2023 IEEE 30th International Conference on High Performance Computing, Data, and Analytics (HiPC) | 979-8-3503-8322-5/23/$31.00 ©2023 IEEE | DOI: 10.1109/HIPC58850.2023.00029

2023 IEEE 30th International Conference on High Performance Computing, Data, and Analytics (HiPC)

SECRE: Surrogate-based Error-controlled Lossy
Compression Ratio Estimation Framework

Arham Khan,* Sheng Di,! Kai Zhao,! Jinyang Liu,} Kyle Chard,* Ian Foster,* Franck Cappello’¥
*University of Chicago, Chicago, IL, USA
T Argonne National Laboratory, Lemont, IL, USA
{Florida State University, Tallahassee, FL, USA
§ University of California, Riverside, Riverside, CA, USA
11University of Illinois Urbana-Champaign, Urbana, IL, USA
arham @uchicago.edu, sdil @anl.gov, kzhao @cs.fsu.edu, jinyang.liu@ucr.edu, chard@uchicago.edu,
foster@anl.gov, cappello@mcs.anl.gov

Abstract—Error-controlled lossy compression has been effec-
tive in reducing data storage/transfer costs while preserving
reconstructed data fidelity based on user-defined error bounds.
State-of-the-art error-controlled lossy compressors primarily fo-
cus on error control rather than compression size, and thus,
compression ratios are unknown until the compression operation
is fully completed. Many use cases, however, require knowledge of
compression ratios a priori, for example, pre-allocating appropri-
ate memory for the compressed data at runtime. In this paper,
we propose a novel, efficient Surrogate-based Error-controlled
Lossy Compression Ratio Estimation Framework (SECRE), which
includes three key features/contributions. (1) We carefully design
the SECRE framework, which, in principle, can be applied to
different error-bounded lossy compressors. (2) We implement
a compression ratio estimation method for four state-of-the-
art error-controlled lossy compressors—SZx, SZ3, ZFP, and
SPERR—by devising a corresponding lightweight compression
surrogate for each. (3) We evaluate the performance and accuracy
of SECRE using four real-world scientific simulation datasets.
Experiments show that SECRE can obtain highly accurate com-
pression ratio estimates (e.g., ~1% estimation errors for SZx)
with low execution overhead (e.g., ~2% estimation cost for SZx).

Index Terms—error-controlled lossy compression, scientific
datasets, compression ratio estimation, sampling

I. INTRODUCTION

Scientific simulations and advanced instruments produce
enormous amounts of data that are relied upon for post hoc
analysis. For instance, the most widely used climate simulation
package—Community Earth System Model (CESM) [1]—can
produce 300+ TB of data in the first 30 ensemble simu-
lations. Significantly reducing the size of scientific datasets
can address these and other substantial issues [2] such as
inadequate storage space, limited I/O or network bandwidth,
and insufficient memory capacity to run simulations. Error-
controlled lossy compression (or error-bounded compression)
[3]-[7] has been arguably the most efficient method to resolve
issues associated with big data, because not only can it obtain
high compression ratios (e.g., 100X) but it can also allow users
to control the data distortion based on a specified error bound.

Corresponding author: Sheng Di, Mathematics and Computer Science
Division, Argonne National Laboratory, 9700 Cass Avenue, Lemont, IL
60439, USA

Existing error-controlled lossy compressors, are typically
designed towards a certain error-control mode (such as limiting
point-wise error using the absolute error, relative error, or peak
signal to noise ratio (PSNR) [8]), which leaves a significant
gap for use in practice: users must foresee the compression
ratio before compression is completed in many use cases.
Here, we present three practical use cases that motivate the
need to predict compression ratios: Use-case 1: Parallel HPC
simulations (e.g. CESM, Hurricane-ISABEL [1], [9]) produce
enormous volumes of data that must be stored for later use.
Unfortunately, file systems (and user allocations) are limited
and thus it is crucial to set the compression ratio with a strict
lower bound to avoid simulation failures due to insufficient
storage. Use-case 2: error-bounded lossy compression - where
floating point error in reconstructed data is limited according
to user requirements - has been explored to reduce data transfer
costs on wide area networks (WANSs) [10], [11] to foresee the
data transfer time (to determine whether it is worthwhile to
compress data), accurately predicting the compression ratio is
a critical step. Use-case 3: In many I/O or data communication
use-cases that leverage data compression techniques, user
code must allocate a fixed amount of memory beforehand
to hold the compressed data, which also requires an accurate
estimation of compression ratio.

In this paper, we aim to develop an efficient online error-
controlled compression ratio estimation framework. The es-
timation framework should be generic and compatible with
different error-bounded lossy compression models. The fun-
damental idea is to sample a small portion of data from
the full dataset and emulate the compression operation (via
a ‘surrogate function‘) on the sampled dataset, such that
the compression ratio can be inferred accurately with little
computational cost.

Such an estimation framework, in principle, can be applied
to any error-controlled lossy compressors to estimate com-
pression ratios accurately. However, we must address three
grand challenges. 1) An efficient sampling method needs to
be devised carefully. The sampling rate should be minimal
(to minimize execution overhead), while also covering as
many regions of the full dataset as possible (to maximize the

2640-0316/23/$31.00 ©2023 IEEE 132
DOI 10.1109/HiPC58850.2023.00029
Authorized licensed use limited to: Argonne National Laboratory. Downloaded on July 20,2024 at 00:49:54 UTC from IEEE Xplore. Restrictions apply.



accuracy of the prediction). Moreover, the sampling method
must be compatible with the principle of the corresponding
compressor’s design, which will be analyzed in detail later in
the paper. 2) The design of the surrogate compressor must be
customized based on the specific lossy compression principles,
which requires an in-depth and comprehensive investigation of
the target lossy compressors, requiring significant research and
development effort. 3) The surrogate functions must not only
be accurate but also lightweight in order to obtain an efficient,
accurate estimation.

Our key contributions are three-fold:

« We propose a generic online surrogate-based compression
ratio estimation framework (SECRE) which is the first
fast, generic runtime lossy compression ratio estimation
framework to the best of our knowledge. Note that the
SECRE framework is not a trial-and-error method (unlike
FraZ/OptZConfig [12], [13]) and does not depend on
the characterization of compressors’ internal data features
(unlike Lu et al’s model for SZ1.4 [14]) or preliminary
model training based on masses of existing datasets.

o We design and implement lightweight surrogates for four
cutting-edge error-controlled lossy compressors (SZx [5],
SZ3 [4], [15], ZFP [6] and SPERR [16]). All four cus-
tomized algorithms can achieve highly accurate compres-
sion ratio estimation with little computation overhead.

« We comprehensively evaluate SECRE based on the four
cutting-edge error-controlled lossy compressors, using
four real-world scientific simulation datasets, to show the
advantage of our solution over prior work.

The remainder of the paper is organized as follows. Section

IT discusses related work. Section III formulates the research
problem. Section IV presents the design overview. Section V
describes how we apply SECRE to different lossy compres-
sors for obtaining fast, accurate ratio estimation. Section VI
presents and analyzes the performance of SECRE on real-world
datasets. Finally, Section VII summarizes our work.

II. RELATED WORK

In this section, we discuss contemporary compression ratio
estimation work in two relevant categories: image-based lossy
compression and error-controlled lossy compression.

