
SECRE: Surrogate-based Error-controlled Lossy

Compression Ratio Estimation Framework

Arham Khan,∗ Sheng Di,† Kai Zhao,‡ Jinyang Liu,§ Kyle Chard,∗ Ian Foster,∗ Franck Cappello†¶

∗University of Chicago, Chicago, IL, USA
†Argonne National Laboratory, Lemont, IL, USA
‡Florida State University, Tallahassee, FL, USA

§ University of California, Riverside, Riverside, CA, USA
¶University of Illinois Urbana-Champaign, Urbana, IL, USA

arham@uchicago.edu, sdi1@anl.gov, kzhao@cs.fsu.edu, jinyang.liu@ucr.edu, chard@uchicago.edu,

foster@anl.gov, cappello@mcs.anl.gov

Abstract—Error-controlled lossy compression has been effec-
tive in reducing data storage/transfer costs while preserving
reconstructed data fidelity based on user-defined error bounds.
State-of-the-art error-controlled lossy compressors primarily fo-
cus on error control rather than compression size, and thus,
compression ratios are unknown until the compression operation
is fully completed. Many use cases, however, require knowledge of
compression ratios a priori, for example, pre-allocating appropri-
ate memory for the compressed data at runtime. In this paper,
we propose a novel, efficient Surrogate-based Error-controlled
Lossy Compression Ratio Estimation Framework (SECRE), which
includes three key features/contributions. (1) We carefully design
the SECRE framework, which, in principle, can be applied to
different error-bounded lossy compressors. (2) We implement
a compression ratio estimation method for four state-of-the-
art error-controlled lossy compressors—SZx, SZ3, ZFP, and
SPERR—by devising a corresponding lightweight compression
surrogate for each. (3) We evaluate the performance and accuracy
of SECRE using four real-world scientific simulation datasets.
Experiments show that SECRE can obtain highly accurate com-
pression ratio estimates (e.g., ∼1% estimation errors for SZx)
with low execution overhead (e.g., ∼2% estimation cost for SZx).

Index Terms—error-controlled lossy compression, scientific
datasets, compression ratio estimation, sampling

I. INTRODUCTION

Scientific simulations and advanced instruments produce

enormous amounts of data that are relied upon for post hoc

analysis. For instance, the most widely used climate simulation

package—Community Earth System Model (CESM) [1]—can

produce 300+ TB of data in the first 30 ensemble simu-

lations. Significantly reducing the size of scientific datasets

can address these and other substantial issues [2] such as

inadequate storage space, limited I/O or network bandwidth,

and insufficient memory capacity to run simulations. Error-

controlled lossy compression (or error-bounded compression)

[3]–[7] has been arguably the most efficient method to resolve

issues associated with big data, because not only can it obtain

high compression ratios (e.g., 100X) but it can also allow users

to control the data distortion based on a specified error bound.

Corresponding author: Sheng Di, Mathematics and Computer Science
Division, Argonne National Laboratory, 9700 Cass Avenue, Lemont, IL
60439, USA

Existing error-controlled lossy compressors, are typically

designed towards a certain error-control mode (such as limiting

point-wise error using the absolute error, relative error, or peak

signal to noise ratio (PSNR) [8]), which leaves a significant

gap for use in practice: users must foresee the compression

ratio before compression is completed in many use cases.

Here, we present three practical use cases that motivate the

need to predict compression ratios: Use-case 1: Parallel HPC

simulations (e.g. CESM, Hurricane-ISABEL [1], [9]) produce

enormous volumes of data that must be stored for later use.

Unfortunately, file systems (and user allocations) are limited

and thus it is crucial to set the compression ratio with a strict

lower bound to avoid simulation failures due to insufficient

storage. Use-case 2: error-bounded lossy compression - where

floating point error in reconstructed data is limited according

to user requirements - has been explored to reduce data transfer

costs on wide area networks (WANs) [10], [11] to foresee the

data transfer time (to determine whether it is worthwhile to

compress data), accurately predicting the compression ratio is

a critical step. Use-case 3: In many I/O or data communication

use-cases that leverage data compression techniques, user

code must allocate a fixed amount of memory beforehand

to hold the compressed data, which also requires an accurate

estimation of compression ratio.

In this paper, we aim to develop an efficient online error-

controlled compression ratio estimation framework. The es-

timation framework should be generic and compatible with

different error-bounded lossy compression models. The fun-

damental idea is to sample a small portion of data from

the full dataset and emulate the compression operation (via

a ‘surrogate function‘) on the sampled dataset, such that

the compression ratio can be inferred accurately with little

computational cost.

Such an estimation framework, in principle, can be applied

to any error-controlled lossy compressors to estimate com-

pression ratios accurately. However, we must address three

grand challenges. 1) An efficient sampling method needs to

be devised carefully. The sampling rate should be minimal

(to minimize execution overhead), while also covering as

many regions of the full dataset as possible (to maximize the

132

2023 IEEE 30th International Conference on High Performance Computing, Data, and Analytics (HiPC)

2640-0316/23/$31.00 ©2023 IEEE
DOI 10.1109/HiPC58850.2023.00029

20
23

 IE
EE

 3
0t

h
In

te
rn

at
io

na
l C

on
fe

re
nc

e
on

 H
ig

h
Pe

rf
or

m
an

ce
 C

om
pu

tin
g,

 D
at

a,
 a

nd
 A

na
ly

tic
s (

Hi
PC

) |
 9

79
-8

-3
50

3-
83

22
-5

/2
3/

$3
1.

00
 ©

20
23

 IE
EE

 |
 D

O
I:

10
.1

10
9/

HI
PC

58
85

0.
20

23
.0

00
29

Authorized licensed use limited to: Argonne National Laboratory. Downloaded on July 20,2024 at 00:49:54 UTC from IEEE Xplore. Restrictions apply.

accuracy of the prediction). Moreover, the sampling method

must be compatible with the principle of the corresponding

compressor’s design, which will be analyzed in detail later in

the paper. 2) The design of the surrogate compressor must be

customized based on the specific lossy compression principles,

which requires an in-depth and comprehensive investigation of

the target lossy compressors, requiring significant research and

development effort. 3) The surrogate functions must not only

be accurate but also lightweight in order to obtain an efficient,

accurate estimation.

Our key contributions are three-fold:

• We propose a generic online surrogate-based compression

ratio estimation framework (SECRE) which is the first

fast, generic runtime lossy compression ratio estimation

framework to the best of our knowledge. Note that the

SECRE framework is not a trial-and-error method (unlike

FraZ/OptZConfig [12], [13]) and does not depend on

the characterization of compressors’ internal data features

(unlike Lu et al’s model for SZ1.4 [14]) or preliminary

model training based on masses of existing datasets.

• We design and implement lightweight surrogates for four

cutting-edge error-controlled lossy compressors (SZx [5],

SZ3 [4], [15], ZFP [6] and SPERR [16]). All four cus-

tomized algorithms can achieve highly accurate compres-

sion ratio estimation with little computation overhead.

• We comprehensively evaluate SECRE based on the four

cutting-edge error-controlled lossy compressors, using

four real-world scientific simulation datasets, to show the

advantage of our solution over prior work.

The remainder of the paper is organized as follows. Section

II discusses related work. Section III formulates the research

problem. Section IV presents the design overview. Section V

describes how we apply SECRE to different lossy compres-

sors for obtaining fast, accurate ratio estimation. Section VI

presents and analyzes the performance of SECRE on real-world

datasets. Finally, Section VII summarizes our work.

II. RELATED WORK

In this section, we discuss contemporary compression ratio

estimation work in two relevant categories: image-based lossy

compression and error-controlled lossy compression.

