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AbstractÐError-bounded lossy compression turns more and
more important for the data-moving intensive applications to
deal with big datasets efficiently in HPC environments, which
often requires knowing the compressibility of the datasets be-
fore performing the compression. However, the off-the-shelf
state-of-the-art lossy compressors are often driven by error
bounds, so the compression ratios cannot be forecasted until
the completion of the compression operation. In this paper, we
propose a lightweight, robust, easy-to-train model that estimates
the compressibility of datasets for different lossy compressors
accurately. Our approach combines novel predictors that measure
various notions of spatial correlation and smoothness exploited
by lossy compressors that are implemented efficiently on the
GPU in a framework and that uses mixture model regression to
improve robustness with conformal prediction to provide bounds
on the estimates. We then use these models with a detailed
analysis of speedup to understand the tradeoffs between high
speed, consistent speed, and accuracy of the methods on real
applications. We evaluate our approach in the context of 3
key applications where compression ratio estimation is highly
required.

Index TermsÐLossy Compression, Compression Estimation,
Rate Distortion, Error Bounded Lossy Compressors

I. INTRODUCTION

Lossy compression is becoming an increasingly common

element of strategy for large-scale data-intensive applications

running on HPC systems. However, many real-world use cases

are substantially faster with the accurate estimation of com-

pression ratio beforehand and without requiring the expensive

compression operations. For example (use case A): finding a

best-fit configuration based on a compression ratio target for a

particular dataset, the common method is performing a series

of trials, which runs lossy compressors repeatedly based on

different error bounds [1], [2]. ( use case B): choosing the best

compressor with the highest compression ratio from among

a group of candidate compressors at runtime [3]. (use case

C): In order to write multiple compressed datasets into one

aggregated file [4] such as HDF5, it is necessary to forecast

the compression ratios for each dataset because each parallel

process needs to know the starting location of the compressed

data to be written in the aggregated file.
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Accurately estimating the compressibility of a dataset under

an error-bounded lossy compressor is non-trivial. Although

there have been some studies exploring this issue, they suffer

from many limitations. Jin et al. [5], for example, proposed

an efficient compression ratio estimator, but it is designed

particularly for only prediction-based compression model, and

may also be inaccurate in some datasets or error bounds (to be

shown in our paper later). Some of the fast methods [6] are

exceptionally inaccurate getting median absolute percentage

errors over 90%, resulting in time to account for predictions

or high space overhead up to 1.5× [4].

In this paper, we propose a novel accurate, robust, bounded,

cheaper-to-train, and lightweight, and compressor-agnostic

method to estimate compression ratios accurately for error-

bounded lossy compressors using novel statistical predictors

from datasets, and an analytical framework for analyzing

the impacts of the accuracy and speed of the predictors has

on the speedup on applications that use compression ratio

estimation. (1) Our novel compression prediction model using

powerful estimation methods: conformal prediction, which

provides uncertainty associated with the predictions, with

mixture regression to tackle diverse statistical properties of the

data (Section IV-B) as the first statistically bounded method

(Section VI-D) to estimate compression ratios. This method

makes our approach far more accurate (Section VI-B) and

robust (Section VI-C) to differences between datasets than

prior approaches (2) Novel Metrics to better capture spatial

structures than prior metrics: We create 3 (Spatial Correlation,

Spatial Diversity, Spatial Smoothness) and identify 2 existing

(General Distortion, Coding Gain) existing metrics. (3) Novel

application use-cases: Our high accuracy and lightweight

GPU approach (Section IV-C) enables new use-cases that are

prohibitive with older, slower/less accurate methods. (4) We

present the first mathematical model for speedup and accuracy

trade-offs with prediction for each use case (Section V).

Compared with the existing error-bounded lossy compress-

ibility estimation methods developed, our solution offers sev-

eral key advantages: Accurate Our approach is substantially

more accurate than prior approaches when evaluated the same

way in prior work ± using the same field for training and

evaluation. Robust Our approach works also well when we

consider using some fields from the same application to predict



other fields. To our knowledge, this is the first training-based

approach to evaluate training on one field and prediction others

on evaluation. Bounded Unlike prior works, our approach pro-

vides strong statistical bounds on the error of the compression

ratio estimation using a conformal prediction-based approach

that provides lower and upper bounds on each estimate ± prior

approaches provide no statistical guarantees on the error in

estimation and provide only point estimates. Cheaper to train

Prior model training-based approaches used the entirety of

a field for training requiring costly exhaustive evaluation of

metrics, whereas we provide a methodology to determine an

order to consider fields for training that can reduce the time

to prepare a model. Lightweight Not only is our approach

accurate, but suitably lightweight and accelerates each of the

uses cases mentioned in the introduction. Speedup Analysis

Our work provides models of parallel speedup that account

for prediction accuracy, speed, and consistency relative to

the compressors to enable scientists to evaluate trade-offs

between methods for the 3 use cases, and determine how much

improvement can be achieved from incremental improvements

to each of these approaches.

