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Abstract

This paper presents estimates of surface reflectivity (SR) over time of global
navigation satellite system (GNSS) signals scattered from a partially frozen lake
surface. A portable ground-based GNSS reflectometry sensor system that col-
lects both scattered global positioning system L1 signals and independent vali-
dation data (lidar and camera) was deployed on the Lake Michigan waterfront
in Chicago at a time when the lake surface was a mixture of ice and water. Lidar
surface scans were merged with camera images and mapped, along with esti-
mated reflection zones. For three satellites whose reflection points scan across
ice and water over time, the relative SR and mean red intensity (differentiating
ice from water) of camera pixels inside the first Fresnel zone were computed and
shown to be correlated. This system concept will be used in the future for more
complete mapping of phase changes of snow and ice in the cryosphere.

Keywords
global navigation satellite system, global navigation satellite system reflectome-
try, signal-to-noise ratio, surface reflectivity

1 | INTRODUCTION

Global navigation satellite system (GNSS) signals are designed for navigation; a
reflected GNSS signal is often eliminated as a nuisance term known as multipath.
Yet the global coverage and widespread availability of GNSS signals make these
signals a potentially exceptional source for remotely sensing Earth’s environment.
GNSS reflectometry (GNSS-R) focuses on studying the characteristics of a reflected
signal to infer properties of the surface from which it reflects.

GNSS-R is a form of bistatic radar whose concept dates back to Martin-Neira
(1993); GNSS-R uses scatterometry, i.e., measurements of scattered signals,
to determine the surface properties of the reflecting surface. For a review of
the over all field, see Larson (2019). GNSS-R has been explored with ground
(Fabra et al., 2010; Larson et al., 2013), airborne (Belmonte Rivas et al., 2010), and
space-borne platforms such as TechDemoSat-1 and CYclone GNSS (CYGNSS)
(Carreno-Luengo et al., 2020; Foti et al., 2015; Gleason & Ruf, 2015; Unwin et al.,
2017; Zavorotny et al., 2014). Recently, space-based surface freeze/thaw based
on changes in surface reflectivity (SR) of the soil has been demonstrated and
mapped (Carreno-Luengo & Ruf, 2022a, 2022b) with CYGNSS in order to monitor
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year-to-year seasonal changes at low-latitude, high-altitude sites because of
CYGNSS’s low-inclination orbit.

Several ground-based existing reflectometry technologies for cryospheric
sensing are based on using a single upward-facing antenna for GNSS interfer-
ometric reflectometry (GNSS-IR). GNSS-IR methods leverage existing geodetic
sites opportunistically, using variations in the signal-to-noise ratio (SNR) of
low-elevation satellites, as a direct signal and reflected signal constructively
and destructively interfere when both are received at the antenna (Larson &
Small, 2016). Single-receiver GNSS-IR can provide altimetry to the surface level
and measure snow accumulation or ablation (Siegfried et al., 2017). These tech-
niques are useful for multi-season or multi-annual records of changes to the
snow and ice surface. However, as surface changes may occur on daily or even
hourly timescales, and for more challenging terrain, an antenna dedicated to
collecting the reflected signal may provide the needed spatial and temporal
resolution.

Two-antenna reflectometry systems such as the GPS open loop differential
real-time receiver (GOLD-RTR) have also been developed and deployed for sea
ice (Yun et al., 2015) and dry snow altimetry based on polarization measurements
(Fabra et al., 2010, 2012). For a review of methods pertaining to sea ice, see Yan &
Huang (2019). A two-antenna system for sensing wet vs. dry snow has recently
been tested in a high-alpine environment using commercially available receivers
(Koch et al., 2019). Some receiver designs are software-based for open-source use
(Junered et al., 2016), again using interferometry for altimetry (Ribo et al., 2017).

In addition to detecting wet vs. dry snow, it is also important to be able to monitor
meltwater on the surface of snow/ice, as well as detect phase transitions between
snow, ice, and water. MacAyeal (2018) reviewed seismologic signatures of snow
and ice layers and the importance of meltwater-saturated snow in seismological
responses.

Existing ice and water monitoring systems include optical and thermal band
imaging such as that of the moderate-resolution imaging spectroradiometer
(MODIS) on the Terra and Aqua satellites, which has a temporal resolution of
one to two days, but the pixel size is 250 m. Other higher-resolution optical sat-
ellite sensors are available for imaging, e.g., Landsat 8 (30 m), Sentinel-2 (15 m),
and WorldView (2 m), but their temporal resolutions are much lower than that of
MODIS. Other limitations of these various optical satellite sensors include the fact
that they can only be used in daytime and in cloud-free conditions. Some satellite
missions operate in bands unaffected by the presence of clouds, e.g., Sentinel-1 at
the D-band (5 cm wavelength), and have a resolution of approximately 5 m, but the
revisit interval is greater than one day, which may be too infrequent for snow/ice/
water phase change monitoring (Miles et al., 2017).

A dedicated GNSS-R antenna and receiver have the potential to be a data
source complementary to satellite monitoring, with the advantages of lower cost,
higher spatial and temporal resolution, and continuous operation over a region
day and night, unimpeded by cloud cover or precipitation. In this work, we are
motivated to examine surface intensity variations in a reflected signal not due
to interferometric effects, but due to the surface itself. Chaput et al. (2018) and
Komjathy et al. (2000) proposed that dielectric variations would result in scat-
tered intensity variations. Wiehl & Legresy (2003) developed theory and simu-
lations of different snow surface and subsurface dielectric scattering for air- and
space-borne antennas.

We describe and demonstrate a ground-based downward-facing GNSS-R sensor
system including lidar and camera and compare global positioning system (GPS)
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reflected power with collocated camera images in field experiments sampling the
ice and water surface. The technique described in this paper is distinctive in that
it (1) demonstrates the possibility of monitoring surface phase variations from ice
to freshwater (which have similar salinities, unlike sea ice and sea water, affect-
ing the dielectric constant) and (2) uses a reflected signal from a single dedicated
reflection-receiving (i.e., downward-facing) ground-based antenna. This applica-
tion may become more important as the world’s glacier ice starts to melt more
rapidly under a warming climate.

