid Occurrences Require
Careful Interpretation.” Ecological Modelling 472: 110107.

Bevins, S. N., K. Pedersen, M. W. Lutman, J. A. Baroch, B. S.
Schmit, D. Kohler, T. Gidlewski, D. L. Nolte, S. R. Swafford,
and T. J. DeLiberto. 2014. “Large-Scale Avian Influenza Sur-
veillance in Wild Birds throughout the United States.” PLoS
One 9: e104360.

Brown, J. D., D. E. Stallknecht, J. R. Beck, D. L. Suarez, and D. E.
Swayne. 2006. “Susceptibility of North American Ducks and
Gulls to H5N1 Highly Pathogenic Avian Influenza Viruses.”
Emerging Infectious Diseases 12: 1663–70.

Cheng, Y., N. B. Tjaden, A. Jaeschke, S. M. Thomas, and
C. Beierkuhnlein. 2020. “Using Centroids of Spatial Units in
Ecological Niche Modelling: Effects on Model Performance in
the Context of Environmental Data Grain Size.” Global
Ecology and Biogeography 30: 611–621.

Clark, L., and J. Hall. 2006. “Avian Influenza in Wild Birds: Status
as Reservoirs, and Risks to Humans and Agriculture.” Ornitho-
logical Monographs 60: 3–29.

Costa, T. P., J. D. Brown, E. W. Howerth, and D. E. Stallknecht.
2010. “Effect of a Prior Exposure to a Low Pathogenic
Avian Influenza Virus in the Outcome of a Heterosubtypic
Low Pathogenic Avian Influenza Infection in Mallards
(Anas platyrhynchos).” Avian Diseases 54: 1286–91.

Diskin, E. R., K. Friedman, S. Krauss, J. M. Nolting, R. L. Poulson,
R. D. Slemons, D. E. Stallknecht, R. G. Webster, and A. S.
Bowman. 2020. “Subtype Diversity of Influenza A Virus in
North American Waterfowl: A Multidecade Study.” Journal of
Virology 94: e02022–e02019.

Ferro, P. J., C. M. Budke, M. J. Peterson, D. Cox, E. Roltsch,
T. Merendino, M. Nelson, and B. Lupiani. 2010. “Multiyear

Surveillance for Avian Influenza Virus in Waterfowl from
Wintering Grounds, Texas Coast, USA.” Emerging Infectious
Diseases 16: 1224–30.

Goovaerts, P. 2008. “Kriging and Semivariogram Deconvolution in
the Presence of Irregular Geographical Units.” Mathematical
Geosciences 40: 101–128.

Gunnarsson, G., N. Latorre-Margalef, K. A. Hobson, S. L.
Van Wilgenburg, J. Elmberg, B. Olsen, R. A. Fouchier, and
J. Waldenström. 2012. “Disease Dynamics and Bird
Migration—Linking Mallards Anas platyrhynchos and Subtype
Diversity of the Influenza A Virus in Time and Space.” PLoS
One 7: e35679.

Harrison, X. A. 2015. “A Comparison of Observation-Level
Random Effects and Beta-Binomial Models for Modeling
Overdispersion in Binomial Data in Ecology & Evolution.”
PeerJ 3: e1114.

Harvey, J. A., J. M. Mullinax, M. C. Runge, and J. D. Prosser. 2022.
“The Changing Dynamics of Highly Pathogenic Avian Influ-
enza H5N1: Next Steps for Management & Science in North
America.” EcoEvoRxiv. https://doi.org/10.32942/X26K57.

Henaux, V., M. D. Samuel, and C. M. Bunck. 2010. “Model-Based
Evaluation of Highly and Low Pathogenic Avian Influenza
Dynamics in Wild Birds.” PLoS One 5: e10997.

Hill, A., S. Gillings, A. Berriman, A. Brouwer, A. C. Breed, L. Snow,
A. Ashton, C. Byrne, and R. M. Irvine. 2019. “Quantifying
the Spatial Risk of Avian Influenza Introduction into British
Poultry by Wild Birds.” Scientific Reports 9: 1–8.

Hill, N. J., M. A. Bishop, N. S. Trovão, K. M. Ineson, A. L. Schaefer,
W. B. Puryear, K. Zhou, et al. 2022. “Ecological Divergence of
Wild Birds Drives Avian Influenza Spillover and Global
Spread.” PLoS Pathogens 18: e1010062.

Hill, N. J., E. J. Ma, B. W. Meixell, M. S. Lindberg, W. M. Boyce,
and J. A. Runstadler. 2016. “Transmission of Influenza
Reflects Seasonality of Wild Birds across the Annual Cycle.”
Ecology Letters 19: 915–925.

Hill, N. J., J. Y. Takekawa, C. J. Cardona, J. T. Ackerman, A. K.
Schultz, K. A. Spragens, and W. M. Boyce. 2010. “Waterfowl
Ecology and Avian Influenza in California: Do Host Traits
Inform us about Viral Occurrence?” Avian Diseases 54:
426–432.

Hooten, M. B., and N. T. Hobbs. 2015. “A Guide to Bayesian Model
Selection for Ecologists.” Ecological Monographs 85: 3–28.