II. BACKGROUND

Terms We begin by defining a few key terms for the

purposes of this paper. Each scientific application may have

multiple runs. A dataset refers to all of the data from

a particular run of an application. Datasets from scientific

applications can often be partitioned into individual time-

steps representing stages of the simulation, which in turn has

multiple fields representing distinct aspects of the simulation

(e.g. pressure, temperature). A buffer refers to a single multi-

dimensional array from an application belonging to a particular

field and time-step. We assume that a field and time-step

uniquely identify a buffer within a run.

Compressors While there is an accurate method for es-

timating the lossless compressibility ± Shannon entropy [7],

there is not a comparable measure of lossy compressibility that

works across different applications each project-specific data

features and different compressors that may differ significantly

in design principles. In what follows, we introduce a few key

compressors to be studied in this paper: ZFP [8] ± ZFP com-

pressor uses a common fixed point notation combined with a

ªnear optimalº block transform ± similar to the discrete cosine

transform used in JPEG image compression. This approach

operates at very high bandwidth, but often does not compress

as much as SZ based compressors. SZ2 [9] and SZ3 [10]

and other related compressors use prediction based approaches

to decorrelate the data prior to compression. For SZ2, prior

work has shown that SZ2 is one of the hardest compressors to

accurately estimate compression ratio because it uses multiple

predictors (block regression and lorenzo) and special cases to

account for [3]. SZ3’s compression ratio is easier to predict

because it adopts an interpolation based predictor, however,

is different in that it does not use a fixed block design like

SZ2 does, meaning that the approaches that were designed

based on SZ2 (such as Tao [6]) cannot be simply applied

on SZ3. SZ3 often pairs high compression ratios with high

quality reconstructions. BitGrooming [11] leverages aspects

of the IEEE floating point specification to improve the com-

pression of floating point data. DigitRounding [12] combines

rounding with lossless compression techniques for a method

that has robust compression performance with uncorrelated

data. MGARD [13]±[15] uses linear representation theory to

achieve high compression ratios and high quality. Additionally,

the mathematical theory behind MGARD’s design allows it

to be used to guarantee the preservation of key quantities

of interest that take the form [14] of or can be reduced to

[16] a bounded linear functional. TThresh [17] ± a slow, but

highly effective compressor for 3D+ data based on the type

of higher-order singular value decomposition. SPERR [18] is

a relativley slow, but highly effective compressor for 2D and

3D based on wavelet decomposition.

III. RELATED WORK

In this section, we introduce related work on estimating

compression ratios of data when using lossy compressors that

we compare against in the course of our work and identify

key gaps in prior work. There have been a few major types of

approaches:

Rate Distortion Theory Rate distortion theory is a well-

established branch of mathematics that attempts to bound the

compressibility [7], [19]±[21]. The benefit of these approaches

is that if the assumptions made by these approaches hold,

then it bounds the behavior of any possible future com-

pressor. However, methods taken from rate-distortion theory

often make very strict assumptions about the data ± such as

homoscedasticity and Gaussian distribution of the data source.

Real-world datasets routinely violate these assumptions and

resulting in the theory making estimates of the compressibility

of data that vastly underestimate what lossy compressors that

leverage these properties in real-world datasets can achieve. In

particular, no existing approach considers correlations existing

in scientific datasets.

Training-Based Statistical and Machine Learning Be-

cause theory-based approaches tend to be intractable for real-

world use cases, there has been extensive work to consider

using a series of predictors to estimate the compressibility

of datasets with particular compressors using statistics or

machine learning. These methods can be further subdivided

into black-box and white-box methods. Black-box methods

use predictors that are not derived from the internals of the

compressors to be robust to changes in the compressors,

whereas white-box methods model key aspects of the com-

pressor to in principle get more accurate estimations or to

allow counterfactual estimation.

Lu’s approach [22] leverages a Gaussian model to combine

several features that are internal to the SZ and ZFP com-

pressors such as the number of nodes in the Huffman tree,

and the number of outliers from mispredictions ± quantities

that require nearly running nearly the entire compressor to get

accurate estimates of compressibility. This approach was later

refined in [23] leveraging the deep knowledge of the internals



of the compressors to make counterfactual assessments of

compressibility based on other encoding stages or prediction

approaches.

Tao [6] developed a fast method but less accurate method

that leveraged a minimal amount of information to estimate

compression ratios for SZ2 and ZFP for online selection

between these compressors. This approach samples data, esti-

mates the probability density function of the data in the blocks,

and then computes the entropy of the quantized values.

There have been two key approaches that use machine-

learning style approaches. In response to the slowness of

the applications like [1], Rahman developed a black-box ap-

proach [2] leveraging decision trees combined with generally

applicable statistical predictors. Another related approach but

whitebox comes from Qin [24] who takes a similar approach

but uses deep neural networks but leverages internals of the

compressor such as the number of nodes in the Huffman tree

for SZ, but has slower and less accurate than their earlier

work [22]. These methods while achieving higher accuracy

than their predecessors lack explainability.