The compressibility of image data via lossy compression has
been studied for decades. Rate—distortion theory [17] provides
a theoretical analysis of the compression ratio that can be
achieved under a lossy compression method (a.k.a., lossy
source coding). Blahut and Arimoto [18], [19] proposed the
Blahut—Arimoto algorithm, which is an iterative algorithm to
compute the rate distortion for lossy compression. Smieja and
Tabor [20] performed a theoretical analysis for estimating the
entropy of the lossy compression especially in the context of
image compression, also considering the permitted distortion
on any symbol under an error-control family. These theoretical
analyses, however, cannot be used to estimate the compression
ratios for specific error-controlled lossy compressors because
of their specific design principles with diverse features.

133

Recently, there emerged a few studies on the estimation of
compression ratios of error-controlled lossy compressors for
scientific datasets. Lu et al. [14] proposed a sampling-based
compression ratio estimation model for ZFP [6] and SZ1.4
[21]. There are several key differences between their model
and our framework. (1) Their model focused on only absolute
error bound, while we investigate several error-control modes.
(2) Their model treats the dataset as a 1D array (e.g., perform a
1D random block sampling), which may cause large estimation
errors for multi-dimensional datasets (as shown later in this
paper). (3) For SZ1.4, they use a Gaussian distribution to
approximate the quantization bins according to their offline
analysis, then estimate Huffman tree size and encoding size.
Their method generates estimates of the quantization bin his-
togram by compressing a naively-aggregated sampled dataset.
Since the naive sampling procedure may cause unexpected dis-
continuity on the edges of the sampled blocks, the prediction
would be inconsistent between the sampled dataset and the
original full dataset, leading to large estimation errors. Wang
et al. [22] proposed to extrapolate the compression ratios for
SZ across error bounds from 10~? to other error bounds, and
proposed a ratio estimation method for ZFP by analyzing the
weighted average of BitsPerBitplane for each block. However,
their solution still suffers from very large estimation errors
(up to 100% in percent estimation error) as shown in their
evaluation results. Jin et al. [23] proposed a quality estimation
model (including estimating compression ratio) for prediction-
based compressors. Their solution, however, is tailored for
the prediction-based compression model and also suffers from
higher estimation errors in some datasets than our solution (to
be demonstrated later). Liu et al. [24] present a quality esti-
mation method in their proposed compressor, which constrains
the estimation on small sampled data blocks.

III. PROBLEM FORMULATION

We formulate the research problem as follows. Suppose we
are given a scientific dataset (denoted by D), which contains
N data points dy, do, ---, dy. We are also given a set of
conditions by the user regarding the compression, including
the user-specified lossy compressor (e.g., SZ3, SZx, ZFP),
user-specified error-control mode (e.g., absolute error bound,
relative error bound, peak signal-to-noise ratio (PSNR), and
precision), and user-specified error bound (e) which specifies
the acceptable point-wise reconstruction error. We denote the
compressed dataset as D and the decompressed data points
(i.e. the data as reconstructed after compression) as d;, where
i=1,2,3,---,N.

We consider the following error-control methods:

« Absolute error bound (ABS): ABS is perhaps the simplest
and most widely used error control method. With ABS,
the absolute difference between a datapoint, d;, and
its reconstructed counterpart, d;, must always respect a
maximum threshold e:

|d; —di] <e (1)

o Relative error bound (REL): REL (denoted as ¢ in our
paper) is used by many applications/use cases in practice.

Authorized licensed use limited to: Argonne National Laboratory. Downloaded on July 20,2024 at 00:49:54 UTC from IEEE Xplore. Restrictions apply.



A relative error bound of ¢ € [0, 1] denotes the absolute
error bound as a percentage of the data range, that is it
corresponds to the absolute error bound e:

e = € (max(D) — min(D)) 2)

where max(D) and min(D) refer to the largest value and
smallest value in the dataset, respectively.

o Peak signal-to-noise ratio (PSNR): PSNR is commonly
used by the visualization community to evaluate the
quality of the reconstructed data. It is defined:

R]WSE(D,D’)
2010810 frax(D)—min(D)

PSNR(D,D’) = 3)

where RMSE(D,D’) refers to the root mean squared
error (RMSE) between the original dataset and the de-
compressed dataset. In general, the higher the PSNR,
the higher the precision. SZ-series compressors (such as
SZ3) support fixed-PSNR mode [25] based on a derived
formula that can map the required PSNR to an absolute
error bound.

« Precision: Precision is essentially the number of bits to
be preserved during the compression, so its value is an
integer. The higher the precision the better the quality
of the reconstructed data. Precision control is an error-
control method offered in ZFP compressor [6] where
floats are truncated at the mantissa to compress blocks
of data.

Our research objective is to develop a generic, efficient,
online framework that can be used to estimate the compres-
sion ratio for different error-bounded lossy compressors with
diverse error-control modes based on different given datasets.
The compression ratio (denoted as R) is defined as the ratio
of the original dataset’s size to the compressed data size:

_ N-s
R= C

“)

where s refers to the number of bytes used per data point
in the original raw dataset (e.g., s = 4 for the single-
precision floating-point dataset), and C refers to the number of
bytes in the compressed dataset. We distinguish between the
true compression ratio on the full dataset and our estimated
compression ratio obtained using our surrogates as follows:
we denote the measured compression ratio using the true
compressor and original dataset as R,, and our surrogate-
estimated compression ratio on the sampled dataset as Is.
Then, our research target can be written as the following
formula:
min B —Rs |
R

given a dataset D,

a lossy compressor Z,

an error-control mode T'.

®)

where Z refers to an error-controlled lossy compressor such
as SZ3, SZx, ZFP, and SPERR, and I is one of the aforemen-
tioned error-control modes (e.g., absolute error bound).

Note that the compression ratio estimation framework would
run with an embarrassing parallel mode in nature, meaning
that the scalability is not a concern at all. This is because

134

an error-bounded lossy compressor is often running on each
rank/processor to compress local data individually in a parallel
simulation. In fact, many practical experiments about scientific
lossy data compression were conducted in an embarrassing
parallel mode. In these works [24], [26], [27], for example,
each MPI rank handles the local data compression individ-
ually, followed by a parallel data writing to the global file
system. Another typical example is data compression used in
HDFS5 [28], in which each data chunk would be compressed
individually by the corresponding H5Z filter [29]. As such,
in this paper, we mainly focus on how to efficiently estimate
the compression ratio for a given local dataset, as depicted in
Formula (5).

IV. DESIGN OVERVIEW OF SECRE

As shown in Figure 1, the SECRE framework is composed
of two key steps: sampling and surrogate. The sampling stage
applies a particular sampling method to sample a small portion
of the data points from the full dataset. The surrogate stage
aims to simulate the compression process on the sampled
dataset. We use the simulation to infer the compression ratio
given a user-specified error-control mode and error-bound
value.