Section 2 reviews the concept of SR as it pertains to measuring the SNR. Section 3
describes the sensor system and data collection and provides an overview of the
GNSS signal processing used in this work. Details of the data processing are given
in the Appendices. Section 4 presents our results, Section 5 discusses these results,
and Section 6 summarizes the paper.

2 | SRBACKGROUND

A GNSS signal reflecting from a surface of ice or water is dominated by specular
reflection. The specular point is the point at which the angle of incidence equals
the angle of reflection, according to the principle of least time. Most of the energy
is scattered from an area around the specular point known as the first Fresnel zone
(FZ) (Beckmann & Spizzichino, 1987).

Figure 1 illustrates the specular point and FZ geometry. The position x, in the
propagation plane and the semi-major and semi-minor axes a, b of the first FZ are
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FIGURE 1 Conceptual diagram of GNSS-R with a dedicated downward-oriented antenna
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functions of the height h, of the receiving antenna at R, from the scatterer, the
elevation angle el, and the wavelength A of the signal (Larson & Nievinski, 2013):

A2
X, =| hy + ——— |/tan(el)

sin(el)
b
azsin(el) W
2
b | A +[ 212 ]
sin(el) | sin(el)

These equations assume a flat Earth, which is valid for a ground-based antenna
system.

The final signal received by an antenna directed downward is the superposi-
tion of scattered GNSS reflections from the FZ. For a downward-facing reflection
antenna, the scattered power can be computed for all pairs of time delay m and
frequency f of the replica signal and is represented as a function of two variables.
The correlation power S is given as follows (Gleason, 2006):

S(m. f,) = PT2, A2 (m—m")sinc? ((f - f, )T,y ) @

where P, is the digitized received signal power, f'is the frequency of the incoming
signal, m’ is the unknown code delay integer in units of sampling period T,, f, is
the unknown Doppler frequency shift due to relative motion between the satellite
and the receiver, and T,,is the coherent correlation interval. In this work, the GPS
L1 signal is used, whose T, , = 1 ms. The function A for the GPS code is called the
correlation triangle function because it is has the shape of a triangular peak in
delay space:

A(m—m')z%ix(n—m’)fc(n—m) 3)

coh n=1

In this equation, x is the coarse/acquisition (C/A) code for one satellite, X is the
C/A code replica,and N=T, , /T, is the number of samples (Garrison et al., 1998;
Gleason et al., 2005). The triangle function is the expected value of the C/A code
correlation with the C/A replica.

The SNR of a received GNSS signal is as follows:

SNR = Pmax _Prwise (4)
noise

P = %?Z((S(m, s )) 5)

Pnoise = mean (g(m, fD)) (6)

m:|mT, —mT,|>T,

where P, is the correlation peak value over all time and Doppler shifts m, f, and
occurs at values m, fD. P ;. is the mean value over time shifts m of the correlation
curve at fD, excluding the points within one-half chip of the peak, where one chip
has duration T,
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SR is related to the received SNR (Chew et al., 2018) by the bistatic radar equation.
In decibels, this relationship can be expressed as follows:

SR o« SNR—10log(P"')-101log(G*)—-10log(G")
—201og(4)+201log(R, + R, ) +20log(47) (7

where P!, G' are the power and gain of the transmitter, respectively, G" is the gain
at the receiving end of the signal, 1 is the wavelength of the transmitted signal,
and R, R, are the distances between the transmitter and scatterer and the receiver
and scatterer, respectively (see Figure 1). For a given GNSS satellite, the SNR can
be computed according to Equation (4). The transmitter power P and gain G’ and
carrier wavelength A are known, the distances R,, R, can be estimated given the
positions of the antenna and satellite relative to the scatterer, and the receiver-end
gain G" can be estimated from the antenna gain pattern. SR is computed in this
manner in this work.

3 | METHODS

The objectives of this investigation are to compute the SR based on GPS L1 sig-
nals and to assess the correlation between the SR computed from Equation (7) and
the surface type. The “true” surface type will be determined by collocated opti-
cal cameras that image the surface as a satellite’s specular point and FZ shift over
time, ideally moving from scattering off water to scattering off ice. A camera pixel’s
red-green-blue (RGB) normalized intensity triplet will tend to be close to (1,1,1) for
ice but (0,1,1) for water. Therefore, we use the camera pixel red value as an indi-
cator of the presence of ice versus water on the surface. By averaging the red pixel
value over the GNSS signal’s first FZ, we correlate the relative GNSS SR with this
mean red value (MRV).

To estimate the SR of ice and water using GNSS-R in this way and to compare
this reflectivity with optical mean red intensities, we developed a portable sensor
system for monitoring lake surface water phase changes (Parvizi, 2020). The sys-
tem has been used for 11 data campaigns from 2017 to 2020 (Parvizi et al., 2018),
with most occurring in the winter season (Parvizi, 2020). Fieldwork was conducted
at Lake Michigan in Chicago, Illinois. In campaigns 1-9, the lake surface condi-
tions were either entirely water or entirely ice. In campaigns 10 and 11, the lake
surface had a heterogeneous ice and water surface. In this study, we will show the
results of data campaign 11. In the next subsections, we describe the sensor system,
data collection conditions, and post-processing by which the GNSS-R SR and opti-
cal MRV are computed.

3.1 | Sensor System and Data Collection

Figure 2 presents a connection schematic of the sensors used in the system. A
lidar and three cameras, each spanning different fields of view (FOVs), sense and
image the surface from which the GNSS signal is reflected. The lidar produces a
point cloud of ranges and intensities at which the transmitted light is backscat-
tered, providing an estimate of h,. The lidar wavelength used reflects off ice but
does not reflect from water. The cameras are internet protocol (IP) security cameras
that produce RGB color images of their FOVs, from which the MRV within the
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FIGURE 2 Schematic of the sensor suite

GPS FZ is computed for comparison with SR. These cameras and lidar are con-
nected to a network switch, which sends their data packets to a laptop to be stored
on an external storage drive. A weather station displays air temperature and wind
speed and direction, but this information is not used in this work. Because of the
camera FOV overlap, the center camera data are also not used here.

