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Abstract—Error-bounded lossy compression turns more and
more important for the data-moving intensive applications to
deal with big datasets efficiently in HPC environments, which
often requires knowing the compressibility of the datasets be-
fore performing the compression. However, the off-the-shelf
state-of-the-art lossy compressors are often driven by error
bounds, so the compression ratios cannot be forecasted until
the completion of the compression operation. In this paper, we
propose a lightweight, robust, easy-to-train model that estimates
the compressibility of datasets for different lossy compressors
accurately. Our approach combines novel predictors that measure
various notions of spatial correlation and smoothness exploited
by lossy compressors that are implemented efficiently on the
GPU in a framework and that uses mixture model regression to
improve robustness with conformal prediction to provide bounds
on the estimates. We then use these models with a detailed
analysis of speedup to understand the tradeoffs between high
speed, consistent speed, and accuracy of the methods on real
applications. We evaluate our approach in the context of 3
key applications where compression ratio estimation is highly
required.

Index Terms—Lossy Compression, Compression Estimation,
Rate Distortion, Error Bounded Lossy Compressors

I. INTRODUCTION

Lossy compression is becoming an increasingly common
element of strategy for large-scale data-intensive applications
running on HPC systems. However, many real-world use cases
are substantially faster with the accurate estimation of com-
pression ratio beforehand and without requiring the expensive
compression operations. For example (use case A): finding a
best-fit configuration based on a compression ratio target for a
particular dataset, the common method is performing a series
of trials, which runs lossy compressors repeatedly based on
different error bounds [1], [2]. ( use case B): choosing the best
compressor with the highest compression ratio from among
a group of candidate compressors at runtime [3]. (use case
C): In order to write multiple compressed datasets into one
aggregated file [4] such as HDFS, it is necessary to forecast
the compression ratios for each dataset because each parallel
process needs to know the starting location of the compressed
data to be written in the aggregated file.
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Accurately estimating the compressibility of a dataset under
an error-bounded lossy compressor is non-trivial. Although
there have been some studies exploring this issue, they suffer
from many limitations. Jin et al. [5], for example, proposed
an efficient compression ratio estimator, but it is designed
particularly for only prediction-based compression model, and
may also be inaccurate in some datasets or error bounds (to be
shown in our paper later). Some of the fast methods [6] are
exceptionally inaccurate getting median absolute percentage
errors over 90%, resulting in time to account for predictions
or high space overhead up to 1.5x [4].

In this paper, we propose a novel accurate, robust, bounded,
cheaper-to-train, and lightweight, and compressor-agnostic
method to estimate compression ratios accurately for error-
bounded lossy compressors using novel statistical predictors
from datasets, and an analytical framework for analyzing
the impacts of the accuracy and speed of the predictors has
on the speedup on applications that use compression ratio
estimation. (1) Our novel compression prediction model using
powerful estimation methods: conformal prediction, which
provides uncertainty associated with the predictions, with
mixture regression to tackle diverse statistical properties of the
data (Section IV-B) as the first statistically bounded method
(Section VI-D) to estimate compression ratios. This method
makes our approach far more accurate (Section VI-B) and
robust (Section VI-C) to differences between datasets than
prior approaches (2) Novel Metrics to better capture spatial
structures than prior metrics: We create 3 (Spatial Correlation,
Spatial Diversity, Spatial Smoothness) and identify 2 existing
(General Distortion, Coding Gain) existing metrics. (3) Novel
application use-cases: Our high accuracy and lightweight
GPU approach (Section IV-C) enables new use-cases that are
prohibitive with older, slower/less accurate methods. (4) We
present the first mathematical model for speedup and accuracy
trade-offs with prediction for each use case (Section V).

Compared with the existing error-bounded lossy compress-
ibility estimation methods developed, our solution offers sev-
eral key advantages: Accurate Our approach is substantially
more accurate than prior approaches when evaluated the same
way in prior work — using the same field for training and
evaluation. Robust Our approach works also well when we
consider using some fields from the same application to predict



other fields. To our knowledge, this is the first training-based
approach to evaluate training on one field and prediction others
on evaluation. Bounded Unlike prior works, our approach pro-
vides strong statistical bounds on the error of the compression
ratio estimation using a conformal prediction-based approach
that provides lower and upper bounds on each estimate — prior
approaches provide no statistical guarantees on the error in
estimation and provide only point estimates. Cheaper to train
Prior model training-based approaches used the entirety of
a field for training requiring costly exhaustive evaluation of
metrics, whereas we provide a methodology to determine an
order to consider fields for training that can reduce the time
to prepare a model. Lightweight Not only is our approach
accurate, but suitably lightweight and accelerates each of the
uses cases mentioned in the introduction. Speedup Analysis
Our work provides models of parallel speedup that account
for prediction accuracy, speed, and consistency relative to
the compressors to enable scientists to evaluate trade-offs
between methods for the 3 use cases, and determine how much
improvement can be achieved from incremental improvements
to each of these approaches.