The compressibility of image data via lossy compression has

been studied for decades. Rate–distortion theory [17] provides

a theoretical analysis of the compression ratio that can be

achieved under a lossy compression method (a.k.a., lossy

source coding). Blahut and Arimoto [18], [19] proposed the

Blahut–Arimoto algorithm, which is an iterative algorithm to

compute the rate distortion for lossy compression. Smieja and

Tabor [20] performed a theoretical analysis for estimating the

entropy of the lossy compression especially in the context of

image compression, also considering the permitted distortion

on any symbol under an error-control family. These theoretical

analyses, however, cannot be used to estimate the compression

ratios for specific error-controlled lossy compressors because

of their specific design principles with diverse features.

Recently, there emerged a few studies on the estimation of

compression ratios of error-controlled lossy compressors for

scientific datasets. Lu et al. [14] proposed a sampling-based

compression ratio estimation model for ZFP [6] and SZ1.4

[21]. There are several key differences between their model

and our framework. (1) Their model focused on only absolute

error bound, while we investigate several error-control modes.

(2) Their model treats the dataset as a 1D array (e.g., perform a

1D random block sampling), which may cause large estimation

errors for multi-dimensional datasets (as shown later in this

paper). (3) For SZ1.4, they use a Gaussian distribution to

approximate the quantization bins according to their offline

analysis, then estimate Huffman tree size and encoding size.

Their method generates estimates of the quantization bin his-

togram by compressing a naively-aggregated sampled dataset.

Since the naive sampling procedure may cause unexpected dis-

continuity on the edges of the sampled blocks, the prediction

would be inconsistent between the sampled dataset and the

original full dataset, leading to large estimation errors. Wang

et al. [22] proposed to extrapolate the compression ratios for

SZ across error bounds from 10−9 to other error bounds, and

proposed a ratio estimation method for ZFP by analyzing the

weighted average of BitsPerBitplane for each block. However,

their solution still suffers from very large estimation errors

(up to 100% in percent estimation error) as shown in their

evaluation results. Jin et al. [23] proposed a quality estimation

model (including estimating compression ratio) for prediction-

based compressors. Their solution, however, is tailored for

the prediction-based compression model and also suffers from

higher estimation errors in some datasets than our solution (to

be demonstrated later). Liu et al. [24] present a quality esti-

mation method in their proposed compressor, which constrains

the estimation on small sampled data blocks.

III. PROBLEM FORMULATION

We formulate the research problem as follows. Suppose we

are given a scientific dataset (denoted by D), which contains

N data points d1, d2, · · · , dN . We are also given a set of

conditions by the user regarding the compression, including

the user-specified lossy compressor (e.g., SZ3, SZx, ZFP),

user-specified error-control mode (e.g., absolute error bound,

relative error bound, peak signal-to-noise ratio (PSNR), and

precision), and user-specified error bound (e) which specifies

the acceptable point-wise reconstruction error. We denote the

compressed dataset as D̂ and the decompressed data points

(i.e. the data as reconstructed after compression) as d̂i, where

i=1,2,3,· · · ,N .

We consider the following error-control methods:

• Absolute error bound (ABS): ABS is perhaps the simplest

and most widely used error control method. With ABS,

the absolute difference between a datapoint, di, and

its reconstructed counterpart, d̂i, must always respect a

maximum threshold e:

|di − d̂i| ≤ e (1)

• Relative error bound (REL): REL (denoted as ǫ in our

paper) is used by many applications/use cases in practice.

133

Authorized licensed use limited to: Argonne National Laboratory. Downloaded on July 20,2024 at 00:49:54 UTC from IEEE Xplore. Restrictions apply.

A relative error bound of ǫ ∈ [0, 1] denotes the absolute

error bound as a percentage of the data range, that is it

corresponds to the absolute error bound e:

e = ǫ · (max(D)−min(D)) (2)

where max(D) and min(D) refer to the largest value and

smallest value in the dataset, respectively.

• Peak signal-to-noise ratio (PSNR): PSNR is commonly

used by the visualization community to evaluate the

quality of the reconstructed data. It is defined:

PSNR(D,D′) = −20 log10
RMSE(D,D′)

max(D)−min(D)
(3)

where RMSE(D,D’) refers to the root mean squared

error (RMSE) between the original dataset and the de-

compressed dataset. In general, the higher the PSNR,

the higher the precision. SZ-series compressors (such as

SZ3) support fixed-PSNR mode [25] based on a derived

formula that can map the required PSNR to an absolute

error bound.

• Precision: Precision is essentially the number of bits to

be preserved during the compression, so its value is an

integer. The higher the precision the better the quality

of the reconstructed data. Precision control is an error-

control method offered in ZFP compressor [6] where

floats are truncated at the mantissa to compress blocks

of data.

Our research objective is to develop a generic, efficient,

online framework that can be used to estimate the compres-

sion ratio for different error-bounded lossy compressors with

diverse error-control modes based on different given datasets.

The compression ratio (denoted as R) is defined as the ratio

of the original dataset’s size to the compressed data size:

R = N ·s
C

(4)

where s refers to the number of bytes used per data point

in the original raw dataset (e.g., s = 4 for the single-

precision floating-point dataset), and C refers to the number of

bytes in the compressed dataset. We distinguish between the

true compression ratio on the full dataset and our estimated

compression ratio obtained using our surrogates as follows:

we denote the measured compression ratio using the true

compressor and original dataset as Rm and our surrogate-

estimated compression ratio on the sampled dataset as Rs.

Then, our research target can be written as the following

formula:
min |Rm−Rs|

Rm

given a dataset D,

a lossy compressor Z,

an error-control mode Γ.

(5)

where Z refers to an error-controlled lossy compressor such

as SZ3, SZx, ZFP, and SPERR, and Γ is one of the aforemen-

tioned error-control modes (e.g., absolute error bound).

Note that the compression ratio estimation framework would

run with an embarrassing parallel mode in nature, meaning

that the scalability is not a concern at all. This is because

an error-bounded lossy compressor is often running on each

rank/processor to compress local data individually in a parallel

simulation. In fact, many practical experiments about scientific

lossy data compression were conducted in an embarrassing

parallel mode. In these works [24], [26], [27], for example,

each MPI rank handles the local data compression individ-

ually, followed by a parallel data writing to the global file

system. Another typical example is data compression used in

HDF5 [28], in which each data chunk would be compressed

individually by the corresponding H5Z filter [29]. As such,

in this paper, we mainly focus on how to efficiently estimate

the compression ratio for a given local dataset, as depicted in

Formula (5).

IV. DESIGN OVERVIEW OF SECRE

As shown in Figure 1, the SECRE framework is composed

of two key steps: sampling and surrogate. The sampling stage

applies a particular sampling method to sample a small portion

of the data points from the full dataset. The surrogate stage

aims to simulate the compression process on the sampled

dataset. We use the simulation to infer the compression ratio

given a user-specified error-control mode and error-bound

value.

�������	 �
���	�
�

�������	
���
�����	
��������	��
��

�������	����������	�����	
��������	������

�����	� ��
	��������	
�����

�!"	���������

�!#	���������

!$�	���������

��%&&	���������

�����
'������

%��������

�&

%������������	
�������

���������������

Fig. 1. Design Overview of SECRE Framework

The design of the SECRE framework may appear simple;

however, accurately estimating compression ratios is challeng-

ing because 1) it is non-trivial to obtain a representative sample

given the different data processing methods used by com-

pressors and 2) it is non-trivial to develop accurate surrogate

functions for each compressor. We propose the following rules

to obtain accurate compression ratio estimates, which will be

detailed in the following text.

