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O R I G I N A L  A R T I C L E

Surface Reflectivity Variations of Global Navigation Satellite 
System Signals From a Mixed Ice and Water Surface

Roohollah Parvizi*1  Shahrukh Khan1  Alison F. Banwell2  Seebany Datta-Barua1

1  INTRODUCTION

Global navigation satellite system (GNSS) signals are designed for navigation; a 
reflected GNSS signal is often eliminated as a nuisance term known as multipath. 
Yet the global coverage and widespread availability of GNSS signals make these 
signals a potentially exceptional source for remotely sensing Earth’s environment. 
GNSS reflectometry (GNSS-R) focuses on studying the characteristics of a reflected 
signal to infer properties of the surface from which it reflects.

GNSS-R is a form of bistatic radar whose concept dates back to Martin-Neira 
(1993); GNSS-R uses scatterometry, i.e., measurements of scattered signals, 
to determine the surface properties of the reflecting surface. For a review of 
the over all field, see Larson (2019). GNSS-R has been explored with ground 
(Fabra et al., 2010; Larson et al., 2013), airborne (Belmonte Rivas et al., 2010), and 
space-borne platforms such as TechDemoSat-1 and CYclone GNSS (CYGNSS) 
(Carreno-Luengo et al., 2020; Foti et al., 2015; Gleason & Ruf, 2015; Unwin et al., 
2017; Zavorotny et al., 2014). Recently, space-based surface freeze/thaw based 
on changes in surface reflectivity (SR) of the soil has been demonstrated and 
mapped (Carreno-Luengo & Ruf, 2022a, 2022b) with CYGNSS in order to monitor 
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Abstract
This paper presents estimates of surface reflectivity (SR) over time of global 
navigation satellite system (GNSS) signals scattered from a partially frozen lake 
surface. A portable ground-based GNSS reflectometry sensor system that col-
lects both scattered global positioning system L1 signals and independent vali-
dation data (lidar and camera) was deployed on the Lake Michigan waterfront 
in Chicago at a time when the lake surface was a mixture of ice and water. Lidar 
surface scans were merged with camera images and mapped, along with esti-
mated reflection zones. For three satellites whose reflection points scan across 
ice and water over time, the relative SR and mean red intensity (differentiating 
ice from water) of camera pixels inside the first Fresnel zone were computed and 
shown to be correlated. This system concept will be used in the future for more 
complete mapping of phase changes of snow and ice in the cryosphere.
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year-to-year seasonal changes at low-latitude, high-altitude sites because of 
CYGNSS’s low-inclination orbit.

Several ground-based existing reflectometry technologies for cryospheric 
sensing are based on using a single upward-facing antenna for GNSS interfer-
ometric reflectometry (GNSS-IR). GNSS-IR methods leverage existing geodetic 
sites opportunistically, using variations in the signal-to-noise ratio (SNR) of 
low-elevation satellites, as a direct signal and reflected signal constructively 
and destructively interfere when both are received at the antenna (Larson  & 
Small, 2016). Single-receiver GNSS-IR can provide altimetry to the surface level 
and measure snow accumulation or ablation (Siegfried et al., 2017). These tech-
niques are useful for multi-season or multi-annual records of changes to the 
snow and ice surface. However, as surface changes may occur on daily or even 
hourly timescales, and for more challenging terrain, an antenna dedicated to 
collecting the reflected signal may provide the needed spatial and temporal 
resolution.

Two-antenna reflectometry systems such as the GPS open loop differential 
real-time receiver (GOLD-RTR) have also been developed and deployed for sea 
ice (Yun et al., 2015) and dry snow altimetry based on polarization measurements 
(Fabra et al., 2010, 2012). For a review of methods pertaining to sea ice, see Yan & 
Huang (2019). A two-antenna system for sensing wet vs. dry snow has recently 
been tested in a high-alpine environment using commercially available receivers 
(Koch et al., 2019). Some receiver designs are software-based for open-source use 
(Junered et al., 2016), again using interferometry for altimetry (Ribo et al., 2017).

In addition to detecting wet vs. dry snow, it is also important to be able to monitor 
meltwater on the surface of snow/ice, as well as detect phase transitions between 
snow, ice, and water. MacAyeal (2018) reviewed seismologic signatures of snow 
and ice layers and the importance of meltwater-saturated snow in seismological 
responses.

Existing ice and water monitoring systems include optical and thermal band 
imaging such as that of the moderate-resolution imaging spectroradiometer 
(MODIS) on the Terra and Aqua satellites, which has a temporal resolution of 
one to two days, but the pixel size is 250 m. Other higher-resolution optical sat-
ellite sensors are available for imaging, e.g., Landsat 8 (30 m), Sentinel-2 (15 m), 
and WorldView (2 m), but their temporal resolutions are much lower than that of 
MODIS. Other limitations of these various optical satellite sensors include the fact 
that they can only be used in daytime and in cloud-free conditions. Some satellite 
missions operate in bands unaffected by the presence of clouds, e.g., Sentinel-1 at 
the D-band (5 cm wavelength), and have a resolution of approximately 5 m, but the 
revisit interval is greater than one day, which may be too infrequent for snow/ice/
water phase change monitoring (Miles et al., 2017).

A dedicated GNSS-R antenna and receiver have the potential to be a data 
source complementary to satellite monitoring, with the advantages of lower cost, 
higher spatial and temporal resolution, and continuous operation over a region 
day and night, unimpeded by cloud cover or precipitation. In this work, we are 
motivated to examine surface intensity variations in a reflected signal not due 
to interferometric effects, but due to the surface itself. Chaput et al. (2018) and 
Komjathy et al. (2000) proposed that dielectric variations would result in scat-
tered intensity variations. Wiehl & Legresy (2003) developed theory and simu-
lations of different snow surface and subsurface dielectric scattering for air- and 
space-borne antennas.

We describe and demonstrate a ground-based downward-facing GNSS-R sensor 
system including lidar and camera and compare global positioning system (GPS) 
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reflected power with collocated camera images in field experiments sampling the 
ice and water surface. The technique described in this paper is distinctive in that 
it (1) demonstrates the possibility of monitoring surface phase variations from ice 
to freshwater (which have similar salinities, unlike sea ice and sea water, affect-
ing the dielectric constant) and (2) uses a reflected signal from a single dedicated 
reflection-receiving (i.e., downward-facing) ground-based antenna. This applica-
tion may become more important as the world’s glacier ice starts to melt more 
rapidly under a warming climate.

Section 2 reviews the concept of SR as it pertains to measuring the SNR. Section 3 
describes the sensor system and data collection and provides an overview of the 
GNSS signal processing used in this work. Details of the data processing are given 
in the Appendices. Section 4 presents our results, Section 5 discusses these results, 
and Section 6 summarizes the paper.