II. BACKGROUND

Terms We begin by defining a few key terms for the
purposes of this paper. Each scientific application may have
multiple runs. A dataset refers to all of the data from
a particular run of an application. Datasets from scientific
applications can often be partitioned into individual time-
steps representing stages of the simulation, which in turn has
multiple fields representing distinct aspects of the simulation
(e.g. pressure, temperature). A buffer refers to a single multi-
dimensional array from an application belonging to a particular
field and time-step. We assume that a field and time-step
uniquely identify a buffer within a run.

Compressors While there is an accurate method for es-
timating the lossless compressibility — Shannon entropy [7],
there is not a comparable measure of lossy compressibility that
works across different applications each project-specific data
features and different compressors that may differ significantly
in design principles. In what follows, we introduce a few key
compressors to be studied in this paper: ZFP [8] — ZFP com-
pressor uses a common fixed point notation combined with a
“near optimal” block transform — similar to the discrete cosine
transform used in JPEG image compression. This approach
operates at very high bandwidth, but often does not compress
as much as SZ based compressors. SZ2 [9] and SZ3 [10]
and other related compressors use prediction based approaches
to decorrelate the data prior to compression. For SZ2, prior
work has shown that SZ2 is one of the hardest compressors to
accurately estimate compression ratio because it uses multiple
predictors (block regression and lorenzo) and special cases to
account for [3]. SZ3’s compression ratio is easier to predict
because it adopts an interpolation based predictor, however,
is different in that it does not use a fixed block design like
SZ2 does, meaning that the approaches that were designed
based on SZ2 (such as Tao [6]) cannot be simply applied

on SZ3. SZ3 often pairs high compression ratios with high
quality reconstructions. BitGrooming [11] leverages aspects
of the IEEE floating point specification to improve the com-
pression of floating point data. DigitRounding [12] combines
rounding with lossless compression techniques for a method
that has robust compression performance with uncorrelated
data. MGARD [13]-[15] uses linear representation theory to
achieve high compression ratios and high quality. Additionally,
the mathematical theory behind MGARD’s design allows it
to be used to guarantee the preservation of key quantities
of interest that take the form [14] of or can be reduced to
[16] a bounded linear functional. TThresh [17] — a slow, but
highly effective compressor for 3D+ data based on the type
of higher-order singular value decomposition. SPERR [18] is
a relativley slow, but highly effective compressor for 2D and
3D based on wavelet decomposition.

III. RELATED WORK

In this section, we introduce related work on estimating
compression ratios of data when using lossy compressors that
we compare against in the course of our work and identify
key gaps in prior work. There have been a few major types of
approaches:

Rate Distortion Theory Rate distortion theory is a well-
established branch of mathematics that attempts to bound the
compressibility [7], [19]-[21]. The benefit of these approaches
is that if the assumptions made by these approaches hold,
then it bounds the behavior of any possible future com-
pressor. However, methods taken from rate-distortion theory
often make very strict assumptions about the data — such as
homoscedasticity and Gaussian distribution of the data source.
Real-world datasets routinely violate these assumptions and
resulting in the theory making estimates of the compressibility
of data that vastly underestimate what lossy compressors that
leverage these properties in real-world datasets can achieve. In
particular, no existing approach considers correlations existing
in scientific datasets.

Training-Based Statistical and Machine Learning Be-
cause theory-based approaches tend to be intractable for real-
world use cases, there has been extensive work to consider
using a series of predictors to estimate the compressibility
of datasets with particular compressors using statistics or
machine learning. These methods can be further subdivided
into black-box and white-box methods. Black-box methods
use predictors that are not derived from the internals of the
compressors to be robust to changes in the compressors,
whereas white-box methods model key aspects of the com-
pressor to in principle get more accurate estimations or to
allow counterfactual estimation.

Lu’s approach [22] leverages a Gaussian model to combine
several features that are internal to the SZ and ZFP com-
pressors such as the number of nodes in the Huffman tree,
and the number of outliers from mispredictions — quantities
that require nearly running nearly the entire compressor to get
accurate estimates of compressibility. This approach was later
refined in [23] leveraging the deep knowledge of the internals



of the compressors to make counterfactual assessments of
compressibility based on other encoding stages or prediction
approaches.

Tao [6] developed a fast method but less accurate method
that leveraged a minimal amount of information to estimate
compression ratios for SZ2 and ZFP for online selection
between these compressors. This approach samples data, esti-
mates the probability density function of the data in the blocks,
and then computes the entropy of the quantized values.

There have been two key approaches that use machine-
learning style approaches. In response to the slowness of
the applications like [1], Rahman developed a black-box ap-
proach [2] leveraging decision trees combined with generally
applicable statistical predictors. Another related approach but
whitebox comes from Qin [24] who takes a similar approach
but uses deep neural networks but leverages internals of the
compressor such as the number of nodes in the Huffman tree
for SZ, but has slower and less accurate than their earlier
work [22]. These methods while achieving higher accuracy
than their predecessors lack explainability.

Recently there have been approaches by Jin [4], [5] that
aim to get high speed and high accuracy. This white-box
approach works for prediction-based compressors like SZ. It
functions by first sampling blocks of data to be compressed,
using their distribution and empirically observed properties
of the predictors to estimate a bit-rate, and then estimating
the encoding efficiency of the resulting data with a Huffman
encoding using a run-length encoding that is easier to estimate
recognizing that the compressor in an ideal case, produces
decompressed data with quantization errors near zero.