• The sampling method must be compatible with the method

used by the lossy compressor to process the data. For

example, SZ3 scans and processes the data compression

point by point via a multi-level topology, so the corre-

sponding sampling method used by our sampling stage

should follow the same topology in order to emulate the

compression as closely as possible. Similarly, ZFP per-

forms a multi-dimensional 4k-block-wise compression,

such that we must correspondingly perform a multi-

dimensional 4k-block-wise sampling, where k refers to

the number of dimensions.

• The surrogate method aims to estimate the number

of bytes in the compressed dataset by processing the

sampled data. The surrogate methods must be both

lightweight (in order to produce estimates quickly) and

accurate. In order to produce accurate estimates, it is

134

Authorized licensed use limited to: Argonne National Laboratory. Downloaded on July 20,2024 at 00:49:54 UTC from IEEE Xplore. Restrictions apply.

important that either the surrogate method closely mimics

how the compression is done or that we can derive an

algorithm that can essentially replace the compression

operations.

V. COMPRESSION RATIO ESTIMATION FOR DIFFERENT

ERROR-CONTROLLED LOSSY COMPRESSORS

We describe how we implement the compression ratio esti-

mation method for different state-of-the-art lossy compressors

following the SECRE framework. Specifically, each subsection

focuses on a specific error-controlled lossy compressor. We

first describe the best-fit sampling method and then present

our designed surrogate function for each compressor.

A. Applying SECRE for SZx

Here, we describe how we develop the compression ratio

(CR) estimation method for SZx. In what follows, we first

review SZx’s compression pipeline and key features, which

are the foundations of the design of our estimation method.

In Figure 2, the top subfigure shows the compression

pipeline of SZx. SZx splits the whole dataset into many small

1D fixed-length blocks and processes each block individually.

For each block, SZx computes a median value (i.e., the mean

of minimum value and maximum value in the block), based

on which all the blocks can be split into two categories: either

constant blocks (i.e., all the data points di in the block can

be approximated by the median value (denoted as μ) safely

according to user-specified error bound ε) or non-constant

blocks. Each constant block can be represented by its median

value, while the non-constant blocks need to be compressed by

IEEE 754 binary format analysis, which involves XOR leading

zero byte analysis (to remove redundant bytes), bit-truncation

(to remove unnecessary bits based on error bound), and right

shift operation to avoid expensive bit-truncation operation. We

refer readers to the SZx paper [5] for more details.

The SECRE-based SZx compression ratio estimation is

illustrated in the bottom subfigure of Figure 2. The highlighted

blue boxes represent our designed surrogate subroutines. As

mentioned previously, the basic idea is to emulate the com-

pression procedure over the sampled data with lightweight

surrogates, so that we can infer compressed data size.

As presented in the figure, our algorithm performs a uniform

block-wise sampling with the same block size as consistent

with the SZx compression setting. Specifically, the block size

is set to 128 by default in SZx, so we set it to 128 in

our implementation. Then, we check each sampled block and

calculate the total number of constant blocks, and estimate

the compressed data size for non-constant blocks. Finally, the

algorithm output is the compression ratio based on Formula

(6), which will be derived in detail in the following text.

Corollary 1. The compression ratio (CR) of SZx can be

accurately estimated by the following formula.

R′ = Bs
M/J+H+(1+(1

4
+P)·B−Q)·(1−λ) (6)

where s is the number of bytes used per data point in the

original raw dataset, B is the block size, M is metadata cost

�
�
�
�
�
��
	�
�
�
�
	

�
�	
�
��
	�
�
�
	�
�
"
	

��
�
�
�
��
�
	(
�

�������	������������������
��������

$
�
�	
�
�
�

)
��
�

�����	

����

��������)���

&�����	(���	� ��	
)���
	��+	,���(,-.

�������	�%%%	
/01	����2���	���	
� ��)���

�
�
�
�
�
��
�
�
��
	

�
�
�
�
��
�
�
�
�
	

�
�
��
	�
��
�
)
��
�

�

3�����	

����������	

����

4�����������)���

�
�

�

��+	,���(,5.

�
!
�
��
�
�
�
��
�
�
��
�
��
��
�
��
�
�

�
�
�
�
�
��
	�
�
�
�
	

�
�	
�
��
	�
�
�
	�
�
"
	

��
�
�
�
��
�
	(
�

�������	���������������
�����������
"�
"������������
������������������

$
�
�	
�
�
�

)
��
�

 ��������)���

�)�
���
�	66��+	,���(,-.

%�������	����
��������)���
 �	
����������	��7�	

�
�
��
�
��
��
	�
&
	

)
2
	$
�
��

�
��
	�
8
�

3�����	�&

4�����������)���

�
�

�

��+	,���(,5.

�
!
�
��

��
�
	
�

�
��
�
�
�
�
�

�
�
��
�

�
�
�

�
�
�

�����	

����

Fig. 2. Comparison of SZx compression pipeline vs. the sampling+surrogate-
based CR estimation method (blue boxes indicate the surrogate routines)

of the whole dataset, J is the number of sampled blocks,

H is per-block-overhead, P denotes the average number

of requested bytes per block, Q is the average number of

xor lead bytes, and λ denotes the percentage of constant

blocks.

Proof. According to the definition of compression ratio as

shown in Formula (4), SZx’s compression ratio R′ can be

written as Formula (7).

R′ = JBs
C

(7)

where J refers to the number of blocks sampled from the full

dataset (i.e., J= N
BK where K is the sampling stride) and C

denotes the compressed data size in bytes.

We present how to calculate C as follows. SZx’s compressed

data is composed of three portions:

• Metadata (denoted by M): It includes version number

(3 bytes), random access mode marker (1 byte), size

of block (1 byte), and the number of constant blocks

represented by size t type (8 bytes). So, M=13.

• Indispensable storage overhead per block (denoted by

H): It includes storing the median value (s bytes) and a

bit-wise status to represent whether the block is constant

or not (1 bit). So, H = s + 1/8.

• The number of bytes generated by non-constant

blocks. It includes three parts. The first part records the

required number of bits calculated based on the user-

specified error bound and the value range of the block

(1 byte), which can be thought of as the metadata of

the block. The second part is a 2bit-per-point state array

to store the number of XOR lead zero bytes (2 bits per

point, i.e., 1/4 byte per point) for each data point. The

third part includes the necessary/significant bits used to

represent each data point.

Hence, the compressed data size (in bytes) for the non-

constant blocks can be written as:

C = M + JH + (1 + 1
4B + PB −Q)(1− λ)J (8)

where P denotes the average number of requested bytes per

block and Q means the average number of xor lead bytes.

Combining Equation (7) and Equation (8) leads to Formula

(6).

135

Authorized licensed use limited to: Argonne National Laboratory. Downloaded on July 20,2024 at 00:49:54 UTC from IEEE Xplore. Restrictions apply.

In terms of the Formula (6), we can estimate the com-

pression ratio for SZx efficiently. We present the pseudocode

in Algorithm 1. Line 1 is to sample the data. Line 2-5 is

initializing the variables for the compression ratio estimation.

Line 8 is counting the number of constant blocks in the

sampled data set. Line 10-25 calculates the compressed size

for non-constant blocks. The algorithm finally calculates the

overall estimated compression ratio in line 26.