2  SR BACKGROUND

A GNSS signal reflecting from a surface of ice or water is dominated by specular 
reflection. The specular point is the point at which the angle of incidence equals 
the angle of reflection, according to the principle of least time. Most of the energy 
is scattered from an area around the specular point known as the first Fresnel zone 
(FZ) (Beckmann & Spizzichino, 1987).

Figure 1 illustrates the specular point and FZ geometry. The position x0 in the 
propagation plane and the semi-major and semi-minor axes a, b of the first FZ are 

FIGURE 1 Conceptual diagram of GNSS-R with a dedicated downward-oriented antenna



PARVIZI et al.

functions of the height 1࠹ of the receiving antenna at R0 from the scatterer, the 
elevation angle el, and the wavelength λ of the signal (Larson & Nievinski, 2013):
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These equations assume a flat Earth, which is valid for a ground-based antenna 
system.

The final signal received by an antenna directed downward is the superposi-
tion of scattered GNSS reflections from the FZ. For a downward-facing reflection 
antenna, the scattered power can be computed for all pairs of time delay m and 
frequency f of the replica signal and is represented as a function of two variables. 
The correlation power Ŝ  is given as follows (Gleason, 2006):

 � �2 2 2ˆ( , s) ( n )) i c (D S coh D cohS m f P T m m f f Tc / � �  (2)

where Ps is the digitized received signal power, f is the frequency of the incoming 
signal, m′ is the unknown code delay integer in units of sampling period Ts, fD is 
the unknown Doppler frequency shift due to relative motion between the satellite 
and the receiver, and Tcoh is the coherent correlation interval. In this work, the GPS 
L1 signal is used, whose Tcoh   1 ms. The function / for the GPS code is called the 
correlation triangle function because it is has the shape of a triangular peak in 
delay space:
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In this equation, x is the coarse/acquisition (C/A) code for one satellite, x̂  is the 
C/A code replica, and N   Tcoh/Ts is the number of samples (Garrison et al., 1998; 
Gleason et al., 2005). The triangle function is the expected value of the C/A code 
correlation with the C/A replica.

The SNR of a received GNSS signal is as follows:
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where Pmax is the correlation peak value over all time and Doppler shifts m, fD and 
occurs at values ˆˆ ., D noisem f P  is the mean value over time shifts m of the correlation 
curve at ˆ ,Df  excluding the points within one-half chip of the peak, where one chip 
has duration Tc.



PARVIZI et al.

SR is related to the received SNR (Chew et al., 2018) by the bistatic radar equation. 
In decibels, this relationship can be expressed as follows:

 SR SNR P G Gt t r! " " "10 10 10log log( ) log( )( )  

 ! " " "20 20 20 4log( ) log( ) log( )# $R Rts rs  (7)

where Pt, Gt are the power and gain of the transmitter, respectively, Gr is the gain 
at the receiving end of the signal, λ is the wavelength of the transmitted signal, 
and Rts, Rrs are the distances between the transmitter and scatterer and the receiver 
and scatterer, respectively (see Figure 1). For a given GNSS satellite, the SNR can 
be computed according to Equation (4). The transmitter power Pt and gain Gt and 
carrier wavelength λ are known, the distances Rts, Rrs can be estimated given the 
positions of the antenna and satellite relative to the scatterer, and the receiver-end 
gain Gr can be estimated from the antenna gain pattern. SR is computed in this 
manner in this work.

3  METHODS

The objectives of this investigation are to compute the SR based on GPS L1 sig-
nals and to assess the correlation between the SR computed from Equation (7) and 
the surface type. The “true” surface type will be determined by collocated opti-
cal cameras that image the surface as a satellite’s specular point and FZ shift over 
time, ideally moving from scattering off water to scattering off ice. A camera pixel’s 
red-green-blue (RGB) normalized intensity triplet will tend to be close to (1,1,1) for 
ice but (0,1,1) for water. Therefore, we use the camera pixel red value as an indi-
cator of the presence of ice versus water on the surface. By averaging the red pixel 
value over the GNSS signal’s first FZ, we correlate the relative GNSS SR with this 
mean red value (MRV).

To estimate the SR of ice and water using GNSS-R in this way and to compare 
this reflectivity with optical mean red intensities, we developed a portable sensor 
system for monitoring lake surface water phase changes (Parvizi, 2020). The sys-
tem has been used for 11 data campaigns from 2017 to 2020 (Parvizi et al., 2018), 
with most occurring in the winter season (Parvizi, 2020). Fieldwork was conducted 
at Lake Michigan in Chicago, Illinois. In campaigns 1–9, the lake surface condi-
tions were either entirely water or entirely ice. In campaigns 10 and 11, the lake 
surface had a heterogeneous ice and water surface. In this study, we will show the 
results of data campaign 11. In the next subsections, we describe the sensor system, 
data collection conditions, and post-processing by which the GNSS-R SR and opti-
cal MRV are computed.

3.1  Sensor System and Data Collection

Figure 2 presents a connection schematic of the sensors used in the system. A 
lidar and three cameras, each spanning different fields of view (FOVs), sense and 
image the surface from which the GNSS signal is reflected. The lidar produces a 
point cloud of ranges and intensities at which the transmitted light is backscat-
tered, providing an estimate of h1. The lidar wavelength used reflects off ice but 
does not reflect from water. The cameras are internet protocol (IP) security cameras 
that produce RGB color images of their FOVs, from which the MRV within the 
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GPS FZ is computed for comparison with SR. These cameras and lidar are con-
nected to a network switch, which sends their data packets to a laptop to be stored 
on an external storage drive. A weather station displays air temperature and wind 
speed and direction, but this information is not used in this work. Because of the 
camera FOV overlap, the center camera data are also not used here.

Collocated with these sensors are two GNSS antennas. A right-hand circularly 
polarized (RHCP) antenna is used to collect the direct signal. A left-hand circu-
larly polarized (LHCP) antenna oriented downwards obtains the reflected GNSS 
signals from the surface. Two universal software radio peripherals (USRPs) act as 
front ends, each of which uses a GPS-disciplined oscillator (GPSDO) connected 
to the RHCP antenna as a timing reference. One USRP receives the direct GNSS 
signals from the RHCP antenna for sensor system positioning. The other USRP 
collects front-end samples from the LHCP reflection antenna. The SNR and SR are 
computed from the reflection antenna signal. The direct signal is not used in this 
work, as the multipath aspect of the environment requires further development of 
a software-defined receiver (SDR) for positioning, which is ongoing but beyond the 
scope of this work. 