Lastly, the paper by Underwood [3] focuses on high
accuracy by leveraging a black-box statistical approach to
estimating the compressibility of scientific data. It uses two
predictors: the SVD truncation and the quantized entropy in
a linear model to estimate compressibility. This approach is
notable in both that it is reasonably accurate and fast when
accelerated on the GPU, but it notably has robust performance
across compressors and does not depend on any internals of
the compressors. However, this method does not perform well
in the worst case in out of field prediction (see Section VI-C)

Summary and Comparison to Related Work In this
framework, our approach is a black-box statistical family
similar to Underwood [3], and differs in its choice of predictors
and most importantly in its performance in terms of robustness
to dataset and compressor variability, but also in its runtime.
We leverage predictors derived from intuitive notions that
measure various notions of smoothness combined with more
robust statistical approaches. These approaches allow us to
make statistical guarantees regarding our accuracy and achieve
much higher speed with improved runtime.

IV. ESTIMATION METHODOLOGY

Studies like [3] suggest that a dataset’s compressibility
is reliant on its inherent statistical properties such as its
spatial structure. Our work uses these statistical proprerties

in a mixture model with conformal prediction to estimate
compressability.

A. Predictors based on Notions of Correlation

In this section, we describe how to compute our predictors
from a 2D array'!, denoted as X € RP*P. We divide it into
B spatially connected blocks of dimension k x k, denoted
as X1, Xo,...,Xp, by considering row-wise divisions. It is
important to note that each block is identified by specific row
and column indices. Assuming there are B, columns and B,
rows of blocks, the total number of blocks is given by B, x
B, = B, and the array size satisfies p?> = Bk?. We further
represent the vectorized blocks as X° = vec(X;) € RK (row-
wise), where b = 1,2,..., B, enabling a comprehensive set
of samples for understanding the spatial structure of X. We
proceed to discuss the formulation of our metrics.

Spatial Diversity (SD) weights entropy [7] with spatial
information. Shannon’s entropy [7] does not consider spatial
correlation and diversity within the signal. Inspired by [25],
we propose a novel method to estimate spatial diversity using
spatial entropy. Our approach involves computing a weighted
average that considers inter-block and intra-block variability as
weights. These weights adhere to two fundamental principles:
(1) When distant entities exhibit similarity, spatial variability
increases (measured by inter-block variability, wént”). 2)
When adjacent entities demonstrate diversity, spatial variabil-
ity increases (measured by intra-block variability, wi""®).

Next, we define the weights. The intra-block variability is
expressed as the standard deviation of the block, denoted as
wi™r® = sd(X"). The inter-block variability incorporates
both the Euclidean distance between the values (Df ,,) and
manhattan distance between the block locations (Dg:b,). To-
Zb’#b Di,b/Df,u

2y Dy

Finally, instead of using the generic estimator of entropy,
denoted as H = — Zszl pblogg(pg), we define spatially in-

gether inter-block variability is : wj™*¢" =

formative entropy as SD = — S0 wi™r wimer p,logs (ps).
Here py, is the probability of block b. A simple way to assign
these probabilities is to assume equal likelihood among the
blocks, yielding p, = % for b=1,2,...,B.

Spatial Correlation (SC) is a weighted average of corre-
lation between pairs of blocks weighted by wi™*"®. To assess
spatial correlation, we compute the correlation matrix V €
RE*B with elements V3, = p(X?, X', where p represents
the Pearson correlation coefficient. Additionally, we define
the statistic SCj, to quantify the spatial correlation per block:
SCb _ ZM#b DZ,b/ ‘Vb,b/l
2o Dy
long-range correlation in the b*" block by assigning weights
to pairwise correlations based on spatial distances. Notably, if
a highly variable block exhibits a high correlation with other
blocks, it contributes more to the overall spatial correlation.

Thus, to incorporate this concept, we calculate the weighted
Zszl Scbwzntra

B intra
2pe1 Wy

. Here, SC} measures the strength of

average of these spatial correlations: SC =

Iextensions to 3D are possible using approaches similar to [3]



Generic Distortion Measurement The measurement of
generic distortion is inspired by the rate-distortion curve
[26] used to assess transform coding. Without assuming a
Gaussian distribution, for a fixed-rate R , the optimal expected
distortion is a function of entropy and quantized entropy: D =
L22n(@)272R Here, h(z) = — [ fu(t)loga fo(t)dt denotes
the differential entropy of the data, obtained by estimating
the data distribution f,, and R represents the average quan-
tized entropy expressed as RzﬁH (a(X?)). Consequently, the
distortion metric D encompasses various unknown properties
of the source, including the data distribution f,. Therefore,
to estimate D, it is necessary to obtain estimates for these
quantities. To measure the quantized entropy H(a(X?)), a
simple linear scheme «(x,€qps) = |T/€abs| * €aps 1S em-
ployed, where |z] denotes the floor function, and e€qps is
the chosen number of subdivisions of the domain. Next, we
utilize the empirical data distribution to nonparametrically
estimate the probability distribution of the original data and its
quantized version. This provides us with the estimated entropy
and quantized entropy, denoted by H; and H, respectively,
to finally compute the estimated generic distortion measure
b — Zb:l 1_1222H5272Hg/k2'