Algorithm 1 COMPRESSION RATIO ESTIMATION FOR SZX

Input: dataset D, user-specified error bound ε

Output: estimated compression ratio R′

1: Block-wise Sampling with stride K; /*K=20 in our implementation*/
2: nbConstantBlocks ← 0; /*Initialize # constant blocks*/
3: sumReqByteCount ← 0;
4: metadata ← 13B/N ; /*B: blocksize, N : # data points in D*/
5: blockCost ← s + 1/8; /*e.g., for single-prec float, blockCost=33/8*/
6: for each sampled block do

7: if (radius ≤ ε) then
8: nbConstantBlocks ++; /*Calculate total # of constant blocks*/
9: else

10: Calculate the medianValue and radius for the block;
11: Compute reqBitCount based on radius and medianValue;
12: α ← reqBitCount/8; /*α: # of requested bytes*/
13: resiBitCount←reqBitCount%8; /*resiBitCount: # of residual bits*/
14: rightShiftBits ← 8 - resiBitCount;
15: Adjust α based on rightShiftBits; /*α++ if rightShiftBits �=0*/
16: sumReqByteCount += α;/*Calculate total # of requested bytes*/
17: for each data point di in the block do
18: Calculate β based on di XOR di−1; /*β: # of lead zero bytes*/
19: Adjust β according to α; /*β must be ≤ α*/
20: sumXORLead += β; /*Calculate total # of xor lead zero bytes*/
21: end for
22: end if
23: end for
24: avgReqNbBytes = sumReqByteCount/nbNonConstantBlocks;
25: avgXORLead = sumXORLead/nbNonConstantBlocks;
26: Calculate R′ based on Formula (6);

B. Applying SECRE for SZ3

SZ3 is a prediction-based lossy compressor that has distinct

design principles compared with bit-manipulation-based com-

pressors (such as SZx) and transformation-based compressors

(such as ZFP and SPERR). In this subsection, we first intro-

duce the design of SZ3, and then discuss how we estimate the

compression ratio for SZ3.

SZ3 is designed based on a typical prediction-based error-

bounded lossy compression framework, which has been used

by many other compressors such as SZ1.4 [21], SZ2 [27], and

FPZIP [30]. SZ3 exhibits much better compression quality

than other prediction-based compressors according to prior

studies [4], [15], so we focus on SZ3 as the best exam-

ple of prediction-based compression in this paper. Basically,

SZ3 uses the interpolation method (both linear and cubic)

to approximate data points. Estimation errors are introduced

in the course of a customized linear-scale quantization con-

verting floating-point numbers to integers, which is lossless-

compressed by Huffman coding and Zstd [31]. Interpolation

proceeds by progressively covering all data points, initially

using very large strides to cover the dataset and gradually

converging to using each data point’s immediate neighbors

to estimate that point’s value. Each stride value is associated

with an ”interpolation level” and the processing at each level

concludes when the stride increments our current index over

the current dimension out of bounds. By performing this

algorithm over each dimension, we progressively cover every

point in the dataset. Using a set of fixed strides eliminates

the need to store location information for the reconstruction

procedure, thus saving additional space.

(a) Hurricane (field = U) (b) Miranda (field = veloci-
tyx)

Fig. 3. We can see that emulating interpolation with a high stride value
can accurately estimate the error distribution for SZ3 as if we had run full
compression. We show the distributions obtained by our surrogate and the
true distribution for the Hurricane-ISABEL and Miranda datasets.

SECRE is deeply customized with regard to the SZ3 ar-

chitecture in order to estimate the compression ratio of SZ3

accurately and efficiently. The estimation contains three steps:

• Step 1 (Zero-cost preprocessing). SECRE first locates the

data points that belong to the final level of SZ3, since the

final level serves as the best representation of the whole

dataset. In SZ3, the distance between neighbor data points

processed in each level is inversely proportional to the

level order. Before the final level, data points with all

even indexes are already processed. The remaining data

points which count for the majority of the data (75% for

2D datasets, and 87.5% for 3D datasets) will be processed

at the final level. As a result, the final level is the ideal

location to estimate compression errors via our surrogate

to avoid expensive computation.

• Step 2 (Sampling). Sampling is needed to reduce the

data volume at the final level, further reducing runtime.

Uniform Individual Point Sampling (UIPS, as shown in

Figure 1) is applied in this step to trim the data points

uniformly in each dimension. The drop-out rate of UIPS

is configurable in SECRE and the default value is 5 which

means in each dimension, 5 data points will be reduced

to 1 (In a 3D case, the dataset will be reduced to 0.8% of

its original size). The default value is chosen to balance

the sampled size and sampled accuracy.

• Step 3 (Surrogate). In the last step, interpolation is

performed to approximate the sampled data. In SZ3, each

data point after interpolation is considered a known data

point at the following levels, and its value is adjusted

as the way it is decompressed, in order to supply the

same value to the following levels during compression

and decompression. In comparison, SECRE only handles

a tiny subset of the final level, such that most of the values

are not adjusted. In order to have similar interpolation

136

Authorized licensed use limited to: Argonne National Laboratory. Downloaded on July 20,2024 at 00:49:54 UTC from IEEE Xplore. Restrictions apply.

results as SZ3, SECRE brings offsets to the sampled

data to mimic the adjustment. It is observed in Figure

3 that the distribution of offsets differs between datasets

due to diverse data characteristics. As a consequence,

SECRE will first collect offsets by executing interpolation

on a small level that handles much less data than the

last level, and then apply offsets (by sampling uniformly

from the gathered distribution) to the sampled data before

the interpolation to simulate reconstruction error. Our

surrogate currently estimates the compression ratio until

the Huffman Encoding step of SZ3, omitting the lossless

ZSTD step due to the complexity of modeling ZSTD’s

behavior - our evaluation similarly compares only the

output of the Huffman Encoding step with [23].

C. Applying SECRE for ZFP

We first review the working principle of ZFP [6], and then

describe how we estimate the compression ratio for ZFP.

The basic idea of ZFP is to split the whole dataset into

fixed-size blocks (4k, where k is the number of dimensions),

and then perform a set of compression operations on each

block independently. The compression operations include four

key steps for each block: (1) align the values to have the same

exponent; (2) convert the values to a fixed-point representation;

(3) apply an orthogonal block transform to make the data

easier to encode; (4) embedded coding to significantly reduce

the data size.

In the following, we describe our compression ratio es-

timation method for ZFP. Since each block is processed

independently from one another in ZFP, our approach involves

two steps: (1) perform a uniform multi-dimensional block-wise

sampling where each sampled block has the size of 4k, which

is exactly consistent with the block size used in ZFP. Such a

design complies with the first rule we proposed in Section IV,

which is crucial to accurately estimate the compression ratio

for ZFP. (2) We assemble the sampled blocks to construct

a synthetic dataset, on which we perform an essential ZFP

compression1, which will output the estimated compression

ratio. Although the assembled dataset may lose smoothness

at the edge of the blocks (as illustrated in Figure 4 using

Nyx cosmology simulation dataset), this would not affect

compression ratio estimation because ZFP’s compression is

applied on the 4k-blocks individually, as described above.

It is worth noting that Lu et al. [14] also proposed the use

of block-wise sampling to estimate the compression ratio (CR)

for ZFP, however, our surrogate-based CR estimation method

advances prior work in the following facets. (1) Lu et al.’s

CR estimation applies 1D block-wise sampling, which may

suffer from large CR estimation errors for multi-dimensional

data compression. In comparison, our sampling method is

consistent with the multi-dimensional compression of ZFP,

so it can maintain the high accuracy of CR estimation, to

1The essential ZFP compression here means that we perform ZFP’s
compression on the dataset but ignore the final compressed data aggregation
step because our goal is to obtain the estimated compressed data size (or
compression ratio).

����������	�
�������
����������������������� �����������
�
����

Fig. 4. Full dataset vs. block-wise sampled dataset for Nyx [32]

be demonstrated later. (2) Lu et al.’s CR estimation method

supports only absolute error bound, while our SECRE-based

method supports different error control modes such as absolute

error bound and precision mode, to be shown later.