Collocated with these sensors are two GNSS antennas. A right-hand circularly
polarized (RHCP) antenna is used to collect the direct signal. A left-hand circu-
larly polarized (LHCP) antenna oriented downwards obtains the reflected GNSS
signals from the surface. Two universal software radio peripherals (USRPs) act as
front ends, each of which uses a GPS-disciplined oscillator (GPSDO) connected
to the RHCP antenna as a timing reference. One USRP receives the direct GNSS
signals from the RHCP antenna for sensor system positioning. The other USRP
collects front-end samples from the LHCP reflection antenna. The SNR and SR are
computed from the reflection antenna signal. The direct signal is not used in this
work, as the multipath aspect of the environment requires further development of
a software-defined receiver (SDR) for positioning, which is ongoing but beyond the
scope of this work.

The GNSS antennas are mounted on a tripod approximately 2 m above the
ground next to the lake surface, on the end of a boom that extends horizontally in
a direction b about three-fourths of a meter from the tripod mast. The lidar and
cameras are mounted on a shorter platform below the GNSS antenna boom extend-
ing in the same direction b. Figure A1 provides sensor system diagrams defining
the relevant geometry used in post-processing.

Figure 3(a) shows a photograph of the sensor system on-site and lake sur-
face conditions from the data campaign that occurred on 21 February 2020. The
tripod-mounted sensors were placed at the shore of a harbor with empty docks
because this was the only part of the lake with any ice accumulation, likely due to
the stillness of the water. The harbor is largely protected from the wind. North of
the site (to the left of the photograph), there were underwater spouts at which lig-
uid water was likely being output because a bubbling source was visible, and there
was no ice formation for several meters around the source. There is a clear ridge in
the left part of the photograph, where the subsurface heated water did not prevent
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FIGURE 3 (a) Photograph of the experimental hardware setup for data campaign 11; (b)
Google Map satellite image of the sensor location for data campaign 11, with the boom direction

b and heading angle u defined

surface ice formation. The surface was entirely water on the left side of Figure 3(a),
with a layer of ice to the center and right. There are visible breaks in the ice and
thinner parts of ice in which blue water is visible between sections of white ice. The
tripod was mounted at the edge of the water, with the boom extending out over the
lake surface.

Figure 3(b) shows a Google Map satellite image (not from the date of data
collection) of the field site in Chicago on the shore of Lake Michigan, anno-
tated to show the heading angle u of the boom direction b. The photograph was
taken standing to the west of the tripod and looking east approximately in the
direction of b. Because of the presence of the docks, we limited our analysis in
the post-processing to consider satellites that are to the east of the site and at a
sufficiently high elevation such that their direct path is below the antenna’s hori-
zon and their first FZs are imaged. We expect these criteria will have the added
benefit of limiting multipath effects by only allowing the analysis of satellites
whose reflections are well clear of the docks.

The system configuration and orientation details for data campaign 11 are
provided in Table 1. The lidar elevation y, reflection antenna elevation angle &,
and relative heading angles u,, i, and elevation angles y,, y;, of the left and right
cameras were measured with a digital angle measuring tool on site after the sensor
suite was set up. The boom heading angle ¢ was manually recorded upon site setup
as well. The angles listed in the table are defined in Appendix A. These angles are
used in post-processing for rotations and projections.

When the GPS signal from a given satellite, identified by its pseudorandom
number (PRN), arrives at an antenna, it is amplified, filtered, down-converted,
and digitized in the GPS front end. These processes are implemented with USRPs.
The USRP Ettus N210 output data format is 16-bit for in-phase and 16-bit for
quadrature-phase components of the complex signal. The specific configurations
for the field work, including the in-line gain between the antennas and USRPs
and the sampling frequency fs = 2f; chosen, are shown in Table 1. The filtered,
down-converted, digitized samples are stored during each field campaign and
returned to the lab.
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TABLE 1
Lake Michigan Data Campaign 11 Details
RF: radiofrequency.

Data Campaign 11

Date 21 February 2020
Latitude 41.837998°

Longitude —87.606115°

Altitude 172 m

Sampling rate f, (MHz) 5

USRP_direct inline gain (dB) 30

USRP_reflected inline gain (dB) 40

USRP_direct RF gain (dB) 31

USRP._reflected RF gain (dB) 31

Direct antenna ground-plane dimensions 19.6875" x 19.6875" x 0.04"
Reflection antenna ground-plane dimensions 19.6875" x 19.6875" x 0.04"
Clock used GPSDO

Heading angle u of the boom bwith respect to north 70°

Relative heading angle 1, of camera 2 with respect to b —25°

Relative heading angle x, of camera 3 with respect to b 25°

Elevation angle of the reflection antenna, K —45°

Elevation angle of the lidar and central camera, y; —45°

Elevation angle of cameras 2 and 3, v, and y, —36°

Surface condition Mixed ice and water

The sensors are controlled by a laptop, and data are collected simultaneously
by script and sent to external storage devices. To prevent buffer overruns from the
USRPs, we collected data in eight 20-min parts. This work uses Parts 1 and 3-6 col-
lected on the test day. The Part 2 camera data were corrupted and are thus unavail-
able as a truth reference.

3.2 | Post-Processing in the Lab

Figure 4 illustrates the processing workflow for computing and comparing the
GPS SR and the optical MRV in the lab after data have been collected in the field.
From the USRP connected to the reflection antenna, GPS L1 signal power is accu-
mulated to give S by coherent integration for 1 ms summed incoherently for 1 s
and then averaged over 1 min as described in Appendix B. Then, the SNR is esti-
mated based on Equations (4)-(6). To obtain SR using Equation (7), we need the
satellite and specular point positions relative to the reflection antenna, #*"/% and
/R respectively, so that R,,R,,G" can be computed.

While the direct antenna signal was intended for computing #*"/®, the data from
the direct antenna had less gain than the reflection antenna; thus, the standard
SDR acquisition did not acquire enough satellites for positioning and is not used in
this study. Modifying the SDR to successfully use direct GPS signals for position-
ing is ongoing but not essential to this investigation. Instead, we use the approx-
imate receiver position and a GPS almanac to estimate the satellite sv position in
the sky. An approximate sensor position for the reflection antenna origin R, as
listed in Table 1, is used based on knowledge of the site and referenced to a Google
Map (Parvizi, 2020). To estimate the satellites’ positions relative to the reflection
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FIGURE 4 Workflow for computing the GNSS-based SR and comparing it with optical
images of surface ice and water

antenna R, a Yuma almanac from the U.S. Coast Guard archives is used to obtain
the satellite positions relative to the reflection antenna origin 7#**/% over time:

FV/R = Ee+ Ni+Ui ®)

az=tan'(E/N) 9

el:tanfl(U/\/E2 +N2)

where E, N, U are the component distances of the satellite position relative to the
reflection antenna’s position in east-north-up (ENU) coordinates.