SECRE framework
Sampling

Surrogate

SZx surrogate

.
| [Uniform Individual Point | | !
! Sampling (UIPS) | }
I
|
I

Input ! i
Dataset:> :>: Uniform Block-wise = ek Estlcr:nsted
_Sampllng (UBS) | :>} ZFP surrogate >

Error-control
Setting :>

|
! = |
T i Large CI'(nEEkS)Sampllng : T i SPERR surrogate
I
! ]

Fig. 1. Design Overview of SECRE Framework

The design of the SECRE framework may appear simple;
however, accurately estimating compression ratios is challeng-
ing because 1) it is non-trivial to obtain a representative sample
given the different data processing methods used by com-
pressors and 2) it is non-trivial to develop accurate surrogate
functions for each compressor. We propose the following rules
to obtain accurate compression ratio estimates, which will be
detailed in the following text.

o The sampling method must be compatible with the method
used by the lossy compressor to process the data. For
example, SZ3 scans and processes the data compression
point by point via a multi-level topology, so the corre-
sponding sampling method used by our sampling stage
should follow the same topology in order to emulate the
compression as closely as possible. Similarly, ZFP per-
forms a multi-dimensional 4*-block-wise compression,
such that we must correspondingly perform a multi-
dimensional 4F-block-wise sampling, where k refers to
the number of dimensions.

o The surrogate method aims to estimate the number
of bytes in the compressed dataset by processing the
sampled data. The surrogate methods must be both
lightweight (in order to produce estimates quickly) and
accurate. In order to produce accurate estimates, it is

Authorized licensed use limited to: Argonne National Laboratory. Downloaded on July 20,2024 at 00:49:54 UTC from IEEE Xplore. Restrictions apply.



important that either the surrogate method closely mimics
how the compression is done or that we can derive an
algorithm that can essentially replace the compression
operations.

V. COMPRESSION RATIO ESTIMATION FOR DIFFERENT
ERROR-CONTROLLED LOSSY COMPRESSORS

We describe how we implement the compression ratio esti-
mation method for different state-of-the-art lossy compressors
following the SECRE framework. Specifically, each subsection
focuses on a specific error-controlled lossy compressor. We
first describe the best-fit sampling method and then present
our designed surrogate function for each compressor.

A. Applying SECRE for SZx

Here, we describe how we develop the compression ratio
(CR) estimation method for SZx. In what follows, we first
review SZx’s compression pipeline and key features, which
are the foundations of the design of our estimation method.

In Figure 2, the top subfigure shows the compression
pipeline of SZx. SZx splits the whole dataset into many small
1D fixed-length blocks and processes each block individually.
For each block, SZx computes a median value (i.e., the mean
of minimum value and maximum value in the block), based
on which all the blocks can be split into two categories: either
constant blocks (i.e., all the data points d; in the block can
be approximated by the median value (denoted as p) safely
according to user-specified error bound €) or non-constant
blocks. Each constant block can be represented by its median
value, while the non-constant blocks need to be compressed by
IEEE 754 binary format analysis, which involves XOR leading
zero byte analysis (to remove redundant bytes), bit-truncation
(to remove unnecessary bits based on error bound), and right
shift operation to avoid expensive bit-truncation operation. We
refer readers to the SZx paper [5] for more details.

The SECRE-based SZx compression ratio estimation is
illustrated in the bottom subfigure of Figure 2. The highlighted
blue boxes represent our designed surrogate subroutines. As
mentioned previously, the basic idea is to emulate the com-
pression procedure over the sampled data with lightweight
surrogates, so that we can infer compressed data size.

As presented in the figure, our algorithm performs a uniform
block-wise sampling with the same block size as consistent
with the SZx compression setting. Specifically, the block size
is set to 128 by default in SZx, so we set it to 128 in
our implementation. Then, we check each sampled block and
calculate the total number of constant blocks, and estimate
the compressed data size for non-constant blocks. Finally, the
algorithm output is the compression ratio based on Formula
(6), which will be derived in detail in the following text.

Corollary 1. The compression ratio (CR) of SZx can be
accurately estimated by the following formula.
R =

Bs
M/J+H+(1+(3+P)-B-Q)-(1-X\)

(6)

where s is the number of bytes used per data point in the
original raw dataset, B is the block size, M is metadata cost

135

Scanning all fixed-size data blocks

3 - ox_ "Constant" block o—m Output
c )
Input | 8 3 E’i Var |dnlse El;e;éﬁrd p for this 008 | compressed
data S |ECo T 32 data
3268 > g8
® |5 ®0 ®LE
: s |EE8 Perform [EEE ges
5| EE e £
i 8‘53 2di ldrbe 754 analysis for 388 g
"Non-Constant" blockthis block ©

Scanning all sampled data blocks with the same

size used in compression

- . ox— "Constant" block o—
20 Rk —~
S S[BED|  |varldnse | nbCBlocks &2 | ouputcr
o7 K
3 E Sl|loc® 235
= S 12 c5 > TE
£ o |3c S - =5
7 5 g ET 3 [depp>e Estimate non- i
x © w18%s constant block's Sz
] "Non-Constant" biockcompressed size

Fig. 2. Comparison of SZx compression pipeline vs. the sampling+surrogate-
based CR estimation method (blue boxes indicate the surrogate routines)

of the whole dataset, J is the number of sampled blocks,
H is per-block-overhead, P denotes the average number
of requested bytes per block, () is the average number of
xor_lead_bytes, and )\ denotes the percentage of constant
blocks.

Proof. According to the definition of compression ratio as
shown in Formula (4), SZx’s compression ratio R’ can be

written as Formula (7).

JBs
C

R = (N

where J refers to the number of blocks sampled from the full
dataset (i.e., J=% where K is the sampling stride) and C'
denotes the compressed data size in bytes.

We present how to calculate C' as follows. SZx’s compressed
data is composed of three portions:

o Metadata (denoted by M): It includes version number

(3 bytes), random_access_mode marker (1 byte), size
of block (1 byte), and the number of constant blocks
represented by size_t type (8 bytes). So, M=13.
Indispensable storage overhead per block (denoted by
H): It includes storing the median value (s bytes) and a
bit-wise status to represent whether the block is constant
or not (1 bit). So, H = s + 1/8.
The number of bytes generated by non-constant
blocks. It includes three parts. The first part records the
required number of bits calculated based on the user-
specified error bound and the value range of the block
(1 byte), which can be thought of as the metadata of
the block. The second part is a 2bit-per-point state_array
to store the number of XOR_lead_zero bytes (2 bits per
point, i.e., 1/4 byte per point) for each data point. The
third part includes the necessary/significant bits used to
represent each data point.

Hence, the compressed data size (in bytes) for the non-
constant blocks can be written as:

C=M+JH+(1+iB+PB-Q)(1-)NJ (8

where P denotes the average number of requested bytes per

block and Q means the average number of xor_lead_bytes.
Combining Equation (7) and Equation (8) leads to Formula

(6). O

Authorized licensed use limited to: Argonne National Laboratory. Downloaded on July 20,2024 at 00:49:54 UTC from IEEE Xplore. Restrictions apply.



In terms of the Formula (6), we can estimate the com-
pression ratio for SZx efficiently. We present the pseudocode
in Algorithm 1. Line 1 is to sample the data. Line 2-5 is
initializing the variables for the compression ratio estimation.
Line 8 is counting the number of constant blocks in the
sampled data set. Line 10-25 calculates the compressed size
for non-constant blocks. The algorithm finally calculates the
overall estimated compression ratio in line 26.

