
LibPressio-Predict: Flexible and Fast Infrastructure For Inferring
Compression Performance

Robert Underwood
runderwood@anl.gov

Argonne National Labratory

University of Chicago

Lemont, Illinois, USA

Sheng Di
sdi1@anl.gov

Argonne National Labratory

University of Chicago

Lemont, Illinois, USA

Sian Jin
sianjin@iu.edu

Indiana University

Bloomington, Indiana, USA

Md Hasanur Rahman
mdhasanur-rahman@uiowa.edu

University of Iowa

Iowa City, Iowa, USA

Arham Khan
arham@uchicago.edu

University of Chicago

Chicago, Illinois, USA

Franck Cappello
cappello@anl.gov

Argonne National Labratory

University of Chicago

Lemont, Illinois, USA

ABSTRACT

Over recent years, substantial efforts have gone into developing

systems to infer compression performance without running com-

pressors. These efforts have driven down the error in the estimates,

reduced their runtimes, and improved their generality. However,

these efforts are uncoordinated increasing the efforts required to

perform comparisons between them. There may be subtle differ-

ences in sampling approaches, and nuances to the interfaces re-

quiring efforts to port applications between them and to reproduce

experiments. Additionally, many of these methods call for substan-

tial amounts of training data to produce reliable estimates, as well

as scalable codes to perform the training. In this work, we present

LibPressio-Predict ś a scalable library for use in applications us-

ing predictions of compression performance and a scalable tool

LibPressio-Bench to run these experiments quickly at scale. We use

this tool to evaluate 3 recent compression prediction approaches

systematically with all 48 timesteps and 13 fields from the Hurricane

Issable dataset.

CCS CONCEPTS

• Theory of computation → Data compression; • Computing

methodologies → Machine learning; Massively parallel and high-

performance simulations.

KEYWORDS

Lossy Compression, Prediction, HPC, I/O Optimization, SZ, Lib-

Pressio, ZFP

ACM Reference Format:

Robert Underwood, Sheng Di, Sian Jin, Md Hasanur Rahman, Arham Khan,

and Franck Cappello. 2023. LibPressio-Predict: Flexible and Fast Infrastruc-

ture For Inferring Compression Performance. In Workshops of The Interna-

tional Conference on High Performance Computing, Network, Storage, and

Publication rights licensed to ACM. ACM acknowledges that this contribution was
authored or co-authored by an employee, contractor or affiliate of the United States
government. As such, the Government retains a nonexclusive, royalty-free right to
publish or reproduce this article, or to allow others to do so, for Government purposes
only.

SC-W 2023, November 12ś17, 2023, Denver, CO, USA

© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0785-8/23/11. . . $15.00
https://doi.org/10.1145/3624062.3625124

Analysis (SC-W 2023), November 12ś17, 2023, Denver, CO, USA. ACM, New

York, NY, USA, 9 pages. https://doi.org/10.1145/3624062.3625124

1 INTRODUCTION

Increasingly lossy compression is being used as an optimization for

I/O and memory operations in large high-performance computing

(HPC) and AI applications[3, 21, 22]. For some of these applica-

tions, knowing the compression ratio, compression bandwidth, or

some other metrics in advance of running the compressor would be

very helpful. Existing work has shown that auto-tuning workflows

such as OptZConfig[18] or choosing the best compressor among

a group of two or more compressors [15], or writing to a shared

file in parallel [6] all benefit from being able to quickly estimate

the performance of compressors. Each of these applications places

different demands on the prediction method: some need extremely

fast but tolerate inaccurate predictions, and others can actually be

somewhat slow relative to the time of invoking a compressor the

same number of times provided the estimates are very accurate,

and still other uses benefit special capabilities like error bounds on

the estimate [2] or the ability to do counterfactual estimation for

different compressor architectures.

In response to such diverse demands, many different estima-

tion strategies have been developed each with distinct advantages

and disadvantages [2, 6, 9, 15, 17, 20]. However, integrating these

methods into applications or libraries often written in C++ or eval-

uating their individual strengths can be challenging. Many of these

compression prediction schemes were implemented in mixes of pro-

gramming languages, with inconsistent APIs, and subtle differences

in implementation that make it difficult to correctly implement a

comparison between these methods or for applications and libraries

that wish to use these methods to adopt them without substantial

code changes as methods evolve and implementations improve.

This is largely the situation that motivated the introduction of MPI

to standardize message passing implementation [1] in 1992, and

the development of LibPressio for invoking lossy compressors in

2019 [16].

This work introduces a set of tools to address this challenge:

LibPressio-Predict a lightweight and extendable framework for

describing, implementing, and utilizing methods to predict com-

pression performance; and LibPressio-Predict-Bench, an extendable,

SC-W 2023, November 12–17, 2023, Denver, CO, USA Underwood et al.

high-performance, embeddable, scalable, and resilient infrastruc-

ture to evaluate these prediction schemes. We use this infrastruc-

ture to evaluate some of the leading compression ratio prediction

schemes on several different compressors and datasets.

This work aims to answer the following key challenging ques-

tions:

(1) How to generically enable maximum reuse of previously

observed metrics in predictions to reduce the computational

overhead as much as possible for using these methods for

training or inference, especially in the case of interactive

prediction scheme development on multiple compressors?

(2) How to minimize the I/O, compute, and memory overheads

associated with training on large multi-terabyte datasets that

do not easily fit in memory on any one node?

(3) How to best address fault tolerance in the distributed training

process and make these kinds of faults recoverable?

(4) How to describe and refine the needs of use-cases of compres-

sion performance inference to metrics that can be used for

comparisons to allow users to easily find estimation methods

that are suitable for their needs?

The remainder of this work is organized as follows: In Section 2

we discuss applications of compression performance prediction and

the methods used to implement this prediction. Then in Section 3

we describe why various existing systems such as ML libraries,

workflow systems, and dataloaders alone are ill-suited for this task

motivating the need for an integrated approach. After that in Sec-

tion 4 we present the architecture of our approach providing an

overview of our approach to these challenges. Section 5 then goes

into the details of the implementation and demonstrates how to

add a prediction method to LibPressio-Predict. Lastly, we evaluate

how some of our optimizations lead to high-performance training

and inference and conclude with an example evaluation of a few

leading compression prediction methods available in LibPressio-

Predict. We then conclude with future work in the compression

ratio prediction space and call for contributions to our library from

the community.