The GNSS antennas are mounted on a tripod approximately 2 m above the 
ground next to the lake surface, on the end of a boom that extends horizontally in 
a direction b̂  about three-fourths of a meter from the tripod mast. The lidar and 
cameras are mounted on a shorter platform below the GNSS antenna boom extend-
ing in the same direction ˆ.b  Figure A1 provides sensor system diagrams defining 
the relevant geometry used in post-processing.

Figure 3(a) shows a photograph of the sensor system on-site and lake sur-
face conditions from the data campaign that occurred on 21 February 2020. The 
tripod-mounted sensors were placed at the shore of a harbor with empty docks 
because this was the only part of the lake with any ice accumulation, likely due to 
the stillness of the water. The harbor is largely protected from the wind. North of 
the site (to the left of the photograph), there were underwater spouts at which liq-
uid water was likely being output because a bubbling source was visible, and there 
was no ice formation for several meters around the source. There is a clear ridge in 
the left part of the photograph, where the subsurface heated water did not prevent 

FIGURE 2 Schematic of the sensor suite
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surface ice formation. The surface was entirely water on the left side of Figure 3(a), 
with a layer of ice to the center and right. There are visible breaks in the ice and 
thinner parts of ice in which blue water is visible between sections of white ice. The 
tripod was mounted at the edge of the water, with the boom extending out over the 
lake surface.

Figure 3(b) shows a Google Map satellite image (not from the date of data 
 collection) of the field site in Chicago on the shore of Lake Michigan, anno-
tated to show the heading angle µ of the boom direction ˆ.b  The photograph was 
taken  standing to the west of the tripod and looking east approximately in the 
direction of ˆ.b  Because of the presence of the docks, we limited our analysis in 
the post-processing to consider satellites that are to the east of the site and at a 
 sufficiently high elevation such that their direct path is below the antenna’s hori-
zon and their first FZs are imaged. We expect these criteria will have the added 
 benefit of limiting multipath effects by only allowing the analysis of satellites 
whose  reflections are well clear of the docks.

The system configuration and orientation details for data campaign 11 are 
 provided in Table 1. The lidar elevation ψ1, reflection antenna elevation angle κ, 
and relative heading angles µ2, µ3 and elevation angles ψ2, ψ3 of the left and right 
cameras were measured with a digital angle measuring tool on site after the sensor 
suite was set up. The boom heading angle µ was manually recorded upon site setup 
as well. The angles listed in the table are defined in Appendix A. These angles are 
used in post-processing for rotations and projections.

When the GPS signal from a given satellite, identified by its pseudorandom 
number (PRN), arrives at an antenna, it is amplified, filtered, down-converted, 
and digitized in the GPS front end. These processes are implemented with USRPs. 
The USRP Ettus N210 output data format is 16-bit for in-phase and 16-bit for 
quadrature-phase components of the complex signal. The specific configurations 
for the field work, including the in-line gain between the antennas and USRPs 
and the sampling frequency fs   2fIF chosen, are shown in Table 1. The filtered, 
down-converted, digitized samples are stored during each field campaign and 
returned to the lab.

FIGURE 3 (a) Photograph of the experimental hardware setup for data campaign 11; (b) 
Google Map satellite image of the sensor location for data campaign 11, with the boom direction 
b̂  and heading angle P  defined
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The sensors are controlled by a laptop, and data are collected simultaneously 
by script and sent to external storage devices. To prevent buffer overruns from the 
USRPs, we collected data in eight 20-min parts. This work uses Parts 1 and 3–6 col-
lected on the test day. The Part 2 camera data were corrupted and are thus unavail-
able as a truth reference.

3.2  Post-Processing in the Lab

Figure 4 illustrates the processing workflow for computing and comparing the 
GPS SR and the optical MRV in the lab after data have been collected in the field. 
From the USRP connected to the reflection antenna, GPS L1 signal power is accu-
mulated to give Ŝ  by coherent integration for 1 ms summed incoherently for 1 s 
and then averaged over 1 min as described in Appendix B. Then, the SNR is esti-
mated based on Equations (4)–(6). To obtain SR using Equation (7), we need the 
satellite and specular point positions relative to the reflection antenna, Gr sv R/ 0  and Gr sp R/ 0, respectively, so that R R Gts rs

r, ,  can be computed.
While the direct antenna signal was intended for computing Gr sv R/ 0 , the data from 

the direct antenna had less gain than the reflection antenna; thus, the standard 
SDR acquisition did not acquire enough satellites for positioning and is not used in 
this study. Modifying the SDR to successfully use direct GPS signals for position-
ing is ongoing but not essential to this investigation. Instead, we use the approx-
imate receiver position and a GPS almanac to estimate the satellite sv position in 
the sky. An approximate sensor position for the reflection antenna origin R0, as 
listed in Table 1, is used based on knowledge of the site and referenced to a Google 
Map (Parvizi, 2020). To estimate the satellites’ positions relative to the reflection 

TABLE 1
Lake Michigan Data Campaign 11 Details
RF: radiofrequency.

Data Campaign 11

Date 21 February 2020

Latitude 41.837998°

Longitude −87.606115°

Altitude 172 m

Sampling rate fs (MHz) 5

USRP_direct inline gain (dB) 30

USRP_reflected inline gain (dB) 40

USRP_direct RF gain (dB) 31

USRP_reflected RF gain (dB) 31

Direct antenna ground-plane dimensions 19.6875" x 19.6875" x 0.04"

Reflection antenna ground-plane dimensions 19.6875" x 19.6875" x 0.04"

Clock used GPSDO

Heading angle µ of the boom bԔ with respect to north 70°

Relative heading angle µ2 of camera 2 with respect to bԔ −25°

Relative heading angle µ3 of camera 3 with respect to bԔ 25°

Elevation angle of the reflection antenna, κ −45°

Elevation angle of the lidar and central camera, ψ1 −45°

Elevation angle of cameras 2 and 3, ψ2 and ψ3 −36°

Surface condition Mixed ice and water
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antenna R0, a Yuma almanac from the U.S. Coast Guard archives is used to obtain 
the satellite positions relative to the reflection antenna origin Gr sv R/ 0 over time:

 0/ ˆ ˆ ˆsv Rr Ee Nn Uu � �
G  (8)

 az E N! "tan 1( )/  (9)

 el U E N! "# $%tan 1 2 2/  (10)

where E, N, U are the component distances of the satellite position relative to the 
reflection antenna’s position in east-north-up (ENU) coordinates. 