Recently there have been approaches by Jin [4], [5] that

aim to get high speed and high accuracy. This white-box

approach works for prediction-based compressors like SZ. It

functions by first sampling blocks of data to be compressed,

using their distribution and empirically observed properties

of the predictors to estimate a bit-rate, and then estimating

the encoding efficiency of the resulting data with a Huffman

encoding using a run-length encoding that is easier to estimate

recognizing that the compressor in an ideal case, produces

decompressed data with quantization errors near zero.

Lastly, the paper by Underwood [3] focuses on high

accuracy by leveraging a black-box statistical approach to

estimating the compressibility of scientific data. It uses two

predictors: the SVD truncation and the quantized entropy in

a linear model to estimate compressibility. This approach is

notable in both that it is reasonably accurate and fast when

accelerated on the GPU, but it notably has robust performance

across compressors and does not depend on any internals of

the compressors. However, this method does not perform well

in the worst case in out of field prediction (see Section VI-C)

Summary and Comparison to Related Work In this

framework, our approach is a black-box statistical family

similar to Underwood [3], and differs in its choice of predictors

and most importantly in its performance in terms of robustness

to dataset and compressor variability, but also in its runtime.

We leverage predictors derived from intuitive notions that

measure various notions of smoothness combined with more

robust statistical approaches. These approaches allow us to

make statistical guarantees regarding our accuracy and achieve

much higher speed with improved runtime.

IV. ESTIMATION METHODOLOGY

Studies like [3] suggest that a dataset’s compressibility

is reliant on its inherent statistical properties such as its

spatial structure. Our work uses these statistical proprerties

in a mixture model with conformal prediction to estimate

compressability.

A. Predictors based on Notions of Correlation

In this section, we describe how to compute our predictors

from a 2D array1, denoted as X ∈ Rp×p. We divide it into

B spatially connected blocks of dimension k × k, denoted

as X1, X2, . . . , XB , by considering row-wise divisions. It is

important to note that each block is identified by specific row

and column indices. Assuming there are Bc columns and Br

rows of blocks, the total number of blocks is given by Bc ×
Br = B, and the array size satisfies p2 = Bk2. We further

represent the vectorized blocks as Xb = vec(Xb) ∈ Rk2

(row-

wise), where b = 1, 2, . . . , B, enabling a comprehensive set

of samples for understanding the spatial structure of X . We

proceed to discuss the formulation of our metrics.

Spatial Diversity (SD) weights entropy [7] with spatial

information. Shannon’s entropy [7] does not consider spatial

correlation and diversity within the signal. Inspired by [25],

we propose a novel method to estimate spatial diversity using

spatial entropy. Our approach involves computing a weighted

average that considers inter-block and intra-block variability as

weights. These weights adhere to two fundamental principles:

(1) When distant entities exhibit similarity, spatial variability

increases (measured by inter-block variability, winter
b ). (2)

When adjacent entities demonstrate diversity, spatial variabil-

ity increases (measured by intra-block variability, wintra
b ).

Next, we define the weights. The intra-block variability is

expressed as the standard deviation of the block, denoted as

wintra
b = sd(Xb). The inter-block variability incorporates

both the Euclidean distance between the values (De
b,b′ ) and

manhattan distance between the block locations (Ds
b,b′ ). To-

gether inter-block variability is : winter
b =

∑

b′ ̸=b
Ds

b,b′
De

b,b′
∑

b′ ̸=b
Ds

b,b′
.

Finally, instead of using the generic estimator of entropy,

denoted as H = −
∑B

b=1 pblog2(pb), we define spatially in-

formative entropy as SD = −
∑B2

b=1 w
intra
b winter

b pblog2(pb).
Here pb is the probability of block b. A simple way to assign

these probabilities is to assume equal likelihood among the

blocks, yielding pb =
1
B for b = 1, 2, . . . , B.

Spatial Correlation (SC) is a weighted average of corre-

lation between pairs of blocks weighted by wintra
b . To assess

spatial correlation, we compute the correlation matrix V ∈
RB×B with elements Vb,b′ = ρ(Xb, Xb′), where ρ represents

the Pearson correlation coefficient. Additionally, we define

the statistic SCb to quantify the spatial correlation per block:

SCb =
∑

b′ ̸=b
Ds

b,b′
|Vb,b′ |

∑

b′ ̸=b
Ds

b,b′
. Here, SCb measures the strength of

long-range correlation in the bth block by assigning weights

to pairwise correlations based on spatial distances. Notably, if

a highly variable block exhibits a high correlation with other

blocks, it contributes more to the overall spatial correlation.

Thus, to incorporate this concept, we calculate the weighted

average of these spatial correlations: SC =
∑B

b=1
SCbw

intra
b

∑

B
b=1

wintra
b

.

