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ABSTRACT

Over recent years, substantial efforts have gone into developing
systems to infer compression performance without running com-
pressors. These efforts have driven down the error in the estimates,
reduced their runtimes, and improved their generality. However,
these efforts are uncoordinated increasing the efforts required to
perform comparisons between them. There may be subtle differ-
ences in sampling approaches, and nuances to the interfaces re-
quiring efforts to port applications between them and to reproduce
experiments. Additionally, many of these methods call for substan-
tial amounts of training data to produce reliable estimates, as well
as scalable codes to perform the training. In this work, we present
LibPressio-Predict — a scalable library for use in applications us-
ing predictions of compression performance and a scalable tool
LibPressio-Bench to run these experiments quickly at scale. We use
this tool to evaluate 3 recent compression prediction approaches
systematically with all 48 timesteps and 13 fields from the Hurricane
Issable dataset.
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1 INTRODUCTION

Increasingly lossy compression is being used as an optimization for
1/0 and memory operations in large high-performance computing
(HPC) and AI applications[3, 21, 22]. For some of these applica-
tions, knowing the compression ratio, compression bandwidth, or
some other metrics in advance of running the compressor would be
very helpful. Existing work has shown that auto-tuning workflows
such as OptZConfig[18] or choosing the best compressor among
a group of two or more compressors [15], or writing to a shared
file in parallel [6] all benefit from being able to quickly estimate
the performance of compressors. Each of these applications places
different demands on the prediction method: some need extremely
fast but tolerate inaccurate predictions, and others can actually be
somewhat slow relative to the time of invoking a compressor the
same number of times provided the estimates are very accurate,
and still other uses benefit special capabilities like error bounds on
the estimate [2] or the ability to do counterfactual estimation for
different compressor architectures.

In response to such diverse demands, many different estima-
tion strategies have been developed each with distinct advantages
and disadvantages [2, 6, 9, 15, 17, 20]. However, integrating these
methods into applications or libraries often written in C++ or eval-
uating their individual strengths can be challenging. Many of these
compression prediction schemes were implemented in mixes of pro-
gramming languages, with inconsistent APIs, and subtle differences
in implementation that make it difficult to correctly implement a
comparison between these methods or for applications and libraries
that wish to use these methods to adopt them without substantial
code changes as methods evolve and implementations improve.
This is largely the situation that motivated the introduction of MPI
to standardize message passing implementation [1] in 1992, and
the development of LibPressio for invoking lossy compressors in
2019 [16].

This work introduces a set of tools to address this challenge:
LibPressio-Predict a lightweight and extendable framework for
describing, implementing, and utilizing methods to predict com-
pression performance; and LibPressio-Predict-Bench, an extendable,
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high-performance, embeddable, scalable, and resilient infrastruc-
ture to evaluate these prediction schemes. We use this infrastruc-
ture to evaluate some of the leading compression ratio prediction
schemes on several different compressors and datasets.

This work aims to answer the following key challenging ques-
tions:

(1) How to generically enable maximum reuse of previously
observed metrics in predictions to reduce the computational
overhead as much as possible for using these methods for
training or inference, especially in the case of interactive
prediction scheme development on multiple compressors?

(2) How to minimize the I/O, compute, and memory overheads
associated with training on large multi-terabyte datasets that
do not easily fit in memory on any one node?

(3) How to best address fault tolerance in the distributed training
process and make these kinds of faults recoverable?

(4) How to describe and refine the needs of use-cases of compres-
sion performance inference to metrics that can be used for
comparisons to allow users to easily find estimation methods
that are suitable for their needs?

The remainder of this work is organized as follows: In Section 2
we discuss applications of compression performance prediction and
the methods used to implement this prediction. Then in Section 3
we describe why various existing systems such as ML libraries,
workflow systems, and dataloaders alone are ill-suited for this task
motivating the need for an integrated approach. After that in Sec-
tion 4 we present the architecture of our approach providing an
overview of our approach to these challenges. Section 5 then goes
into the details of the implementation and demonstrates how to
add a prediction method to LibPressio-Predict. Lastly, we evaluate
how some of our optimizations lead to high-performance training
and inference and conclude with an example evaluation of a few
leading compression prediction methods available in LibPressio-
Predict. We then conclude with future work in the compression
ratio prediction space and call for contributions to our library from
the community.

2 BACKGROUND

In this section, we describe the research background in two facets:
existing applications of compression prediction and existing predic-
tion methods of compression quality (such as compression ratio).