D. Applying SECRE for SPERR

SPERR [16] is a wavelet-transform-based error-bounded

lossy compressor that achieves outstanding rate-distortion on

a variety of data inputs [33] with relatively low compression

speed. The compression pipeline of SPERR is illustrated in the

left sub-figure of Figure 5. SPERR first transforms the original

input data into wavelet coefficients with CDF9/7 [34] wavelet

transform and then applies the lossy SPECK [35] encoding on

those coefficients to acquire a lossy compressed representation.

Additionally, an inverse wavelet transform has to be performed

on the SPECK lossy encoded coefficients, in order to detect

and correct out-bounded compression errors, so that the user-

specified point-wise error bound can be respected. The out-

bounded errors are quantized and the bins for error corrections

are stored together with the SPECK-encoded bitstream.

To estimate the SPERR compression ratio on certain input

data, SECRE leverages a tiny-scale compression test on the

whole input data. As demonstrated in the right sub-figure of

Figure 5, Our SECRE-based estimation first uniformly samples

several data blocks from the full dataset based on fixed block

size and certain sampling percentage/rate (e.g. 1% data are

sampled), then performs a surrogate version of SPERR com-

pression on those blocks. In the end, our algorithm calculates

the overall estimated compression ratio by aggregating the

compression ratio outputted by each sampled block.

VI. PERFORMANCE EVALUATION

We evaluate SECRE on four real-world scientific datasets.

We evaluate our solution with respect to (1) the estimation

error of the predicted compression ratio computed as the

percent error of the estimated compression ratio with respect

to the true compression ratio and (2) the run-time overhead

of SECRE (including sampling time) compared to the overall

compression time. We show that SECRE achieves state-of-the-

art estimation performance while outperforming comparable

models in terms of run-time efficiency.

A. Experimental Setup

1) System Environment: We conduct our experiments on

the Bebop supercomputer at Argonne National Laboratory

(ANL), evaluating our performance on a single node equipped

137

Authorized licensed use limited to: Argonne National Laboratory. Downloaded on July 20,2024 at 00:49:54 UTC from IEEE Xplore. Restrictions apply.

9������	:��������

9������	������������

��%�;	%�������

'������	������������
%������	

���

�������	9������

����2	�����

3������	����������

%����	
���

!���

����������	����	��������

3�������	���	����	�������

'���	��������

�������)���
�

9������	:��������

9������	������������

��%�;	%�������

%������	
���

!���

%��������	�����������
&����	��������

3�������	���	����	
�������

%
��
�
��
)
�
�
�
�
��
�
	�
�
�
��
��
�
�

�����������	���������

������������	����

�#������������������������

�#�����
���	�
��������
�����
���
���

Fig. 5. Comparison of SPERR compression pipeline vs. our approach that
relies on sampling and surrogate compression ration estimation

with an Intel Xeon Phi 7230 processor with 64 CPU cores,

96GB DDR4, and 16GB MCDRAM.

2) Compressors used in our evaluation: We evaluate our

approach with four cutting-edge error-bounded lossy compres-

sors: SZ3, ZFP, SZx, and SPERR. Each of them features a

particular advantage in different use cases. For example, SZ3

and ZFP are two fast error-bounded lossy compressors that can

achieve high compression ratios for many scientific datasets.

SZx is an ultra-fast error-bounded lossy compressor (generally

4-5X as fast as SZ3/ZFP), with compromised compression

ratios to a certain extent. SPERR is an emerging error-bounded

compressor taking advantage of the global wavelet transform

on the whole dataset, which can achieve extremely high

compression ratios in some cases but suffers from slow com-

pression. SZ1 and SZ2 are excluded because their compression

quality is always inferior to SZ3 according to prior studies [4],

[24].

3) Evaluation Datasets: Our evaluation includes four

widely used real-world scientific datasets spanning several

domains (such as cosmology and climate research).

• Miranda [36]: A snapshot of the 3D hydrodynamics

data obtained from running a large turbulence simula-

tion, which involves 7 fields in total, including pressure,

density, etc.

• NYX [32]: 3D mesh datasets generated by a cosmological

hydrodynamics simulation based on adaptive mesh. Each

snapshot contains 6 fields including dark matter density,

baryon density, temperature, velocity x, velocity y, and

velocity z.

• Hurricane ISABEL [9]: 48 snapshot datasets each con-

taining 13 fields, each of which is a 3D mesh dataset

(100x500x500). This dataset was produced by a weather

simulation of Hurricane Isabel.

• CESM-ATM [1]: climate simulation datasets generated

by a 1/4 degree high-resolution Community Atmosphere

Model (CAM) simulation.

We summarize the four scientific datasets in Table I.

TABLE I
DATASETS USED IN EXPERIMENTS

App. # fields Dimensions Total Size Domain

Miranda 7 256×384×384 1GB Turbulence

NYX 6 512×512×512 3.1GB Cosmology

CESM-ATM 77 1800×3600 1.9GB Climate

Hurricane 48x13 100×500×500 58.1GB Weather

4) Baselines: In the evaluation, we compare our SECRE

with two related works.

• Lu et al.’s model [14]: Lu et al. proposed a compression

ratio estimation method for SZ1.4 and ZFP. As for SZ1.4,

since their method is strictly dependent on SZ1.4’s design

principle, it cannot be extended to other versions of the

SZ compressor such as SZ2 and SZ3 directly. As such,

we compare our approach with the ZFP compressor. Since

their released code [37] is missing the compression ratio

estimation function for ZFP, we implemented the estima-

tion method according to their paper [14]: specifically,

their method samples the data points in a block of four

points and then performs ZFP compression. We also

implemented a version to support the precision mode for

the ZFP compressor based on their method.

• Jin et al.’s model [23]: Jin et al. developed an analytical

framework to estimate the compression ratio for the SZ

compression model. In their code, they studied how to

predict compression ratios based on three predictors:

Lorenzo [38], regression [27], and spline interpolation

[4], which are adopted by SZ1.4, SZ2, and SZ3, respec-

tively. In our evaluation, we compare our solution with

Jin et al’s method based on SZ3, because as mentioned

previously, SZ3 exhibits similar or better compression

quality over SZ1.4 and SZ2 according to prior studies

[4].

B. Evaluation on SZx

Figure 6 (a) and (b) shows the compression ratio estimation

errors (i.e., the percentage of estimation error over the mea-

sured compression ratios with the same error bound setting)

and the time cost of the estimation (i.e., the percentage of

the estimation time compared with the compression time),

respectively, based on different sampling strides. Each candle

stick shows the max error, 75% quantile error, average error,

25% quantile error, and min error. Figure 6 (a) shows that the

estimation errors increase with the sampling stride, which is

reasonable because a larger stride means lower portions of data

sampled for the analysis and thus lower accuracy in estimation.

In comparison, Figure 6 (b) demonstrates that the estimation

cost decreases with the sampling stride. We can clearly see

that even when adopting a very large sampling stride such as

40 (sampling rate would be 1/41≈2.43% at this stride), the

estimation error is still fairly low (less than 1% in the worst

case). In this situation, the corresponding estimation cost is

also extremely low (∼2%) compared with the compression

time. As such, the sampling stride = 40 seems to offer the

best tradeoff for SZx.

138

Authorized licensed use limited to: Argonne National Laboratory. Downloaded on July 20,2024 at 00:49:54 UTC from IEEE Xplore. Restrictions apply.