Coding Gain In transform coding, the coding gain serves
as a crucial metric for assessing the transformation stage’s
efficacy. Within this context, the Karhunen-Loeve Transform
(KLT) holds a prominent position as the optimal orthogonal
transformation method for minimizing the bit rate (and thus
coding gain) for Gaussian designs [26], [27]. The coding gain
quantifies the reduction in distortion achieved by applying
the KLT for decorrelation, assuming a high rate and optimal
bit allocation. We calculate the block covariance matrix as
o= L30 XN(XYT € RFXF, where X° denotes the
data block and T the matrix-transpose operation. The coding
gain is then expressed as a function of the singulgr values
(e i)

me,es)
o; represents the singular values. The detailed theoretical
derivation for the case of a heterogeneous Gaussian source
is found in [26]. Although coding gain is only proven to
be optimal for Gaussian sources, it remains an indicator
compressibility for other data [28].

Spatial Smoothness (CovSVD-trunc) The singular value
decomposition (SVD) is effective in assessing spatial depen-
dence [29], [3]. This research builds upon the concept of
measuring spatial smoothness through the “CovSVD-trunc”
metric. The CovSVD-trunc applies the SVD to the block cor-
relation matrix X (defined in IV-A). Specifically, it calculates
the percentage of singular values necessary to capture 99%
of the total variance of the blocks, represented7_as CovSVD-
trunc = ;—2 x 100, where m = min 73 ijl 7i > (.99.

r=1,2,...,k? >is1 G
While the aforementioned SC measure primarily accounts for
long-range dependencies, the CovSVD-trunc metric focuses
on intra-block correlations.

Ablation Study Figure 1 highlights the difference between
the metrics through an ablation study on the hurricane dataset.

of Y. Specifically, Coding Gain = where
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Fig. 1: Ablation Study for statistical predictors

For this study, we construct the model that we detail in
Section IV-B using the methodology from Algorithm 2, but
exclude/ablate each of the statistical predictors one at a time
and compare the median absolute percentage error with the
fully specified model. For the study, we train the model on
each of the fields individually and then predict on other buffers
from the same field (in-sample prediction, see also VI-B) and
present results from the SZ3 compressor which traditionally
has higher prediction error for prior methods. As can be seen
from the figure, each of the different fields is affected the
most by the exclusion of different predictors. For example,
the qcloud field is sensitive to the exclusion of our predictor
CovSVD-trunc whereas the field p is sensitive to the exclusion
of the spatial diversity. This suggests that each of the statistical
predictors provides a distinct type of information to the model
and that they capture distinct aspects of the relationships
between data points that influence compressibility.

The aforementioned statistical predictors are closely linked
to the compressibility of datasets, as they incorporate various
spatial characteristics. Specifically, the spatial diversity (SD),
spatial correlation (SC), and CovSVD-trunc collectively cap-
ture both long-range and short-range spatial variability. More-
over, the generic distortion measure and coding gain assess
the overall compressibility of the data from a compressor-free
standpoint. In the next subsection, we demonstrate how these
features’ predictive capabilities are integrated into a machine
learning model, establishing an effective and uncertainty-aware
prediction framework for compression ratio (CR).

B. Estimation Method

Our research aims to develop an uncertainty-aware predic-
tion model for compression ratio using the aforementioned
predictive features. To predict CRs, we rely on regression
models to model the relationship between the CR and its
statistical predictors from Sect. IV-A. For each compressor
and each dataset field, regression models are fitted between
the statistical predictors and associated compression ratios.
To mimic most operational conditions, we focus on CRs less
than or equal to 100. In practice, few users work with higher
compression ratios (except for visualization, which is not a
target use cases of this study).

Initial data analysis revealed significant heterogeneity and
grouping effects in the relationship between these features
and the CR, an empirical validation is presented in Figure
2 using the Hurricane dataset. To capture this group structure,



we employ a mixture of regression models, a well-established
framework in statistical analysis [30]. This approach allows for
the identification and estimation of distinct patterns or clusters
within the data, effectively addressing the presence of grouping
effects. Furthermore, to address prediction uncertainty, we
incorporated the conformal prediction framework [31], [32].
Conformal prediction provides valid confidence measures or
prediction regions for individual predictions, enabling the
quantification of uncertainty associated with machine learning
models. It aims to produce reliable and calibrated predictions
while controlling error rates. In this section, we discuss each
of these approaches in detail.