2.1 Applications of Compression Prediction

There are several possible tasks for which being able to predict
compression ratios or other metrics is useful. Some of these uses
include quickly and automatically determining a configuration for
a compressor that projects a good performance while possibly meet-
ing particular criteria [13, 18, 19], selecting the best-performing
compressor quickly [15], or even accelerating writes to shared files
such as compressed chunks in HDF5 [5, 6]. In this section, we elabo-
rate on the use cases and the demands that they place on prediction
schemes as documented in prior work [2].

One of the earliest use cases of using compressor performance
prediction was choosing the best performing among a group of lossy
compressors [15]. In this case, predictions are used as a replacement
for running the compressors. This method needs to be fast but
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actually does not need to be tremendously accurate since it needs
to only preserve the ranking of the best-performing compressor
or group of compressors [2]. This is especially true if some of
the metrics only have to be computed once for a wide variety of
different predictions — a condition that we refer to as invalidation.

Quickly determining a compressor configuration that has high
performance (e.g. compression ratio, compression throughput) while
meeting a user’s quality requirements is a common request among
users[18]. One such example was the work by Rahman et al [13]
which uses features of a dataset to quickly predict configurations
that are likely to meet user requirements in this case the work
primarily used random forests used to predict the compression
ratio. However, in these use cases, the accuracy of the estimation is
very important while the speed is only moderately important [2],
especially for methods that are robust to invalidation.

One of the most recent use cases for compression performance
prediction is accelerating writing to distinct offsets of shared files in
parallel such as in HDF5 Parallel Write [6]. In this use case, predic-
tions are used to precompute the offsets that are used and can fall
back to appending the data in the event of mispredictions. Addition-
ally, a safety factor can be used that will over-allocate storage and
in turn decrease the chances of under-allocation. Additionally, one
method by Ganguli [2] offers statistical bounds on the compression
ratio estimation error allowing precise forecasting of the number of
mispredictions. For these reasons, this method also does not need
to be extremely accurate however it does need to be extremely
fast relative to the time to invoke the compressor as there are few
opportunities for invalidations.

Another particularly compelling use case is offered by Wang
et al[20]: counterfactual analysis to predict the performance of
compressors that do not yet exist. This is extremely useful in the
effort of compressor design where hundreds of person-hours go into
the design, testing, and evaluation of specialized lossy compressors
for particular applications. If a prediction scheme can show with
some confidence that a particular method will ultimately prove
unfruitful for a particular application, it can be discarded early in
the design process.

In short, different applications require different traits and capa-
bilities of the prediction schemes that work best to accelerate them.
Therefore there needs to be a variety of prediction approaches to
best meet the needs of different applications, and different metrics
to evaluate their suitability.

2.2 Methods

The desire to estimate and compute bounds for compression ratios
and other compression statistics are not new. Shannon famously
defined the entropy [14] which provides an upper bound on the com-
pressibility of data for lossless compressors. In the years since Rate-
Distortion theory has developed as a way to provide strong bounds
on the compressibility of datasets. However, rate-distortion theory
often has to make restrictive assumptions that make it ill-suited
for estimating the compressibility of many scientific datasets and
modern lossy compressors. To compensate for this many schemes
have been designed to estimate the performance of compressors.
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Some of these methods have training steps where models are fine-
tuned for particular datasets to increase accuracy, while others take
a more formulaic approach and forego training.

One of the earliest methods to predict compression ratios for
modern lossy compressors was mentioned by Tao [15] and ex-
panded on in [10]. It uses the average compression ratio for a
particular compressor of blocks sampled from the input dataset.
The performance of this method scales with the performance of
the compressor, and for an appropriate sample count and block
size (which in the original design was based on the internals of
compressors), this can be a lightweight method to estimate com-
pression ratios, however, it is not very accurate. However, for the
use case for which it was proposed, it only needs to be accurate in
determining which compressor performs the best.

The method by Krasowska [9]. This unlike the previous method
uses no internals of the compressor and instead relies on two statis-
tics of the input data: the quantized entropy and the local variogram
which were fitted with a simple trained linear regression to sam-
ples of the data. This method was a substantial step forward in the
prediction of compression ratios in that it was the first not to use
any compressor internals beyond the notion of absolute error and
proved far more accurate than prior sampling-based methods.

Beginning in 2022, there was an explosion of interest in methods
to estimate compression ratio and other aspects of compression
performance. An evolution of Krasowska [9] appears in Underwood
and Bessac [17]. In this version, the variogram was exchanged for
the truncation of the singular value decomposition (SVD) because
of the availability of high-performance implementations of the
SVD on which it is based and the statistical properties of the SVD
which make it well suited for measuring the global amount of
spatial information. This method also replaced the simple trained
linear regression with a more sophisticated cubic spline regression.
Together these improvements demonstrated vast speedups and
improvements in accuracy on a variety of applications however
even with highly optimzized GPU implementations of the SVD, it
is unsuitable for applications that depend greatly on the speed of
the prediction.