2 BACKGROUND

In this section, we describe the research background in two facets:

existing applications of compression prediction and existing predic-

tion methods of compression quality (such as compression ratio).

2.1 Applications of Compression Prediction

There are several possible tasks for which being able to predict

compression ratios or other metrics is useful. Some of these uses

include quickly and automatically determining a configuration for

a compressor that projects a good performance while possibly meet-

ing particular criteria [13, 18, 19], selecting the best-performing

compressor quickly [15], or even accelerating writes to shared files

such as compressed chunks in HDF5 [5, 6]. In this section, we elabo-

rate on the use cases and the demands that they place on prediction

schemes as documented in prior work [2].

One of the earliest use cases of using compressor performance

predictionwas choosing the best performing among a group of lossy

compressors [15]. In this case, predictions are used as a replacement

for running the compressors. This method needs to be fast but

actually does not need to be tremendously accurate since it needs

to only preserve the ranking of the best-performing compressor

or group of compressors [2]. This is especially true if some of

the metrics only have to be computed once for a wide variety of

different predictions ś a condition that we refer to as invalidation.

Quickly determining a compressor configuration that has high

performance (e.g. compression ratio, compression throughput) while

meeting a user’s quality requirements is a common request among

users[18]. One such example was the work by Rahman et al [13]

which uses features of a dataset to quickly predict configurations

that are likely to meet user requirements in this case the work

primarily used random forests used to predict the compression

ratio. However, in these use cases, the accuracy of the estimation is

very important while the speed is only moderately important [2],

especially for methods that are robust to invalidation.

One of the most recent use cases for compression performance

prediction is accelerating writing to distinct offsets of shared files in

parallel such as in HDF5 Parallel Write [6]. In this use case, predic-

tions are used to precompute the offsets that are used and can fall

back to appending the data in the event of mispredictions. Addition-

ally, a safety factor can be used that will over-allocate storage and

in turn decrease the chances of under-allocation. Additionally, one

method by Ganguli [2] offers statistical bounds on the compression

ratio estimation error allowing precise forecasting of the number of

mispredictions. For these reasons, this method also does not need

to be extremely accurate however it does need to be extremely

fast relative to the time to invoke the compressor as there are few

opportunities for invalidations.

Another particularly compelling use case is offered by Wang

et al[20]: counterfactual analysis to predict the performance of

compressors that do not yet exist. This is extremely useful in the

effort of compressor design where hundreds of person-hours go into

the design, testing, and evaluation of specialized lossy compressors

for particular applications. If a prediction scheme can show with

some confidence that a particular method will ultimately prove

unfruitful for a particular application, it can be discarded early in

the design process.

In short, different applications require different traits and capa-

bilities of the prediction schemes that work best to accelerate them.

Therefore there needs to be a variety of prediction approaches to

best meet the needs of different applications, and different metrics

to evaluate their suitability.

2.2 Methods

The desire to estimate and compute bounds for compression ratios

and other compression statistics are not new. Shannon famously

defined the entropy [14] which provides an upper bound on the com-

pressibility of data for lossless compressors. In the years since Rate-

Distortion theory has developed as a way to provide strong bounds

on the compressibility of datasets. However, rate-distortion theory

often has to make restrictive assumptions that make it ill-suited

for estimating the compressibility of many scientific datasets and

modern lossy compressors. To compensate for this many schemes

have been designed to estimate the performance of compressors.

LibPressio-Predict: Flexible and Fast Infrastructure For Inferring Compression Performance SC-W 2023, November 12–17, 2023, Denver, CO, USA

Some of these methods have training steps where models are fine-

tuned for particular datasets to increase accuracy, while others take

a more formulaic approach and forego training.

One of the earliest methods to predict compression ratios for

modern lossy compressors was mentioned by Tao [15] and ex-

panded on in [10]. It uses the average compression ratio for a

particular compressor of blocks sampled from the input dataset.

The performance of this method scales with the performance of

the compressor, and for an appropriate sample count and block

size (which in the original design was based on the internals of

compressors), this can be a lightweight method to estimate com-

pression ratios, however, it is not very accurate. However, for the

use case for which it was proposed, it only needs to be accurate in

determining which compressor performs the best.

The method by Krasowska [9]. This unlike the previous method

uses no internals of the compressor and instead relies on two statis-

tics of the input data: the quantized entropy and the local variogram

which were fitted with a simple trained linear regression to sam-

ples of the data. This method was a substantial step forward in the

prediction of compression ratios in that it was the first not to use

any compressor internals beyond the notion of absolute error and

proved far more accurate than prior sampling-based methods.

Beginning in 2022, there was an explosion of interest in methods

to estimate compression ratio and other aspects of compression

performance. An evolution of Krasowska [9] appears in Underwood

and Bessac [17]. In this version, the variogram was exchanged for

the truncation of the singular value decomposition (SVD) because

of the availability of high-performance implementations of the

SVD on which it is based and the statistical properties of the SVD

which make it well suited for measuring the global amount of

spatial information. This method also replaced the simple trained

linear regression with a more sophisticated cubic spline regression.

Together these improvements demonstrated vast speedups and

improvements in accuracy on a variety of applications however

even with highly optimzized GPU implementations of the SVD, it

is unsuitable for applications that depend greatly on the speed of

the prediction.

A related approach developed by Ganguli[2] uses a combination

of three bespoke metrics (spatial correlation, spatial diversity, and

spatial smoothness) and two existing metrics (coding gain and

general distortion). This approach uses a trained mixture model and

conformal prediction to both increase the robustness of statistical

approaches but also to provide strong guarantees on the error

to achieve unparalleled in-sample and out-of-sample prediction

accuracy.

Around the same time ZPerf by Wang [20], introduced the capa-

bility to perform counterfactual analysis of the compression per-

formance. It accomplished this by decomposing the stages that are

common to compressors [3] in the formulation of compression per-

formance and using estimates for each of the stages. This method

was ultimately built on predictors largely derived from internals to

the compressors from earlier papers from the same group [11, 12]

which used Gaussian process modeling and deep neural networks

respectively.