1) Developing the prediction model: In our regression
analysis, we consider a sample comprising n 2D-slices as indi-
vidual data points, where the outcome variable is log(C'R) and
the five covariates are: SD, SC, Coding gain, CovSVD-tunc,
and generic distortion D. We represent the predictor vector as
x = (x1,22,...,%5), where x;;, denotes the observed value
of the pt" feature for the i*" data point. Assuming there are
L latent groups in the data, the contribution of each class
to the overall density is estimated by 7,72, ..., 7, which
represents the probability of being in each class. Using this
formulation, the joint distribution of y|x can be expressed as:

L
FlA ) =Y " mfi(ylOx, =) (1)
=1

where A = (II,0) denotes the vector of all unknown
parameters to be estimated, ie., II = (m,m2,...,7r—1)
the cluster-allocation probabilities and © = (01,0, ...,0L)

is the set of regression parameters in each of the clusters
{1,2,...,L}. In the linear regression setting, the cluster-
specific regression function f;(Y'|0;, z) can be written as:

5
A0, 2) = Bor+ Y Bpiwip + €, € ~N(0,67). (2)
p=1

Here for the latent class [, 5¢; is the vector of class-specific
intercepts, 612 is the noise variance for class [, and 3, is
the vector of regression coefficients for covariates x,. The
class-specific coefficients identify this as a regression mixture
model tailored for heterogeneous datasets with complex group
structures. In practice, the latent class dimension L is a
hyperparameter and we set its value by fitting a clustering
method like k-means.

2) Addressing the uncertainty with conformal prediction:
Conformal prediction provides a rigorous framework for quan-
tifying and managing prediction uncertainty in a regression
framework by offering reliable confidence measures or pre-
diction regions for individual predictions, without relying on
any distributional assumptions [33]. Given a training dataset
(z1,91), (2,Y2), -+, (Tn, Yn), @ new predictor vector x,1,
and a prediction scheme such as the mixture of regression
Equation IV-B1, our objective is to construct a (1 — X\)100%
confidence interval é‘n(mnH) for the unobserved target vari-
able yn41, ensuring that P(yny1 € Cn(zng1)) > 1 — A,
with P the considered probability measure. For example,
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Fig. 2: Visualization of the latent clustering structure in the
relationship between compressibility and predictors using four
different fields from the Hurricane dataset. To capture the
clustering effects in the 6-dimensional multivariate dataset
comprising the compression ratio (CR) and the five proposed
features, principle component analysis (PCA) was utilized to
reduce the dimensionality to two and visualize the clusters
on this new basis. The plot displays data points based on
the top two principal components, highlighting a clear and
noticeable grouping effect. These findings underscore the need
for a mixture of regression models to accurately capture the
complex associations observed.

when considering a confidence level of 95%, a well-calibrated
conformal predictor in a regression scenario would yield
confidence intervals that encompass the true value in at least
95% of instances (Figure 6). Specifically, we adopt the split
conformal prediction scheme for its computational flexibility.
The split conformal prediction algorithm involves several
crucial steps. Initially, the training dataset is divided into a
proper training set and a calibration set. The proper training set
is utilized to train the prediction model, while the calibration
set is used to estimate the prediction error. By incorporating
the notion of variability into the prediction through a set of
residuals, the algorithm achieves robustness. Algorithm 1 pro-
vides an overview of the key steps involved. This procedure is
efficient — stages 1-5 take O (V) time and can be precomputed
before inference, and stage 6 takes O(1) time per inference.

C. Implementation

We implement our predictors as a combined multi-threaded
CPU+GPU code in Julia 1.8 using CUDA jl, TiledIteration,
and the Atomix packages. Source code for our implemen-
tation can be found on Github> Where possible, we pre-
allocate memory to be used for the operations to avoid the
need for garbage collection and memory allocation during

2upon acceptance link https://github.com/robertu94/libpressio-predict/



Algorithm 1 Prediction error evaluation and quantification procedure Notation Meaning
Require: Training (z1,y1), (z2,92),-- -, (Tn,Yn), new feature xp41, the N(u, o) normal distribution with mean p, standard deviation o
mixture regression algorithm f in Eq. IV-B1, level A, calibration set size d cumulative density function for N'(0, 1)

m e~ N(te,0c) time of predictors dependent on data and error bound

1: Split {1,2,...,n} into training set L of size r and calibration set I of d~N(pg,oq) time of predictors dependent on data

size m =n —r; y~N(py,oy) time of computing an estimate

2: Train fr(z) = f(z; (xy, 1), € L); ci ~ N(peys0¢;) time of running the i*"* compressor

3: Compute the residuals R; = |y; — fr(x;)],4 € I; ~ ns € N number of searches performed

4: Sort the residuals in an increasing order: R<1> , R(2)7 o Bmy- ne € N number of compressors to consider

5: Compute the (1 — \)*" quantile: Ry = Ry where k = [(1 - X)(m+ np € N number of processors to use

IR ny € N number of buffers to compress

6: return The (1 — A)100% confidence interval nm € N number of compressed buffers that fit on a processor

