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Abstract Let L/K be a Galois extension of number fields with Galois group G. We show that if the density

of prime ideals in K that split totally in L tends to 1/|G| with a power saving error term, then the density

of prime ideals in K whose Frobenius is a given conjugacy class C ⊂ G tends to |C|/|G| with the same power

saving error term. We deduce this by relating the poles of the corresponding Dirichlet series to the zeros of

ζL(s)/ζK(s).
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1 Introduction

This paper arose from an amusing observation by MathOverflow user Lucia [10], which informally says

that if the density of primes congruent to 1 modulo q tends to 1/ϕ(q) rapidly, then for all (a, q) = 1 the

density of primes congruent to a modulo q also tends to 1/ϕ(q) rapidly. Here, the density refers to the

actual proportions. More precisely, for any σ > 1/2, the asymptotic

ψ(x; q, 1) = ψ(x)/ϕ(q) +Oε(x
σ+ε) (1.1)

implies that

ψ(x; q, a) = ψ(x)/ϕ(q) +Oε(x
σ+ε) for all (a, q) = 1. (1.2)

The reason is simple. The relation (1.1) implies that the function∑
χ mod q
χ ̸=χ0

L′

L
(s, χ) =

∫ ∞

1

(
ψ(x, χ0)− ϕ(q)ψ(x; q, 1)

) s

xs+1
dx

extends analytically to the half-plane

Hσ := {s ∈ C : ℜ(s) > σ}.
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That is, the product of the Dirichlet L-functions L(s, χ) (χ ̸= χ0) has no zero or pole in Hσ. As these

L-functions are entire, none of them has a zero or pole in Hσ, and (1.2) follows easily.

Our goal is to show that this phenomenon persists in the context of Chebotarev’s density theorem [4,5]

(see [11, Chapter VII, Theorem 13.4]), even though the underlying Artin L-functions are only conjectured

to be entire (Artin’s conjecture).

Corollary. Let L/K be a Galois extension of number fields, with G denoting the Galois group. Suppose

σ > 1/2 is such that for any ε > 0 and x > 2 the asymptotic formula∑
N(p)6x

Frob(p)={1}

logN(p) =
1

|G|
∑

N(p)6x

logN(p) +O(xσ+ε)

holds. Here the sums are over unramified prime ideals of oK , and N(p) := |oK/p| is the absolute norm

of p. Then, the Artin L-functions L(s, χ) associated to the non-trivial irreducible characters of G are

analytic in the half-plane Hσ and have no zeros there. Consequently, for any conjugacy class C of G we

have ∑
N(p)6x

Frob(p)=C

logN(p) =
|C|
|G|

∑
N(p)6x

logN(p) +O(xσ+ε).

Remark 1.1. If H �G is a normal subgroup, then the above result applies equally well to the Galois

extension LH/K in place of L/K. It follows that if the density of prime ideals in K whose Frobenius

lies in H tends to |H|/|G| with a power saving error term, then the density of prime ideals in K whose

Frobenius lies in CH tends to |CH|/|G| with the same power saving error term. We are grateful to the

referee for pointing out this formal generalization.

Lucia’s observation pertains to the special case when K = Q and L = Q(e2πi/q). In the next section

we shall formulate a more precise result from which the corollary above will follow. As we shall see,

the phenomenon admits a clean explanation by Heilbronn characters [6, 8], and leads to a transparent

proof of the density theorem itself. In particular, we shall use a result of Foote and Murty [7, Section 3,

Proposition] (see [6, Proposition 2.1]), which refines Aramata’s theorem [1] (see [9, Chapter XVIII,

Theorem 8.4]) and ultimately relies on Artin’s reciprocity law [2] (see [11, Chapter VI, Theorem 5.5]).

2 Statement of the result

As above, let L/K be a Galois extension of number fields with Galois group G := Gal(L/K). For each

conjugacy class C ⊂ G, consider the Dirichlet series

F (s, C) :=
∑

Frob(p)=C

logN(p)

N(p)s
− |C|

|G|
∑
p

logN(p)

N(p)s
,

which converges absolutely in the half-plane H1. Here p runs through the unramified prime ideals of oK ,

and N(p) := |oK/p| is the absolute norm of p. The Chebotarev density theorem, in its weakest analytic

form, states that F (s, C) tends to a finite limit as s→ 1+.