Algorithm 1 COMPRESSION RATIO ESTIMATION FOR SZX

Input: dataset D, user-specified error bound &
Output: estimated compression ratio R’

: Block-wise Sampling with stride K; /* K=20 in our implementation*/
: nbConstantBlocks <— 0; /*Initialize # constant blocks*/
: sumReqByteCount < 0;
. metadata <— 13B/N; /*B: blocksize, N: # data points in D*/
: blockCost +— s + 1/8; /*e.g., for single-prec float, blockCost=33/8*/
: for each sampled block do
if (radius < ¢) then
nbConstantBlocks ++; /*Calculate total # of constant blocks*/
else
Calculate the medianValue and radius for the block;
Compute reqBitCount based on radius and medianValue;
o < reqBitCount/8; /*a: # of requested bytes*/
resiBitCount<—reqBitCount%8; /*resiBitCount: # of residual bits*/
rightShiftBits <— 8 - resiBitCount;
Adjust « based on rightShiftBits; /*a++ if rightShiftBits£0*/
sumReqByteCount += a;/*Calculate total # of requested bytes*/
for each data point d; in the block do
Calculate 3 based on d; XOR d;_1; /*[: # of lead_zero bytes*/
Adjust 3 according to «; /* must be < a*/
sumXORLead += f3; /*Calculate total # of xor_lead_zero bytes*/
end for
end if
: end for
: avgReqNbBytes = sumReqByteCount/nbNonConstantBlocks;
: avgXORLead = sumXORLead/nbNonConstantBlocks;
: Calculate R’ based on Formula (6);

VUYWL —

Applying SECRE for SZ3

SZ3 is a prediction-based lossy compressor that has distinct
design principles compared with bit-manipulation-based com-
pressors (such as SZx) and transformation-based compressors
(such as ZFP and SPERR). In this subsection, we first intro-
duce the design of SZ3, and then discuss how we estimate the
compression ratio for SZ3.

SZ3 is designed based on a typical prediction-based error-
bounded lossy compression framework, which has been used
by many other compressors such as SZ1.4 [21], SZ2 [27], and
FPZIP [30]. SZ3 exhibits much better compression quality
than other prediction-based compressors according to prior
studies [4], [15], so we focus on SZ3 as the best exam-
ple of prediction-based compression in this paper. Basically,
SZ3 uses the interpolation method (both linear and cubic)
to approximate data points. Estimation errors are introduced
in the course of a customized linear-scale quantization con-
verting floating-point numbers to integers, which is lossless-
compressed by Huffman coding and Zstd [31]. Interpolation
proceeds by progressively covering all data points, initially
using very large strides to cover the dataset and gradually
converging to using each data point’s immediate neighbors
to estimate that point’s value. Each stride value is associated

136

with an “interpolation level” and the processing at each level
concludes when the stride increments our current index over
the current dimension out of bounds. By performing this
algorithm over each dimension, we progressively cover every
point in the dataset. Using a set of fixed strides eliminates
the need to store location information for the reconstruction
procedure, thus saving additional space.

4%

4%
Last level
Offsets collecting level

Last level

4% Offsets collecting level 4%

3% 3%
2% 2%
2% 2%
2% 2%
1% 1%

0% 0%

0% 0%
02520254 202580250 0258 0058
RSO B S A N

< oggséli 056 S
(a) Hurricane (field = U) (b) Miranda (field = veloci-
tyx)

Fig. 3. We can see that emulating interpolation with a high stride value
can accurately estimate the error distribution for SZ3 as if we had run full
compression. We show the distributions obtained by our surrogate and the
true distribution for the Hurricane-ISABEL and Miranda datasets.

SECRE is deeply customized with regard to the SZ3 ar-
chitecture in order to estimate the compression ratio of SZ3
accurately and efficiently. The estimation contains three steps:

o Step 1 (Zero-cost preprocessing). SECRE first locates the
data points that belong to the final level of SZ3, since the
final level serves as the best representation of the whole
dataset. In SZ3, the distance between neighbor data points
processed in each level is inversely proportional to the
level order. Before the final level, data points with all
even indexes are already processed. The remaining data
points which count for the majority of the data (75% for
2D datasets, and 87.5% for 3D datasets) will be processed
at the final level. As a result, the final level is the ideal
location to estimate compression errors via our surrogate
to avoid expensive computation.

o Step 2 (Sampling). Sampling is needed to reduce the
data volume at the final level, further reducing runtime.
Uniform Individual Point Sampling (UIPS, as shown in
Figure 1) is applied in this step to trim the data points
uniformly in each dimension. The drop-out rate of UIPS
is configurable in SECRE and the default value is 5 which
means in each dimension, 5 data points will be reduced
to 1 (In a 3D case, the dataset will be reduced to 0.8% of
its original size). The default value is chosen to balance
the sampled size and sampled accuracy.

o Step 3 (Surrogate). In the last step, interpolation is
performed to approximate the sampled data. In SZ3, each
data point after interpolation is considered a known data
point at the following levels, and its value is adjusted
as the way it is decompressed, in order to supply the
same value to the following levels during compression
and decompression. In comparison, SECRE only handles
a tiny subset of the final level, such that most of the values
are not adjusted. In order to have similar interpolation

Authorized licensed use limited to: Argonne National Laboratory. Downloaded on July 20,2024 at 00:49:54 UTC from IEEE Xplore. Restrictions apply.



results as SZ3, SECRE brings offsets to the sampled
data to mimic the adjustment. It is observed in Figure
3 that the distribution of offsets differs between datasets
due to diverse data characteristics. As a consequence,
SECRE will first collect offsets by executing interpolation
on a small level that handles much less data than the
last level, and then apply offsets (by sampling uniformly
from the gathered distribution) to the sampled data before
the interpolation to simulate reconstruction error. Our
surrogate currently estimates the compression ratio until
the Huffman Encoding step of SZ3, omitting the lossless
ZSTD step due to the complexity of modeling ZSTD’s
behavior - our evaluation similarly compares only the
output of the Huffman Encoding step with [23].

C. Applying SECRE for ZFP

We first review the working principle of ZFP [6], and then
describe how we estimate the compression ratio for ZFP.

The basic idea of ZFP is to split the whole dataset into
fixed-size blocks (4%, where k is the number of dimensions),
and then perform a set of compression operations on each
block independently. The compression operations include four
key steps for each block: (1) align the values to have the same
exponent; (2) convert the values to a fixed-point representation;
(3) apply an orthogonal block transform to make the data
easier to encode; (4) embedded coding to significantly reduce
the data size.

In the following, we describe our compression ratio es-
timation method for ZFP. Since each block is processed
independently from one another in ZFP, our approach involves
two steps: (1) perform a uniform multi-dimensional block-wise
sampling where each sampled block has the size of 4, which
is exactly consistent with the block size used in ZFP. Such a
design complies with the first rule we proposed in Section IV,
which is crucial to accurately estimate the compression ratio
for ZFP. (2) We assemble the sampled blocks to construct
a synthetic dataset, on which we perform an essential ZFP
compression!, which will output the estimated compression
ratio. Although the assembled dataset may lose smoothness
at the edge of the blocks (as illustrated in Figure 4 using
Nyx cosmology simulation dataset), this would not affect
compression ratio estimation because ZFP’s compression is
applied on the 4*-blocks individually, as described above.

It is worth noting that Lu et al. [14] also proposed the use
of block-wise sampling to estimate the compression ratio (CR)
for ZFP, however, our surrogate-based CR estimation method
advances prior work in the following facets. (1) Lu et al.’s
CR estimation applies 1D block-wise sampling, which may
suffer from large CR estimation errors for multi-dimensional
data compression. In comparison, our sampling method is
consistent with the multi-dimensional compression of ZFP,
so it can maintain the high accuracy of CR estimation, to

The essential ZFP compression here means that we perform ZFP’s
compression on the dataset but ignore the final compressed data aggregation
step because our goal is to obtain the estimated compressed data size (or
compression ratio).

137

N
100 .
~
200 . o
- ' -
-
%00 F s s v
7 -
400 | b - lzoo ﬁ? d
: > |
B V.-
500 { iv' P J 250 .‘ |
0 100 200 300 400 S0 0 50 100 150 200 250

(a) Original raw data (b) sampled data

Fig. 4. Full dataset vs. block-wise sampled dataset for Nyx [32]

be demonstrated later. (2) Lu et al.’s CR estimation method
supports only absolute error bound, while our SECRE-based
method supports different error control modes such as absolute
error bound and precision mode, to be shown later.