1extensions to 3D are possible using approaches similar to [3]





we employ a mixture of regression models, a well-established

framework in statistical analysis [30]. This approach allows for

the identification and estimation of distinct patterns or clusters

within the data, effectively addressing the presence of grouping

effects. Furthermore, to address prediction uncertainty, we

incorporated the conformal prediction framework [31], [32].

Conformal prediction provides valid confidence measures or

prediction regions for individual predictions, enabling the

quantification of uncertainty associated with machine learning

models. It aims to produce reliable and calibrated predictions

while controlling error rates. In this section, we discuss each

of these approaches in detail.

1) Developing the prediction model: In our regression

analysis, we consider a sample comprising n 2D-slices as indi-

vidual data points, where the outcome variable is log(CR) and

the five covariates are: SD, SC, Coding gain, CovSVD-tunc,

and generic distortion D̂. We represent the predictor vector as

x = (x1, x2, . . . , x5), where xip denotes the observed value

of the pth feature for the ith data point. Assuming there are

L latent groups in the data, the contribution of each class

to the overall density is estimated by π1, π2, . . . , πL, which

represents the probability of being in each class. Using this

formulation, the joint distribution of y|x can be expressed as:

f(y|Λ, x) =
L
∑

l=1

πlfl(y|θk, x) (1)

where Λ = (Π,Θ) denotes the vector of all unknown

parameters to be estimated, i.e., Π = (π1, π2, . . . , πL−1)
the cluster-allocation probabilities and Θ = (θ1, θ2, . . . , θL)
is the set of regression parameters in each of the clusters

{1, 2, . . . , L}. In the linear regression setting, the cluster-

specific regression function fl(Y |θl, x) can be written as:

fl(Y |θl, x) = β0l +
5
∑

p=1

βplxip + ϵil, ϵil ∼ N (0, σ̃2
l ). (2)

Here for the latent class l, β0l is the vector of class-specific

intercepts, σ̃2
l is the noise variance for class l, and βpl is

the vector of regression coefficients for covariates xp. The

class-specific coefficients identify this as a regression mixture

model tailored for heterogeneous datasets with complex group

structures. In practice, the latent class dimension L is a

hyperparameter and we set its value by fitting a clustering

method like k-means.

2) Addressing the uncertainty with conformal prediction:

Conformal prediction provides a rigorous framework for quan-

tifying and managing prediction uncertainty in a regression

framework by offering reliable confidence measures or pre-

diction regions for individual predictions, without relying on

any distributional assumptions [33]. Given a training dataset

(x1, y1), (x2, y2), . . . , (xn, yn), a new predictor vector xn+1,

and a prediction scheme such as the mixture of regression

Equation IV-B1, our objective is to construct a (1 − λ)100%
confidence interval Ĉn(xn+1) for the unobserved target vari-

able yn+1, ensuring that P (yn+1 ∈ Ĉn(xn+1)) ≥ 1 − λ,

with P the considered probability measure. For example,

D
im

2
 (

1
1

.8
%

)

1

0

-1

D
im

2
 (

7
.3

%
) 1

0

-1

2

D
im

2
 (

3
3
.1

%
) 0

-2.5

D
im

2
 (

3
6

%
)

2

0

-2

-2 0 2 4 -4 -2 0 4

-4 -2 0 2
Dim1 (48.4%)

-2.5 2.50
Dim1 (46.2%)

Cluster

Cluster

Cluster

Cluster

1
2
3
4

1
2
3
4

1
2
3
4

1
2

Fig. 2: Visualization of the latent clustering structure in the

relationship between compressibility and predictors using four

different fields from the Hurricane dataset. To capture the

clustering effects in the 6-dimensional multivariate dataset

comprising the compression ratio (CR) and the five proposed

features, principle component analysis (PCA) was utilized to

reduce the dimensionality to two and visualize the clusters

on this new basis. The plot displays data points based on

the top two principal components, highlighting a clear and

noticeable grouping effect. These findings underscore the need

for a mixture of regression models to accurately capture the

complex associations observed.

when considering a confidence level of 95%, a well-calibrated

conformal predictor in a regression scenario would yield

confidence intervals that encompass the true value in at least

95% of instances (Figure 6). Specifically, we adopt the split

conformal prediction scheme for its computational flexibility.

The split conformal prediction algorithm involves several

crucial steps. Initially, the training dataset is divided into a

proper training set and a calibration set. The proper training set

is utilized to train the prediction model, while the calibration

set is used to estimate the prediction error. By incorporating

the notion of variability into the prediction through a set of

residuals, the algorithm achieves robustness. Algorithm 1 pro-

vides an overview of the key steps involved. This procedure is

efficient ± stages 1-5 take O(N) time and can be precomputed

before inference, and stage 6 takes O(1) time per inference.