For our purposes, F (s, C) is essentially the same as

H(s, C) := −|C|
|G|

∑
χ∈Irr(G)
χ ̸=χ0

L′

L
(s, χ)χ(gC), s ∈ H1,

where χ runs through the non-trivial irreducible characters of G. Here L(s, χ) is the Artin L-function

of χ, and gC is any element of the conjugacy class C. Indeed, the Schur orthogonality relation [9,

Chapter XVIII, Theorem 5.5] shows that F (s, C) −H(s, C) is represented by an absolutely convergent

Dirichlet series in H1/2, hence it extends to a bounded analytic function in Hσ for any σ > 1/2.
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Recall Brauer’s theorem [3, Theorem 1] (see [9, Chapter XVIII, Theorem 10.13]), which shows that

each L(s, χ) is meromorphic on C. Hence H(s, C) is meromorphic on C with simple poles, and it follows

that F (s, C) extends meromorphically to H1/2 with (at most) simple poles. A natural question arises:

where are the poles and how large are the corresponding residues? The Chebotarev density theorem tells

us that s = 1 is not a pole. Artin’s conjecture and the Riemann hypothesis for Artin L-functions imply

that F (s, C) has no pole at all in the half-plane H1/2.

Our result relates the poles and residues of F (s, C) in the half-plane H1/2 to the zeros of ζL(s)/ζK(s)

in H1/2. Since L/K is Galois, Aramata’s theorem shows that ζL(s)/ζK(s) is an entire function. Since

ζK(s) and ζL(s) both have simple poles at s = 1, we know moreover that ζL(s)/ζK(s) is non-zero at

s = 1. Thus the result stated below can be read as a supplement to (or refinement of) Chebotarev’s

density theorem.

Theorem. For any point s0 ∈ H1/2, the following statements are equivalent:

(a) s0 is a zero of ζL(s)/ζK(s);

(b) s0 is a pole of F (s, {1});
(c) s0 is a pole of F (s, C) for some conjugacy class C ⊂ G;

(d) s0 is a zero or pole of L(s, χ) for some non-trivial χ ∈ Irr(G);

(e) s0 is a zero of L(s, χ) for some non-trivial χ ∈ Irr(G).

Moreover, ∑
C

|G|
|C|

∣∣∣ res
s=s0

F (s, C)
∣∣∣2 =

∑
χ∈Irr(G)
χ ̸=χ0

(
ord
s=s0

L(s, χ)
)2

6
(
ord
s=s0

ζL(s)
)2

−
(
ord
s=s0

ζK(s)
)2

. (2.1)

3 Proof of the Theorem

We begin by proving the key relation (2.1). By our initial remarks,

res
s=s0

F (s, C) = res
s=s0

H(s, C) = −|C|
|G|

∑
χ∈Irr(G)
χ ̸=χ0

(
ord
s=s0

L(s, χ)
)
χ(gC), (3.1)

hence, ∑
C

|G|
|C|

∣∣∣ res
s=s0

F (s, C)
∣∣∣2 =

∑
C

|C|
|G|

∣∣∣∣ ∑
χ∈Irr(G)
χ̸=χ0

(
ord
s=s0

L(s, χ)
)
χ(gC)

∣∣∣∣2

=
1

|G|
∑
g∈G

∣∣∣∣ ∑
χ∈Irr(G)
χ ̸=χ0

(
ord
s=s0

L(s, χ)
)
χ(g)

∣∣∣∣2.
Now the first part of (2.1) follows from the Schur orthogonality relation [9, Chapter XVIII, Theorem 5.2],

and the second part of (2.1) is a result of Foote and Murty [7, Section 3, Proposition] (see [6,

Proposition 2.1]) upon noting that ζK(s) = L(s, χ0). See also Remark 3.2 below.

The rest of the Theorem is straightforward. The implication (a) ⇒ (b) follows from the factorization

ζL(s)/ζK(s) =
∏

χ∈Irr(G)
χ̸=χ0

L(s, χ)χ(1). (3.2)

Indeed, if s0 is a zero of this meromorphic function, then it is a pole of the logarithmic derivative of the

function, which is −|G|H(s, {1}). Hence s0 is a pole of H(s, {1}), and of F (s, {1}) as well.
The implication (b) ⇒ (c) is trivial.