We assume the elevation angle el in Equation (10) to be the same elevation angle
with respect to the lake surface, as drawn in Figure 1. Given el and an estimate
of the surface height h, relative to the reflection antenna position R, the specu-
lar point position 7%/% can be represented in the propagation plane coordinate
system X, y, 2 as follows:

(10)

PR = x % —h2 (11)
where h, is defined in Equation (1) as positive when the antenna is above the scat-
terer. With the lidar point cloud, the average height h, of the lake surface from the
reflection antenna is computed as described in Appendix C.

Once the specular point position #**/® and satellite position 7¥*/% are found
relative to the reflection antenna, one can calculate R, and R, as follows:

R, =[F/% | (12)

R, = "FSP/R" — 7R "

(13)

after performing a rotation by the azimuth angle az to convert #*® to ENU
coordinates.

Y Compare
ASR to MRV
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To compute the antenna gain part of G", the angle ¢ between the specular point
viewing direction and the body-zenith direction y, of the reflection antenna is
defined in the upper right of Figure A1:

¢ zcosl[ﬂ.j} J (14)
Sp |V R

The antenna-zenith angle P, s used to estimate the gain G, relative to 42 dB
interpolated between the angles in Table Al. Having found R , R, G", we compute
SR using Equation (7). The data are collected in the field in 20-min segments, each
of which resets the automatic gain control of the USRP, which is unknown. Thus,
we will show ASR, corresponding to the SR relative to the SR value at the first time-
stamp of the 20-min data segment during which that SR was collected.

We also use the FZ parameters x,,, a, b from Equation (1) to determine the camera
pixels lying within the FZ and compute their MRV as a measure of the true surface
type. The locus of points on the perimeter of the FZ can be written in parametric
form in the propagation plane coordinate system X, y, 2 as follows:

FFZIsp = g cos O + b sin Oy (15)

where O varies from 0 to 27 and a, b are given by Equation (1). This set of points
can be translated relative to R as follows:

7FFZIRy — fFZ/sp 4 ysp/R, (16)

which can then be expressed in the ENU system using a rotation matrix by the
azimuth angle az.

Sensor fusion is performed between the camera and lidar (lower left of Figure 4)
to map the camera images in three dimensions and determine which pixel posi-
tions #7/% lie within the FZ perimeter defined by 7#¥%/%. Using the lidar point
cloud measurements of the surface, the i-th camera’s pixels are backward-projected
onto a three-dimensional (3D) map of the surface. Backward projection uses
camera-intrinsic properties, such as focal length, along with range information
obtained from the lidar regarding the features captured by the camera. The position
of each pixel of the camera image is then transformed to its 3D position in space
relative to the reflection antenna origin 7#*/%. Details on the lidar-camera surface
reconstruction are given in Appendix D.

Simultaneous images from multiple cameras are combined together by identi-
tying overlapping regions in the FOV, normalizing the RGB histograms based on
the moments of the histograms in the overlapping region, and cropping redun-
dant pixels within the overlapping region as described in Appendix D. For a
given satellite, the MRV of the pixels whose positions 7#7/% are inside the FZ is
calculated.

Finally, ASR and MRV are compared if 1) the satellite itself is below the reflec-
tion (i.e., downward-tilted) antenna’s horizon and 2) the entire FZ area lies within
the FOV of the cameras. These criteria reduce the likelihood of the GNSS-R SNR
including any energy from the direct line of sight (LOS) and also ensure com-
plete sampling of the FZ via camera imaging. The first requirement indicates that
the antenna-zenith angle ¢, of the direct satellite LOS to the reflection antenna
must satisfy ¢ >90°, in order to reduce possible direct LOS received power. The
angle ¢_ can be computed by substituting 7% for 7% in Equation (14). The
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second requirement is met if the horizontal area spanned is within 99% of the FZ
area, in order for the FZ imaging to be considered complete. The MRVs at times
meeting both of these criteria are compared with the relative SR, ASR, for the
associated PRN to assess the effectiveness of the GPS SR in varying with surface
conditions.

4 | RESULTS

The surface of Lake Michigan was a heterogeneous mix of ice and water during
the data campaign, as visible at the left of Figure 3. The satellites in the sky at
the start and end of the data set shown are presented in the sky plots of Figure 5.
Blue circles indicate satellites in the sky. Azimuth angles are indicated around
the perimeter, and at the center of the circle is the zenith of the direct antenna.
Because the boom is oriented to the east (Figure 3), reflected signals of the satel-
lites in the eastern part of the sky are anticipated to be on the lake surface. In par-
ticular, PRN 16 begins at a high elevation in the sky, and the elevation for PRN 26
begins at a high enough level that the direct signal is below the antenna’s horizon.
During the course of data collection, PRN 27 will rise into the FOV of the cameras
and thus is also considered. PRN 8 also rises but, as we will show, does not fully
lie within the cameras’ FOVs before the end of data collection; hence, PRN 8 is
not used.

Figure 6 shows the combined images of cameras 2 (imaging the northern sec-
tion) and 3 (southern) projected to east-north coordinates relative to the reflec-
tion antenna at 17:58, 18:43, 19:25, and 20:10 universal time (UT) (approximate
start or end times of 20-min data collection segments.) All pixels from camera 2
are plotted (arbitrarily chosen as the primary camera), as well as the pixels from
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120 240"

180 180
(a) (b)

FIGURE 5 Sky plots for 21 February 2020 at (a) 11:58 central time (CT) at the start of Test 11
and (b) 14:11 CT at the end of Test 11
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FIGURE 6 FZ mapping and camera pixel selection at (a) 17:58 UT, (b) 18:43 UT, (c) 19:25
UT, and (d) 20:11 UT Local time is UT minus 6 hours. SP: specular point.

camera 3 that do not overlap with camera 2. The RGB values of camera 3 have
been color-normalized based on their overlapping regions to better match camera
2. Although the docks are in the cameras’ FOVs, they are well beyond the region
plotted, in which the first FZs lie. For this reason, we expect the possible multipath
effects to be reduced.