C. Implementation

We implement our predictors as a combined multi-threaded

CPU+GPU code in Julia 1.8 using CUDA.jl, TiledIteration,

and the Atomix packages. Source code for our implemen-

tation can be found on Github2 Where possible, we pre-

allocate memory to be used for the operations to avoid the

need for garbage collection and memory allocation during

2upon acceptance link https://github.com/robertu94/libpressio-predict/



Algorithm 1 Prediction error evaluation and quantification procedure

Require: Training (x1, y1), (x2, y2), . . . , (xn, yn), new feature xn+1, the

mixture regression algorithm f̂ in Eq. IV-B1, level λ, calibration set size
m

1: Split {1, 2, . . . , n} into training set L of size r and calibration set I of
size m = n− r;

2: Train f̂L(x) = f̂(x; (xl, yl), l ∈ L);
3: Compute the residuals R̃i = |yi − f̂L(xi)|, i ∈ I;

4: Sort the residuals in an increasing order: R̃(1), R̃(2), . . . , R̃(m).

5: Compute the (1−λ)th quantile: R̃λ = R̃(k) where k = ⌈(1−λ)(m+
1)⌉;

6: return The (1− λ)100% confidence interval

Ĉn(xn+1) = {y ∈ R : |y − f̂L(xn+1)| ≤ R̃λ}

=
[

f̂L(xn+1)− R̃λ, f̂L(xn+1) + R̃λ

]

execution. Our implementation combines the routines of all

of the dataset-specific but error-bound agnostic predictors into

a single routine to minimize loads. We then execute each

pair of blocks in parallel on the CPU. We offload a few

key performance-critical operations to the GPU ± namely, the

eigendecomposition and the outer product used in computing

the spatial diversity. Lastly, we remove the need for locking by

using atomic instructions to handle the sums that are shared

between threads on the CPU to avoid the high-overhead use

of a mutex. One exception is that once for each block, we

need to add an entire array of values atomically as part of

the SVD truncation calculation ± we found through profiling

that a single mutex was more efficient than an entire sequence

of atomic additions. The runtime of the error bound agnostic

metrics is O
(

p2

k∗nc
+ p∗k

ncγ
+ k6

γ

)

where p number of rows of

the matrix, k is the number of rows in each tile, and nc is

the CPU scaling factor, and γ is the GPU core scaling factor.

The three terms that bound performance come from the com-

putation of norms of the pair of tiles, the computation of the

outer product of each tile, and the SVD in the CovSVD-trunc.

Since the tile size k is small and fixed, the O
(

p2

k∗nc

)

term

dominates. For the error bound specific metrics, the bound is

O
(

k2 log k
nc

)

and driven by the computation of entropy in the

generalized distortion.

V. USE CASES AND PERFORMANCE MODELS

In the Introduction, we previewed 3 uses cases for using

compression ratio estimation in real applications to achieve

speedups: (A) using running lossy compressors to meet a

specific compression ratio target [1], (B) choosing amongst

a group of compressors which has the greatest compression

ratios under a given set of constraints [6], and (C) quickly

finding the offsets needed to write into a single HDF5 file in

parallel. Additionally, we can also model speedup in training

the model. In this section, we model the performance of these

both training a model and these use cases to provide insight

into the impacts of runtime consistency, runtime latency,

and accuracy of predictions on the speedups observed by

applications. These results complement the empirical results

in Section VI to provide a more comprehensive picture of

Notation Meaning

N (µ, σ) normal distribution with mean µ, standard deviation σ
Φ cumulative density function for N (0, 1)
e ∼ N (µe, σe) time of predictors dependent on data and error bound
d ∼ N (µd, σd) time of predictors dependent on data
y ∼ N (µy , σy) time of computing an estimate

ci ∼ N (µci , σci ) time of running the ith compressor
ns ∈ N number of searches performed
nc ∈ N number of compressors to consider
np ∈ N number of processors to use
nb ∈ N number of buffers to compress
nm ∈ N number of compressed buffers that fit on a processor

TABLE I: Notation

performance and trade-offs between various approaches. We

define common terms in Table I.

A. Assumptions

We make a few key modeling assumptions: First, we assume

a memory-constrained environment. Specifically that we can

fit the original dataset in its entirety and no more than

nm compressed buffers (and associated scratch space) into

memory per processor. This assumption represents the real-

world use case where compression is running in-situ with

an application that heavily uses memory and only a limited

amount is available for compression. This assumption can be

relaxed by setting nm = nb. Second, we assume that the

average runtime of the compressors and estimation methods

have a Gaussian distribution ± this appears to be validated by

our preliminary testing.

B. Supporting Theorems

A foundational result in statistics show given two normal

distributions A = N (µa, σa) , B = N (µb, σb), µa+b = µa +
µb and σ2

a+b = σ2
a + σ2

b From this we derive that the sum

of some positive integer k such distributions with equal mean

and variance is kµ and variance kσ2.