The identity (3.1), or alternatively the first part of (2.1), ensures that if some F (s, C) has a pole at

s0, then ords=s0 L(s, χ) must be non-zero for some non-trivial χ ∈ Irr(G). Thus (c) implies (d).
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If L(s, χ) has a zero or pole at s0 for some non-trivial χ ∈ Irr(G), then the second part of (2.1) shows

that the right-hand side of (2.1) is strictly positive. Hence s0 is a zero of ζL(s)/ζK(s), and by (3.2) it is

a zero of L(s, χ) for some non-trivial χ ∈ Irr(G) as well. Thus (d) implies (e), and the same argument

also gives that (e) implies (a).

The proof of the Theorem is complete.

Remark 3.1. There are other natural ways to see the equivalence of the five statements in the Theorem.

For example, (2.1) can be perceived as the analytic embodiment of (c) ⇔ (d) ⇒ (a). We have seen that

(a) ⇒ (b) follows from (3.2), while (b) ⇒ (e) clearly follows from (3.1), and (e) ⇒ (d) is trivial.

Remark 3.2. The crucial input in the proof above is the result of Foote and Murty that we quote.

This result can be formulated as the bound ⟨θG, θG⟩G 6 θG(1)
2, where

θG :=
∑

χ∈Irr(G)

(
ord
s=s0

L(s, χ)
)
χ

is the Heilbronn character of G relative to s0. Foote and Murty assume that s0 ̸= 1, and they actually

prove that |θG(g)| 6 θG(1) holds for all g ∈ G. This stronger bound relies on two fundamental properties.

First, the restriction of θG to a subgroup H 6 G equals θH . Second, the Heilbronn character of a cyclic

group is a character (not just a virtual character) by Artin’s reciprocity law. Indeed, putting H = ⟨g⟩,
and using the first property, then the second property, and then again the first property, we obtain

|θG(g)| = |θH(g)| 6 θH(1) = θG(1). For s0 = 1 the same argument works if we replace θG by

θG + χ0 =
∑

χ∈Irr(G)
χ̸=χ0

(
ord
s=1

L(s, χ)
)
χ.

The conclusion is that this modified Heilbronn character is zero, which is equivalent to Chebotarev’s

density theorem. Of course Artin’s reciprocity law is also present in our overall discussion via Brauer’s

theorem that Artin L-functions are meromorphic.

Remark 3.3. One can also apply Heilbronn’s idea to the familiar function

UG(s, g) :=
∑

χ∈Irr(G)

L′

L
(s, χ)χ(g), s ∈ H1, g ∈ G.

Namely, by Frobenius reciprocity, the restriction of UG(s, ∗) to a subgroup H 6 G equals UH(s, ∗). Hence,

by Artin reciprocity, UG(s, g) is meromorphic on C with simple poles, and it has a simple pole at s = 1

with residue −1. Using also
L′

L
(s, χ) = ⟨UG(s, ∗), χ⟩,

one obtains a weak form of Brauer’s theorem: each L′(s, χ)/L(s, χ) is meromorphic on C with simple

poles, and for χ ̸= χ0, the point s = 1 is not a pole. From this, one can derive a slightly weaker version

of the main Theorem without using Brauer’s theorem: (a), (b), (c) are equivalent to each other and to

the statement that s0 is a pole of L′(s, χ)/L(s, χ) for some non-trivial χ ∈ Irr(G). For a self-contained

argument along these lines, see the lecture slides at https://ntrg.math.unideb.hu/GH2023Talk.pdf.

4 Deducing the Corollary

Note that

F (s, {1}) =
∫ ∞

1

( ∑
N(p)6x

Frob(p)={1}

logN(p)− 1

|G|
∑

N(p)6x

logN(p)

)
s

xs+1
dx,

so that the hypothesis in the Corollary implies that F (s, {1}) extends analytically to the half-plane Hσ.

By the implication (d) ⇒ (b) of our Theorem, it follows that all the Artin L-functions L(s, χ) with

https://ntrg.math.unideb.hu/GH2023Talk.pdf
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non-trivial χ ∈ Irr(G) extend analytically to this half-plane Hσ and have no zeros there. Arguing as in

the proof of the prime number theorem, it follows that for every non-trivial χ ∈ Irr(G) one has∑
N(p)6x

χ(Frob(p)) logN(p) = O(xσ+ε)

for any ε > 0. The Schur orthogonality relation [9, Chapter XVIII, Theorem 5.5] gives∑
N(p)6x

Frob(p)=C

logN(p)− |C|
|G|

∑
N(p)6x

logN(p) =
|C|
|G|

∑
χ∈Irr(G)
χ ̸=χ0

χ(gC)
∑

N(p)6x

χ(Frob(p)) logN(p),

and the conclusion of the Corollary follows.
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