We assume the elevation angle el in Equation (10) to be the same elevation angle 
with respect to the lake surface, as drawn in Figure 1. Given el and an estimate 
of the surface height h1 relative to the reflection antenna position R0, the specu-
lar point position Gr sp R/ 0  can be represented in the propagation plane coordinate 
 system ˆ, ,ˆ ˆx y z  as follows:

 0/
0 1ˆ ˆsp Rr x x h z �

G  (11)

where h1 is defined in Equation (1) as positive when the antenna is above the scat-
terer. With the lidar point cloud, the average height h1 of the lake surface from the 
reflection antenna is computed as described in Appendix C.

Once the specular point position Gr sp R/ 0  and satellite position Gr sv R/ 0  are found 
relative to the reflection antenna, one can calculate Rrs  and Rts  as follows:

 R rrs
sp R 
G / 0  (12)

 R r rts
sp R sv R! "
G G/ /0 0  (13)

after performing a rotation by the azimuth angle az  to convert Gr sp R/ 0  to ENU 
coordinates.

FIGURE 4 Workflow for computing the GNSS-based SR and comparing it with optical 
images of surface ice and water
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To compute the antenna gain part of Gr, the angle φ between the specular point 
viewing direction and the body-zenith direction ˆRy  of the reflection antenna is 
defined in the upper right of Figure A1:
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The antenna-zenith angle Isp  is used to estimate the gain Gr relative to 42 dB 
interpolated between the angles in Table A1. Having found Rrs, Rts, Gr, we compute 
SR using Equation (7). The data are collected in the field in 20-min segments, each 
of which resets the automatic gain control of the USRP, which is unknown. Thus, 
we will show 'SR, corresponding to the SR relative to the SR value at the first time-
stamp of the 20-min data segment during which that SR was collected.

We also use the FZ parameters x0, a, b from Equation (1) to determine the camera 
pixels lying within the FZ and compute their MRV as a measure of the true surface 
type. The locus of points on the perimeter of the FZ can be written in parametric 
form in the propagation plane coordinate system ˆ, ,ˆ ˆx y z  as follows:

 / cos ˆ si ˆnFZ spr a x b yT T �
G  (15)

where θ varies from 0 to 2S  and a, b are given by Equation (1). This set of points 
can be translated relative to R0 as follows:

 G G Gr r rFZ R FZ sp sp R/ / /0 0! "  (16)

which can then be expressed in the ENU system using a rotation matrix by the 
azimuth angle az.

Sensor fusion is performed between the camera and lidar (lower left of Figure 4) 
to map the camera images in three dimensions and determine which pixel posi-
tions Gr P R/ 0  lie within the FZ perimeter defined by Gr FZ R/ 0. Using the lidar point 
cloud measurements of the surface, the i-th camera’s pixels are backward-projected 
onto a three-dimensional (3D) map of the surface. Backward projection uses 
camera-intrinsic properties, such as focal length, along with range information 
obtained from the lidar regarding the features captured by the camera. The position 
of each pixel of the camera image is then transformed to its 3D position in space 
relative to the reflection antenna origin Gr P R/ 0. Details on the lidar–camera surface 
reconstruction are given in Appendix D.

Simultaneous images from multiple cameras are combined together by identi-
fying overlapping regions in the FOV, normalizing the RGB histograms based on 
the moments of the histograms in the overlapping region, and cropping redun-
dant pixels within the overlapping region as described in Appendix D. For a 
given satellite, the MRV of the pixels whose positions Gr P R/ 0  are inside the FZ is 
calculated.

Finally, 'SR and MRV are compared if 1) the satellite itself is below the reflec-
tion (i.e., downward-tilted) antenna’s horizon and 2) the entire FZ area lies within 
the FOV of the cameras. These criteria reduce the likelihood of the GNSS-R SNR 
including any energy from the direct line of sight (LOS) and also ensure com-
plete sampling of the FZ via camera imaging. The first requirement indicates that 
the antenna-zenith angle Isv  of the direct satellite LOS to the reflection antenna 
must satisfy !sv " 90D, in order to reduce possible direct LOS received power. The 
angle Isv can be computed by substituting Gr sv R/ 0  for Gr sp R/ 0  in Equation (14). The 
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second requirement is met if the horizontal area spanned is within 99% of the FZ 
area, in order for the FZ imaging to be considered complete. The MRVs at times 
meeting both of these criteria are compared with the relative SR, 'SR, for the 
associated PRN to assess the effectiveness of the GPS SR in varying with surface 
conditions.

4  RESULTS

The surface of Lake Michigan was a heterogeneous mix of ice and water during 
the data campaign, as visible at the left of Figure 3. The satellites in the sky at 
the start and end of the data set shown are presented in the sky plots of Figure 5. 
Blue circles indicate satellites in the sky. Azimuth angles are indicated around 
the perimeter, and at the center of the circle is the zenith of the direct antenna. 
Because the boom is oriented to the east (Figure 3), reflected signals of the satel-
lites in the eastern part of the sky are anticipated to be on the lake surface. In par-
ticular, PRN 16 begins at a high elevation in the sky, and the elevation for PRN 26 
begins at a high enough level that the direct signal is below the antenna’s horizon. 
During the course of data collection, PRN 27 will rise into the FOV of the cameras 
and thus is also considered. PRN 8 also rises but, as we will show, does not fully 
lie within the cameras’ FOVs before the end of data collection; hence, PRN 8 is 
not used.

Figure 6 shows the combined images of cameras 2 (imaging the northern sec-
tion) and 3 (southern) projected to east–north coordinates relative to the reflec-
tion antenna at 17:58, 18:43, 19:25, and 20:10 universal time (UT) (approximate 
start or end times of 20-min data collection segments.) All pixels from camera 2 
are plotted (arbitrarily chosen as the primary camera), as well as the pixels from 

FIGURE 5 Sky plots for 21 February 2020 at (a) 11:58 central time (CT) at the start of Test 11 
and (b) 14:11 CT at the end of Test 11
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camera 3 that do not overlap with camera 2. The RGB values of camera 3 have 
been color-normalized based on their overlapping regions to better match camera 
2. Although the docks are in the cameras’ FOVs, they are well beyond the region 
plotted, in which the first FZs lie. For this reason, we expect the possible multipath 
effects to be reduced.

In Figure 6, the green cross indicates the reflection antenna origin R0. Orange 
dots mark the specular points. The FZs of PRNs 8, 16, 26, and 27 are shown in 
Figure 6, shaded in light transparent red. For the SRs and MRVs that are eligible for 
comparison (φsv ! 90°, full FZ in the FOV of the cameras), the FZ area is typically 
2–3 m2. For example, the geometry of PRN 26 in Figure 6(a) meets the φsv and fully 
imaged FZ criteria, but the geometry of PRN 26 in Figure 6(b) does not meet these 
criteria.