Further, the paper by Elfving [34] shows that the expected

maximum of a group of n samples from a normal distribution

is asymptotic µ+ σΦ−1
(

n−π/8
n−π/4+1

)

where µ is the mean, σ

is the standard deviation, and Φ−1 is the inverse cumulative

density function of the standard normal distribution. We define

W(µ, σ, nt, np) = ⌈ nt

np
⌉
(

µ+ σΦ−1
(

np−π/8
np−π/4+1

))

to be the

expected time to run these nt tasks on np processors.

C. Use case A: Searching for a target CR

The expected parallel speedup for use case A using esti-

mates vs not using estimates is

W(µc, σc, ns, np)

µd + µc +W(µe + µy,
√

σ2
e + σ2

y, ns, np)
.

In the no-estimation case, we need to run the compressor on

each buffer for the number of search iterations to use. In the

estimation case, we run the dataset-specific predictors once,

then the error-bound specific predictors for the number of

search iterations, followed by only the compressor only once.



Fig. 3: Use case A: Inaccuracy in the estimates leads to an

exponential degradation in the quality of the estimates. Thus,

high accuracy methods are preferable for this use case

When running in parallel, we expect ⌈ns

np
⌉ executions. In both

the estimation and original case, when running in parallel we

have to wait for the last process to complete, requiring us to

use Elfving’s formula.

For use case A, the accuracy needs to be very high to

unobtrusively replace an estimate with running the com-

pressor. While very preliminary, we estimated the effects

of degradation in the quality of estimates by increasing the

levels of prediction error by modeling prediction errors as

Gaussian errors and injecting increasing prediction errors, and

measuring the difference from the un-perturbed solution. As

shown in Figure 3, we found that the error as measured as

a percent of the true compression ratio appears to degrade

with an exponential of the variance of the prediction error

as measured by the percentage of true compression ratio

indicating that estimates with error over a few percentage

points over the desired target are likely useless for this use

case. In Figure 3, .5%, 1%, 2%, 4%, 8% errors respectively

led to 9.9%, 10.3%, 11.2%, and 17.4% respectively, but we

expect the exact differences to vary across datasets.

D. Use case B: Searching for the highest CR within con-

straints

In the no-estimation case, we need to run each compressor

once and then re-run the optimal compressor. In the estimation

case, we only need to run the dataset and error-bound specific

predictors once, then we compute the model estimates from

these statistics. In practice, computing the model estimates

from the statistics takes only nanoseconds compared to other

tasks that take an order of milliseconds can be ignored in most

cases.

The expected parallel speedup for use case B using esti-

mates vs not using estimates is approximately

M (µci , np) + µcopt

µe + µd +W(µy, σy, nc, np) + µcopt

.

Note that Elfving’s formula does not apply in this case because

we do not have repeated samples from a single distribution

and the variance of the compressors can differ. Instead, we

need to compute the minimal makespan on np processors

M(µci , np) that is the minimal time to schedule all tasks in

parallel. While in the general case, minimal makespan is NP-

Hard that is not a concern in this case: 1) often there are

either more processors than compressors under consideration

or only a single processor in which case this problem devolves

to maxi µci or
∑

i µci respectively, 2) open-source solvers

can solve optimal realistic-sized versions of this problem

optimally in less than a second, as real-world use cases

seldom have more than 30 compressors, 3) in the worst case,

M(µci , np) can be approximated using list scheduling with

an approximation bound of 2− 1
np

of the optimal [35].

For use case B, we can model errors in this way. We

get an incorrect solution if and only if we predict another

compressor gets a higher compression ratio than the best one.

We can estimate the probability of this using the variance of

our estimates, and the mean of our compression ratios on a

datasets for each compressor is Xi ∼ N (µCRi
, σCRi

). If we

assume independence and normality of CRi, the probability

of an incorrect conclusion is 1 − Πn
i=1 (p (CR0 ≤ CRi))

where P (CR0 ≤ CRi) = Φ

(

µCR0
−µCRi

√

σ2

CR0
+σ2

CRi

)

this proba-

bility degrades to Φ

(

µCR0
−µCRi

√

σ2

CR0
+σ2

CRi
+σ2

CRerri
+σ2

CRerr0

)

when

switching estimates. For example, if there were compressors

with mean compression ratios 1, 2, and 3 on a dataset, with

a variance of .1 each. Estimate error variances of .0625, .125,

.25, and .5 result in expected inversions 3.9%, 6.9%, 12.3%,

20.8% of the time.

E. Use case C: Parallel writes to a file

The expected parallel speedup for use case C is

W(µc, σc, nb, np) +W(µc, σc, nb − nm, np)

Test +W(µc, σc, nb, np) + Tmiss
.

Where the time to compute the estimates is Test = W(µe +

µd+µy,
√

σ2
e + σ2

d + σ2
y, nb, np) and the time to handle mis-

predictions is Tmiss = W(µc, σc,max
(

0, ⌈mnb

np
− nm⌉

)

, np)

In the no-estimation case, we need to run compression of each

buffer twice, once to get the compression ratio and again to

store the data in compressed storage. In the estimation case,

we can replace the first set of compression calls with a series

of calls that estimate the compression ratio and handle the

performance effects of mispredictions using the method from

[4]. With probability m, we underpredict the compression ratio

in this case, we need to wait and re-compress the data and

write the data to an auxiliary location now that we know its

true compression ratio.