A related approach developed by Ganguli[2] uses a combination
of three bespoke metrics (spatial correlation, spatial diversity, and
spatial smoothness) and two existing metrics (coding gain and
general distortion). This approach uses a trained mixture model and
conformal prediction to both increase the robustness of statistical
approaches but also to provide strong guarantees on the error
to achieve unparalleled in-sample and out-of-sample prediction
accuracy.

Around the same time ZPerf by Wang [20], introduced the capa-
bility to perform counterfactual analysis of the compression per-
formance. It accomplished this by decomposing the stages that are
common to compressors [3] in the formulation of compression per-
formance and using estimates for each of the stages. This method
was ultimately built on predictors largely derived from internals to
the compressors from earlier papers from the same group [11, 12]
which used Gaussian process modeling and deep neural networks
respectively.

A related, but independently developed method SECRE [7] like-
wise takes the approach of modeling the various stages of the
internals of the compressor but combines this with tightly coupled
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sampling and applies it to two additional compressors SZx (a high
throughput version of SZ), and to SPERR a leading compressor
based on wavelets.

FXRZ [13] combined primarily random forests with a series of
facially neutral predictors (but closely aligned with predictors in
SZ) to quickly estimate the compression ratio of various datasets.
A key innovation of this work was to perform data augmentation —
artificially accumulating additional training data by interpolation
between observed values. This brought down the training cost for
this class of model substantially while obtaining accuracy competi-
tive with other approaches such as [18].

Jin [5] proposes a numerical model for prediction-based lossy
compression. It decomposes the compression process into three
stages: prediction, quantization, and encoding. By offering theo-
retical analysis encompassing Huffman encoding efficiency and
subsequent lossless encoding efficiency, along with estimating the
quantization code distribution based on prediction-quantization
design, it can accurately predict the compression ratio of SZ. This
theoretical foundation also enables its application in other areas,
such as predicting compression time and I/O time [6].

We summarize the prior prediction methods in Table 1. How-
ever, with all of these methods, users have a challenging task to 1)
evaluate which of these nearly a dozen methods is best for their
use case and 2) integrate it efficiently train them for their problems,
and how to efficiently integrate them into their applications in a
way that allows them to adopt new methods quickly and compare
them.

3 RELATED WORK

Our work holistically evaluates a series of prediction schemes. To do
this efficiently, we need a collection of different types of components
that are tightly integrated to offer high performance each of which
has key similar work. As a result of the limitations of many of
these prior approaches, most prior papers evaluating predictors for
compression rely on bespoke programs [9, 17] that may or may not
have been distributed using MPL

One of the first steps of training a predictor is identifying, imple-
menting, and evaluating at-scale a large number of data samples.
The codes may be a mix of CPU and GPU and may be implemented
in a variety of languages. In all likelihood, they were implemented
using completely incompatible interfaces as were all the prediction
schemes we considered in our work. Regardless of which other
choices one makes to train and estimate using these prediction
schemes you use to implement these metrics and schedule them,
all of them will require a way to encode the different invalidation
requirements for prediction schemes.

In other domains workflow systems such as SLURM, HT Condor,
Swift-t, Pegasus, Legion, or Apache Hadoop/Spark. These systems
generally allow the execution of graphs of tasks with various de-
pendencies. Many of these are complex requiring extensive config-
uration making them difficult to embed into part of a larger C++
application. Embeddability is desirable because of wide variety of
use cases of compressors from different contexts from which li-
braries like LibPressio are called - e.g. HDF5 plugins, high-level
programming languages such as Julia, R, or Python, and in-situ
embedding within scientific applications written in languages such
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Table 1: Estimation Methods

Underwood et al.

method training sampling black-box goal metrics approach features
Tao [15] X v ~ fast CR trial-based

Krasowska [9] v X v accurate CR regression

Underwood [17] V X v accurate CR regression

Ganguli 2] v X v accurate CR regresison bounded
Jin [5, 6] v X X fast CR,Bandwidth calculation