A related, but independently developed method SECRE [7] like-

wise takes the approach of modeling the various stages of the

internals of the compressor but combines this with tightly coupled

sampling and applies it to two additional compressors SZx (a high

throughput version of SZ), and to SPERR a leading compressor

based on wavelets.

FXRZ [13] combined primarily random forests with a series of

facially neutral predictors (but closely aligned with predictors in

SZ) to quickly estimate the compression ratio of various datasets.

A key innovation of this work was to perform data augmentation ś

artificially accumulating additional training data by interpolation

between observed values. This brought down the training cost for

this class of model substantially while obtaining accuracy competi-

tive with other approaches such as [18].

Jin [5] proposes a numerical model for prediction-based lossy

compression. It decomposes the compression process into three

stages: prediction, quantization, and encoding. By offering theo-

retical analysis encompassing Huffman encoding efficiency and

subsequent lossless encoding efficiency, along with estimating the

quantization code distribution based on prediction-quantization

design, it can accurately predict the compression ratio of SZ. This

theoretical foundation also enables its application in other areas,

such as predicting compression time and I/O time [6].

We summarize the prior prediction methods in Table 1. How-

ever, with all of these methods, users have a challenging task to 1)

evaluate which of these nearly a dozen methods is best for their

use case and 2) integrate it efficiently train them for their problems,

and how to efficiently integrate them into their applications in a

way that allows them to adopt new methods quickly and compare

them.

3 RELATED WORK

Our work holistically evaluates a series of prediction schemes. To do

this efficiently, we need a collection of different types of components

that are tightly integrated to offer high performance each of which

has key similar work. As a result of the limitations of many of

these prior approaches, most prior papers evaluating predictors for

compression rely on bespoke programs [9, 17] that may or may not

have been distributed using MPI.

One of the first steps of training a predictor is identifying, imple-

menting, and evaluating at-scale a large number of data samples.

The codes may be a mix of CPU and GPU and may be implemented

in a variety of languages. In all likelihood, they were implemented

using completely incompatible interfaces as were all the prediction

schemes we considered in our work. Regardless of which other

choices one makes to train and estimate using these prediction

schemes you use to implement these metrics and schedule them,

all of them will require a way to encode the different invalidation

requirements for prediction schemes.

In other domains workflow systems such as SLURM, HT Condor,

Swift-t, Pegasus, Legion, or Apache Hadoop/Spark. These systems

generally allow the execution of graphs of tasks with various de-

pendencies. Many of these are complex requiring extensive config-

uration making them difficult to embed into part of a larger C++

application. Embeddability is desirable because of wide variety of

use cases of compressors from different contexts from which li-

braries like LibPressio are called ś e.g. HDF5 plugins, high-level

programming languages such as Julia, R, or Python, and in-situ

embedding within scientific applications written in languages such

SC-W 2023, November 12–17, 2023, Denver, CO, USA Underwood et al.

Table 1: Estimation Methods

method training sampling black-box goal metrics approach features

Tao [15] × ✓ ∼ fast CR trial-based

Krasowska [9] ✓ × ✓ accurate CR regression

Underwood [17] ✓ × ✓ accurate CR regression

Ganguli [2] ✓ × ✓ accurate CR regresison bounded

Jin [5, 6] ✓ × × fast CR,Bandwidth calculation

Khan [7] × ✓ × fast CR calculation

Rahman [13] ✓ ✓ ∼ fast various machine learning

Lu [11] ✓ ✓ × accurate CR regression

Qin [12] ✓ ✓ × accurate CR deep learning

Wang [20] ✓ ✓ × accurate CR calculation counterfactuals

as C,C++, or Fortran ś which may not easily or may not wish to

configure these large complex systems alongside their codes and

prefer a library-based approach and benefit from the ubiquity of

support for components with a C foreign function interface such

as by LibPressio and LibPresiso-Predict. Additionally, most of these

systems do not feature the ability to coordinate I/O between tasks

or in some cases lack the ability to allocate jobs primarily based

on the availability of data or locations of cached resources. This

is especially important because the datasets used for compression

are large. Being able to use optimizations such as collective I/O,

local caching, and neighbor caching is critical to achieving high

performance of these codes at scale. Lastly, some of these systems

lack or have administratively restricted the ability to dynamically

add dependencies to currently running jobs as invalidations require

additional computation. They may also lack the ability to check-

point and restart the execution graph as it is executing to recover

from failures (either due to bugs in the metrics implementation or

hardware failures) that become more prevalent at scale with many

diverse datasets. During our implementation, we observed many

software faults in prediction schemes surfaced by the variety of

data considered in our testing that we resolved over the course of

our implementation. These faults required us to re-run our experi-

ments, however, fine-grained checkpoint restart allows us to re-run

only the affected results quickly.

Within the realm of AI, there are specialized data loaders (e.g.

Nvidia’s Dali) and prefetching systems (e.g. NoPFS [4]), but these

tend to be highly specialized for the use case of training AI models

and try to prefetch mini-batches of datasets to the GPU which

may or may not be the case of particular metrics’ and compressors’

implementations in data compression.

There are many libraries for the training of complex models

themselves. In R, libraries such as car or fixest are frequently used,

and in Python scikit-learn and deep learning frameworks like

pytorch and tensorflow. These tend to be non-trivial to integrate

in C++ applications which are widely used in HPC. Libraries that

are embeddable like Dlib [8] tend to lack features of these more

robust solutions available in Python or R. However, all of these

require some external system to provide the data that is itself used

for training and inference and require the user to implement a

checkpoint restart scheme on top of them if it is supported at all.

Answering these questions allows us to perform these compar-

isons more fairly and consistently across methods and evaluate

methods on the axis of time, accuracy, and robustness.

4 OVERVIEW OF OUR APPROACH

The task of efficiently estimating compression ratios and other com-

pressor performance metrics generally has several key steps that

need to be implemented efficiently and tightly integrated to achieve

high performance. First, the data or particular subsets of the data

must be loaded and in some cases preprocessed with careful atten-

tion to hardware capabilities, parallelism, and memory limitations.