The surface conditions are largely static over this time period, but slight vari-
ations are visible, particularly at the boundary between the ice and water to the 
north. There are also solar illumination variations, most easily seen with the 
shadow of the tripod in the north over the water shifting eastward with time.

By tracking one PRN at a time over these plots, we can see that the FZ of PRN 16, 
even though it reaches the highest elevation at 17:58 UT, is partly out of the cam-
era’s FOV in Figure 6(a) but has shifted fully into the FOV by 18:43 UT, follow-
ing along the ice–water boundary. The specular point of PRN 26 begins fully in 
the FOV at 17:58 UT and shifts eastward, grazing the ice–water boundary. The FZ 
of PRN 27 overlaps the camera’s FOV from 18:43 UT until the end at 20:11 UT, 
remaining primarily over the icy part of the surface. PRN 8 rises but is never fully 
in the FOV of the cameras.

PRNs 16, 26, and 27 meet our criteria for a valid comparison of camera MRV to 
the GNSS-derived SR. Unfortunately, none of the specular points or FZs land fully 
on the water. If they had, we would have a very clear MRV signal, spanning nearly 
the entire range of 0 to 1, against which to test the correlation of GPS SR. We may 
expect, and will demonstrate, that our investigation covers a narrower red value 
range, which is a more stringent test of the GNSS-R SR as a detector of surface ice 
or water than intended.

FIGURE 6 FZ mapping and camera pixel selection at (a) 17:58 UT, (b) 18:43 UT, (c) 19:25 
UT, and (d) 20:11 UT Local time is UT minus 6 hours. SP: specular point.
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The relative SR and MRV for PRN 16 are displayed over time in Figure 7(a). 
The UT hour and minute are shown on the horizontal axis. The left vertical axis 
in blue is the SR in dB relative to the SR at the initial time of each 20-min data 
segment (i.e., at 18:43 UT and 19:06 UT). The vertical axis on the right, in red, is 
the MRV during this same time period. The start of this time interval corresponds 
to the image map in Figure 6(b), and the end of the time interval corresponds to 
Figure 6(c). At 18:43 UT, the specular point of PRN 16 is on the ice, and the first 
FZ spans the ice–water boundary over this time interval, with more than one 
third of the ellipse spanning water. By 19:25 UT, the ellipse has moved along 
the ice–water boundary and has grown, such that a smaller proportion of the 
FZ samples the water. For this reason, the MRV increases over time, as the FZ 
covers proportionately more ice than water. The relative SR varies within 1 dB, 
showing a less clear trend than the MRV in the first 20-min segment from 18:43 
to 19:02 UT, with a possibly increasing trend from 19:06 to 19:25 UT. Figure 7(b) 
plots the relative SR versus MRV for PRN 16. The correlation coefficient between 
the two quantities is ρ   0.74, indicating a moderately strong correlation over 
approximately 40 min.

Figure 8 presents the SR (left axis, in blue) and MRV (right axis, in red) for PRN 
26 over time. The start of this 20-min time interval corresponds to Figure 6(a). 
The specular point is on the ice near the ice–water boundary, such that the FZ 
area lies on approximately 3/4 ice and 1/4 water. The end time is not shown on 

FIGURE 7 (a) Relative SR (blue) and MRV (red) over UT time for PRN 16 and (b) relative SR 
versus MRV for PRN 16
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a map; by the time imaged in Figure 6(b), even though the entire FZ is imaged, 
the antenna-zenith angle of the direct LOS is less than 90°. However, between the 
times corresponding to Figures 6(a) and (b), the specular point has moved approx-
imately 1.5 m eastward and approximately 1 m northward, with the FZ area cover-
ing a larger proportion of ice than water. The FZ area grows larger over time. We 
anticipate that the MRV will increase as the FZ covers proportionally more ice. 
There are no camera data for part 2 of the data collection from approximately 18:20 
to 18:40 UT; thus, comparison results cannot be shown. The relative SR for PRN 26 
increases with time in this case, as well as the MRV for pixels inside the FZ for PRN 
26. Figure 8(b) plots the SR versus MRV. For PRN 26, the correlation coefficient is 
ρ   0.84, i.e., the SR of PRN 26 and the MRV are highly correlated over 20 min of 
data collection. 

Figure 9(a) shows the relative SR and MRV over time for four 20-min segments 
of data collection for PRN 27. The SR at the start of each segment is set as the 
baseline, at 18:43, 19:07, 19:29, and 19:52 UT. The region of the surface scanned by 
PRN 27 is imaged in Figures 6(b)–(d). During this time, we can see that the spec-
ular point of PRN 27 scans across the icy portion of the surface, but that the ice is 
divided up by numerous cracks of meltwater within the FZ area. Consequently, we 
do not expect any obvious visual trend in MRV. Accordingly, there is little obvious 
trend seen in the MRV in Figure 9(a). The relative SR plotted over time shows a 
slight decreasing trend over each 20-min segment. Figure 9(b) plots 'SR versus 
MRV for PRN 27. In this case, the correlation coefficient is low at ρ   0.20, and 

FIGURE 8 (a) Relative SR (blue) and MRV (red) over time for PRN 26 and (b) relative SR 
versus MRV for PRN 26
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the GNSS reflection is sampling the surface, which is a random mix of ice and 
water over time. This random scattering appears to have an effect on the correla-
tion between the relative SR and MRV.

5  DISCUSSION

In Figures 7 and 8, consecutive changes in the relative SR are on the order of 
0.1 dB, corresponding to a 2% increase in the SR from one time point to the next. 
A change of only a couple percent in relative SR may seem small, but the change 
is of similar order to those of the MRV, which can be seen in Figure 8 to be on 
the order of 0.005, or approximately 1% of the typical MRV in these plots of 0.5. 
Thus, changes in SR are comparable in magnitude to the changes in MRV. We 
expect that these small variations are due to the large overlap minute-to-minute 
of the sampled region of the surface. For this data set, we are hampered in testing 
the dynamic range of our GNSS-R SR calculation by the fact that our geometry 
did not yield a clean scan from the fully ice region over to full water. Even so, 
there is a moderately strong correlation between the measurements, as shown in 
Figures 7 and 8.

In the PRN 27 results, it is possible that the scattering may be impacted by sur-
face roughness due to cracks between the ice and water zones. It is possible that the 
correlation of SR with MRV for PRN 27 is poor because of 1-cm height variations 

FIGURE 9 (a) Relative SR (blue) and MRV (red) over time for PRN 27 and (b) relative SR 
versus MRV for PRN 27
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on the surface as ice forms, floats, and scrapes other pieces of surface ice, all within 
the FZ.