0%

1%

2%

3%

4%

5%

6%

10 20 40 80

E
rr

o
r

Sample Stride

max

75% quantile

average
25% quantile

min

(a) % Error

0%

2%

4%

6%

8%

10%

12%

14%

10 20 40 80

%
 C

m
p
r.

 T
im

e

Sample Stride

(b) Estimation Cost

Fig. 6. SECRE Performance for SZx

We also provide the normalized distribution (i.e., probability

density function (PDF)) of the estimation error and estimation

cost in Figure 7 and Figure 8, respectively, using two datasets

(CESM-ATM and Hurricane) each with dozens or hundreds

of data fields (files). We do not perform the distribution

analysis for Miranda and NYX because there are too few

fields for each of them (Miranda has 7 fields and NYX has 6

fields). Combining Figure 7 and 8, we can clearly see that the

estimation errors and estimation cost form a trade-off for SZx.

Specifically, the estimation error is very low (about 0.2-0.4%)

while suffering from relatively high estimation cost when the

stride is set to 20 (i.e., 5% data are sampled), compared with

the stride of 80, and vice versa.

 0

 0.2

 0.4

 0.6

 0.8

 1

0% 0.2%
0.4%

0.6%
0.8%

1% 1.2%
Error

cesm
hurricane

(a) Stride 20

 0

 0.2

 0.4

 0.6

 0.8

 1

0% 2% 4% 6% 8% 10%
12%

14%

Error

cesm
hurricane

(b) Stride 80

Fig. 7. SECRE % Error for SZx

 0

 0.2

 0.4

 0.6

 0.8

 1

3.5%
4% 4.5%

5% 5.5%
6% 6.5%

% Time

cesm
hurricane

(a) Stride 20

 0

 0.2

 0.4

 0.6

 0.8

 1

0.8%
0.9%

1% 1.1%
1.2%

1.3%
1.4%

1.5%
1.6%

% Time

cesm
hurricane

(b) Stride 80

Fig. 8. SECRE Estimation Cost for SZx

The key reason for the high estimation accuracy and low

estimation cost with SECRE is twofold. On one hand, the

uniform sampling method can significantly reduce the time

complexity because of considerably fewer data points involved

in the estimation. On the other hand, we carefully design the

surrogate method by leveraging a derived estimation formula

with only the necessary operations in estimating the compres-

sion ratios.

C. Evaluation on SZ3

We present the evaluation results of the estimation error

and cost on SZ3 in Figure 9 based on two compression

modes: error-bounding mode and peak signal-to-noise ratio

(PSNR) mode. It is clear that the estimation error increases

slightly with the sampling stride because a larger stride means

less sampled data to be used. It is worth noting that the

average estimation error stays at a low level—around 10%

even when adopting a relatively high sampling stride such as

15 (corresponding to a sampling rate of 1/16≈6%)—indicating

highly accurate estimation of compression ratios for both

compression modes.

4%
6%
8%

10%
12%
14%
16%
18%
20%
22%

2 5 10 15

E
rr

o
r

Sample Stride
(a) Error-bounding Mode

0%
2%
4%
6%
8%

10%
12%
14%
16%
18%

2 5 10 15

E
rr

o
r

Sample Stride
(b) PSNR Mode

Fig. 9. SECRE Estimation Error for SZ3 using various sampling strides in
(a) error-bounding mode and (b) PSNR mode

Figure 10 shows the normalized distribution (PDF) of

estimation error (%) calculated based on all fields/files of the

CESM-ATM and Hurricane datasets, under the the sampling

stride of 5. We can see that the Hurricane dataset has lower

estimation errors than CESM-ATM does in general. This is due

to the fact that the 3D Hurricane dataset projects a much lower

sampling rate than the 2D CESM-ATM dataset does when they

are using the same sampling stride. In fact, their sampling rates

are both quite small (0.8% for Hurricane and 3% for CESM-

ATM) because our method samples the data only at the lowest

interpolation level along different dimensions (see Section V-B

for details).

 0

 0.2

 0.4

 0.6

 0.8

 1

4% 6% 8% 10%
12%

14%
16%

18%
20%

22%
24%

Error

cesm
hurricane

(a) Error-bounding Mode

 0

 0.2

 0.4

 0.6

 0.8

 1

2% 4% 6% 8% 10%
12%

14%
16%

Error

cesm
hurricane

(b) PSNR Mode

Fig. 10. SECRE % Error for SZ3 using sample stride 5

Fig. 11 shows estimation cost based on two sampling strides

(5 and 10). We can clearly observe very low estimation costs

(about 1-2% for Hurricane and 3-8% for CESM on average).

We also compare SECRE with Jin et al.’s [23] state-of-the-art

estimation method in terms of both estimation error (Table II)

and estimation time (Table III). We see that SECRE has 14-

50% lower average estimation errors for most of the datasets

(Miranda, NYX, and Hurricane except for CESM) than Jin

139

Authorized licensed use limited to: Argonne National Laboratory. Downloaded on July 20,2024 at 00:49:54 UTC from IEEE Xplore. Restrictions apply.

 0

 0.2

 0.4

 0.6

 0.8

 1

0% 2% 4% 6% 8% 10%
12%

14%

% Time

cesm
hurricane

(a) Stride 5

 0

 0.2

 0.4

 0.6

 0.8

 1

0% 1% 2% 3% 4% 5% 6%

% Time

cesm
hurricane

(b) Stride 10

Fig. 11. SECRE Estimation Cost for SZ3

et al.’s method, with a comparable estimation time cost. The

higher accuracy in our estimation is because of our efficient

sampling method and surrogate for SZ3.

TABLE II
COMPARISON OF % ERROR FOR SZ3 ESTIMATION (STRIDE=5)

Dataset
SECRE Jin et al. [23]

Min Avg Max Min Avg Max

Miranda 4.63% 6.21% 8.44% 12.19% 12.44% 13.04%

NYX 4.49% 6.34% 7.66% 4.18% 7.38% 9.52%

CESM 5.62% 13.23% 31.85% 7.27% 10.97% 20.04%

Hurricane 5.03% 8.03% 13.90% 8.06% 12.56% 17.21%

TABLE III
COMPARISON OF ESTIMATION COST (%) FOR SZ3 ESTIMATION

Dataset
SECRE Jin et al. [23]

Min Avg Max Min Avg Max

Miranda 1.48% 1.90% 2.17% 1.31% 1.61% 1.89%

NYX 1.58% 1.71% 2.05% 1.26% 1.37% 1.66%

CESM 5.87% 8.13% 12.11% 6.41% 9.11% 13.80%

Hurricane 1.51% 2.16% 3.12% 1.31% 1.85% 2.66%

D. Evaluation on ZFP

Figure 12 shows the relative error of compression ratio

estimation for ZFP based on different sampling rates by

aggregating the evaluation results from all four application

datasets. Using only 5% of sampled data can achieve fairly

high estimation accuracy (with an estimation error of only 2%

on average).

0%

5%

10%

15%

20%

25%

30%

35%

1% 5% 10% 20%

E
rr

o
r

Sampling Rate
(a) Accuracy Mode

0%

5%

10%

15%

20%

25%

30%

1% 5% 10% 20%

E
rr

o
r

Sampling Rate (%)
(b) Precision Mode

Fig. 12. SECRE Average % Estimation Error for ZFP using various sampling
rates in (a) accuracy mode and (b) precision mode

We present the min, average, and max of the estimation error

and estimation cost of SECRE versus Lu et al.’s method [14]

in Table IV and Table V, respectively. The evaluation is con-

ducted using ZFP’s precision mode. We see that our estimation

method is very accurate in compression ratio estimation (with

an average estimation error of less than 1% for Miranda, NYX,

and CESM and less than 4% for Hurricane). In comparison,

Lu et al.’s method suffers from large estimation errors (¿

150% on average) for all datasets. The key reason is that the

sampling method used in Lu et al.’s method selects a block of

four points in only one dimension, which is suitable for 1D

compression but unsuitable for multi-dimensional compression

in ZFP. In our solution, we adopt a multi-dimensional block-

wise sampling, which perfectly matches the multi-dimensional

compression in ZFP.