Khan [7] X v X fast CR calculation

Rahman [13] v vV ~ fast various machine learning

Lu [11] v v X accurate CR regression

Qin [12] v v X accurate CR deep learning

Wang [20] v vV X accurate CR calculation counterfactuals

as C,C++, or Fortran — which may not easily or may not wish to
configure these large complex systems alongside their codes and
prefer a library-based approach and benefit from the ubiquity of
support for components with a C foreign function interface such
as by LibPressio and LibPresiso-Predict. Additionally, most of these
systems do not feature the ability to coordinate I/O between tasks
or in some cases lack the ability to allocate jobs primarily based
on the availability of data or locations of cached resources. This
is especially important because the datasets used for compression
are large. Being able to use optimizations such as collective I/O,
local caching, and neighbor caching is critical to achieving high
performance of these codes at scale. Lastly, some of these systems
lack or have administratively restricted the ability to dynamically
add dependencies to currently running jobs as invalidations require
additional computation. They may also lack the ability to check-
point and restart the execution graph as it is executing to recover
from failures (either due to bugs in the metrics implementation or
hardware failures) that become more prevalent at scale with many
diverse datasets. During our implementation, we observed many
software faults in prediction schemes surfaced by the variety of
data considered in our testing that we resolved over the course of
our implementation. These faults required us to re-run our experi-
ments, however, fine-grained checkpoint restart allows us to re-run
only the affected results quickly.

Within the realm of Al there are specialized data loaders (e.g.
Nvidia’s Dali) and prefetching systems (e.g. NoPFS [4]), but these
tend to be highly specialized for the use case of training Al models
and try to prefetch mini-batches of datasets to the GPU which
may or may not be the case of particular metrics’ and compressors’
implementations in data compression.

There are many libraries for the training of complex models
themselves. In R, libraries such as car or fixest are frequently used,
and in Python scikit-learn and deep learning frameworks like
pytorch and tensorflow. These tend to be non-trivial to integrate
in C++ applications which are widely used in HPC. Libraries that
are embeddable like Dlib [8] tend to lack features of these more
robust solutions available in Python or R. However, all of these
require some external system to provide the data that is itself used
for training and inference and require the user to implement a
checkpoint restart scheme on top of them if it is supported at all.

Answering these questions allows us to perform these compar-
isons more fairly and consistently across methods and evaluate
methods on the axis of time, accuracy, and robustness.

4 OVERVIEW OF OUR APPROACH

The task of efficiently estimating compression ratios and other com-
pressor performance metrics generally has several key steps that
need to be implemented efficiently and tightly integrated to achieve
high performance. First, the data or particular subsets of the data
must be loaded and in some cases preprocessed with careful atten-
tion to hardware capabilities, parallelism, and memory limitations.
Second, the various metrics must be computed or if appropriate
loaded from a cache that will be processed to form estimates, and
due to the volume of data, this often needs to be done in parallel at
scale. Third, there may be a training process that fits the parameters
of the method to the specific application or compressor. Finally,
the trained predictor needs to be used on new datasets which will
involve careful attention to how the application invalidates the
pre-computation done prior to the training phase.

Our solution builds upon LibPressio which provides generic
abstractions for compressors and metrics and divides this process
into three main components: libpressio-dataset which handles
hardware-efficient and memory-conscious sampling, loading, and
preprocessing of datasets; libpressio-predict which handles the
tracking of invalidation of metrics ! and provides a consistent
interface to training and inference; and libpressio-predict-bench
which addresses the challenge of scaling the training process to
many nodes in a resilient fashion. Together, these components are
tightly integrated to dramatically simplify the process of developing
and using predictors of compressors’ performance. A sketch of their
primary interactions can be found in Figure 1.

We will utilize this framework to evaluate a collection of existing
compression techniques on the basis of both accuracy and runtime
to understand their suitability for various applications.

4.1 LibPressio-Dataset

LibPressio-Dataset provides the abstraction for loading, sampling,
and preprocessing data efficiently to nodes. The primary abstraction

'When a metric needs to be recomputed because the configuration of the compressor
or some other condition has changed requiring a reobservation of the metric. See
Section 2 for examples
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LibPressio-Predict-Bench
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Figure 1: Architecture Sketch: The user can interact either
with LibPressio-Predict to use compression performance es-
timation methods, or they can interact with it using predict-
bench to allow training prediction methods at scale or simply
to evaluate predictors for their use case

Dataset Loader

Folder 10
Random Local M
—L —I—)a extension |

Figure 2: Sketch of a possible Dataset Loader pipeline. This
pipeline uses multiple levels of cache to take advantage of
deep memory tiers on modern supercomputers. Stages of the
pipeline can be swapped out for hardware efficient versions
such as replacing POSIX I0 with MPIIO

Pressio_io
HDF5 |-—)
by -|_) Native
—| bina

is the dataset_plugin which has 4 primary methods load_metadata,

load_data which load information such as shape, size, type, qual-
ity and the full data respectively, and variants load_metadata_all
and load_data_all to do this for all datasets which may be able
avoid repeated calls certain otherwise heavy operations and allow
the batching of queries. There are also APIs to configure them,
query metrics about them, and other common operations.