In all results, it is possible that the multipath, i.e., scattering from places other 
than the FZ, has some effect. However, the majority of the built environment is to 
the west of the antenna, which has a ground plane and is tilted downward with its 
zenith direction toward the east. Hence, we expect multipath from scatterers to the 
west to be greatly reduced. To the east, there are docks, as visible in the photograph 
in Figure 3(a). Multipath due to low-elevation satellites is not a concern because the 
satellites have been eliminated by the requirement that the satellite itself be below 
the antenna-body zenith φsv ! 90°. Given the antenna elevation angle of κ   −45°, 
this requirement roughly eliminates satellites below 45° elevation. Multipath from 
the high-elevation PRNs 16, 26, and 27 due to the docks might be a contributing 
factor in reducing their correlation, particularly for PRN 27, which is at an azimuth 
of approximately 150° at the start of data collection.

We believe that positioning uncertainties have a minimal effect on our findings 
for the following reasons. First, uncertainties in satellite position would produce 
a negligible change in the azimuth and elevation angles because of their distance. 
Uncertainties in receiver positioning would affect the distances Rts, Rrs. However, 
these uncertainties would bias the SR and are effectively eliminated by differencing 
the first SR to produce a relative reflectivity. Uncertainties in receiver positioning 
also affect the position of the specular point. In this case, we can observe from the 
contextual photographs in Figure 3 that the tripod is sited between Docks B and C 
labeled in the Google Map. The lidar scans show returns from the docks that corre-
spond to the location pinpointed on the Google Map.

The geophysical interpretation of our study is that surface ice has a different 
reflectivity than surface water at non-optical bands such as GPS L1. This difference 
may be due to material reflectivity or surface roughness. The reflectivity could be 
a stand-in, at resolutions lower than optical wavelengths (but also not subject to 
weather or cloud cover), for regions of ice on the surface. More in-depth geophys-
ical modeling is beyond the scope of this work, which has focused on sensor inte-
gration and comparison. To our knowledge, other researchers have not examined 
the relationship between GNSS reflection and optical imagery at meter resolution 
before.

Because we have used the relative SR, there are no absolute values of SR that we 
can directly map to surface type, because the SNR generally depends on the hard-
ware configuration and even, as in our case, the presence of automatic gain control. 
Yet, it could be possible to develop or calibrate a baseline or to shut off automatic 
gain control for future systems. Because of the averaging process over the FZ, there 
is no unique mapping of pixels that will yield a specific MRV. However, for a scat-
terer in a phase of matter that is relatively constant over time, it might be possi-
ble to combine successive overlapping FZs rather than using single snapshots, to 
better distinguish the ice versus water surface regions. While it would have been 
ideal if one or more of these specular points had been definitively on the water for 
the purposes of showing a clear correlation, the sensitivity of our SR calculation 
underwent a more stringent test, by being analyzed over a narrower range of sur-
face conditions.

Because of the geometry of our test, the PRN 16 and 26 satellites are at a high 
elevation, starting to set to the east-northeast during the times they are considered. 
Consequently, their FZ area expands over time. We believe that this increase has 
little effect on the MRV, which is also increasing for PRNs 16 and 26 over time. 
The MRV is an average over pixels, and pixels are spread out over larger distances 
farther away from the cameras. High-elevation satellites correspond to pixels that 
are closer to the camera, resulting in an averaging that is more spatially uniform. 
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We also suspect that for PRNs 16 and 26, it is largely coincidental that the FZ area 
increases as the SR increases. In fact, for PRN 16 from 18:43 to 19:02 UT, the SR is 
not that correlated with FZ area.

6  CONCLUSION

In this work, we correlated the GNSS-R SR with camera images to assess whether 
GNSS-derived SR can distinguish ice from water, as measured by the MRV of opti-
cal images. Results from a Lake Michigan data campaign held in Chicago, Illinois, 
in February 2020 are presented in this work. During this field work, the lake sur-
face consisted of mixed ice and water.

To compute the SR, 1-ms coherent integration of the correlation power was inco-
herently summed over each second and then averaged for 1 min. The first FZ for 
PRNs whose specular points scan across the lake surface in the FOV of the cameras 
was estimated. Pixels inside the FZs of three PRNs were evaluated and selected to 
estimate the MRV.

The SR results of PRNs 16 and 26 are well correlated with the camera RGB red 
value in a FZ that spans a clear water/ice boundary. The SR of PRN 27 shows poor 
correlation with the camera RGB red values over 40 min. We attribute this low 
correlation to the surface scanned by the FZ of PRN 27 being heterogeneously ice 
and water within the FZ. Based on this study, we conclude that the SR of GNSS 
reflected signals can likely be used to distinguish ice from water.

Our ultimate aim is to expand this work to be able to test the detection of sur-
face melt conditions on glacier ice and snow. In the future, we will study addi-
tional data sets that include conditions of both surface ice and water, including 
those in a glaciated terrain in Antarctica, and additional correlations will be com-
puted. It is possible that the use of the more generalized bistatic radar equation 
derived by Voronovich & Zavorotny (2018) could help improve our model and 
the use of SNR, possibly improving the poor correlation observed for PRN 27 
and also being applicable for a wider variety of surface roughness. Additionally, 
the SR and MRV can be evaluated for each second rather than over 1 min to test 
for increased sensitivity to spatial variations or to provide uncertainty estimates. 
The GNSS direct signal will be used to improve the estimate of the FZ and sensor 
system location.
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APPENDIX

A  SENSOR SYSTEM DIAGRAMS

Figure A1 shows the geometry of the mounting system for the sensors. A boom 
with direction b̂  is mounted horizontally on a tripod. The mounting system 
is  oriented relative to the local ENU coordinates ,ˆ,ˆ ˆ,e n u  with the boom rotated 
about û by heading angle µ to give a boom-aligned coordinate system ˆ, ,ˆ ˆt b u (see 
Figure A1(a)). Figure A1(b) shows a side view of the tripod and the boom on which 
the GNSS antennas D and R are mounted. Below this, the lidar L and  cameras 
C1, C2, C3 are mounted. Rotating by the lidar elevation angle ψ1 gives a lidar 
body-fixed coordinate system ,ˆ ,, ˆ ˆL L Lx y z  where ˆLz  is the axis of symmetry of the 
lidar. The central camera axis 1ˆCz  has the same elevation angle \1 . The elevation 
angles of the left and right cameras are ψ2, ψ3 (not shown). Figure A1(c) shows that 
the relative headings of the cameras C2, C3 with respect to b̂  are µ2, µ3 respectively.