Cn(@n+1) = {y €R: ly = fr(@ns1)| < }

= [fL(In-H) Ry, fr(znt1)

|_|

execution. Our implementation combines the routines of all
of the dataset-specific but error-bound agnostic predictors into
a single routine to minimize loads. We then execute each
pair of blocks in parallel on the CPU. We offload a few
key performance-critical operations to the GPU — namely, the
eigendecomposition and the outer product used in computing
the spatial diversity. Lastly, we remove the need for locking by
using atomic instructions to handle the sums that are shared
between threads on the CPU to avoid the high-overhead use
of a mutex. One exception is that once for each block, we
need to add an entire array of values atomically as part of
the SVD truncation calculation — we found through profiling
that a single mutex was more efficient than an entire sequence
of atomic additions. The runtime of the error bound agnostic

metrics is O ( e fL*’fy + k) where p number of rows of
the matrix, k is the number of rows in each tile, and n, is
the CPU scaling factor, and ~ is the GPU core scaling factor.
The three terms that bound performance come from the com-
putation of norms of the pair of tiles, the computation of the
outer product of each tile, and the SVD in the CovSVD-trunc.
Since the tile size k is small and fixed, the O

term

dominates. For the error bound specific metrics, the bound is
k2 log k . . .

0] T) and driven by the computation of entropy in the

generalized distortion.

V. USE CASES AND PERFORMANCE MODELS

In the Introduction, we previewed 3 uses cases for using
compression ratio estimation in real applications to achieve
speedups: (A) using running lossy compressors to meet a
specific compression ratio target [1], (B) choosing amongst
a group of compressors which has the greatest compression
ratios under a given set of constraints [6], and (C) quickly
finding the offsets needed to write into a single HDF5 file in
parallel. Additionally, we can also model speedup in training
the model. In this section, we model the performance of these
both training a model and these use cases to provide insight
into the impacts of runtime consistency, runtime latency,
and accuracy of predictions on the speedups observed by
applications. These results complement the empirical results
in Section VI to provide a more comprehensive picture of

TABLE I: Notation

performance and trade-offs between various approaches. We
define common terms in Table I.

A. Assumptions

We make a few key modeling assumptions: First, we assume
a memory-constrained environment. Specifically that we can
fit the original dataset in its entirety and no more than
n., compressed buffers (and associated scratch space) into
memory per processor. This assumption represents the real-
world use case where compression is running in-situ with
an application that heavily uses memory and only a limited
amount is available for compression. This assumption can be
relaxed by setting n,, = mn;. Second, we assume that the
average runtime of the compressors and estimation methods
have a Gaussian distribution — this appears to be validated by
our preliminary testing.

B. Supporting Theorems

A foundational result in statistics show given two normal
distributions A = N (e, 04), B =N (16, 08), fatd = fa +
wp and o2 = 02 + o2 From this we derive that the sum
of some positive integer k such distributions with equal mean
and variance is ku and variance ko?2.

Further, the paper by Elfving [34] shows that the expected

maximum of a group of n samples from a normal distribution
n—m/8

n—m/4+1

is the standard deviation, and &1 is the inverse cumulative

density function of the standard normal distribution. We define
W(p, ,m4,m,) = [22] (,uhL o (#;fﬁl)) to be the

Tp
expected time to run these n; tasks on n, processors.

is asymptotic p + o® ! where p is the mean, o

C. Use case A: Searching for a target CR

The expected parallel speedup for use case A using esti-
mates vs not using estimates is

W(Mw Oc,Ns, np)

ta + te + W (tte + Ly, \/m, Ns, Np)

In the no-estimation case, we need to run the compressor on
each buffer for the number of search iterations to use. In the
estimation case, we run the dataset-specific predictors once,
then the error-bound specific predictors for the number of
search iterations, followed by only the compressor only once.
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Fig. 3: Use case A: Inaccuracy in the estimates leads to an
exponential degradation in the quality of the estimates. Thus,
high accuracy methods are preferable for this use case

When running in parallel, we expect [Z—p} executions. In both
the estimation and original case, when running in parallel we
have to wait for the last process to complete, requiring us to
use Elfving’s formula.

For use case A, the accuracy needs to be very high to
unobtrusively replace an estimate with running the com-
pressor. While very preliminary, we estimated the effects
of degradation in the quality of estimates by increasing the
levels of prediction error by modeling prediction errors as
Gaussian errors and injecting increasing prediction errors, and
measuring the difference from the un-perturbed solution. As
shown in Figure 3, we found that the error as measured as
a percent of the true compression ratio appears to degrade
with an exponential of the variance of the prediction error
as measured by the percentage of true compression ratio
indicating that estimates with error over a few percentage
points over the desired target are likely useless for this use
case. In Figure 3, .5%, 1%, 2%, 4%, 8% errors respectively
led to 9.9%, 10.3%, 11.2%, and 17.4% respectively, but we
expect the exact differences to vary across datasets.

D. Use case B: Searching for the highest CR within con-
straints

In the no-estimation case, we need to run each compressor
once and then re-run the optimal compressor. In the estimation
case, we only need to run the dataset and error-bound specific
predictors once, then we compute the model estimates from
these statistics. In practice, computing the model estimates
from the statistics takes only nanoseconds compared to other
tasks that take an order of milliseconds can be ignored in most
cases.