Like LibPressio compressors, dataset_plugins can be stacked
to implement more complex data loading functionality as well as be
extended by users without modifying the libpressio-dataset library
to implement optimizations for specific hardware, to add other
types of preprocessing specific to a particular case, or add new data
sources.

Figure 2 shows one such load pipeline. Here the io_loader plu-
gin uses a libpressio io_plugin to load a specific dataset using
an implementation-specific method to load each file based on its
file extension (e.g .bin uses fread where as .h5 uses H5Dread),
and can be configured to use hardware optimized loaders such as
mpiio or parallel hdf5 instead. The io_loader is instructed to load
specific datasets by the folder_loader which walks directories to
load all of the datasets that match a pattern and attaches metadata
to them about the files from which file each dataset came. As files
are loaded onto each node, they can be cached onto the node’s
local SSD to enable faster restart times by a local_cache plugin
which could be aware of node relationship and data placement. The
results of this process could then be randomly sampled. Because job
configuration only requires the metadata, operations like sampling
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can even appear near the end of the pipeline and still be imple-
mented efficiently as the dataset loader can track datasets back to
the individual flies that loaded them. Lastly, datasets themselves
can leverage capabilities within LibPressio’s core to move data to
the appropriate device (CPU or GPU) once it is local to the node
— future work should be able to allow this to be transparently re-
placed with a GPUDirect-like feature in the future and supported
by the system.

4.2 LibPressio-Predict

LibPressio-Predict consists of 3 key components 1) additional Lib-
Pressio metrics modules that implement metrics specific to com-
pression performance prediction 2) new predict_plugins that
allow fitting and predicting compression ratios and other perfor-
mance metrics, and 3) new scheme_plugins that enable users to
quickly to determine what metrics need to be computed for a given
prediction scheme based on the list of invalidations and configure
a predict_plugin to use these metrics.

In addition to the new prediction schemes that implement the
metrics from the papers that we compare, we’ve also added a new
metadata field predictors:invalidate that allows both users
and LibPressio-Predict to determine when a metrics result is no
longer useful and implemented it for the existing metrics modules.
If a compressor depends on a particular compressor setting such
as sz3:lorenzo it can name that setting directly, but it can also
use one of four special keys: 1) predictors:error_dependent,
2) predictors:error_agnostic, 3) predictors:runtime, and 4)
predictors:nondeterministic 2. Error dependent allows the user
to specify that a particular metric is sensitive to errors in the data
without having to exhaustively list the error metrics for a particular
compressor. Error agnostic means the opposite, no errors can ever
affect the results of this prediction. Runtime means that a metric de-
pends on runtime factors that might change if performance-related
settings are changed. Nondeterministic relates to a metric that the
user may wish to run this metric multiple times or with different
seeds to get an accurate metric — this will typically include runtime
metrics, but also includes things like randomized SVD implementa-
tions. If a metric contains multiple different kinds of metrics (such
as error_stat in the LibPressio library, these can also be listed
under the particular type such as predictors:error_dependent
or predictors:error_agnostic. Lastly, because we build on Lib-
Pressio Metrics, we can also utilize its external metrics framework
to write new metrics in other languages to reuse existing code as
much as possible. The interface to doing so is found below in Fig-
ure 3. Most typically users will provide error-agnostic metrics by
overloading begin_compress_impl, and error-dependent ones by
also overwriting end_decompress_impl and provide the response
by get_metrics_results.

The predict_plugin is heavily inspired on the BaseEstimator
from SciKit-Learn and has two primary methods fit and predict
which train and perform predictions respectively. The API also re-
quires that the state of the predictor be serializable and configurable
like other LibPresio objects. LibPressio predicts currently provides
two modules, the first is for "simple" methods where the prediction

There is one more special key predictors: training which is used only by the user
or framework for reporting invalidations, but is not listed in this option by a metric



SC-W 2023, November 12-17, 2023, Denver, CO, USA

Underwood et al.

#include <libpressio_predict/ext/cpp/predict.h>
class example_metric_plugin : public libpressio_metrics_plugin {
/*hooks*/
int begin_compress_impl(pressio_data const* in, pressio_data
< constx) ;
int end_decompress_impl(pressio_data const* in, pressio_data constx*
— out, int rc) ;

/*resultsx/
pressio_options get_metrics_results(pressio_options const &);

/*configuration and metadatax/

int set_options(pressio_options const& opts);
pressio_options get_options() const;
pressio_options get_configuration() const;

Figure 3: Major Functions in the Metrics API. Users can pro-
vide metrics using C++, or they can opt for the external met-
rics framework of LibPressio [18] at the cost of some over-
head. Error dependent metrics will need to implement both
begin_compress_impl and end_decompress_impl, and then
get_metrics_results. Some metrics will implment get and set
options to be parameterizable

comes directly from a metric without a training stage, and one that
allows providing predictions from modules written in Python such
as those that use Tensorflow, PyTorch or SciKit-Learn using an em-
bedded interpreter with an optimized code path to share memory
between the two. Like other components in LibPressio, this can be
extended for example to include prediction schemes from C++, R,
or Julia without modification to the core libpressio-predict library.