In Figure 6, the green cross indicates the reflection antenna origin R,. Orange
dots mark the specular points. The FZs of PRNs 8, 16, 26, and 27 are shown in
Figure 6, shaded in light transparent red. For the SRs and MRVs that are eligible for
comparison (¢, > 90°, full FZ in the FOV of the cameras), the FZ area is typically
2-3 m?. For example, the geometry of PRN 26 in Figure 6(a) meets the ¢, and fully
imaged FZ criteria, but the geometry of PRN 26 in Figure 6(b) does not meet these
criteria.

The surface conditions are largely static over this time period, but slight vari-
ations are visible, particularly at the boundary between the ice and water to the
north. There are also solar illumination variations, most easily seen with the
shadow of the tripod in the north over the water shifting eastward with time.

By tracking one PRN at a time over these plots, we can see that the FZ of PRN 16,
even though it reaches the highest elevation at 17:58 UT, is partly out of the cam-
era’s FOV in Figure 6(a) but has shifted fully into the FOV by 18:43 UT, follow-
ing along the ice-water boundary. The specular point of PRN 26 begins fully in
the FOV at 17:58 UT and shifts eastward, grazing the ice~water boundary. The FZ
of PRN 27 overlaps the camera’s FOV from 18:43 UT until the end at 20:11 UT,
remaining primarily over the icy part of the surface. PRN 8 rises but is never fully
in the FOV of the cameras.

PRNs 16, 26, and 27 meet our criteria for a valid comparison of camera MRV to
the GNSS-derived SR. Unfortunately, none of the specular points or FZs land fully
on the water. If they had, we would have a very clear MRV signal, spanning nearly
the entire range of 0 to 1, against which to test the correlation of GPS SR. We may
expect, and will demonstrate, that our investigation covers a narrower red value
range, which is a more stringent test of the GNSS-R SR as a detector of surface ice
or water than intended.
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FIGURE 7 (a)Relative SR (blue) and MRV (red) over UT time for PRN 16 and (b) relative SR

versus MRV for PRN 16

The relative SR and MRV for PRN 16 are displayed over time in Figure 7(a).
The UT hour and minute are shown on the horizontal axis. The left vertical axis
in blue is the SR in dB relative to the SR at the initial time of each 20-min data
segment (i.e., at 18:43 UT and 19:06 UT). The vertical axis on the right, in red, is
the MRV during this same time period. The start of this time interval corresponds
to the image map in Figure 6(b), and the end of the time interval corresponds to
Figure 6(c). At 18:43 UT, the specular point of PRN 16 is on the ice, and the first
FZ spans the ice-water boundary over this time interval, with more than one
third of the ellipse spanning water. By 19:25 UT, the ellipse has moved along
the ice-water boundary and has grown, such that a smaller proportion of the
FZ samples the water. For this reason, the MRV increases over time, as the FZ
covers proportionately more ice than water. The relative SR varies within 1 dB,
showing a less clear trend than the MRV in the first 20-min segment from 18:43
to 19:02 UT, with a possibly increasing trend from 19:06 to 19:25 UT. Figure 7(b)
plots the relative SR versus MRV for PRN 16. The correlation coefficient between
the two quantities is p = 0.74, indicating a moderately strong correlation over
approximately 40 min.

Figure 8 presents the SR (left axis, in blue) and MRV (right axis, in red) for PRN
26 over time. The start of this 20-min time interval corresponds to Figure 6(a).
The specular point is on the ice near the ice-water boundary, such that the FZ
area lies on approximately 3/4 ice and 1/4 water. The end time is not shown on

MRV
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FIGURE 8 (a) Relative SR (blue) and MRV (red) over time for PRN 26 and (b) relative SR
versus MRV for PRN 26

a map; by the time imaged in Figure 6(b), even though the entire FZ is imaged,
the antenna-zenith angle of the direct LOS is less than 90°. However, between the
times corresponding to Figures 6(a) and (b), the specular point has moved approx-
imately 1.5 m eastward and approximately 1 m northward, with the FZ area cover-
ing a larger proportion of ice than water. The FZ area grows larger over time. We
anticipate that the MRV will increase as the FZ covers proportionally more ice.
There are no camera data for part 2 of the data collection from approximately 18:20
to 18:40 UT; thus, comparison results cannot be shown. The relative SR for PRN 26
increases with time in this case, as well as the MRV for pixels inside the FZ for PRN
26. Figure 8(b) plots the SR versus MRV. For PRN 26, the correlation coefficient is
p=0.84, i.e., the SR of PRN 26 and the MRV are highly correlated over 20 min of
data collection.

Figure 9(a) shows the relative SR and MRV over time for four 20-min segments
of data collection for PRN 27. The SR at the start of each segment is set as the
baseline, at 18:43, 19:07, 19:29, and 19:52 UT. The region of the surface scanned by
PRN 27 is imaged in Figures 6(b)—(d). During this time, we can see that the spec-
ular point of PRN 27 scans across the icy portion of the surface, but that the ice is
divided up by numerous cracks of meltwater within the FZ area. Consequently, we
do not expect any obvious visual trend in MRV. Accordingly, there is little obvious
trend seen in the MRV in Figure 9(a). The relative SR plotted over time shows a
slight decreasing trend over each 20-min segment. Figure 9(b) plots ASR versus
MRV for PRN 27. In this case, the correlation coefficient is low at p = 0.20, and
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FIGURE 9 (a) Relative SR (blue) and MRV (red) over time for PRN 27 and (b) relative SR
versus MRV for PRN 27

the GNSS reflection is sampling the surface, which is a random mix of ice and
water over time. This random scattering appears to have an effect on the correla-
tion between the relative SR and MRV.