Second, the various metrics must be computed or if appropriate

loaded from a cache that will be processed to form estimates, and

due to the volume of data, this often needs to be done in parallel at

scale. Third, there may be a training process that fits the parameters

of the method to the specific application or compressor. Finally,

the trained predictor needs to be used on new datasets which will

involve careful attention to how the application invalidates the

pre-computation done prior to the training phase.

Our solution builds upon LibPressio which provides generic

abstractions for compressors and metrics and divides this process

into three main components: libpressio-dataset which handles

hardware-efficient and memory-conscious sampling, loading, and

preprocessing of datasets; libpressio-predict which handles the

tracking of invalidation of metrics 1 and provides a consistent

interface to training and inference; and libpressio-predict-bench

which addresses the challenge of scaling the training process to

many nodes in a resilient fashion. Together, these components are

tightly integrated to dramatically simplify the process of developing

and using predictors of compressors’ performance. A sketch of their

primary interactions can be found in Figure 1.

We will utilize this framework to evaluate a collection of existing

compression techniques on the basis of both accuracy and runtime

to understand their suitability for various applications.

4.1 LibPressio-Dataset

LibPressio-Dataset provides the abstraction for loading, sampling,

and preprocessing data efficiently to nodes. The primary abstraction

1When a metric needs to be recomputed because the configuration of the compressor
or some other condition has changed requiring a reobservation of the metric. See
Section 2 for examples

LibPressio-Predict: Flexible and Fast Infrastructure For Inferring Compression Performance SC-W 2023, November 12–17, 2023, Denver, CO, USA

LibPressio-Dataset

Predict-Plugins

I/O-Plugins

Compressor

Plugins

Metrics

Plugins

LibPressio

Scheme Plugins

LibPressio-Predict

LibPressio-Predict-Bench

Figure 1: Architecture Sketch: The user can interact either

with LibPressio-Predict to use compression performance es-

timation methods, or they can interact with it using predict-

bench to allow training predictionmethods at scale or simply

to evaluate predictors for their use case

Dataset Loader

Cache

Random

Sampler

Ram

Local

cache

Folder

Loader

IO

loader

by

extension

HDF5

Native

binary

mpiio

Pressio_io

PFS

SSD

Figure 2: Sketch of a possible Dataset Loader pipeline. This

pipeline uses multiple levels of cache to take advantage of

deep memory tiers on modern supercomputers. Stages of the

pipeline can be swapped out for hardware efficient versions

such as replacing POSIX IO with MPIIO

is the dataset_pluginwhich has 4 primarymethods load_metadata,

load_data which load information such as shape, size, type, qual-

ity and the full data respectively, and variants load_metadata_all

and load_data_all to do this for all datasets which may be able

avoid repeated calls certain otherwise heavy operations and allow

the batching of queries. There are also APIs to configure them,

query metrics about them, and other common operations.

Like LibPressio compressors, dataset_plugins can be stacked

to implement more complex data loading functionality as well as be

extended by users without modifying the libpressio-dataset library

to implement optimizations for specific hardware, to add other

types of preprocessing specific to a particular case, or add new data

sources.

Figure 2 shows one such load pipeline. Here the io_loader plu-

gin uses a libpressio io_plugin to load a specific dataset using

an implementation-specific method to load each file based on its

file extension (e.g .bin uses fread where as .h5 uses H5Dread),

and can be configured to use hardware optimized loaders such as

mpiio or parallel hdf5 instead. The io_loader is instructed to load

specific datasets by the folder_loader which walks directories to

load all of the datasets that match a pattern and attaches metadata

to them about the files from which file each dataset came. As files

are loaded onto each node, they can be cached onto the node’s

local SSD to enable faster restart times by a local_cache plugin

which could be aware of node relationship and data placement. The

results of this process could then be randomly sampled. Because job

configuration only requires the metadata, operations like sampling

can even appear near the end of the pipeline and still be imple-

mented efficiently as the dataset loader can track datasets back to

the individual flies that loaded them. Lastly, datasets themselves

can leverage capabilities within LibPressio’s core to move data to

the appropriate device (CPU or GPU) once it is local to the node

ś future work should be able to allow this to be transparently re-

placed with a GPUDirect-like feature in the future and supported

by the system.

4.2 LibPressio-Predict

LibPressio-Predict consists of 3 key components 1) additional Lib-

Pressio metrics modules that implement metrics specific to com-

pression performance prediction 2) new predict_plugins that

allow fitting and predicting compression ratios and other perfor-

mance metrics, and 3) new scheme_plugins that enable users to

quickly to determine what metrics need to be computed for a given

prediction scheme based on the list of invalidations and configure

a predict_plugin to use these metrics.

In addition to the new prediction schemes that implement the

metrics from the papers that we compare, we’ve also added a new

metadata field predictors:invalidate that allows both users

and LibPressio-Predict to determine when a metrics result is no

longer useful and implemented it for the existing metrics modules.

If a compressor depends on a particular compressor setting such

as sz3:lorenzo it can name that setting directly, but it can also

use one of four special keys: 1) predictors:error_dependent,

2) predictors:error_agnostic, 3) predictors:runtime, and 4)

predictors:nondeterministic 2. Error dependent allows the user

to specify that a particular metric is sensitive to errors in the data

without having to exhaustively list the error metrics for a particular

compressor. Error agnostic means the opposite, no errors can ever

affect the results of this prediction. Runtime means that a metric de-

pends on runtime factors that might change if performance-related

settings are changed. Nondeterministic relates to a metric that the

user may wish to run this metric multiple times or with different

seeds to get an accurate metric ś this will typically include runtime

metrics, but also includes things like randomized SVD implementa-

tions. If a metric contains multiple different kinds of metrics (such

as error_stat in the LibPressio library, these can also be listed

under the particular type such as predictors:error_dependent

or predictors:error_agnostic. Lastly, because we build on Lib-

Pressio Metrics, we can also utilize its external metrics framework

to write new metrics in other languages to reuse existing code as

much as possible. The interface to doing so is found below in Fig-

ure 3. Most typically users will provide error-agnostic metrics by

overloading begin_compress_impl, and error-dependent ones by

also overwriting end_decompress_impl and provide the response

by get_metrics_results.