The reflection antenna R has its axis of symmetry ˆRy  at an elevation angle κ 
from ˆ,b  defining an ˆ ˆ ˆ, ,R R Rx y z  coordinate system, where ˆRy  is the antenna’s zenith
(Figure A1(d)). The angle between the antenna zenith ˆRy  and the position vector Gr sp R/ 0 of the specular point of the i-th PRN relative to the antenna origin R0 is φsp.

The position vectors between relevant origins are as follows, in units of meters:

0 0/ 0.43 0.4ˆ ˆR Lr b u �
G (A1)

0 0, 2/ 0.136 0.135 0.24ˆ ˆ ˆL C
L L Lr x y z � �

G (A2)

0 0, 3/ 0.136 0.135 0.2ˆ ˆ ˆ4L C
L L Lr x y z � � �

G (A3)

The data shown in Table A1 were used to linearly interpolate an estimate of Gr, 
the gain of the Antcom antenna used, for the signal arriving from angle φsp.

TABLE A1
Gain Gr Relative to the Antenna-Zenith Gain of 42 dB of the 
Reflection-Receiving Antenna Based on the Manufacturer 
Antenna Gain Pattern as a Function of the Antenna-Zenith 
Angle φsp

φsp (degrees) Gain (dB)

0 0

20 −3

30 −4

40 −5

55 −6

65 −7

70 −8

75 −9

85 −10

90 −11

105 −14

120 −20

140 −22

150 −30

180 −40
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FIGURE A1 (a) Boom coordinate system ;ˆ, ˆˆ ,t b u  (b) side view of the sensor system in the ˆ ˆ,b u 
plane and lidar and reflection antenna elevation angles; (c) top view of the cameras C2, C3 and 
associated coordinates in the ˆˆ,t b  plane; (d) reflection antenna R coordinate system ˆ ˆ ˆ, ,R R Rx y z  and 
definition of the antenna-zenith angle φsp
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B  GNSS-R SIGNAL PROCESSING

In this section, we introduce the SDR-based GNSS signal processing to compute 
the correlation power ˆ( , )DS m f  for use in Equations (4)–(6). The USRP Ettus N210
output data format is 16-bit for in-phase and 16-bit for quadrature-phase com-
ponents of the complex signal. The first 2 s of the data are truncated to remove 
the USRP automatic gain control overshoot and settling (Datta-Barua et al., 2016; 
Parvizi, 2020; Parvizi et al., 2017). A Chebyshev type II low-pass filter with a 
stop-band frequency of f fC s 0 45 2. ,  where fs is the user-selected sampling fre-
quency, is applied. The signal is converted from the USRP complex form to a real 
signal. The down-converted signal has the following form:

s nT P D nT m T x nT m T
f f nT w

IF s s s s s s

IF D s IF

( ) ( ) ( )
( )

! " # " #

$ # $% & $cos 2' ( (( )nTs
 (B1)

where n is the sample number, T fs s! "1  is the sampling period corresponding to 
the sampling frequency fs, Ps is the digitized received power, D is the navigation 
data bit, mcTs is the unknown code delay, x is the C/A code for one satellite, cfD  is 
the unknown Doppler frequency shift due to relative motion between the satellite 
and the receiver, θ is the unknown phase offset, and wIF is multipath and thermal 
noise. Each PRN code consists of 1023 rectangular pulse chips of duration Tc, and 
the full sequence of chips repeats every TC A/  1 ms.

The down-converted signal sIF is multiplied by a cosine and a sine wave to 
 produce the in-phase and quadrature-phase samples, represented in complex form 
�sn as follows:

�s s nT j f f nTn IF s IF D s! " #$ %( )exp( )2& (B2)

To detect satellites, the USRP output is correlated with a replica PRN code x̂ 
associated with a given satellite:

1

1 ˆ( , ) (( ) )
N

D n s
n

S m f s x n m T
N �

 �¦� �  (B3)

The number N of samples integrated is related to the coherent integration time 
Tcoh, which, in this work, is one repetition of the full PRN code duration TC/A:

T T NTcoh C A s  /  (B4)

With incoherent integration over a number Ninc ! 1  of segments, each of 
which  is coherently accumulated, the square magnitude | |�S 2  of the correlation 
power is accumulated. Incoherent integration permits a longer integration time, 
but the absolute value and squaring operations also increase the noise:

2

1

ˆ (| ( , ) | )
incN

i D
i

S S m f
 

 ¦ �  (B5)

In this work, we incoherently sum for 1 s, i.e., Ninc   1000.
In practice, a fast Fourier transform is used to compute the correlation in a 

time-efficient manner. Because the relative motion between the satellite and 
receiver (and, when reflected, the scatterer as well) introduces a Doppler shift, the 
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correlation process in Equation (B3) is repeated for frequency bins that are r10 kHz 
about the intermediate frequency f fIF s / .2

The result of correlation is a matrix in which the rows are the search frequency 
fD  and the columns are time delays m. This correlation output Ŝ  is used in 
Equations (5)–(6).

C  POINT CLOUD PROCESSING

In this section, the point cloud, a set of points from which lidar reflections are 
received, is transformed from lidar body coordinates ˆ ˆ ˆ, ,L L Lx y z  to a local ENU 
 system ˆ, ,ˆ ˆe n u  whose origin is at the reflection antenna point R0 (see Figure A1) in 
order to estimate the height h1.

The Velodyne VLP-16 is a 16-channel lidar that has a measurement range of 
100 m accurate at r3 cm, a vertical FOV of r15° about the lidar body ˆLx  axis, and a 
horizontal FOV of 360° about the ˆLz  axis. The VLP-16 can measure the range and 
intensity of approximately 300,000 points/s in single return mode, corresponding 
to 600 frames per minute. In this work, we use the range data provided as positions Gr P L/  of points P relative to the lidar L in lidar body coordinates ,ˆ ., ˆ ˆL L Lx y z

A Python script starts and ends data collection from all instruments simultane-
ously. The open source packet analyzer Wireshark records packets of data trans-
ferred from the ethernet switch of the auxiliary instruments (i.e., lidar) in packet 
capture (PCAP) format. Using Wireshark, we filter and export the data coming 
from only the lidar IP address.