5 | DISCUSSION

In Figures 7 and 8, consecutive changes in the relative SR are on the order of
0.1 dB, corresponding to a 2% increase in the SR from one time point to the next.
A change of only a couple percent in relative SR may seem small, but the change
is of similar order to those of the MRV, which can be seen in Figure 8 to be on
the order of 0.005, or approximately 1% of the typical MRV in these plots of 0.5.
Thus, changes in SR are comparable in magnitude to the changes in MRV. We
expect that these small variations are due to the large overlap minute-to-minute
of the sampled region of the surface. For this data set, we are hampered in testing
the dynamic range of our GNSS-R SR calculation by the fact that our geometry
did not yield a clean scan from the fully ice region over to full water. Even so,
there is a moderately strong correlation between the measurements, as shown in
Figures 7 and 8.

In the PRN 27 results, it is possible that the scattering may be impacted by sur-
face roughness due to cracks between the ice and water zones. It is possible that the
correlation of SR with MRV for PRN 27 is poor because of 1-cm height variations
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on the surface as ice forms, floats, and scrapes other pieces of surface ice, all within
the FZ.

In all results, it is possible that the multipath, i.e., scattering from places other
than the FZ, has some effect. However, the majority of the built environment is to
the west of the antenna, which has a ground plane and is tilted downward with its
zenith direction toward the east. Hence, we expect multipath from scatterers to the
west to be greatly reduced. To the east, there are docks, as visible in the photograph
in Figure 3(a). Multipath due to low-elevation satellites is not a concern because the
satellites have been eliminated by the requirement that the satellite itself be below
the antenna-body zenith ¢, > 90°. Given the antenna elevation angle of k= —45°,
this requirement roughly eliminates satellites below 45° elevation. Multipath from
the high-elevation PRNs 16, 26, and 27 due to the docks might be a contributing
factor in reducing their correlation, particularly for PRN 27, which is at an azimuth
of approximately 150° at the start of data collection.

We believe that positioning uncertainties have a minimal effect on our findings
for the following reasons. First, uncertainties in satellite position would produce
a negligible change in the azimuth and elevation angles because of their distance.
Uncertainties in receiver positioning would affect the distances R, R,.. However,
these uncertainties would bias the SR and are effectively eliminated by differencing
the first SR to produce a relative reflectivity. Uncertainties in receiver positioning
also affect the position of the specular point. In this case, we can observe from the
contextual photographs in Figure 3 that the tripod is sited between Docks B and C
labeled in the Google Map. The lidar scans show returns from the docks that corre-
spond to the location pinpointed on the Google Map.

The geophysical interpretation of our study is that surface ice has a different
reflectivity than surface water at non-optical bands such as GPS L1. This difference
may be due to material reflectivity or surface roughness. The reflectivity could be
a stand-in, at resolutions lower than optical wavelengths (but also not subject to
weather or cloud cover), for regions of ice on the surface. More in-depth geophys-
ical modeling is beyond the scope of this work, which has focused on sensor inte-
gration and comparison. To our knowledge, other researchers have not examined
the relationship between GNSS reflection and optical imagery at meter resolution
before.

Because we have used the relative SR, there are no absolute values of SR that we
can directly map to surface type, because the SNR generally depends on the hard-
ware configuration and even, as in our case, the presence of automatic gain control.
Yet, it could be possible to develop or calibrate a baseline or to shut off automatic
gain control for future systems. Because of the averaging process over the FZ, there
is no unique mapping of pixels that will yield a specific MRV. However, for a scat-
terer in a phase of matter that is relatively constant over time, it might be possi-
ble to combine successive overlapping FZs rather than using single snapshots, to
better distinguish the ice versus water surface regions. While it would have been
ideal if one or more of these specular points had been definitively on the water for
the purposes of showing a clear correlation, the sensitivity of our SR calculation
underwent a more stringent test, by being analyzed over a narrower range of sur-
face conditions.

Because of the geometry of our test, the PRN 16 and 26 satellites are at a high
elevation, starting to set to the east-northeast during the times they are considered.
Consequently, their FZ area expands over time. We believe that this increase has
little effect on the MRV, which is also increasing for PRNs 16 and 26 over time.
The MRV is an average over pixels, and pixels are spread out over larger distances
farther away from the cameras. High-elevation satellites correspond to pixels that
are closer to the camera, resulting in an averaging that is more spatially uniform.
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We also suspect that for PRNs 16 and 26, it is largely coincidental that the FZ area
increases as the SR increases. In fact, for PRN 16 from 18:43 to 19:02 UT, the SR is
not that correlated with FZ area.

6 | CONCLUSION

In this work, we correlated the GNSS-R SR with camera images to assess whether
GNSS-derived SR can distinguish ice from water, as measured by the MRV of opti-
cal images. Results from a Lake Michigan data campaign held in Chicago, Illinois,
in February 2020 are presented in this work. During this field work, the lake sur-
face consisted of mixed ice and water.

To compute the SR, 1-ms coherent integration of the correlation power was inco-
herently summed over each second and then averaged for 1 min. The first FZ for
PRNs whose specular points scan across the lake surface in the FOV of the cameras
was estimated. Pixels inside the FZs of three PRNs were evaluated and selected to
estimate the MRV.

The SR results of PRNs 16 and 26 are well correlated with the camera RGB red
value in a FZ that spans a clear water/ice boundary. The SR of PRN 27 shows poor
correlation with the camera RGB red values over 40 min. We attribute this low
correlation to the surface scanned by the FZ of PRN 27 being heterogeneously ice
and water within the FZ. Based on this study, we conclude that the SR of GNSS
reflected signals can likely be used to distinguish ice from water.