TABLE IV
COMPARISON OF % ERROR FOR ZFP ESTIMATION USING A 5%

SAMPLING RATE

Dataset
SECRE Lu et al. [14]

Min Avg Max Min Avg Max

Miranda 1.17% 2.50% 3.96% 149.52% 368.93% 594.35%

NYX 0.03% 0.10% 0.18% 149.37% 276.84% 1077.30%

CESM 0.15% 1.47% 5.22% 111.85% 174.68% 253.69%

Hurricane 0.10% 5.81% 37.47% 202.48% 323.95% 423.41%

Table V shows the compression ratio estimation cost of

the two solutions. Our solution has a relatively low cost

(10-20% in general) compared with the compression time

because of the high efficiency in data sampling and surrogate

function. Lu et al.’s method [14], however, suffers from much

higher cost, mainly because this method performs 1D sampling

followed by a 1D compression, which projects more expensive

orthogonal transform operations compared with the multi-

dimensional transforms adopted by our SECRE method.

TABLE V
COMPARISON OF ESTIMATION COST (%) FOR ZFP USING A 5%

SAMPLING RATE

Dataset
SECRE Lu et al. [14]

Min Avg Max Min Avg Max

Miranda 12.26% 23.67% 35.93% 149.52% 368.93% 594.35%

NYX 12.26% 18.65% 59.36% 149.37% 276.84% 1077.30%

CESM 8.24% 10.42% 13.61% 111.85% 174.68% 253.69%

Hurricane 14.61% 20.87% 26.80% 202.48% 323.95% 423.41%

E. Evaluation on SPERR

Our SECRE solution is the first attempt to estimate the

compression ratio for SPERR because SPERR is an emerging

error-bounded compressor. Therefore, we have no related

works to compare regarding SPERR. We evaluate the estima-

tion error and cost for our SECRE method with various block

sizes. As mentioned previously, our algorithm samples the

dataset based on relatively large block sizes because SPERR’s

wavelet transform step would be applied to the whole dataset.

According to Figure 13 (a), we can observe that the estimation

error decreases with the block size, yet it is not affected

prominently by the sampling rate for these block sizes. In

fact, we also tested the block size of 128, which may lead

to fairly large estimation errors (even up to 100× in some

datasets). Figure 13 (b) clearly demonstrates that a block size

of 64 has the lowest time cost. As such, we conclude that the

block size 64 turns out to be the configuration leading to the

best estimation performance.

More detailed results can be found in Table VI. It is clearly

observed that the average estimation error stays very low:

around 2.75%-5.23% for three datasets – Miranda, CESM-

ATM, and Hurricane, while the NYX dataset manifests a much

larger average estimation error (20.11%). The key reason is

140

Authorized licensed use limited to: Argonne National Laboratory. Downloaded on July 20,2024 at 00:49:54 UTC from IEEE Xplore. Restrictions apply.

0%

5%

10%

15%

20%

25%

30%

35%

40%

16 32 64

E
rr

o
r

Blocksize

Sample Rate
10%
20%
30%
40%

(a) Error

2%
4%
6%
8%

10%
12%
14%
16%
18%
20%
22%

16 32 64

T
im

e
(%

)

Blocksize
(b) Estimation Cost (10%)

Fig. 13. SECRE Performance for SPERR

analyzed as follows. Note that we are using a block size of 64

to perform the estimation. For the three datasets (Miranda,

CESM-ATM, and Hurricane) that exhibit high estimation

accuracy, their dimension sizes (i.e., the number of elements

along each dimension) are relatively large compared with 64.

In comparison, the Hurricane dataset (100×500×500) has an

irregular dimension size with respect to the block size of 64,

so the sampled data points will not be as uniformly dispersed

as expected if the block size is set to 64.

TABLE VI
SECRE EST. ERROR FOR SPERR (SAMPLING RATE = 10%, BS=64)

Dataset Min Avg Max

Miranda 2.07% 2.75% 3.63%

NYX 5.21% 20.11% 29.16%

CESM-ATM 0.0% 5.23% 31.89%

Hurricane 0.0% 3.45% 7.04%

VII. CONCLUSION AND FUTURE WORK

We proposed SECRE—a novel, generic, lightweight com-

pression ratio estimation framework, based on sampling and

surrogate estimators. We implemented compression ratio es-

timation methods based on SECRE for four state-of-the-art

lossy compressors and evaluated our approach by comparing

it with two other related works using four real-world datasets

- demonstrating that our solution can estimate compression

ratios very accurately (e.g., about 1% in estimation error

for SZx) with very low estimation costs (e.g., only 2% cost

compared with compression time for SZx).

In the future, we plan to develop the estimation methods

based on the SECRE framework for many other lossy com-

pressors (such as FPZIP [30], TTHRESH [39] and FAZ [33]).

ACKNOWLEDGMENTS

This research was supported by the Exascale Computing

Project (ECP), Project Number: 17-SC-20-SC, a collaborative

effort of two DOE organizations – the Office of Science and

the National Nuclear Security Administration, responsible for

the planning and preparation of a capable exascale ecosystem,

including software, applications, hardware, advanced system

engineering and early testbed platforms, to support the nation’s

exascale computing imperative. The material was supported by

the U.S. Department of Energy, Office of Science, Advanced

Scientific Computing Research (ASCR), under contract DE-

AC02-06CH11357, and supported by the National Science

Foundation under Grant OAC-2003709 and OAC-2104023.

We acknowledge the computing resources provided on Be-

bop (operated by Laboratory Computing Resource Center

at Argonne) and on Theta and JLSE (operated by Argonne

Leadership Computing Facility).

REFERENCES

[1] J. E. Kay and et al., “The Community Earth System Model (CESM) large
ensemble project: A community resource for studying climate change
in the presence of internal climate variability,” Bulletin of the American

Meteorological Society, vol. 96, no. 8, pp. 1333–1349, 2015.

[2] F. Cappello, S. Di, S. Li, X. Liang, G. M. Ali, D. Tao, C. Yoon Hong, X.-
c. Wu, Y. Alexeev, and T. F. Chong, “Use cases of lossy compression
for floating-point data in scientific datasets,” International Journal of

HPC Applications (IJHPCA), vol. 33, pp. 1201–1220, 2019.

[3] S. Di and F. Cappello, “Fast error-bounded lossy HPC data compression
with SZ,” in IEEE International Parallel and Distributed Processing

Symposium, 2016, pp. 730–739.

[4] K. Zhao, S. Di, M. Dmitriev, T.-L. D. Tonellot, Z. Chen, and F. Cappello,
“Optimizing error-bounded lossy compression for scientific data by dy-
namic spline interpolation,” in 2021 IEEE 37th International Conference

on Data Engineering (ICDE), 2021, pp. 1643–1654.

[5] X. Yu, S. Di, K. Zhao, jiannan Tian, D. Tao, X. Liang, and F. Cap-
pello, “Szx: an ultra-fast error-bounded lossy compressor for scientific
datasets,” arXiv preprint arXiv:2201.13020, 2022.

[6] P. Lindstrom, “Fixed-rate compressed floating-point arrays,” IEEE trans-

actions on visualization and computer graphics, vol. 20, no. 12, pp.
2674–2683, 2014.