D. Applying SECRE for SPERR

SPERR [16] is a wavelet-transform-based error-bounded
lossy compressor that achieves outstanding rate-distortion on
a variety of data inputs [33] with relatively low compression
speed. The compression pipeline of SPERR is illustrated in the
left sub-figure of Figure 5. SPERR first transforms the original
input data into wavelet coefficients with CDF9/7 [34] wavelet
transform and then applies the lossy SPECK [35] encoding on
those coefficients to acquire a lossy compressed representation.
Additionally, an inverse wavelet transform has to be performed
on the SPECK lossy encoded coefficients, in order to detect
and correct out-bounded compression errors, so that the user-
specified point-wise error bound can be respected. The out-
bounded errors are quantized and the bins for error corrections
are stored together with the SPECK-encoded bitstream.

To estimate the SPERR compression ratio on certain input
data, SECRE leverages a tiny-scale compression test on the
whole input data. As demonstrated in the right sub-figure of
Figure 5, Our SECRE-based estimation first uniformly samples
several data blocks from the full dataset based on fixed block
size and certain sampling percentage/rate (e.g. 1% data are
sampled), then performs a surrogate version of SPERR com-
pression on those blocks. In the end, our algorithm calculates
the overall estimated compression ratio by aggregating the
compression ratio outputted by each sampled block.

VI. PERFORMANCE EVALUATION

We evaluate SECRE on four real-world scientific datasets.
We evaluate our solution with respect to (1) the estimation
error of the predicted compression ratio computed as the
percent error of the estimated compression ratio with respect
to the true compression ratio and (2) the run-time overhead
of SECRE (including sampling time) compared to the overall
compression time. We show that SECRE achieves state-of-the-
art estimation performance while outperforming comparable
models in terms of run-time efficiency.

A. Experimental Setup

1) System Environment: We conduct our experiments on
the Bebop supercomputer at Argonne National Laboratory
(ANL), evaluating our performance on a single node equipped

Authorized licensed use limited to: Argonne National Laboratory. Downloaded on July 20,2024 at 00:49:54 UTC from IEEE Xplore. Restrictions apply.



I:l Compression operation

SPERR compression pipeline
|:| Intermediate data

Original raw data (Input)

SPERR surrogate-based
CR Estimation

Original raw data
(Input)

Data Sampling
Sampled blocks
Wavelet Transform

Wavelet Coefficients

Lossy Input

SPECK Encoding
Outlier Correction

Encoded Bits

Error-bounding operation

Estimated Compression

Compressed data (output) Ratio (output)

Fig. 5. Comparison of SPERR compression pipeline vs. our approach that
relies on sampling and surrogate compression ration estimation

with an Intel Xeon Phi 7230 processor with 64 CPU cores,
96GB DDR4, and 16GB MCDRAM.

2) Compressors used in our evaluation: We evaluate our
approach with four cutting-edge error-bounded lossy compres-
sors: SZ3, ZFP, SZx, and SPERR. Each of them features a
particular advantage in different use cases. For example, SZ3
and ZFP are two fast error-bounded lossy compressors that can
achieve high compression ratios for many scientific datasets.
SZx is an ultra-fast error-bounded lossy compressor (generally
4-5X as fast as SZ3/ZFP), with compromised compression
ratios to a certain extent. SPERR is an emerging error-bounded
compressor taking advantage of the global wavelet transform
on the whole dataset, which can achieve extremely high
compression ratios in some cases but suffers from slow com-
pression. SZ1 and SZ2 are excluded because their compression
quality is always inferior to SZ3 according to prior studies [4],
[24].

3) Evaluation Datasets: Our evaluation includes four
widely used real-world scientific datasets spanning several
domains (such as cosmology and climate research).

e Miranda [36]: A snapshot of the 3D hydrodynamics
data obtained from running a large turbulence simula-
tion, which involves 7 fields in total, including pressure,
density, etc.

o NYX [32]: 3D mesh datasets generated by a cosmological
hydrodynamics simulation based on adaptive mesh. Each
snapshot contains 6 fields including dark matter density,
baryon density, temperature, velocity x, velocity y, and
velocity z.

o Hurricane ISABEL [9]: 48 snapshot datasets each con-
taining 13 fields, each of which is a 3D mesh dataset
(100x500x500). This dataset was produced by a weather
simulation of Hurricane Isabel.

o« CESM-ATM [1]: climate simulation datasets generated
by a 1/4 degree high-resolution Community Atmosphere
Model (CAM) simulation.

We summarize the four scientific datasets in Table I.

138

TABLE I
DATASETS USED IN EXPERIMENTS

App. # fields Dimensions Total Size Domain
Miranda 7 256x384x384 1GB Turbulence
NYX 6 512x512x512 3.1GB Cosmology

CESM-ATM 77 18003600 1.9GB Climate

Hurricane 48x13 100x500x 500 58.1GB Weather

4) Baselines: In the evaluation, we compare our SECRE
with two related works.

o Lu et al.’s model [14]: Lu et al. proposed a compression
ratio estimation method for SZ1.4 and ZFP. As for SZ1.4,
since their method is strictly dependent on SZ1.4’s design
principle, it cannot be extended to other versions of the
SZ compressor such as SZ2 and SZ3 directly. As such,
we compare our approach with the ZFP compressor. Since
their released code [37] is missing the compression ratio
estimation function for ZFP, we implemented the estima-
tion method according to their paper [14]: specifically,
their method samples the data points in a block of four
points and then performs ZFP compression. We also
implemented a version to support the precision mode for
the ZFP compressor based on their method.

« Jin et al’s model [23]: Jin et al. developed an analytical
framework to estimate the compression ratio for the SZ
compression model. In their code, they studied how to
predict compression ratios based on three predictors:
Lorenzo [38], regression [27], and spline interpolation
[4], which are adopted by SZ1.4, SZ2, and SZ3, respec-
tively. In our evaluation, we compare our solution with
Jin et al’s method based on SZ3, because as mentioned
previously, SZ3 exhibits similar or better compression
quality over SZ1.4 and SZ2 according to prior studies
[4].

B. Evaluation on SZx

Figure 6 (a) and (b) shows the compression ratio estimation
errors (i.e., the percentage of estimation error over the mea-
sured compression ratios with the same error bound setting)
and the time cost of the estimation (i.e., the percentage of
the estimation time compared with the compression time),
respectively, based on different sampling strides. Each candle
stick shows the max error, 75% quantile error, average error,
25% quantile error, and min error. Figure 6 (a) shows that the
estimation errors increase with the sampling stride, which is
reasonable because a larger stride means lower portions of data
sampled for the analysis and thus lower accuracy in estimation.
In comparison, Figure 6 (b) demonstrates that the estimation
cost decreases with the sampling stride. We can clearly see
that even when adopting a very large sampling stride such as
40 (sampling rate would be 1/41~2.43% at this stride), the
estimation error is still fairly low (less than 1% in the worst
case). In this situation, the corresponding estimation cost is
also extremely low (~2%) compared with the compression
time. As such, the sampling stride = 40 seems to offer the
best tradeoff for SZx.

Authorized licensed use limited to: Argonne National Laboratory. Downloaded on July 20,2024 at 00:49:54 UTC from IEEE Xplore. Restrictions apply.