F. Training Time

In addition to our use cases, we can also model the time

that it takes to produce a model. The speedup from reducing



training time and potentially changing training methods is

µt +W
(

µd + µe + µc,
√

σ2
d + σ2

e + σ2
c , nb, np

)

µt′ +W
(

µd′ + µe′ + µc,
√

σ2
d′ + σ2

e′ + σ2
c , nb′ , np

) .

In both cases, we need to run the compressor and the error

bound specific and dataset specific metrics on each of the

buffers in parallel. The key differences come from the dif-

ference between nb and nb′ and from the speed and runtime

consistency of the dataset and error bound specific predictors.

VI. EXPERIMENTAL EVALUATION

A. Experimental Setup

We begin with a few aspects in common to all our exper-

iments. We ran evaluations on the compressors listed in the

Background. We present a small representative subset of these

results in this results section due to space. Unless otherwise

mentioned we focus on the SZ3 compressor because it is

especially difficult to predict producing the worst results for

our method and to enable comparisons to related work (e.g.

[3], [6], [22]), but have conducted similar studies on ZFP and

SPERR. We also focus on absolute point-wise error bounds of

1e-3 unless otherwise specified for space in the paper, running

experiments with other pointwise absolute bounds 1e-4 and 1e-

6 finding similar results. We interfaced with the compressors

using LibPressio [36] from its Julia bindings to facilitate the

comparisons. Additional results are available at Zenodo3.

1) Data: We use datasets from SDRBench [37]: NYX

(cosmology), Hurricane (weather prediction), and Miranda

(hydrodynamics turbulence simulation) chosen for diversity,

availability, and use in prior work. These datasets are all

natively 3D datasets. We convert them to 2D datasets by

slicing along the slowest incrementing dimension to increase

the volume of training and testing (c.f. [3], [38]).

2) Evaluation System: Large-scale evaluations were per-

formed on machines with an Intel Xeon Phi 7230, with

96GB of DDR4 Ram selected for availability. Performance

experiments were run on nodes with 11th Generation Intel

Core i7-1185H, a Nvidia A2000 GPU, and 32 GB of DDR4

RAM where experiments could be run in isolation.

3) Evaluating Estimation of Compressors: Common pre-

dictors used to compare the accuracy of compression estima-

tion methods are the 10% quantile, 50%, and 90% quantile

of the median absolute percentage error [3]. These predictors

are robust against extremely accurate or inaccurate estimations

of compression ratio and provide a concise summary of how

well a method works across an entire dataset in a way that

discourages over-fitting. These are computed according to the

procedure outlined in Algorithm 2, a k-fold cross-validation

procedure. For each fold, compute the specified predictors, and

observe the compression ratio for the training and testing data

(see lines 4-7). The predictors are often divided into groups

that are dependent on the error bound (eb_predictors)

and those specific to the buffer but agnostic to the error bound

3https://zenodo.org/record/8150806

(dset_predictors) to reduce re-computation (see line 6).

Next, fit a model on the training data, and predict on the testing

data (line 8). For each prediction, compute the absolute value

of the true minus the predicted compression ratio, and convert

it to a percent (line 11-14). After all predictions for a fold

are completed, compute the median of the fold, and report the

10%, 50%, and 90% quantiles of the medians from the folds

(line 18).

Algorithm 2 Prediction Error Evaluation and Quantification Procedure

Input: Dataset D, user-specified error bound e
Output: 10%,50%, 90% Quantiles of the Median Absolute Percentage Error

1: medape ← []
2: for train, test ∈ kfold(D) do

3: true cr ← [], predictors ← []
4: for d ∈ train do

5: true cr.append(size(compress(d,e))
6: predictors.append([dset predictors(d), eb predictors(d,e)])
7: end for

8: model ← train(true cr, predictors)
9: ape ← []

10: for d ∈ test do

11: true cr ← size(compress(d,e))
12: predictors ← [dset predictors(d), eb predictors(d,e)]
13: pred cr ← predict(model, predictors)
14: ape.append(100 (true cr - pred cr) / true cr)
15: end for

16: medape.append(median(ape))
17: end for

18: return quantile(medape, [0.1, 0.5, 0.9])

B. Major Result 1: Accuracy ± In Sample Prediction

Existing work has largely focused on evaluating the accu-

racy of what we describe as in-sample prediction ± training

and testing on different subsets of the same field from the

same application. In-sample prediction is important because it

represents 1) an ideal case for compression ratio estimation

where data is homogeneous and 2) represents a case where a

model can be produced for each field of an application.