The predict_plugin is heavily inspired on the BaseEstimator

from SciKit-Learn and has two primary methods fit and predict

which train and perform predictions respectively. The API also re-

quires that the state of the predictor be serializable and configurable

like other LibPresio objects. LibPressio predicts currently provides

two modules, the first is for "simple" methods where the prediction

2There is one more special key predictors:training which is used only by the user
or framework for reporting invalidations, but is not listed in this option by a metric

SC-W 2023, November 12–17, 2023, Denver, CO, USA Underwood et al.

#include <libpressio_predict/ext/cpp/predict.h>

class example_metric_plugin : public libpressio_metrics_plugin {

/*hooks*/

int begin_compress_impl(pressio_data const* in, pressio_data

const*) ;↩→

int end_decompress_impl(pressio_data const* in, pressio_data const*

out, int rc) ;↩→

/*results*/

pressio_options get_metrics_results(pressio_options const &);

/*configuration and metadata*/

int set_options(pressio_options const& opts);

pressio_options get_options() const;

pressio_options get_configuration() const;

};

Figure 3: Major Functions in the Metrics API. Users can pro-

vide metrics using C++, or they can opt for the external met-

rics framework of LibPressio [18] at the cost of some over-

head. Error dependent metrics will need to implement both

begin_compress_impl and end_decompress_impl, and then

get_metrics_results. Some metrics will implment get and set

options to be parameterizable

comes directly from a metric without a training stage, and one that

allows providing predictions from modules written in Python such

as those that use Tensorflow, PyTorch or SciKit-Learn using an em-

bedded interpreter with an optimized code path to share memory

between the two. Like other components in LibPressio, this can be

extended for example to include prediction schemes from C++, R,

or Julia without modification to the core libpressio-predict library.

Lastly, the scheme_plugin facilitates the efficient combination

of metrics with predictors without requiring users to fully know

the details of these schemes and to introspect them. A code example

that uses can be found in Figure 4. First, a user retrieves a scheme

from the libpressio_predict registry. The registry also allows the

user to enumerate the available schemes and retrieve individual

predictors when developing a new scheme. With the scheme, they

get a corresponding predictor for a particular compressor. This

allows indicating an error if it is not supported in its current con-

figuration. Next, they can re-load the results of prior training into

the predictor. After the predictor is ready, the user indicates which

if any entries may be invalidated here they choose: pressio:abs

and all error agnostic metrics. Here we can also include a special

key predictors:training which can be used to indicate that we

should evaluate additional metrics required for training the pre-

dictor. error dependent appears in the list of metrics in addition to

pressio:abs in case the scheme is unaware of how to specifically

handle absolute error bounds, but can be ignored by the implemen-

tation since it recognizes a more specific option that affects the

error and there are no others that it does not recognize. From this,

they can get a metrics evaluator for the metrics that have been

evaluated, and invoke it on the data buffer that has been loaded.

Lastly, prediction is performed on the metrics resulting from the

evaluation, and the results are returned.

#include <libpressio_predict.h>

using namespace std;

double predict(compressor* comp, pressio_data* data)

{

pressio_predict plib;

auto scm = plib->get_scheme("tao2019");

auto pred = scm->get_predictor(comp));

pred->set_options({

{"predictors:state", prior_state}

});

string invs[] = {

"pressio:abs",

"predictors:error_dependent",

"predictors:error_agnostic"

};

auto eval = scm->req_metrics_opts(invs);

eval->set_options(comp->get_options());

eval->compress(data, compressed);

if(scm->do_decompress()) {

eval->decompress(compressed, decompressed);

}

pressio_data results;

pred->predict(

extract(

eval->get_metrics_results(),

scm->req_metrics()

), &results);

return *(double*)(results.data());

}

Figure 4: Inference Usage Sketch. Users get a reference to the

prediction scheme that they wish to use. For this they can

get a predictor for that metric. The predictor may require

training, in this case, we load the predictor’s state from a

variable. Next, we ask the scheme what needs to be computed

to use the predictor, then we can use the predictor to actu-

ally preform the prediction. The use of invalidations allows

avoiding recomputing values where appropriate

4.3 LibPressio-Predict-Bench

Lastly, LibPressio-Predict-Bench combines these various compo-

nents into a single scalable distributed system for both training

models and evaluates them on standard metrics using a k-fold vali-

dation 3. It provides a system for distributing the tasks, scheduling

them, and check-pointing the results as they complete.

Configuration is handled via LibPressio object introspection

which allows automatically converting the configuration flags into

options structures for both the compressor and the dataset.

Checkpointing is enabled via an embedded SQLite database. A

database was chosen both because of atomicity guarantees in the

case of failures ś no accidental partial results ś but also the ability

to query and partially restore the key state ś the metrics results.

Computing the metrics frequently dominates the time required to

train and predict models of compressibility and from experience

tends to be the most fault-prone and thus is the portion most in

need of checkpoint restart capabilities.

3A common statistical technique where data is partitioned into k chunks. k-1 of them
are used for training and 1 is used for validation. Training and validation are performed
k times once with each chunk in the validation set. Often prediction quality metrics
are only considered for the various validation sets

LibPressio-Predict: Flexible and Fast Infrastructure For Inferring Compression Performance SC-W 2023, November 12–17, 2023, Denver, CO, USA

However, how is the state indexed in the database? We introduce

a new capability into LibPressio to hash option structures with

a fast cryptographic hash. Unlike the hash functions in standard

libraries which make no guarantees about the hash stability of

objects between executions, cryptographic hashes provide this sta-

bility. The option structure is walked in a deterministic order, and

all entries with a consistent value are hashed 4 We compute these

hashes once upfront before execution begins to avoid the overhead

of repeated hashing.We then use these hashes to index into the data-

base. Individual results are uniquely identified by their compressor

configuration, dataset configuration, experimental metadata, and

replicate ID.