14%

6%
max —>
5% 2 100
5 75% i g o
9 3% o quantile a 8%
= average
. 0 25% quantili\\\\lf LE) 6% %
2% min \ \ﬂ = 4% T
1% ~ 2% =
0% == é‘ %k 0% —
10 20 40 80 10 20 40 80
Sample Stride Sample Stride

(a) % Error (b) Estimation Cost

Fig. 6. SECRE Performance for SZx

We also provide the normalized distribution (i.e., probability
density function (PDF)) of the estimation error and estimation
cost in Figure 7 and Figure 8, respectively, using two datasets
(CESM-ATM and Hurricane) each with dozens or hundreds
of data fields (files). We do not perform the distribution
analysis for Miranda and NYX because there are too few
fields for each of them (Miranda has 7 fields and NYX has 6
fields). Combining Figure 7 and 8, we can clearly see that the
estimation errors and estimation cost form a trade-off for SZx.
Specifically, the estimation error is very low (about 0.2-0.4%)
while suffering from relatively high estimation cost when the
stride is set to 20 (i.e., 5% data are sampled), compared with
the stride of 80, and vice versa.

cesm ———
hurricane -

cesm ———
hurricane -

0 BA A 2 6‘ S ) 0
‘o Op dg
%, Y Yoy %, 2 Yoy D
ITor Error
(a) Stride 20 (b) Stride 80
Fig. 7. SECRE % Error for SZx
1 1
cesm ———— cesm ————
0.8 ; hurricane - 1 0.8 hurricane -
0.6 0.6
0.4 04
02 s 02
0 ? i 5 a‘ 0 o, 0, 7 7 7
T e oy V2 N % % %% % 0,0
% Time % Time

(a) Stride 20 (b) Stride 80

Fig. 8. SECRE Estimation Cost for SZx

The key reason for the high estimation accuracy and low
estimation cost with SECRE is twofold. On one hand, the
uniform sampling method can significantly reduce the time
complexity because of considerably fewer data points involved
in the estimation. On the other hand, we carefully design the
surrogate method by leveraging a derived estimation formula
with only the necessary operations in estimating the compres-
sion ratios.

139

C. Evaluation on SZ3

We present the evaluation results of the estimation error
and cost on SZ3 in Figure 9 based on two compression
modes: error-bounding mode and peak signal-to-noise ratio
(PSNR) mode. It is clear that the estimation error increases
slightly with the sampling stride because a larger stride means
less sampled data to be used. It is worth noting that the
average estimation error stays at a low level—around 10%
even when adopting a relatively high sampling stride such as
15 (corresponding to a sampling rate of 1/16~6%)—indicating
highly accurate estimation of compression ratios for both
compression modes.

22% 18%
20% 16% [
18% 14% |
16% 129% [T 1
‘gm% r ‘glo%—
m 12% T t; m 8%
10% 6% ‘ 1 i
S Bl s
6% T T 1 2% T
4% 0%
2 5 10 15 2 5 10 15
Sample Stride Sample Stride

(a) Error-bounding Mode (b) PSNR Mode

Fig. 9. SECRE Estimation Error for SZ3 using various sampling strides in
(a) error-bounding mode and (b) PSNR mode

Figure 10 shows the normalized distribution (PDF) of
estimation error (%) calculated based on all fields/files of the
CESM-ATM and Hurricane datasets, under the the sampling
stride of 5. We can see that the Hurricane dataset has lower
estimation errors than CESM-ATM does in general. This is due
to the fact that the 3D Hurricane dataset projects a much lower
sampling rate than the 2D CESM-ATM dataset does when they
are using the same sampling stride. In fact, their sampling rates
are both quite small (0.8% for Hurricane and 3% for CESM-
ATM) because our method samples the data only at the lowest
interpolation level along different dimensions (see Section V-B
for details).

1

0.8
0.6
0.4
0.2
0 O o 6o Fo 4y 4o L,
e A

Error

(b) PSNR Mode

TTO]

(a) Error-bounding Mode
Fig. 10. SECRE % Error for SZ3 using sample stride 5

Fig. 11 shows estimation cost based on two sampling strides
(5 and 10). We can clearly observe very low estimation costs
(about 1-2% for Hurricane and 3-8% for CESM on average).

We also compare SECRE with Jin et al.’s [23] state-of-the-art
estimation method in terms of both estimation error (Table II)
and estimation time (Table III). We see that SECRE has 14-
50% lower average estimation errors for most of the datasets
(Miranda, NYX, and Hurricane except for CESM) than Jin

Authorized licensed use limited to: Argonne National Laboratory. Downloaded on July 20,2024 at 00:49:54 UTC from IEEE Xplore. Restrictions apply.



0.8
0.6
0.4
0.2

0\&)Q

% % 6o b 4y 45 2,0

22 %2 % R 0 % v o U G
% Time

(b) Stride 10

% Time
(a) Stride 5

Fig. 11. SECRE Estimation Cost for SZ3

et al.’s method, with a comparable estimation time cost. The
higher accuracy in our estimation is because of our efficient
sampling method and surrogate for SZ3.

TABLE II
COMPARISON OF % ERROR FOR SZ3 ESTIMATION (STRIDE=5)
Dataset ] SECRE ] Jin et al. [23]
Min Avg Max Min Avg Max
Miranda | 4.63% | 6.21% 8.44% 12.19% | 12.44% | 13.04%
NYX 4.49% | 6.34% 7.66% 4.18% 7.38% 9.52%
CESM 5.62% | 13.23% | 31.85% | 7.27% 10.97% | 20.04%
Hurricane | 5.03% 8.03% 13.90% | 8.06% 12.56% | 17.21%
TABLE III

COMPARISON OF ESTIMATION COST (%) FOR SZ3 ESTIMATION

Dataset ] SECRE ] Jin et al. [23]
Min Avg Max Min Avg Max
Miranda 1.48% | 1.90% 2.17% 1.31% | 1.61% 1.89%
NYX 1.58% | 1.71% 2.05% 1.26% | 1.37% 1.66%
CESM 587% | 8.13% | 12.11% | 6.41% | 9.11% | 13.80%
Hurricane | 1.51% | 2.16% 3.12% 1.31% | 1.85% 2.66%

D. Evaluation on ZFP

Figure 12 shows the relative error of compression ratio
estimation for ZFP based on different sampling rates by
aggregating the evaluation results from all four application
datasets. Using only 5% of sampled data can achieve fairly
high estimation accuracy (with an estimation error of only 2%
on average).

35% 30%
30% 25% 1
25% 0%
520% 5
15%
515% L 0%
10% T T 10%
i ETRTRIAE -
0% 0% El il I:l
1% 5% 10% 20% 1% 5% 10% 20%

Sampling Rate Sampling Rate (%)
(a) Accuracy Mode (b) Precision Mode

Fig. 12. SECRE Average % Estimation Error for ZFP using various sampling
rates in (a) accuracy mode and (b) precision mode

We present the min, average, and max of the estimation error
and estimation cost of SECRE versus Lu et al.’s method [14]
in Table IV and Table V, respectively. The evaluation is con-
ducted using ZFP’s precision mode. We see that our estimation
method is very accurate in compression ratio estimation (with
an average estimation error of less than 1% for Miranda, NYX,
and CESM and less than 4% for Hurricane). In comparison,
Lu et al’s method suffers from large estimation errors (g,

150% on average) for all datasets. The key reason is that the
sampling method used in Lu et al.’s method selects a block of
four points in only one dimension, which is suitable for 1D
compression but unsuitable for multi-dimensional compression
in ZFP. In our solution, we adopt a multi-dimensional block-
wise sampling, which perfectly matches the multi-dimensional
compression in ZFP.
TABLE IV

COMPARISON OF % ERROR FOR ZFP ESTIMATION USING A 5%
SAMPLING RATE

Dataset SECRE Lu et al. [14]
Min Avg Max Min Avg Max
Miranda 1.17% | 2.50% | 3.96% 149.52% | 368.93% | 594.35%
NYX 0.03% | 0.10% | 0.18% 149.37% | 276.84% | 1077.30%
CESM 0.15% | 147% | 5.22% 111.85% | 174.68% | 253.69%
Hurricane | 0.10% | 5.81% | 37.47% | 202.48% | 323.95% | 423.41%

Table V shows the compression ratio estimation cost of
the two solutions. Our solution has a relatively low cost
(10-20% in general) compared with the compression time
because of the high efficiency in data sampling and surrogate
function. Lu et al.’s method [14], however, suffers from much
higher cost, mainly because this method performs 1D sampling
followed by a 1D compression, which projects more expensive
orthogonal transform operations compared with the multi-
dimensional transforms adopted by our SECRE method.