The expected parallel speedup for use case B using esti-
mates vs not using estimates is approximately

M (MCL ? np) + :ucupt
fe + pa + W(Mya Oy Ny np) + Heopt

Note that Elfving’s formula does not apply in this case because
we do not have repeated samples from a single distribution
and the variance of the compressors can differ. Instead, we

need to compute the minimal makespan on n, processors
M(pie;smp) that is the minimal time to schedule all tasks in
parallel. While in the general case, minimal makespan is NP-
Hard that is not a concern in this case: 1) often there are
either more processors than compressors under consideration
or only a single processor in which case this problem devolves
to max; (i, Or » . [, respectively, 2) open-source solvers
can solve optimal realistic-sized versions of this problem
optimally in less than a second, as real-world use cases
seldom have more than 30 compressors, 3) in the worst case,
M((pe;, np) can be approximated using list scheduling with
an approximation bound of 2 — % of the optimal [35].

For use case B, we can model errors in this way. We
get an incorrect solution if and only if we predict another
compressor gets a higher compression ratio than the best one.
We can estimate the probability of this using the variance of
our estimates, and the mean of our compression ratios on a
datasets for each compressor is X; ~ N (ucr,,0cr;). If we
assume independence and normality of C'R;, the probability
of an incorrect conclusion is 1 — II?, (p (CRy < CR;))

where P(CRy < CR;) = @ “:2%71“;& this proba-
CRoTI9CR;
bility degrades to ® POR_HOR when

\/UéRO +“%R,; +"2CRW” +‘%R”TO
switching estimates. For example, if there were compressors
with mean compression ratios 1, 2, and 3 on a dataset, with
a variance of .1 each. Estimate error variances of .0625, .125,
.25, and .5 result in expected inversions 3.9%, 6.9%, 12.3%,
20.8% of the time.

E. Use case C: Parallel writes to a file

The expected parallel speedup for use case C is

W(/-ch Oc, Np, np) + W(,Uw OcyNp — Ny, Tlp)
Test + W(,U/ca Oc, Np, np) + Tmiss

Where the time to compute the estimates is Tes = W(pte +
Ha + oy

predictions is 1555 = W(fte, O, max (0, [ - N | ) 5 1p)
In the no-estimation case, we need to run compression of each
buffer twice, once to get the compression ratio and again to
store the data in compressed storage. In the estimation case,
we can replace the first set of compression calls with a series
of calls that estimate the compression ratio and handle the
performance effects of mispredictions using the method from
[4]. With probability m, we underpredict the compression ratio
in this case, we need to wait and re-compress the data and
write the data to an auxiliary location now that we know its
true compression ratio.

02 4 03 + 02,m4,n,) and the time to handle mis-

mny
n

F. Training Time

In addition to our use cases, we can also model the time
that it takes to produce a model. The speedup from reducing



training time and potentially changing training methods is
e + W (ud + e + e, /05 + 02 + Ui,nb,np)
o+ W (1 + e + pres /03, + 0%+ Ty )

In both cases, we need to run the compressor and the error
bound specific and dataset specific metrics on each of the
buffers in parallel. The key differences come from the dif-
ference between n; and ny and from the speed and runtime
consistency of the dataset and error bound specific predictors.

VI. EXPERIMENTAL EVALUATION
A. Experimental Setup

We begin with a few aspects in common to all our exper-
iments. We ran evaluations on the compressors listed in the
Background. We present a small representative subset of these
results in this results section due to space. Unless otherwise
mentioned we focus on the SZ3 compressor because it is
especially difficult to predict producing the worst results for
our method and to enable comparisons to related work (e.g.
[3], [6], [22]), but have conducted similar studies on ZFP and
SPERR. We also focus on absolute point-wise error bounds of
le-3 unless otherwise specified for space in the paper, running
experiments with other pointwise absolute bounds 1e-4 and 1le-
6 finding similar results. We interfaced with the compressors
using LibPressio [36] from its Julia bindings to facilitate the
comparisons. Additional results are available at Zenodo>.

1) Data: We use datasets from SDRBench [37]: NYX
(cosmology), Hurricane (weather prediction), and Miranda
(hydrodynamics turbulence simulation) chosen for diversity,
availability, and use in prior work. These datasets are all
natively 3D datasets. We convert them to 2D datasets by
slicing along the slowest incrementing dimension to increase
the volume of training and testing (c.f. [3], [38]).

2) Evaluation System: Large-scale evaluations were per-
formed on machines with an Intel Xeon Phi 7230, with
96GB of DDR4 Ram selected for availability. Performance
experiments were run on nodes with 11th Generation Intel
Core 17-1185H, a Nvidia A2000 GPU, and 32 GB of DDR4
RAM where experiments could be run in isolation.

3) Evaluating Estimation of Compressors: Common pre-
dictors used to compare the accuracy of compression estima-
tion methods are the 10% quantile, 50%, and 90% quantile
of the median absolute percentage error [3]. These predictors
are robust against extremely accurate or inaccurate estimations
of compression ratio and provide a concise summary of how
well a method works across an entire dataset in a way that
discourages over-fitting. These are computed according to the
procedure outlined in Algorithm 2, a k-fold cross-validation
procedure. For each fold, compute the specified predictors, and
observe the compression ratio for the training and testing data
(see lines 4-7). The predictors are often divided into groups
that are dependent on the error bound (eb_predictors)
and those specific to the buffer but agnostic to the error bound

3https://zenodo.org/record/8150806

(dset_predictors) to reduce re-computation (see line 6).
Next, fit a model on the training data, and predict on the testing
data (line 8). For each prediction, compute the absolute value
of the true minus the predicted compression ratio, and convert
it to a percent (line 11-14). After all predictions for a fold
are completed, compute the median of the fold, and report the
10%, 50%, and 90% quantiles of the medians from the folds
(line 18).