Our ultimate aim is to expand this work to be able to test the detection of sur-
face melt conditions on glacier ice and snow. In the future, we will study addi-
tional data sets that include conditions of both surface ice and water, including
those in a glaciated terrain in Antarctica, and additional correlations will be com-
puted. It is possible that the use of the more generalized bistatic radar equation
derived by Voronovich & Zavorotny (2018) could help improve our model and
the use of SNR, possibly improving the poor correlation observed for PRN 27
and also being applicable for a wider variety of surface roughness. Additionally,
the SR and MRV can be evaluated for each second rather than over 1 min to test
for increased sensitivity to spatial variations or to provide uncertainty estimates.
The GNSS direct signal will be used to improve the estimate of the FZ and sensor
system location.
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APPENDIX

A | SENSOR SYSTEM DIAGRAMS

Figure Al shows the geometry of the mounting system for the sensors. A boom
with direction b is mounted horizontally on a tripod. The mounting system
is oriented relative to the local ENU coordinates e, n, 1, with the boom rotated
about @ by heading angle u to give a boom-aligned coordinate system £, b,ii (see
Figure A1(a)). Figure A1(b) shows a side view of the tripod and the boom on which
the GNSS antennas D and R are mounted. Below this, the lidar L and cameras
C,, C,, C, are mounted. Rotating by the lidar elevation angle y; gives a lidar
body-fixed coordinate system X,, y,,Z;, where Z; is the axis of symmetry of the
lidar. The central camera axis Z., has the same elevation angle y, . The elevation
angles of the left and right cameras are v, ¥, (not shown). Figure A1(c) shows that
the relative headings of the cameras C,, C, with respect to b are L, 1y respectively.

The reflection antenna R has its axis of symmetry y, at an elevation angle x
from b, defining an X, y, 2, coordinate system, where J, is the antenna’s zenith
(Figure A1(d)). The angle between the antenna zenith y, and the position vector
7P/R of the specular point of the i-th PRN relative to the antenna origin R, is @

The position vectors between relevant origins are as follows, in units of meters:

FRo/Lo = 0.43b +0.44 (A1)
F/%2 Z0.136%, —0.135, +0.242, (A2)
/%5 = 0.136%, —0.1359, +0.242, (A3)

The data shown in Table A1 were used to linearly interpolate an estimate of G,
the gain of the Antcom antenna used, for the signal arriving from angle ¢, .

TABLE Al

Gain G" Relative to the Antenna-Zenith Gain of 42 dB of the
Reflection-Receiving Antenna Based on the Manufacturer
Antenna Gain Pattern as a Function of the Antenna-Zenith

Angle ¢Sp
¢, (degrees) Gain (dB)
0 0
20 =3
30 —4
40 =5
55 -6
65 =7
70 )
75 =9
85 -10
90 —11
105 —-14
120 —20
140 —22
150 —30

180 —40
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FIGURE A1l (a)Boom coordinate system {, I;, i; (b) side view of the sensor system in the l;, u
plane and lidar and reflection antenna elevation angles; (c) top view of the cameras C,, C, and

associated coordinates in the £, b plane; (d) reflection antenna R coordinate system X, y,, 2z and

definition of the antenna-zenith angle .
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B | GNSS-R SIGNAL PROCESSING

In this section, we introduce the SDR-based GNSS signal processing to compute
the correlation power S(m, fp) for use in Equations (4)—(6). The USRP Ettus N210
output data format is 16-bit for in-phase and 16-bit for quadrature-phase com-
ponents of the complex signal. The first 2 s of the data are truncated to remove
the USRP automatic gain control overshoot and settling (Datta-Barua et al., 2016;
Parvizi, 2020; Parvizi et al., 2017). A Chebyshev type II low-pass filter with a
stop-band frequency of f. =0.45f / 2, where f; is the user-selected sampling fre-
quency, is applied. The signal is converted from the USRP complex form to a real
signal. The down-converted signal has the following form:

5, (nT)=P.D(nT, —m'T)x(nT, —m'T,)

(B1)
cos(2x(fyp + fnT, +6)+w.(nT,)
where n is the sample number, T, = f;! is the sampling period corresponding to
the sampling frequency f,, P, is the digitized received power, D is the navigation
data bit, m'T, is the unknown code delay, x is the C/A code for one satellite, f]’J is
the unknown Doppler frequency shift due to relative motion between the satellite
and the receiver, 0is the unknown phase offset, and w;, is multipath and thermal
noise. Each PRN code consists of 1023 rectangular pulse chips of duration T, and
the full sequence of chips repeats every T, , =1 ms.
The down-converted signal s, is multiplied by a cosine and a sine wave to
produce the in-phase and quadrature-phase samples, represented in complex form
5, as follows:

8, =8, (nT,)exp(27 j( fyr + f )nT,) (B2)

To detect satellites, the USRP output is correlated with a replica PRN code x
associated with a given satellite:

N
S(m. f,)= %Z 5 %(n-m)T,) (B3)
n-1

The number N of samples integrated is related to the coherent integration time

T.on which, in this work, is one repetition of the full PRN code duration T, At
Toop =Tey 4 = NT; (B4)

With incoherent integration over a number N,  >1 of segments, each of
which is coherently accumulated, the square magnitude |S[* of the correlation
power is accumulated. Incoherent integration permits a longer integration time,
but the absolute value and squaring operations also increase the noise:

N inc

$= (8,m f,)P) (BS)
i=1

In this work, we incoherently sum for 15, i.e., N, .= 1000.

In practice, a fast Fourier transform is used to compute the correlation in a
time-efficient manner. Because the relative motion between the satellite and
receiver (and, when reflected, the scatterer as well) introduces a Doppler shift, the
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correlation process in Equation (B3) is repeated for frequency bins that are +10 kHz
about the intermediate frequency f,, = f, /2.

The result of correlation is a matrix in which the rows are the search frequency
Jp and the columns are time delays m. This correlation output S is used in
Equations (5)—(6).

C | POINT CLOUD PROCESSING

In this section, the point cloud, a set of points from which lidar reflections are
received, is transformed from lidar body coordinates )EL, j/L,éL to a local ENU
system &, 7,1 whose origin is at the reflection antenna point R, (see Figure A1) in
order to estimate the height h,.

The Velodyne VLP-16 is a 16-channel lidar that has a measurement range of
100 m accurate at +3 cm, a vertical FOV of £15° about the lidar body x , axis,and a
horizontal FOV of 360° about the z; axis. The VLP-16 can measure the range and
intensity of approximately 300,000 points/s in single return mode, corresponding
to 600 frames per minute. In this work, we use the range data provided as positions
#P/L of points P relative to the lidar L in lidar body coordinates x;,;,Z; .

A Python script starts and ends data collection from all instruments simultane-
ously. The open source packet analyzer Wireshark records packets of data trans-
ferred from the ethernet switch of the auxiliary instruments (i.e., lidar) in packet
capture (PCAP) format. Using Wireshark, we filter and export the data coming
from only the lidar IP address.