TABLE V
COMPARISON OF ESTIMATION COST (%) FOR ZFP USING A 5%
SAMPLING RATE

Dataset SECRE Lu et al. [14]
Min Avg Max Min Avg Max
Miranda 1226% | 23.67% | 35.93% | 149.52% | 368.93% | 594.35%
NYX 12.26% | 18.65% | 59.36% | 149.37% | 276.84% | 1077.30%
CESM 8.24% 10.42% | 13.61% | 111.85% | 174.68% | 253.69%
Hurricane | 14.61% | 20.87% | 26.80% | 202.48% | 323.95% | 423.41%

E. Evaluation on SPERR

Our SECRE solution is the first attempt to estimate the
compression ratio for SPERR because SPERR is an emerging
error-bounded compressor. Therefore, we have no related
works to compare regarding SPERR. We evaluate the estima-
tion error and cost for our SECRE method with various block
sizes. As mentioned previously, our algorithm samples the
dataset based on relatively large block sizes because SPERR’s
wavelet transform step would be applied to the whole dataset.
According to Figure 13 (a), we can observe that the estimation
error decreases with the block size, yet it is not affected
prominently by the sampling rate for these block sizes. In
fact, we also tested the block size of 128, which may lead
to fairly large estimation errors (even up to 100X in some
datasets). Figure 13 (b) clearly demonstrates that a block size
of 64 has the lowest time cost. As such, we conclude that the
block size 64 turns out to be the configuration leading to the
best estimation performance.

More detailed results can be found in Table VL. It is clearly
observed that the average estimation error stays very low:
around 2.75%-5.23% for three datasets — Miranda, CESM-
ATM, and Hurricane, while the NYX dataset manifests a much
larger average estimation error (20.11%). The key reason is

140

Authorized licensed use limited to: Argonne National Laboratory. Downloaded on July 20,2024 at 00:49:54 UTC from IEEE Xplore. Restrictions apply.



40% 22%
359 Sample Rate 20%
o 109 18%
30% 20% =2 | _ 1¢%
= 25% 30% —— ¥ 14%
2 20% 0% == 3 12 E
= 15% HHHIH 7177 £ 10%
0% 1] T 8%
st Wi % J
0% 2% .
16 32 64 16 32 64
Blocksize Blocksize
(a) Error (b) Estimation Cost (10%)

Fig. 13. SECRE Performance for SPERR

analyzed as follows. Note that we are using a block size of 64
to perform the estimation. For the three datasets (Miranda,
CESM-ATM, and Hurricane) that exhibit high estimation
accuracy, their dimension sizes (i.e., the number of elements
along each dimension) are relatively large compared with 64.
In comparison, the Hurricane dataset (100x500x500) has an
irregular dimension size with respect to the block size of 64,
so the sampled data points will not be as uniformly dispersed
as expected if the block size is set to 64.

TABLE VI
SECRE EST. ERROR FOR SPERR (SAMPLING RATE = 10%, BS=64)
Dataset Min Avg Max
Miranda 207% | 2.75% 3.63%
NYX 521% | 20.11% | 29.16%
CESM-ATM | 0.0% 523% | 31.89%
Hurricane 0.0% 3.45% 7.04%

VII. CONCLUSION AND FUTURE WORK

We proposed SECRE—a novel, generic, lightweight com-
pression ratio estimation framework, based on sampling and
surrogate estimators. We implemented compression ratio es-
timation methods based on SECRE for four state-of-the-art
lossy compressors and evaluated our approach by comparing
it with two other related works using four real-world datasets
- demonstrating that our solution can estimate compression
ratios very accurately (e.g., about 1% in estimation error
for SZx) with very low estimation costs (e.g., only 2% cost
compared with compression time for SZx).

In the future, we plan to develop the estimation methods
based on the SECRE framework for many other lossy com-
pressors (such as FPZIP [30], TTHRESH [39] and FAZ [33]).

ACKNOWLEDGMENTS

This research was supported by the Exascale Computing
Project (ECP), Project Number: 17-SC-20-SC, a collaborative
effort of two DOE organizations — the Office of Science and
the National Nuclear Security Administration, responsible for
the planning and preparation of a capable exascale ecosystem,
including software, applications, hardware, advanced system
engineering and early testbed platforms, to support the nation’s
exascale computing imperative. The material was supported by
the U.S. Department of Energy, Office of Science, Advanced
Scientific Computing Research (ASCR), under contract DE-
AC02-06CH11357, and supported by the National Science

141

Foundation under Grant OAC-2003709 and OAC-2104023.
We acknowledge the computing resources provided on Be-
bop (operated by Laboratory Computing Resource Center
at Argonne) and on Theta and JLSE (operated by Argonne
Leadership Computing Facility).

REFERENCES

[1] J. E. Kay and et al., “The Community Earth System Model (CESM) large
ensemble project: A community resource for studying climate change
in the presence of internal climate variability,” Bulletin of the American
Meteorological Society, vol. 96, no. 8, pp. 1333-1349, 2015.

F. Cappello, S. Di, S. Li, X. Liang, G. M. Ali, D. Tao, C. Yoon Hong, X.-
c. Wu, Y. Alexeev, and T. F. Chong, “Use cases of lossy compression
for floating-point data in scientific datasets,” International Journal of
HPC Applications (IJHPCA), vol. 33, pp. 1201-1220, 2019.

S. Di and F. Cappello, “Fast error-bounded lossy HPC data compression
with SZ,” in IEEE International Parallel and Distributed Processing
Symposium, 2016, pp. 730-739.

K. Zhao, S. Di, M. Dmitriev, T.-L. D. Tonellot, Z. Chen, and F. Cappello,
“Optimizing error-bounded lossy compression for scientific data by dy-
namic spline interpolation,” in 2021 IEEE 37th International Conference
on Data Engineering (ICDE), 2021, pp. 1643-1654.

X. Yu, S. Di, K. Zhao, jiannan Tian, D. Tao, X. Liang, and F. Cap-
pello, “Szx: an ultra-fast error-bounded lossy compressor for scientific
datasets,” arXiv preprint arXiv:2201.13020, 2022.

P. Lindstrom, “Fixed-rate compressed floating-point arrays,” IEEE trans-
actions on visualization and computer graphics, vol. 20, no. 12, pp.
2674-2683, 2014.

J. Liu, S. Di, K. Zhao, S. Jin, D. Tao, X. Liang, Z. Chen, and F. Cappello,
“Exploring autoencoder-based error-bounded compression for scientific
data,” in 2021 IEEE International Conference on Cluster Computing
(CLUSTER). IEEE, 2021, pp. 294-306.