Humphreys, J. M., A. M. Ramey, D. C. Douglas, J. M. Mullinax,
C. Soos, P. Link, P. Walther, and D. J. Prosser. 2020. “Water-
fowl Occurrence and Residence Time as Indicators of H5 and
H7 Avian Influenza in North American Poultry.” Scientific
Reports 10: 2592.

Keawcharoen, J., D. Van Riel, G. van Amerongen, T. Bestebroer,
W. E. Beyer, R. Van Lavieren, A. D. Osterhaus, R. A. Fouchier,
and T. Kuiken. 2008. “Wild Ducks as Long-Distance Vectors of
Highly Pathogenic Avian Influenza Virus (H5N1).” Emerging
Infectious Diseases 14: 600–607.

Kent, C. M., S. N. Bevins, J. M. Mullinax, J. D. Sullivan, and D. J.
Prosser. 2022. “Predicted H5 and H7 Subtype Avian Influenza
Prevalence for Wild Waterfowl Species across the Continental
United States.” U.S. Geological Survey Data Release. https://
doi.org/10.5066/P9K4ARTI.

Kent, C. M., A. M. Ramey, J. T. Ackerman, J. Bahl, S. N. Bevins,
A. S. Bowman, W. M. Boyce, et al. 2022. “Spatiotemporal

10 of 11 KENT ET AL.

 19395582, 2023, 7, D
ow

nloaded from
 https://esajournals.onlinelibrary.w

iley.com
/doi/10.1002/eap.2906 by Shenglai Y

in - U
niversity O

f O
klahom

a , W
iley O

nline Library on [19/07/2024]. See the Term
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline Library for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons License

mailto:nwdpdata@usda.gov
mailto:nwdpdata@usda.gov
https://orcid.org/0000-0002-6764-8050
https://orcid.org/0000-0002-6764-8050
https://orcid.org/0000-0003-4695-059X
https://orcid.org/0000-0003-4695-059X
https://orcid.org/0000-0003-4695-059X
https://doi.org/10.32942/X26K57
https://doi.org/10.5066/P9K4ARTI
https://doi.org/10.5066/P9K4ARTI


Changes in Influenza A Virus Prevalence among Wild Water-
fowl Inhabiting the Continental United States throughout the
Annual Cycle.” Scientific Reports 12: 13083.

Kim, E. H., Y. L. Kim, S. M. Kim, K. M. Yu, M. A. B. Casel, S. G.
Jang, P. N. Q. Pascua, R. J. Webby, and Y. K. Choi. 2021.
“Pathogenic Assessment of Avian Influenza Viruses in Migra-
tory Birds.” Emerging Microbes & Infections 10: 565–577.

Kim, J. K., N. J. Negovetich, H. L. Forrest, and R. G. Webster. 2009.
“Ducks: The “Trojan Horses” of H5N1 Influenza.” Influenza
and Other Respiratory Viruses 3: 121–28.

Krauss, S., D. Walker, S. P. Pryor, L. Niles, L. I. Chenghong, V. S.
Hinshaw, and R. G. Webster. 2004. “Influenza A Viruses of
Migrating Wild Aquatic Birds in North America.” Vector-
Borne & Zoonotic Diseases 4: 177–189.

Latorre-Margalef, N., J. D. Brown, A. Fojtik, R. L. Poulson,
D. Carter, M. Franca, and D. E. Stallknecht. 2017. “Competi-
tion between Influenza A Virus Subtypes through
Heterosubtypic Immunity Modulates re-Infection and Anti-
body Dynamics in the Mallard Duck.” PLoS Pathogens 13:
e1006419.

Lindgren, F., and H. Rue. 2015. “Bayesian Spatial Modelling with
R-INLA.” Journal of Statistical Software 63: 1–25.

Olsen, B., V. J. Munster, A. Wallensten, J. Waldenström, A. D.
Osterhaus, and R. A. Fouchier. 2006. “Global Patterns of Influ-
enza A Virus in Wild Birds.” Science 312: 384–88.

Papp, Z., R. G. Clark, E. J. Parmley, F. A. Leighton, C. Waldner,
and C. Soos. 2017. “The Ecology of Avian Influenza Viruses in
Wild Dabbling Ducks (Anas spp.) in Canada.” PLoS One 12:
e0176297.

Pepin, K. M., J. Wang, C. T. Webb, G. J. Smith, M. Poss, P. J.
Hudson, W. Hong, H. Zhu, S. Riley, and Y. Guan. 2013.
“Multiannual Patterns of Influenza A Transmission in Chinese
Live Bird Market Systems.” Influenza and Other Respiratory
Viruses 7: 97–107.

Prosser, D., L. Hungerford, R. M. Erwin, M. A. Ottinger, J. Y.
Takekawa, and E. Ellis. 2013. “Mapping Avian Influenza
Transmission Risk at the Interface of Domestic Poultry and
Wild Birds.” Frontiers in Public Health 1: 28.