We then rotate each point P of the point cloud from the lidar L body coordinates
(X,,y.,2;) to (é,n,u), translate the results to place the origin at the reflection
antenna, and crop the data to the desired FOV. For each position #¥/% of point P
relative to the lidar origin L,, we rotate to the boom B frame ¢, B, U, as shown in
Figure Al, using the matrix R with y;:

7P/Ly — BRLyP/L, (Cl)
1 0 0
BRE =10 cosy, -siny, (C2)

0 siny, cosy,

After the data are rotated, we translate the origin to the reflection antenna to give
the point cloud positions #7/% of points P relative to the reflection antenna R, as
follows:

FP/Ry —§PILy _3R/L, (C3)

where 7%/l is defined in Equation (A1). One more rotation ¢“R? by heading
angle i, which is measured with respect to n and defined as positive for angles east
of north, gives the following:

7P/Ry — enuR By P/R, (C4)

cosu sinpg O
ewRB =| —sinu cosu 0 (C5)
0 0 1
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Because the lake water level is below the dock (Figure 3), we crop out all reflec-
tion points that are above ground level (i.e., we keep points that are more 2 m below
the reflection antenna). Moreover, the heading angle ¢ = 70°, as listed in Table 1,
is oriented primarily eastward; thus, we crop the point cloud to keep points within
10 m south or north of R, and within 10 m to the east:

PC={P:F"® i< —2m}{P:0<FPR .6 <10m}(P:[F?/® -A] <10}  (C6)
To compute the FZ positions on the lake, the height h, of the reflection antenna
from the water surface is averaged over the cropped point cloud PC:

hy =E(FR/P-0) = E(-FP/R -0) (C7)

D | FORWARD PROJECTION AND MERGING OF
CAMERA IMAGES

A camera image is a forward projection of a point P at position 7/ i = XX +
YeVoi +2c%¢ relative to the optical center C; of the i-th camera in a 3D environ-
ment onto a 2D pixel plane with directions #, V. Assuming that the camera has
zero skew in this work (Khan, 2020), the backward projection to reconstruct the
positions of points P in 3D space is given as follows:

-1

Xc k,f 0 k,x, u
Yo |=2:| 0 k,f k,y, v (D1)
Zc 0 o0 1 1

where f'is the focal length of the camera, k,, k, are pixel densities in the u, v direc-
tions of the image plane, respectively, and x,, y, give the position of the principal
point (the point of intersection of the line passing through the optical center of the
camera along the optical axis onto the sensor plane) on the image plane, relative to
the top left corner of the image plane.

Before use in the field, the Camera Calibrator App of the MATLAB Image
Processing Toolbox was used to measure f, ku, kv of the calibration matrix and
image distortion coefficients of each camera based on measurements of a checker-
board pattern in the lab.

When the field data are post-processed, the distortion is first removed, and the
camera image is cropped to the original resolution to provide 2D coordinates (u, v)
of each pixel on the image plane used in Equation (D1).

The lidar point cloud is used to provide depth information z. associated with
the corresponding camera pixels. To estimate z, a lidar point P is translated to the
camera origin as follows:

FP/C‘” — ;:P/L0 + fLo/Co,i (D2)
where 77/ is the position of a point cloud point P with respect to the i-th camera
origin G, ;, ¥ PIL, is the position vector of the point with respect to the lidar origin,
and 7%/ is the position vector of the lidar origin with respect to that camera
origin, given in Equations (A2)-(A3).

The position of each point 77/ in the point cloud is rotated to the camera coor-
dinate system X, J;Zc; based on angles u,, y; from Table 1. The lidar points are

cropped to include only those in the FOV of the camera.
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These lidar points are forward-projected onto the image plane as u,, v, based
on the inverse of Equation (D1). The Z. component of each lidar point is linearly
interpolated to obtain a component z. associated with each pixel in the camera
image. The interpolated z. is used on the right-hand side of Equation (D1) for
backward-projecting the camera image onto 3D space. In the case of camera pixels
without nearby lidar points (e.g., from water), a pseudolidar point is constructed
using the mean height of the true point cloud lying within the camera FOV. These
pseudolidar points are used for z. if there is no lidar return within 90 pixels of a
given camera pixel.

This step yields pixel positions 7"/ expressed in the camera C, coordinate sys-
tem. To rotate this pixel to the ENU system, the point is first rotated from the cam-
era frame C to boom frame B through a sequence of rotations with an intermediate
frame A:

/e,

FPICo; — enuRpB (B RA4AARG )fp/co,i (D3)
cos(ry;) sin(y;) 0
BRA = —sin(y;) cos(y;) O (D4)
0 0 1
1 0 0
ARS =|0 sin(y;) cos(y,) (D5)
_0 —cos(y,) sin(y;)

Rotating from the boom coordinate frame B to the ENU coordinate frame
requires rotation by the boom heading angle u according to Equation (C5). The
pixel point cloud is then translated to the reflected signal antenna origin R, which
corresponds to the antenna that is collecting the reflected GPS signal off the lake
surface:

FPIRy _ 7PICy; | 7Co/ Ry (D6)
where #%0./%
(A1)-(A3).

To combine optical RGB values from multiple cameras, we use their region of
overlap as determined by the pixel positions 7*/% of camera i that lie within the
convex hull of the pixel positions of camera j. If there is no overlap in the FOV, a
method such as that described by Reinhard et al. (2001) may be used. For each time
point, we compute the sample means and standard deviations of the R, G, and B
histograms of each of the cameras within the region of overlap. We designate one
camera as the primary (camera 2 in this work). We normalize the entirety of each
secondary camera’s histograms to more closely match that of the primary camera
by scaling each channel (R, G, and B) with the mean and standard deviation of the
primary camera’s histograms from the overlapping region. After the entire image
from the secondary camera has been color-matched, the primary camera’s pixel
RGB values are retained only in the overlapping region. The east and north coordi-
nates of the cropped and color-normalized 7*/® may be plotted on an east-north
map with their associated RGB values (as in Figure 6) and are compared with the

perimeter of the first FZ 7#T%/%,

is obtained by summing the relevant position vectors in Equations
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