[7] J. Liu, S. Di, K. Zhao, S. Jin, D. Tao, X. Liang, Z. Chen, and F. Cappello,
“Exploring autoencoder-based error-bounded compression for scientific
data,” in 2021 IEEE International Conference on Cluster Computing

(CLUSTER). IEEE, 2021, pp. 294–306.

[8] D. Tao, S. Di, H. Guo, Z. Chen, and F. Cappello, “Z-checker: A
framework for assessing lossy compression of scientific data,” The

International Journal of High Performance Computing Applications,
vol. 33, no. 2, pp. 285–303, 2019.

[9] Hurricane ISABEL simulation data,
http://vis.computer.org/vis2004contest/data.html, 2004, online.

[10] Y. Liu, S. Di, K. Chard, I. Foster, and F. Cappello, “Optimizing scientific
data transfer on globus with error-bounded lossy compression,” in
43rd IEEE International Conference on Distributed Computing Systems

(IEEE ICDCS). IEEE, 2023.

[11] S. Li, S. Di, K. Zhao, X. Liang, Z. Chen, and F. Cappello, “Resilient
error-bounded lossy compressor for data transfer,” in Proceedings of the

International Conference for High Performance Computing, Networking,

Storage and Analysis, ser. SC ’21, 2021.

[12] R. Underwood, S. Di, J. C. Calhoun, and F. Cappello, “Fraz: A generic
high-fidelity fixed-ratio lossy compression framework for scientific
floating-point data,” in IPDPS. IEEE, 2020, pp. 567–577.

[13] R. Underwood, J. C. Calhoun, S. Di, A. Apon, and F. Cappello,
“Optzconfig: Efficient parallel optimization of lossy compression config-
uration,” IEEE Transactions on Parallel and Distributed Systems, 2022.

[14] T. Lu, Q. Liu, X. He, H. Luo, E. Suchyta, J. Choi, N. Podhorszki,
S. Klasky, M. Wolf, T. Liu et al., “Understanding and modeling lossy
compression schemes on hpc scientific data,” in IEEE IPDPS. IEEE,
2018, pp. 348–357.

[15] X. Liang et al., “SZ3: A modular framework for com-
posing prediction-based error-bounded lossy compressors,”
https://arxiv.org/abs/2111.02925, 2021, online.

[16] “Sperr,” https://github.com/NCAR/SPERR.

[17] L. Davisson, “Rate distortion theory: A mathematical basis for data
compression,” IEEE Transactions on Communications, vol. 20, no. 6,
pp. 1202–1202, 1972.

[18] R. Blahut, “Computation of channel capacity and rate-distortion func-
tions,” IEEE Transactions on Information Theory, vol. 18, no. 4, pp.
460–473, 1972.

[19] S. Arimoto, “An algorithm for computing the capacity of arbitrary dis-
crete memoryless channels,” IEEE Transactions on Information Theory,
vol. 18, no. 1, pp. 14–20, 1972.

[20] M. Śmieja and J. Tabor, “Entropy approximation in lossy source coding
problem,” Entropy, vol. 17, no. 5, pp. 3400–3418, 2015.

141

Authorized licensed use limited to: Argonne National Laboratory. Downloaded on July 20,2024 at 00:49:54 UTC from IEEE Xplore. Restrictions apply.

[21] D. Tao, S. Di, Z. Chen, and F. Cappello, “Significantly improving lossy
compression for scientific data sets based on multidimensional prediction
and error-controlled quantization,” in 2017 IEEE International Parallel

and Distributed Processing Symposium. IEEE, 2017, pp. 1129–1139.
[22] J. Wang, T. Liu, Q. Liu, X. He, H. Luo, and W. He, “Compression ratio

modeling and estimation across error bounds for lossy compression,”
IEEE TPDS, vol. 31, no. 7, pp. 1621–1635, 2020.

[23] S. Jin, S. Di, J. Tian, S. Byna, D. Tao, and F. Cappello, “Improving
prediction-based lossy compression dramatically via ratio-quality model-
ing,” in 2022 IEEE 38th International Conference on Data Engineering

(ICDE), 2022, pp. 2494–2507.
[24] J. Liu, S. Di, K. Zhao, X. Liang, Z. Chen, and F. Cappello, “Dynamic

quality metric oriented error bounded lossy compression for scientific
datasets,” in SC22: International Conference for High Performance

Computing, Networking, Storage and Analysis (SC), 2022, pp. 892–906.
[25] D. Tao, S. Di, X. Liang, Z. Chen, and F. Cappello, “Fixed-psnr lossy

compression for scientific data,” in 2018 IEEE International Conference

on Cluster Computing (CLUSTER), 2018, pp. 314–318.
[26] X. Liang, S. Di, D. Tao, Z. Chen, and F. Cappello, “An efficient

transformation scheme for lossy data compression with point-wise
relative error bound,” in 2018 IEEE International Conference on Cluster

Computing (CLUSTER). IEEE, 2018, pp. 179–189.
[27] X. Liang, S. Di, D. Tao, S. Li, S. Li, H. Guo, Z. Chen, and F. Cappello,

“Error-controlled lossy compression optimized for high compression
ratios of scientific datasets,” in Conference on Big Data. IEEE, 2018.

[28] HDF5. [Online]. Available: http://www.hdfgroup.org/HDF5
[29] The HDF Group. (2017) H5Z: Filter and Compression Interface.

https://support.hdfgroup.org/HDF5/doc1.8/RM/RM H5Z.html. Online.
[30] P. G. Lindstrom et al., “Fpzip,” Lawrence Livermore National

Lab.(LLNL), Livermore, CA (United States), Tech. Rep., 2017.
[31] Y. Collet, “Zstandard – real-time data compression algorithm,”

http://facebook.github.io/zstd/, 2015.
[32] NYX simulation, https://amrex-astro.github.io/Nyx, 2019, online.
[33] J. Liu, S. Di, K. Zhao, X. Liang, Z. Chen, and F. Cappello, “FAZ:

A flexible auto-tuned modular error-bounded compression framework
for scientific data,” in Proceedings of the nternational Conference on

Supercomputing (ICS ’23), 2023.
[34] A. Cohen, I. Daubechies, and J.-C. Feauveau, “Biorthogonal bases of

compactly supported wavelets,” Communications on pure and applied

mathematics, vol. 45, no. 5, pp. 485–560, 1992.
[35] W. A. Pearlman, A. Islam, N. Nagaraj, and A. Said, “Efficient, low-

complexity image coding with a set-partitioning embedded block coder,”
IEEE transactions on circuits and systems for video technology, vol. 14,
no. 11, pp. 1219–1235, 2004.

[36] “Miranda application,” https://wci.llnl.gov/simulation/computer-
codes/miranda.

[37] T. Lu, “Lossy compression study code for paper “understanding and
modeling lossy compression schemes on hpc scientific data” published
in ipdps2018,” https://github.com/taovcu/LossyCompressStudy.

[38] L. Ibarria, P. Lindstrom, J. Rossignac, and A. Szymczak, “Out-of-core
compression and decompression of large n-dimensional scalar fields,”
in Computer Graphics Forum, vol. 22, no. 3. Wiley Online Library,
2003, pp. 343–348.

[39] R. Ballester-Ripoll, P. Lindstrom, and R. Pajarola, “Tthresh: Tensor
compression for multidimensional visual data,” IEEE transactions on

visualization and computer graphics, vol. 26, no. 9, pp. 2891–2903,
2019.

142

Authorized licensed use limited to: Argonne National Laboratory. Downloaded on July 20,2024 at 00:49:54 UTC from IEEE Xplore. Restrictions apply.