As data loading times tend to dominate task runtimes for most

compressors 5 even with our optimized data loading scheme on

the first load, we attempt to schedule as many jobs with the same

data to the same workers when they are available. More advanced

scheduling could be implemented with small modifications to Lib-

Distributed a distributed MPI-based task queue developed for use

in OptZConfig [18]. When multiple workers are not available, we

can fall back to single-node processing.

5 METHODOLOGY

For our evaluation, we ported three of the leading predictions to

use LibPressio-Predict. Specifically, we implemented Rahman 2023

[13], Khan 2023 [7], and Jin 2022 [5, 6] described in Section 2.2.

We will evaluate metrics schemes along two axes: time and

quality. For time, we will record the mean and standard deviation of

the error-agnostic time, the error-dependent time, the training time,

the fit time, and the inference time on various field and timesteps

of Hurricane. These stages correspond to the time required to:

(1) Error-agnostic time ś compute predictors whose values are

completely independent of the configuration of the compressors

(2) Error-dependent time ś compute predictors whose values are

dependent on compressors settings that effect the error allowed

by the compressor (3) Training time ś compute predictors whose

values are only required for training, but not inference ś most

commonly running the compressor (4) Fit Time ś refers to the

time required to fit the model to trained data (5) Inference Timeś

infer a single value. If a predictor is exactly the value of a metric this

is N/A. Not all prediction schemes have each of these stages. These

timings correspond to entries in the formula available in [2] which

can be used to consider the speedups for various applications.

Next, we consider metrics, datasets, and compressors. For quality,

we will use the Median Absolute Percentage Error (MedAPE) used

in [2, 9, 17]. MedAPE computes the median of the absolute value of

the percentage errors and is robust to outliers and the scale of the

metrics. For datasets, will consider multiple fields and timesteps

on the Hurricane dataset from [23]. This dataset represents a va-

riety of different data structures and most importantly sparsity

patterns. Sparsity patterns have substantial effects on the compress-

ibility of datasets. We will consider both a conservative (1e-6) and

a more liberal (1e-4) absolute error bound (pressio:abs) as there

4We exclude void* objects which are used to store objects like CUDA streams and
MPI_Comm objects. Generally, libpressio objects provide other optional parameters to
recreate these objects as needed
5MGARD and TThresh being notable exceptions

can be different compression ratios for each6. We only consider

SZ3 and ZFP in this work as these two compressors are two of the

most commonly used compressors and are best supported by the

compression prediction schemes we evaluate. Blackbox methods

such as [2, 9, 17] support many more compressors, but due to time

constraints, we were not able to include these in our analysis.

6 RESULTS

In this section, we use our tools to conduct a systematic evaluation

of the prediction schemes. We organize our results as follows. First,

we will look at the compressor performance as a baseline. Then we

will turn our attention to the runtime performance of the estimation

methods. Lastly, we turn our attention to the prediction quality.

Table 2 summarizes our key findings.

As a baseline, what do the compressors achieve? The runtime

of SZ3 on this entire dataset (all fields and timesteps) averaged

322.8±30.1mswhereas decompression averages 101.98±26.72. ZFP

tends to be faster on the entire dataset and averages 65.49±25.33ms

whereas decompression averages 33.86 ± 16.21. This is the number

that sampling methods aim to defeat. Why estimate compression

ratios if you can run the compressor to determine them faster and

have higher accuracy? This does not mean that estimation methods

need to be faster than a single run of the compressor. Methods

like [2, 9, 17] all leverage the ability to compute a subset of error-

agnostic metrics up front, and then use them to conduct many

different predictions in order to achieve speedups over running the

compressors multiple times to get each of these observations.

What about runtime? We see that both Khan and Rahman have

error-dependent, error-agnostic, and inference times that are sub-

stantially below the compression time. We found that Jin took

longer than we expected and longer than the execution of the

compressor. When profiling the Jin results revealed a substantial

amount of overhead associated with the management of C++ shared

pointers in the multi-dimensional iterator code used in the imple-

mentation. While the original implementation also used shared

pointers, the optimizer was unable to elide as much more of this

code in the original and resulting in much higher overhead.

Other works that use training such as [17] are competitive in

terms of their error-dependent metrics with less than 43ms. How-

ever, this work requires the computation of the SVD truncation

which takes closer to 771ms making it suitable for cases where

multiple compression operations are performed on the same data.

Next, what we can observe about the quality of the predictions?

Before we present these results, it is important to note that these

results represent a kind of worst-case scenario for prediction. First,

Hurricane features a mix of sparse and dense data fields. Sparse

fields can be substantially more compressible than dense fields and

prediction methods need a tool to compensate for this diversity

to handle this. Next, unlike most prior work in this space, we fo-

cused on the ability to perform out-of-sample prediction ś that is

prediction on a wide variety of datasets instead of datasets that are

largely heterogenous rather than relying on similarity of fields.

6In principle a value range relative error bound which would have normalized dif-
ferences between fields could be used, but not all compression prediction codes are
accurate with this use

SC-W 2023, November 12–17, 2023, Denver, CO, USA Underwood et al.

Table 2: Hurricane Performance Results using a 10-Fold Cross-Validation. Timing results are shown ± standard deviation

Error- Error- Compression/

method Dependent Agnostic Training Fit Inference Decompression MedAPE

(ms) (ms) (ms) (ms) (ms) (ms) (%)

sz3 322.8 ± 30.1/101.98 ± 26.72

sz3 khan [7] 5 ± .47 N/A N/A N/A N/A 232.57

sz3 sian [6] 518 ± .43 N/A N/A N/A N/A 25.88

sz3 rahman [13] N/A 7 ± 0.51 322.8 ± 30.1 370.34 ± 14.90 0.135 ± 0.0438 20.20

zfp 65.49 ± 25.33/33.86 ± 16.21

zfp khan [7] 5 ± .47 N/A N/A N/A N/A 381.12

zfp sian [6] N/A N/A N/A N/A N/A N/A

zfp rahman [13] N/A 7 ± .51 65.49 ± 25.33 360.49 ± 14.98 .09 ± .04 13.86

Now what is the estimation error? The best error we observe is

with a training-based approach: Rahman with a 20.20% error for

SZ3 and likewise a 13.86% error for ZFP. We attribute the vastly

superior performance to the sparsity correction factor it uses[13].