Lastly, the scheme_plugin facilitates the efficient combination
of metrics with predictors without requiring users to fully know
the details of these schemes and to introspect them. A code example
that uses can be found in Figure 4. First, a user retrieves a scheme
from the libpressio_predict registry. The registry also allows the
user to enumerate the available schemes and retrieve individual
predictors when developing a new scheme. With the scheme, they
get a corresponding predictor for a particular compressor. This
allows indicating an error if it is not supported in its current con-
figuration. Next, they can re-load the results of prior training into
the predictor. After the predictor is ready, the user indicates which
if any entries may be invalidated here they choose: pressio:abs
and all error agnostic metrics. Here we can also include a special
key predictors:training which can be used to indicate that we
should evaluate additional metrics required for training the pre-
dictor. error dependent appears in the list of metrics in addition to
pressio:abs in case the scheme is unaware of how to specifically
handle absolute error bounds, but can be ignored by the implemen-
tation since it recognizes a more specific option that affects the
error and there are no others that it does not recognize. From this,
they can get a metrics evaluator for the metrics that have been
evaluated, and invoke it on the data buffer that has been loaded.
Lastly, prediction is performed on the metrics resulting from the
evaluation, and the results are returned.

#include <libpressio_predict.h>
using namespace std;
double predict(compressor* comp, pressio_data* data)
{
pressio_predict plib;
auto scm = plib->get_scheme("ta02019");
auto pred = scm->get_predictor(comp));
pred->set_options({
{"predictors:state", prior_state}
B
string invs[] = {
"pressio:abs",
"predictors:error_dependent",
"predictors:error_agnostic"

b

auto eval = scm->req_metrics_opts(invs);
eval->set_options(comp->get_options());
eval->compress(data, compressed);
if(scm->do_decompress()) {
eval->decompress(compressed, decompressed);

3

pressio_data results;
pred->predict(
extract(
eval->get_metrics_results(),
scm->req_metrics()
), &results);
return *(doublex)(results.data());

Figure 4: Inference Usage Sketch. Users get a reference to the
prediction scheme that they wish to use. For this they can
get a predictor for that metric. The predictor may require
training, in this case, we load the predictor’s state from a
variable. Next, we ask the scheme what needs to be computed
to use the predictor, then we can use the predictor to actu-
ally preform the prediction. The use of invalidations allows
avoiding recomputing values where appropriate

4.3 LibPressio-Predict-Bench

Lastly, LibPressio-Predict-Bench combines these various compo-
nents into a single scalable distributed system for both training
models and evaluates them on standard metrics using a k-fold vali-
dation 3. It provides a system for distributing the tasks, scheduling
them, and check-pointing the results as they complete.

Configuration is handled via LibPressio object introspection
which allows automatically converting the configuration flags into
options structures for both the compressor and the dataset.

Checkpointing is enabled via an embedded SQLite database. A
database was chosen both because of atomicity guarantees in the
case of failures — no accidental partial results - but also the ability
to query and partially restore the key state — the metrics results.
Computing the metrics frequently dominates the time required to
train and predict models of compressibility and from experience
tends to be the most fault-prone and thus is the portion most in
need of checkpoint restart capabilities.

3A common statistical technique where data is partitioned into k chunks. k-1 of them
are used for training and 1 is used for validation. Training and validation are performed
k times once with each chunk in the validation set. Often prediction quality metrics
are only considered for the various validation sets
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However, how is the state indexed in the database? We introduce
a new capability into LibPressio to hash option structures with
a fast cryptographic hash. Unlike the hash functions in standard
libraries which make no guarantees about the hash stability of
objects between executions, cryptographic hashes provide this sta-
bility. The option structure is walked in a deterministic order, and
all entries with a consistent value are hashed ¢ We compute these
hashes once upfront before execution begins to avoid the overhead
of repeated hashing. We then use these hashes to index into the data-
base. Individual results are uniquely identified by their compressor
configuration, dataset configuration, experimental metadata, and
replicate ID.