D. Tao, S. Di, H. Guo, Z. Chen, and F. Cappello, “Z-checker: A
framework for assessing lossy compression of scientific data,” The
International Journal of High Performance Computing Applications,
vol. 33, no. 2, pp. 285-303, 2019.

Hurricane ISABEL simulation
http://vis.computer.org/vis2004contest/data.html, 2004, online.
Y. Liu, S. Di, K. Chard, I. Foster, and F. Cappello, “Optimizing scientific
data transfer on globus with error-bounded lossy compression,” in
43rd IEEE International Conference on Distributed Computing Systems
(IEEE ICDCS). IEEE, 2023.

S. Li, S. Di, K. Zhao, X. Liang, Z. Chen, and F. Cappello, “Resilient
error-bounded lossy compressor for data transfer,” in Proceedings of the
International Conference for High Performance Computing, Networking,
Storage and Analysis, ser. SC °21, 2021.

R. Underwood, S. Di, J. C. Calhoun, and F. Cappello, “Fraz: A generic
high-fidelity fixed-ratio lossy compression framework for scientific
floating-point data,” in /PDPS. IEEE, 2020, pp. 567-577.

R. Underwood, J. C. Calhoun, S. Di, A. Apon, and F. Cappello,
“Optzconfig: Efficient parallel optimization of lossy compression config-
uration,” IEEE Transactions on Parallel and Distributed Systems, 2022.
T. Lu, Q. Liu, X. He, H. Luo, E. Suchyta, J. Choi, N. Podhorszki,
S. Klasky, M. Wolf, T. Liu et al., “Understanding and modeling lossy
compression schemes on hpc scientific data,” in JEEE IPDPS. 1EEE,
2018, pp. 348-357.

X. Liang et al, “SZ3: A modular
posing  prediction-based  error-bounded
https://arxiv.org/abs/2111.02925, 2021, online.
“Sperr,” https://github.com/NCAR/SPERR.

L. Davisson, “Rate distortion theory: A mathematical basis for data
compression,” IEEE Transactions on Communications, vol. 20, no. 6,
pp. 1202-1202, 1972.

R. Blahut, “Computation of channel capacity and rate-distortion func-
tions,” IEEE Transactions on Information Theory, vol. 18, no. 4, pp.
460-473, 1972.

S. Arimoto, “An algorithm for computing the capacity of arbitrary dis-
crete memoryless channels,” IEEE Transactions on Information Theory,
vol. 18, no. 1, pp. 14-20, 1972.

M. Smieja and J. Tabor, “Entropy approximation in lossy source coding
problem,” Entropy, vol. 17, no. 5, pp. 3400-3418, 2015.

2

—

3

—

[4]

[51

[6

17

—

[8]

[9] data,

[10]

(11]

[12]

[13]

[14]

framework for com-
lossy  compressors,”

[15]

[16]
[17]

(18]

[19]

[20]

Authorized licensed use limited to: Argonne National Laboratory. Downloaded on July 20,2024 at 00:49:54 UTC from IEEE Xplore. Restrictions apply.



[21] D. Tao, S. Di, Z. Chen, and F. Cappello, “Significantly improving lossy
compression for scientific data sets based on multidimensional prediction
and error-controlled quantization,” in 2017 IEEE International Parallel
and Distributed Processing Symposium. 1EEE, 2017, pp. 1129-1139.

[22] J. Wang, T. Liu, Q. Liu, X. He, H. Luo, and W. He, “Compression ratio
modeling and estimation across error bounds for lossy compression,”
IEEE TPDS, vol. 31, no. 7, pp. 1621-1635, 2020.

[23] S. Jin, S. Di, J. Tian, S. Byna, D. Tao, and F. Cappello, “Improving
prediction-based lossy compression dramatically via ratio-quality model-
ing,” in 2022 IEEE 38th International Conference on Data Engineering
(ICDE), 2022, pp. 2494-2507.

[24] J. Liu, S. Di, K. Zhao, X. Liang, Z. Chen, and F. Cappello, “Dynamic
quality metric oriented error bounded lossy compression for scientific
datasets,” in SC22: International Conference for High Performance
Computing, Networking, Storage and Analysis (SC), 2022, pp. 892-906.

[25] D. Tao, S. Di, X. Liang, Z. Chen, and F. Cappello, “Fixed-psnr lossy
compression for scientific data,” in 2018 IEEE International Conference
on Cluster Computing (CLUSTER), 2018, pp. 314-318.

[26] X. Liang, S. Di, D. Tao, Z. Chen, and F. Cappello, “An efficient
transformation scheme for lossy data compression with point-wise
relative error bound,” in 2018 IEEE International Conference on Cluster
Computing (CLUSTER). 1EEE, 2018, pp. 179-189.

[27] X. Liang, S. Di, D. Tao, S. Li, S. Li, H. Guo, Z. Chen, and F. Cappello,
“Error-controlled lossy compression optimized for high compression
ratios of scientific datasets,” in Conference on Big Data. 1EEE, 2018.

[28] HDFS5. [Online]. Available: http://www.hdfgroup.org/HDF5

[29] The HDF Group. (2017) HSZ: Filter and Compression Interface.
https://support.hdfgroup.org/HDF5/doc1.8/RM/RM_H5Z.html. Online.

[30] P. G. Lindstrom et al, “Fpzip,” Lawrence Livermore National
Lab.(LLNL), Livermore, CA (United States), Tech. Rep., 2017.

[311 Y. Collet, “Zstandard — real-time data compression algorithm,”
http://facebook.github.io/zstd/, 2015.

[32] NYX simulation, https://amrex-astro.github.io/Nyx, 2019, online.

[33] J. Liu, S. Di, K. Zhao, X. Liang, Z. Chen, and F. Cappello, “FAZ:
A flexible auto-tuned modular error-bounded compression framework
for scientific data,” in Proceedings of the nternational Conference on
Supercomputing (ICS °23), 2023.

[34] A. Cohen, I. Daubechies, and J.-C. Feauveau, “Biorthogonal bases of
compactly supported wavelets,” Communications on pure and applied
mathematics, vol. 45, no. 5, pp. 485-560, 1992.

[35] W. A. Pearlman, A. Islam, N. Nagaraj, and A. Said, “Efficient, low-
complexity image coding with a set-partitioning embedded block coder,”
IEEE transactions on circuits and systems for video technology, vol. 14,
no. 11, pp. 1219-1235, 2004.

[36] “Miranda application,” https://wci.llnl.gov/simulation/computer-
codes/miranda.

[37]1 T. Lu, “Lossy compression study code for paper “understanding and
modeling lossy compression schemes on hpc scientific data” published
in ipdps2018.” https://github.com/taovcu/LossyCompressStudy.

[38] L. Ibarria, P. Lindstrom, J. Rossignac, and A. Szymczak, “Out-of-core
compression and decompression of large n-dimensional scalar fields,”
in Computer Graphics Forum, vol. 22, no. 3. Wiley Online Library,
2003, pp. 343-348.

[39] R. Ballester-Ripoll, P. Lindstrom, and R. Pajarola, “Tthresh: Tensor
compression for multidimensional visual data,” IEEE transactions on
visualization and computer graphics, vol. 26, no. 9, pp. 2891-2903,
2019.

142

Authorized licensed use limited to: Argonne National Laboratory. Downloaded on July 20,2024 at 00:49:54 UTC from IEEE Xplore. Restrictions apply.