We then rotate each point P of the point cloud from the lidar L body coordinates 
ˆ ˆ( , , ˆ )L L Lx y z  to ˆ ˆ ,,( ), ˆe n u  translate the results to place the origin at the reflection 

antenna, and crop the data to the desired FOV. For each position Gr P L/ 0  of point P
relative to the lidar origin L0, we rotate to the boom B frame ,ˆ, ˆˆ ,t b u  as shown in
Figure A1, using the matrix B LR  with ψ1:

G Gr rP L L P LB/ /0 0 R (C1)

1 1

1 1

1 0 0
  0 cos sin

0 sin cos

B L \ \
\ \

ª º
« »

 �« »
« »
¬ ¼

R  (C2)

After the data are rotated, we translate the origin to the reflection antenna to give 
the point cloud positions Gr P R/ 0  of points P relative to the reflection antenna R0 as
follows:

G G Gr r rP R P L R L/ / /0 0 0 0! " (C3)

where Gr R L0 0/  is defined in Equation (A1). One more rotation enu BR  by heading
angle µ, which is measured with respect to n̂  and defined as positive for angles east 
of north, gives the following:

G Gr rP R B P Renu/ /0 0 R (C4)

!
cos sin
sin cosenu BR ! "

#

$

%
%
%

&

'

(
(
(

) )
) )

0
0

0 0 1
 (C5)
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Because the lake water level is below the dock (Figure 3), we crop out all reflec-
tion points that are above ground level (i.e., we keep points that are more 2 m below 
the reflection antenna). Moreover, the heading angle µ   70°, as listed in Table 1, 
is oriented primarily eastward; thus, we crop the point cloud to keep points within 
10 m south or north of R0 and within 10 m to the east:

0 0 0/ / /{ : 2 m} { : 0 10 m} { :ˆ }ˆ ˆ 10P R P R P RPC P r u P r e P r n � � � � � � � � � �
G G G  (C6)

To compute the FZ positions on the lake, the height h1 of the reflection antenna 
from the water surface is averaged over the cropped point cloud PC:

0 0/ /
1 ( ) ( ˆ)ˆR P P Rh r u r u{ �  � �E EG G (C7)

D  FORWARD PROJECTION AND MERGING OF 
CAMERA IMAGES

A camera image is a forward projection of a point P at position 0/ ˆiP C
C Cir x x �

G  
ˆ ˆC Ci C Ciy y z z�  relative to the optical center C0i of the i-th camera in a 3D environ-

ment onto a 2D pixel plane with directions ˆ, .ˆu v  Assuming that the camera has 
zero skew in this work (Khan, 2020), the backward projection to reconstruct the 
positions of points P in 3D space is given as follows:

x
y
z

z
k f k x

k f k y
u
v

C

C

C

C

u u

v v

!

"

#
#
#

$

%

&
&
&
'

!

"

#
#
#

$

%

&
&
&

!

"

#
#
#

(0
0
0 0 1 1

0

0

1
$$

%

&
&
&

(D1)

where f is the focal length of the camera, ku, kv are pixel densities in the ˆˆ,u v direc-
tions of the image plane, respectively, and x0, y0 give the position of the principal 
point (the point of intersection of the line passing through the optical center of the 
camera along the optical axis onto the sensor plane) on the image plane, relative to 
the top left corner of the image plane. 

Before use in the field, the Camera Calibrator App of the MATLAB Image 
Processing Toolbox was used to measure f, ku, kv of the calibration matrix and 
image distortion coefficients of each camera based on measurements of a checker-
board pattern in the lab.

When the field data are post-processed, the distortion is first removed, and the 
camera image is cropped to the original resolution to provide 2D coordinates (u, v) 
of each pixel on the image plane used in Equation (D1).

The lidar point cloud is used to provide depth information zC associated with 
the corresponding camera pixels. To estimate zC, a lidar point P is translated to the 
camera origin as follows:

G G Gr r rP C P L L Ci i/ / /, ,0 0 0 0! " (D2)

where Gr P C i/ ,0  is the position of a point cloud point P with respect to the i-th camera
origin C0, i, 

Gr P L/ 0  is the position vector of the point with respect to the lidar origin,
and Gr L C i0 0/ ,  is the position vector of the lidar origin with respect to that camera
origin, given in Equations (A2)–(A3).

The position of each point Gr P C i/ 0  in the point cloud is rotated to the camera coor-
dinate system ˆ ˆ ˆ, ,Ci Ci Cix y z  based on angles µi, ψi from Table 1. The lidar points are 
cropped to include only those in the FOV of the camera. 
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These lidar points are forward-projected onto the image plane as uL, vL based 
on the inverse of Equation (D1). The ˆCz  component of each lidar point is linearly 
interpolated to obtain a component zC associated with each pixel in the camera 
image. The interpolated zC is used on the right-hand side of Equation (D1) for 
backward-projecting the camera image onto 3D space. In the case of camera pixels 
without nearby lidar points (e.g., from water), a pseudolidar point is constructed 
using the mean height of the true point cloud lying within the camera FOV. These 
pseudolidar points are used for zC if there is no lidar return within 90 pixels of a 
given camera pixel.

This step yields pixel positions Gr P C i/ ,0  expressed in the camera Ci coordinate sys-
tem. To rotate this pixel to the ENU system, the point is first rotated from the cam-
era frame C to boom frame B through a sequence of rotations with an intermediate 
frame A:

G Gr rP C B B A A C P Cenui i i i i/ /, ,( )0 0 R R R (D3)

!
cos( ) sin( )
sin( ) cos( )B A

i i

i iiR ! "
#

$

%
%
%

&

'

(
(
(

) )
) )

0
0

0 0 1
 (D4)

! sin cos
cos sin

A C
i i
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#
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 (D5)

Rotating from the boom coordinate frame B to the ENU coordinate frame 
requires rotation by the boom heading angle µ according to Equation (C5). The 
pixel point cloud is then translated to the reflected signal antenna origin R0, which 
corresponds to the antenna that is collecting the reflected GPS signal off the lake 
surface:

G G Gr r rP R P C C Ri i/ / /, ,0 0 0 0! " (D6)

where Gr C Ri0 0, /  is obtained by summing the relevant position vectors in Equations
(A1)–(A3).

To combine optical RGB values from multiple cameras, we use their region of 
overlap as determined by the pixel positions Gr P R/ 0  of camera i that lie within the
convex hull of the pixel positions of camera j. If there is no overlap in the FOV, a 
method such as that described by Reinhard et al. (2001) may be used. For each time 
point, we compute the sample means and standard deviations of the R, G, and B 
histograms of each of the cameras within the region of overlap. We designate one 
camera as the primary (camera 2 in this work). We normalize the entirety of each 
secondary camera’s histograms to more closely match that of the primary camera 
by scaling each channel (R, G, and B) with the mean and standard deviation of the 
primary camera’s histograms from the overlapping region. After the entire image 
from the secondary camera has been color-matched, the primary camera’s pixel 
RGB values are retained only in the overlapping region. The east and north coordi-
nates of the cropped and color-normalized Gr P R/ 0  may be plotted on an east-north
map with their associated RGB values (as in Figure 6) and are compared with the 
perimeter of the first FZ Gr FZ R/ 0.
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