As data loading times tend to dominate task runtimes for most
compressors > even with our optimized data loading scheme on
the first load, we attempt to schedule as many jobs with the same
data to the same workers when they are available. More advanced
scheduling could be implemented with small modifications to Lib-
Distributed a distributed MPI-based task queue developed for use
in OptZConfig [18]. When multiple workers are not available, we
can fall back to single-node processing.

5 METHODOLOGY

For our evaluation, we ported three of the leading predictions to
use LibPressio-Predict. Specifically, we implemented Rahman 2023
[13], Khan 2023 [7], and Jin 2022 [5, 6] described in Section 2.2.
We will evaluate metrics schemes along two axes: time and
quality. For time, we will record the mean and standard deviation of
the error-agnostic time, the error-dependent time, the training time,
the fit time, and the inference time on various field and timesteps
of Hurricane. These stages correspond to the time required to:
(1) Error-agnostic time — compute predictors whose values are
completely independent of the configuration of the compressors
(2) Error-dependent time - compute predictors whose values are
dependent on compressors settings that effect the error allowed
by the compressor (3) Training time - compute predictors whose
values are only required for training, but not inference — most
commonly running the compressor (4) Fit Time - refers to the
time required to fit the model to trained data (5) Inference Time—
infer a single value. If a predictor is exactly the value of a metric this
is N/A. Not all prediction schemes have each of these stages. These
timings correspond to entries in the formula available in [2] which
can be used to consider the speedups for various applications.
Next, we consider metrics, datasets, and compressors. For quality,
we will use the Median Absolute Percentage Error (MedAPE) used
in [2, 9, 17]. MedAPE computes the median of the absolute value of
the percentage errors and is robust to outliers and the scale of the
metrics. For datasets, will consider multiple fields and timesteps
on the Hurricane dataset from [23]. This dataset represents a va-
riety of different data structures and most importantly sparsity
patterns. Sparsity patterns have substantial effects on the compress-
ibility of datasets. We will consider both a conservative (1e-6) and
a more liberal (1e-4) absolute error bound (pressio:abs) as there

“We exclude void* objects which are used to store objects like CUDA streams and
MPI_Comm objects. Generally, libpressio objects provide other optional parameters to
recreate these objects as needed

SMGARD and TThresh being notable exceptions
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can be different compression ratios for each®. We only consider
SZ3 and ZFP in this work as these two compressors are two of the
most commonly used compressors and are best supported by the
compression prediction schemes we evaluate. Blackbox methods
such as [2, 9, 17] support many more compressors, but due to time
constraints, we were not able to include these in our analysis.

6 RESULTS

In this section, we use our tools to conduct a systematic evaluation
of the prediction schemes. We organize our results as follows. First,
we will look at the compressor performance as a baseline. Then we
will turn our attention to the runtime performance of the estimation
methods. Lastly, we turn our attention to the prediction quality.
Table 2 summarizes our key findings.

As a baseline, what do the compressors achieve? The runtime
of SZ3 on this entire dataset (all fields and timesteps) averaged
322.8+30.1 ms whereas decompression averages 101.98+26.72. ZFP
tends to be faster on the entire dataset and averages 65.49+25.33 ms
whereas decompression averages 33.86 + 16.21. This is the number
that sampling methods aim to defeat. Why estimate compression
ratios if you can run the compressor to determine them faster and
have higher accuracy? This does not mean that estimation methods
need to be faster than a single run of the compressor. Methods
like [2, 9, 17] all leverage the ability to compute a subset of error-
agnostic metrics up front, and then use them to conduct many
different predictions in order to achieve speedups over running the
compressors multiple times to get each of these observations.

What about runtime? We see that both Khan and Rahman have
error-dependent, error-agnostic, and inference times that are sub-
stantially below the compression time. We found that Jin took
longer than we expected and longer than the execution of the
compressor. When profiling the Jin results revealed a substantial
amount of overhead associated with the management of C++ shared
pointers in the multi-dimensional iterator code used in the imple-
mentation. While the original implementation also used shared
pointers, the optimizer was unable to elide as much more of this
code in the original and resulting in much higher overhead.

Other works that use training such as [17] are competitive in
terms of their error-dependent metrics with less than 43ms. How-
ever, this work requires the computation of the SVD truncation
which takes closer to 771ms making it suitable for cases where
multiple compression operations are performed on the same data.

Next, what we can observe about the quality of the predictions?
Before we present these results, it is important to note that these
results represent a kind of worst-case scenario for prediction. First,
Hurricane features a mix of sparse and dense data fields. Sparse
fields can be substantially more compressible than dense fields and
prediction methods need a tool to compensate for this diversity
to handle this. Next, unlike most prior work in this space, we fo-
cused on the ability to perform out-of-sample prediction — that is
prediction on a wide variety of datasets instead of datasets that are
largely heterogenous rather than relying on similarity of fields.