We present visual results for our method in-sample pre-

diction to enable direct comparisons to existing work in

Figures 6a and 6c made using Algorithm 2. In the figures, the

black dots represent the actual observations vs the predicted

values using our method, the black line represents the line

predicted = actual the optimal prediction, we address the

confidence intervals in these plots in Section VI-D. The tight

clustering about the optimal prediction line and the consistency

of the variance indicates high-quality prediction.

We also include results for our methods across 4 datasets

with 3 different compressors and 2 error bounds to show the

effectiveness of our approach in a wide variety of contexts in

Figure 4. This plot shows 3 fields from each of four separate

datasets on the x-axis. On the y-axis, it shows a box and

whiskers plot for the median absolute percentage errors as

determined by Algorithm 2. The legend shows the average

and maximum error for each compressor and the error bound

across all datasets. The largest median absolute percentage

error is 5.3% for SPERR. We get an overall average median

absolute percentage error of 1.2. This extremely high accuracy







Cloud QCloud Precip QGraup QRain QSnow QIce TC U V W QVapor
Cloud 8.9 39.0 46.3 24.7 34.4 24.5 11.1 44.8 79.7 190.8 129.4 8600.3
QCloud 39.0 8.8 35.0 13.1 17.2 17.5 49.7 43.8 59.6 851.3 28.7 76238.9
Precip 46.3 35.0 8.9 39.8 61.7 45.3 67.1 42.5 59.3 838.7 57.8 78542.2
QGraup 24.7 13.1 39.8 8.9 13.7 16.2 30.7 43.4 68.3 424.3 32.8 32865.2
QRain 34.4 17.2 61.7 13.7 8.9 19.7 39.5 51.2 71.9 458.4 31.1 36086.1
QSnow 24.5 17.5 45.3 16.2 19.7 8.9 28.6 54.4 84.5 372.7 34.4 26429.4
QIce 11.1 49.7 67.1 30.7 39.5 28.6 8.9 48.8 78.0 187.4 166.8 8081.2
TC 44.8 43.8 42.5 43.4 51.2 54.4 48.8 8.9 20.4 211.8 72.5 21712.6
U 79.7 59.6 59.3 68.3 71.9 84.5 78.0 20.4 8.9 221.5 87.2 24025.3
V 190.8 851.3 838.7 424.3 458.4 372.7 187.4 211.8 221.5 8.9 3386.6 2346.2
W 129.4 28.7 57.8 32.8 31.1 34.4 166.8 72.5 87.2 3386.6 8.9 326839.3
QVapor 8600.3 76238.9 78542.2 32865.2 36086.1 26429.4 8081.2 21712.6 24025.3 2346.2 326839.3 8.2

TABLE III: Field Similarity for the Hurricane Dataset

also possible to achieve a speedup if the error-bound specific

calculations are approximately the same cost as the compressor

if they offer more consistent timing than a compressor ± which

is true of all of the predictors and compressors we tried. For

example, suppose that a compressor, dataset predictors, and

error bounds specific predictors all had a runtime of mean and

standard deviation of 1, but the error bound specific predictors

had a standard deviation of .33, a speedup of 2.56× is possible

over 100,000 search iterations on 40 processors like was used

in [1] to find configurations that satisfied climate codes.

For use case B, accuracy is of moderate importance. It still

needs to be accurate, but how accurate depends on the average

relative difference in the compression ratios. For competitive

compressors for which the compression ratios are similar,

little estimation error can be tolerated, but when there are

larger gaps between compressors on specific datasets ± which

intuitively happens when the patterns in the data correspond

to the compression principles of a particular compressor as

opposed to others ± the noise from predictions can be much

higher as seen in [6]. For this use case, the performance

of the dataset and error-bound specific predictors can also

be somewhat high compared to the runtime of any one

compressor and still achieve a speedup.

For use case C, accuracy is of mild importance because

mispredictions are compensated for by the algorithm. Ad-

ditionally, the user can over-allocate storage relative to the

prediction to decrease the possibility of under-allocation. With

this, we can determine a factor α which corresponds to the

percentage of mispredictions on the dataset. With our approach

based on conformal prediction, we can easily choose this

parameter and determine a priori our space vs speed tradeoffs

relative to a traditional approach. What is interesting about

use case C, is that for the serial case, there is a maximal

speedup of ≈ 2, but in the parallel case, higher speedups are

possible because of the overhead of the parallel reduction.

Key Finding 6 Our novel modeling gives us insight into how

much improvements in estimation accuracy or speed can affect

speedup for various use cases.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we demonstrated both empirical and analysis

that show that fast and accurate compression ratio estimates

can accelerate a variety of real-world compression use cases in

Fig. 7: Speedup for use case A. Lu only supports SZ so is

excluded for other compressors

parallel. We additionally advance the state of the art in com-

pression ratio estimation by introducing a black box method

that is accurate, robust, cheaper to train, and lightweight. For

future work, we want to take this foundation to other use cases

of compression ratio estimation.
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