Likewise, we would expect methods like [2] to also do well in this

use case because this method uses a mixture regression approach to

reduce the error as is reported in their paper which reports a worst-

case error of less than 12.5% in a similar but not quite identical

case with an out-of-sample prediction for a subset of hurricane

data. However, Rahman achieves a much lower training and error-

agnostic+error-dependent time than this work.

The best non-training-based method that achieves a MedAPE is

Jin for SZ3 and Khan for ZFP. These approaches tend not to estimate

as well as the training-based methods for a few reasons: 1) These

methods tend to suffer on datasets with different degrees of sparsity.

This is intuitive because when they sample the data there is no

guarantee that they sample the portions of the data that are rep-

resentative of the compressibility of the dataset ś especially when

there is a relatively small region that is highly uncompressable. 2)

These methods tend to suffer even further because it is difficult to

accurately estimate the compressibility of data after quantization

and prediction. The method by Jin does so well on the SZ3 com-

pressor because in part it uses parts of the first few stages of the

SZ3 compressor and excludes the more expensive stages encoding

stages, and it does not need to solve as challenging a problem to

estimate the compressibility of what remains and can build off of

existing knowledge of rate-distortion.

7 CONCLUSION

In this work, we discuss and provide a set of tools that enables

efficient use and comparison between different compression pre-

diction techniques. LibPressio-Predict allows easily interchanging

prediction schemes with a consistent API. LibPressio-Dataset al-

lows the loading of these datasets in a configurable way that takes

advantage of the hardware. Finally, LibPressio-Predict-Bench al-

lows scalably training and evaluating them on large datasets at

scale on a supercomputer.

We use these tools to conduct a more systematic comparison and

exploration of how the different compression ratio prediction meth-

ods are achieved. With this exploration, we find that the mixture

of sparsity and density in datasets can contribute to large errors

in estimation. We highlight two methods from the literature (the

sparsity factor in [13], and the mixture model in [2] to address this

issue. We identify a gap in the literature for a both highly accurate

and fast prediction scheme.

For future work, we invite the community to contribute their

prediction schemes to our framework and we desire to expand our

study in several ways: 1) We would like to consider in-sample pre-

diction cases in addition to the out-of-sample use cases we provide

here. Including in-sample use cases would highlight a "best-case"

scenario for prediction performance to complement our current

results. 2) We would like to expand our analysis to non-weather

datasets and explore a wider variety of scientific data from wider

domains. Different datasets have different structural patterns that

are best exploited by different kinds of compressors. By expand-

ing our evaluation we can better capture the range of prediction

performance in real-world applications. 3) We would like to ad-

dress the performance disparities due to the optimizer to ensure

better performance parity with the evaluation in [6]. Given the

similarity of this aspect to the internals of SZ3, we expect that the

performance of the corresponding modules in SZ3 would also be

improved by our solution closing the gap between SZ2 and SZ3’s

runtime performance. 4) Some of the methods support predicting

other metrics such as bandwidth. As these metrics will leverage

non-deterministic and runtime metrics, there will need to be refine-

ments to the invalidation model to best handle these use-cases such

as machine-dependent metrics that are agnostic to any dataset.

ACKNOWLEDGMENTS

This research was supported by the Exascale Computing Project

(17-SC-20-SC), a collaborative effort of the U.S. Department of En-

ergy (DOE) Office of Science and the National Nuclear Security

Administration, and DOE Advanced Scientific Computing Research

(ASCR), under contract DE-AC02-06CH11357. This work was also

supported by the National Science Foundation under Grant OAC-

2003709 and OAC-2104023, and CSSI-2311875. This research used

resources of the Argonne Leadership Computing Facility, which

is a DOE Office of Science User Facility supported under Contract

DE-AC02-06CH11357.

LibPressio-Predict: Flexible and Fast Infrastructure For Inferring Compression Performance SC-W 2023, November 12–17, 2023, Denver, CO, USA

REFERENCES
[1] 2021. MPI: A Message-Passing Interface Standard Version 4. https://www.mpi-

forum.org/docs/mpi-4.0/mpi40-report.pdf
[2] Ganguli Arkaprabha, robert underwood, Julie Bessac, David Krasowska, Jon C.

Calhoun, Sheng Di, and Franck Cappello. 2023. A Lightweight, Effective Com-
pressibility Estimation Method for Error-bounded Lossy Compression. IEEE,
Sante Fe, New Mexico.

[3] Franck Cappello, Sheng Di, Sihuan Li, Xin Liang, Ali Murat Gok, Dingwen Tao,
Chun Hong Yoon, Xin-Chuan Wu, Yuri Alexeev, and Frederic T Chong. 2019.
Use cases of lossy compression for floating-point data in scientific data sets. The
International Journal of High Performance Computing Applications 33, 6 (Nov.
2019), 1201ś1220. https://doi.org/10.1177/1094342019853336 Number: 6.

[4] Nikoli Dryden, Roman Böhringer, Tal Ben-Nun, and Torsten Hoefler. 2021. Clair-
voyant prefetching for distributed machine learning I/O. In Proceedings of the
International Conference for High Performance Computing, Networking, Storage and
Analysis. ACM, St. Louis Missouri, 1ś15. https://doi.org/10.1145/3458817.3476181

[5] Sian Jin, Sheng Di, Jiannan Tian, Suren Byna, Dingwen Tao, and Franck Cappello.
2022. Improving Prediction-Based Lossy Compression Dramatically via Ratio-
Quality Modeling. In 2022 IEEE 38th International Conference on Data Engineering
(ICDE). 2494ś2507. https://doi.org/10.1109/ICDE53745.2022.00232 ISSN: 2375-
026X.

[6] Sian Jin, Dingwen Tao, Houjun Tang, Sheng Di, Suren Byna, Zarija Lukic, and
Franck Cappello. 2022. Accelerating Parallel Write via Deeply Integrating
Predictive Lossy Compression with HDF5. http://arxiv.org/abs/2206.14761
arXiv:2206.14761 [cs].