®In principle a value range relative error bound which would have normalized dif-
ferences between fields could be used, but not all compression prediction codes are
accurate with this use
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Table 2: Hurricane Performance Results using a 10-Fold Cross-Validation. Timing results are shown + standard deviation

Error- Error- Compression/
method Dependent Agnostic Training Fit Inference Decompression MedAPE
(ms) (ms) (ms) (ms) (ms) (ms) (%)

sz3 322.8 £30.1/101.98 + 26.72
sz3  khan [7] 5+ .47 N/A N/A N/A N/A 232.57
sz3 sian [6] 518 + .43 N/A N/A N/A N/A 25.88
sz3 rahman [13] N/A 7 £0.51 322.8+£30.1 370.34+14.90 0.135+ 0.0438 20.20
zfp 65.49 + 25.33/33.86 + 16.21
zfp khan [7] 5+ .47 N/A N/A N/A N/A 381.12
zfp  sian [6] N/A N/A N/A N/A N/A N/A
zfp rahman [13] N/A 7+.51 65.49 +25.33 360.49 + 14.98 .09 + .04 13.86

Now what is the estimation error? The best error we observe is
with a training-based approach: Rahman with a 20.20% error for
SZ3 and likewise a 13.86% error for ZFP. We attribute the vastly
superior performance to the sparsity correction factor it uses[13].
Likewise, we would expect methods like [2] to also do well in this
use case because this method uses a mixture regression approach to
reduce the error as is reported in their paper which reports a worst-
case error of less than 12.5% in a similar but not quite identical
case with an out-of-sample prediction for a subset of hurricane
data. However, Rahman achieves a much lower training and error-
agnostic+error-dependent time than this work.

The best non-training-based method that achieves a MedAPE is
Jin for SZ3 and Khan for ZFP. These approaches tend not to estimate
as well as the training-based methods for a few reasons: 1) These
methods tend to suffer on datasets with different degrees of sparsity.
This is intuitive because when they sample the data there is no
guarantee that they sample the portions of the data that are rep-
resentative of the compressibility of the dataset — especially when
there is a relatively small region that is highly uncompressable. 2)
These methods tend to suffer even further because it is difficult to
accurately estimate the compressibility of data after quantization
and prediction. The method by Jin does so well on the SZ3 com-
pressor because in part it uses parts of the first few stages of the
SZ3 compressor and excludes the more expensive stages encoding
stages, and it does not need to solve as challenging a problem to
estimate the compressibility of what remains and can build off of
existing knowledge of rate-distortion.

7 CONCLUSION

In this work, we discuss and provide a set of tools that enables
efficient use and comparison between different compression pre-
diction techniques. LibPressio-Predict allows easily interchanging
prediction schemes with a consistent API LibPressio-Dataset al-
lows the loading of these datasets in a configurable way that takes
advantage of the hardware. Finally, LibPressio-Predict-Bench al-
lows scalably training and evaluating them on large datasets at
scale on a supercomputer.

We use these tools to conduct a more systematic comparison and
exploration of how the different compression ratio prediction meth-
ods are achieved. With this exploration, we find that the mixture
of sparsity and density in datasets can contribute to large errors

in estimation. We highlight two methods from the literature (the
sparsity factor in [13], and the mixture model in [2] to address this
issue. We identify a gap in the literature for a both highly accurate
and fast prediction scheme.

For future work, we invite the community to contribute their
prediction schemes to our framework and we desire to expand our
study in several ways: 1) We would like to consider in-sample pre-
diction cases in addition to the out-of-sample use cases we provide
here. Including in-sample use cases would highlight a "best-case"
scenario for prediction performance to complement our current
results. 2) We would like to expand our analysis to non-weather
datasets and explore a wider variety of scientific data from wider
domains. Different datasets have different structural patterns that
are best exploited by different kinds of compressors. By expand-
ing our evaluation we can better capture the range of prediction
performance in real-world applications. 3) We would like to ad-
dress the performance disparities due to the optimizer to ensure
better performance parity with the evaluation in [6]. Given the
similarity of this aspect to the internals of SZ3, we expect that the
performance of the corresponding modules in SZ3 would also be
improved by our solution closing the gap between SZ2 and SZ3’s
runtime performance. 4) Some of the methods support predicting
other metrics such as bandwidth. As these metrics will leverage
non-deterministic and runtime metrics, there will need to be refine-
ments to the invalidation model to best handle these use-cases such
as machine-dependent metrics that are agnostic to any dataset.
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