Ramey, A. M., R. L. Poulson, A. S. Gonz�alez-Reiche, B. R. Wilcox,
P. Walther, P. Link, D. L. Carter, et al. 2014. “Evidence for Sea-
sonal Patterns in the Relative Abundance of Avian Influenza
Virus Subtypes in Blue-Winged Teal (Anas discors).” Journal
of Wildlife Diseases 50: 916–922.

Riebler, A., L. Held, and H. Rue. 2012. “Estimation and Extrapola-
tion of Time Trends in Registry Data—Borrowing Strength
from Related Populations.” The Annals of Applied Statistics 6:
304–333.

Rue, H., S. Martino, and N. Chopin. 2009. “Approximate Bayesian
Inference for Latent Gaussian Models by Using Integrated
Nested Laplace Approximations.” Journal of the Royal Statisti-
cal Society: Series B (Statistical Methodology) 71: 319–392.

Seeger, R. M., A. D. Hagerman, K. K. Johnson, D. L. Pendell, and
T. L. Marsh. 2021. “When Poultry Take a Sick Leave: Response
Costs for the 2014-2015 Highly Pathogenic Avian Influenza
Epidemic in the USA.” Food Policy 102: 102068.

Spackman, E. 2020. “Avian Influenza Virus Detection and
Quantitation by Real-Time RT-PCR.” In Animal Influenza
Virus, edited by E. Spackman, 137–148. New York: Humana.

Spackman, E., D. A. Senne, T. J. Myers, L. L. Bulaga, L. P. Garber,
M. L. Perdue, K. Lohman, L. T. Daum, and D. L. Suarez. 2002.
“Development of a Real-Time Reverse Transcriptase PCR Assay
for Type A Influenza Virus and the Avian H5 and H7 Hemag-
glutinin Subtypes.” Journal of Clinical Microbiology 40: 3256–60.

Stallknecht, D. E. 2003. “Ecology and Epidemiology of Avian Influ-
enza Viruses in Wild Bird Populations: Waterfowl, Shorebirds,
Pelicans, Cormorants, etc.” Avian Diseases 47: 61–69.

Suarez, D. L. 2000. “Evolution of Avian Influenza Viruses.” Veteri-
nary Microbiology 74: 15–27.

Sun, Z., T. Pan, C. Hu, L. Sun, H. Ding, H. Wang, C. Zhang, et al.
2017. “Rapid and Recent Diversification Patterns in
Anseriformes Birds: Inferred from Molecular Phylogeny and
Diversification Analyses.” PLoS One 12: 0184529.

USDA. 2017. “Surveillance Plan for High Pathogenic Avian Influ-
enza in Wild Migratory Birds in the United States.” https://
www.aphis.usda.gov/animal_health/downloads/animal_diseases/
ai/2017-hpai-surveillance-plan.pdf.

Wilcox, B. R., G. A. Knutsen, J. Berdeen, V. Goekjian, R. Poulson, S.
Goyal, S. Sreevatsan, et al. 2011. “Influenza-A Viruses in Ducks in
Northwestern Minnesota: Fine Scale Spatial and Temporal Varia-
tion in Prevalence and Subtype Diversity.” PLoS One 6: e24010.

Yamnikova, S. S., A. S. Gambaryan, A. B. Tuzikov, N. V. Bovin,
M. N. Matrosovich, I. T. Fedyakina, A. A. Grinev, et al. 2003.
“Differences between HA Receptor-Binding Sites of Avian
Influenza Viruses Isolated from Laridae and Anatidae.” Avian
Diseases 47: 1164–68.

SUPPORTING INFORMATION
Additional supporting information can be found online
in the Supporting Information section at the end of this
article.

How to cite this article: Kent, Cody M., Sarah
N. Bevins, Jennifer M. Mullinax, Jeffery
D. Sullivan, and Diann J. Prosser. 2023. “Waterfowl
Show Spatiotemporal Trends in Influenza A H5
and H7 Infections but Limited Taxonomic
Variation.” Ecological Applications 33(7): e2906.
https://doi.org/10.1002/eap.2906

ECOLOGICAL APPLICATIONS 11 of 11

 19395582, 2023, 7, D
ow

nloaded from
 https://esajournals.onlinelibrary.w

iley.com
/doi/10.1002/eap.2906 by Shenglai Y

in - U
niversity O

f O
klahom

a , W
iley O

nline Library on [19/07/2024]. See the Term
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline Library for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons License

https://www.aphis.usda.gov/animal_health/downloads/animal_diseases/ai/2017-hpai-surveillance-plan.pdf
https://www.aphis.usda.gov/animal_health/downloads/animal_diseases/ai/2017-hpai-surveillance-plan.pdf
https://www.aphis.usda.gov/animal_health/downloads/animal_diseases/ai/2017-hpai-surveillance-plan.pdf
https://doi.org/10.1002/eap.2906

	Waterfowl show spatiotemporal trends in influenza A H5 and H7 infections but limited taxonomic variation
	INTRODUCTION
	METHODS
	Surveillance data
	Statistical analysis

	RESULTS
	DISCUSSION
	Species trends
	Spatiotemporal trends
	Methodological considerations
	Conclusions

	ACKNOWLEDGMENTS
	CONFLICT OF INTEREST STATEMENT
	DATA AVAILABILITY STATEMENT

	REFERENCES