[7] Arham Khan. 2023. SECRE: Surrogate-based Error-controlled LossyCompression
Ratio Estimation Framework. IEEE, Sante Fe, New Mexico.

[8] Davis King. 2018. dlib C++ Library - Optimization. http://dlib.net/optimization.
html#global_function_search

[9] David Krasowska, Julie Bessac, Robert Underwood, Jon C. Calhoun, Sheng Di,
and Franck Cappello. 2021. Exploring Lossy Compressibility through Statistical
Correlations of Scientific Datasets. In 2021 7th International Workshop on Data
Analysis and Reduction for Big Scientific Data (DRBSD-7). 47ś53. https://doi.org/
10.1109/DRBSD754563.2021.00011

[10] Xin Liang, Sheng Di, Dingwen Tao, Sihuan Li, Bogdan Nicolae, Zizhong Chen,
and Franck Cappello. 2019. Improving Performance of Data Dumping with Lossy
Compression for Scientific Simulation. In 2019 IEEE International Conference on
Cluster Computing (CLUSTER). 1ś11. https://doi.org/10.1109/CLUSTER.2019.
8891037 ISSN: 2168-9253.

[11] Tao Lu, Qing Liu, Xubin He, Huizhang Luo, Eric Suchyta, Jong Choi, Norbert
Podhorszki, Scott Klasky, Mathew Wolf, Tong Liu, and Zhenbo Qiao. 2018. Un-
derstanding and Modeling Lossy Compression Schemes on HPC Scientific Data.
In 2018 IEEE International Parallel and Distributed Processing Symposium (IPDPS).
IEEE, Vancouver, BC, 348ś357. https://doi.org/10.1109/IPDPS.2018.00044

[12] Zhenlu Qin, Jinzhen Wang, Qing Liu, Jieyang Chen, Dave Pugmire, Norbert
Podhorszki, and Scott Klasky. 2020. Estimating Lossy Compressibility of Scientific
Data Using Deep Neural Networks. IEEE Letters of the Computer Society 3, 1 (Jan.
2020), 5ś8. https://doi.org/10.1109/LOCS.2020.2971940 Number: 1 Conference
Name: IEEE Letters of the Computer Society.

[13] Md Hasanur Rahman, Sheng Di, Kai Zhao, Robert Underwood, Li Guanpeng,
and Franck Cappello. 2023. A Feature-Driven Fixed-Ratio Lossy Compression
Framework for Real-World Scientific Datasets. IEEE Computer Society, Anaheim,
California. https://doi.org/10.1109/ICDE55515.2023.00116

[14] Claude Shannon and Warren Weaver. 1948. The Mathematical Theory of Com-
munication. (1948), 131.

[15] Dingwen Tao, Sheng Di, Xin Liang, Z. Chen, and Franck Cappello. 2019. Op-
timizing Lossy Compression Rate-Distortion from Automatic Online Selection
between SZ and ZFP. IEEE Transactions on Parallel and Distributed Systems 30, 8
(Aug. 2019), 1857ś1871. https://doi.org/10.1109/TPDS.2019.2894404 Number: 8
Citation Key Alias: taoOptimizingLossyCompression2019.

[16] Robert Underwood. 2019. CODARcode/libpressio. https://github.
com/CODARcode/libpressio Programmers: _:n1461 original-date: 2019-08-
19T14:18:32Z.

[17] Robert Underwood, Julie Bessac, David Krasowska, Jon C Calhoun, Sheng Di, and
Franck Cappello. 2023. Black-box statistical prediction of lossy compression ratios
for scientific data. The International Journal of High Performance Computing Appli-
cations 37, 3-4 (July 2023), 412ś433. https://doi.org/10.1177/10943420231179417

[18] Robert Underwood, Jon C Calhoun, Sheng Di, Amy Apon, and Franck Cappello.
2022. OptZConfig: Efficient Parallel Optimization of Lossy Compression Con-
figuration. IEEE Transactions on Parallel and Distributed Systems (2022), 1ś1.
https://doi.org/10.1109/TPDS.2022.3154096 Conference Name: IEEE Transactions
on Parallel and Distributed Systems.

[19] Robert Underwood, Sheng Di, Jon C. Calhoun, and Franck Cappello. 2020. FRaZ:
A Generic High-Fidelity Fixed-Ratio Lossy Compression Framework for Scientific
Floating-point Data. IEEE, New Orleans.

[20] Jinzhen Wang, Qi Chen, Tong Liu, Qing Liu, and Xubin He. 2023. Zperf: A
Statistical Gray-Box Approach to Performance Modeling and Extrapolation for

Scientific Lossy Compression. IEEE Trans. Comput. (2023), 1ś14. https://doi.org/
10.1109/TC.2023.3257517 Conference Name: IEEE Transactions on Computers.

[21] XiaoxiaWu, Zhewei Yao, Minjia Zhang, Conglong Li, and Yuxiong He. 2022. XTC:
Extreme Compression for Pre-trained Transformers Made Simple and Efficient.
https://openreview.net/forum?id=xNeAhc2CNAl

[22] Zhewei Yao, Reza Yazdani Aminabadi, Minjia Zhang, Xiaoxia Wu, Conglong
Li, and Yuxiong He. [n. d.]. ZeroQuant: Efficient and Affordable Post-Training
Quantization for Large-Scale Transformers. ([n. d.]).

[23] Kai Zhao, ShengDi, Xin Lian, Sihuan Li, Dingwen Tao, Julie Bessac, Zizhong Chen,
and Franck Cappello. 2020. SDRBench: Scientific Data Reduction Benchmark for
Lossy Compressors. In 2020 IEEE International Conference on Big Data (Big Data).
2716ś2724. https://doi.org/10.1109/BigData50022.2020.9378449

Received 5 September 2023; accepted 13 September 2023

	Abstract
	1 Introduction
	2 Background
	2.1 Applications of Compression Prediction
	2.2 Methods

	3 Related Work
	4 Overview of Our Approach
	4.1 LibPressio-Dataset
	4.2 LibPressio-Predict
	4.3 LibPressio-Predict-Bench

	5 Methodology
	6 Results
	7 Conclusion
	Acknowledgments
	References