Algorithm 2 Prediction Error Evaluation and Quantification Procedure

Input: Dataset D, user-specified error bound e
Output: 10%,50%, 90% Quantiles of the Median Absolute Percentage Error

1: medape < []

2: for train, test € kfold(D) do

3 true_cr < [], predictors < []

4 for d € train do

5: true_cr.append(size(compress(d,e))

6 predictors.append([dset_predictors(d), eb_predictors(d,e)])
7 end for

8: model < train(true_cr, predictors)

9: ape < []

10: for d € test do

11: true_cr <— size(compress(d,e))

12: predictors <— [dset_predictors(d), eb_predictors(d,e)]
13: pred_cr < predict(model, predictors)

14: ape.append(100 (true_cr - pred_cr) / true_cr)

15: end for

16: medape.append(median(ape))

17: end for

18: return quantile(medape, [0.1, 0.5, 0.9])

B. Major Result 1: Accuracy — In Sample Prediction

Existing work has largely focused on evaluating the accu-
racy of what we describe as in-sample prediction — training
and testing on different subsets of the same field from the
same application. In-sample prediction is important because it
represents 1) an ideal case for compression ratio estimation
where data is homogeneous and 2) represents a case where a
model can be produced for each field of an application.

We present visual results for our method in-sample pre-
diction to enable direct comparisons to existing work in
Figures 6a and 6¢c made using Algorithm 2. In the figures, the
black dots represent the actual observations vs the predicted
values using our method, the black line represents the line
predicted = actual the optimal prediction, we address the
confidence intervals in these plots in Section VI-D. The tight
clustering about the optimal prediction line and the consistency
of the variance indicates high-quality prediction.

We also include results for our methods across 4 datasets
with 3 different compressors and 2 error bounds to show the
effectiveness of our approach in a wide variety of contexts in
Figure 4. This plot shows 3 fields from each of four separate
datasets on the x-axis. On the y-axis, it shows a box and
whiskers plot for the median absolute percentage errors as
determined by Algorithm 2. The legend shows the average
and maximum error for each compressor and the error bound
across all datasets. The largest median absolute percentage
error is 5.3% for SPERR. We get an overall average median
absolute percentage error of 1.2. This extremely high accuracy



IN
I
.
[—
[}

Wi H

by

N
L]

. MedAPE(%)
-~ —
L]

-—_
o,
O s

_-I.-

CESM-Time4 ~
CESM-Time$ ~

NYX-Baryon
NYX-Darkmatter *
NYX-Vx
Miranda-Vx
Miranda-Vz
Miranda-Diff ~
Hurricane-Precip
Hurricane-QGraup”
Hurricane-QRain
CESM-Timed  ~

Bl ZFP 1e-3 (0.9%. 2.9%) B SPERR 1e-3 (1.8%, 5.3%)
Bl SPERR 16-6 (0.9%, 2.6%)

Bl sz31e-3 (1.7%. 4%)
Bl sz3 106 (1.1%, 3.2%) Bl ZFP 1e-6 (0.8%. 3%)

Fig. 4: Summary of the performance of our approach. Y axis
shows the distribution of median absolute percentage errors
for the k-fold validation procedure from Algorithm 2. X axis
shows the particular field and dataset. dots are values more
than 1.5 xthe interquartile range greater or less than the top
or bottom quartile. The values in () represent the average error
and max error for a compressor across all experiments.

enables the various use cases that we presented. We compare
our approach to leading approaches in Table II across leading
methods mentioned in Section III on the Miranda VX dataset.
Key Finding 1 We observe substantially lower estimation error
at 10%, 50%, and 90% levels with a 3.8 X improvement in the
median error over [3] the leading competitor.

C. Major Result 2: Robustness — Out of Sample Prediction

Predicting in-sample, while useful, has several key limi-
tations addressed by using what we call out-of-sample pre-
diction: 1) by using out-of-sample prediction we can speed
less time collecting training data (see Section VI-E). 2) we
should be more robust to the particularities of any one dataset.
In this section, we consider how our approach compares
in terms of accuracy for out-of-sample prediction. For out-
of-sample prediction, we consider multiple fields from the
hurricane dataset and train on a subset of them and predict
on a different one. We choose the Hurricane dataset because
it has a relatively large, but manageable, number of fields.
Again, we use the procedure in Algorithm 2 to assess the
accuracy of predictions.

We show results for CLOUD and PRECIP fields in Fig-
ures 6b and 6d respectively. We observe that despite training
on different fields produces comparable accuracy to the in-
sample cases shown in Figures 6a and 6¢ with results clustered
the optimal prediction line and consistency of residuals again
indicates a high quality prediction. In Table II we conduct
out-of-field prediction for all fields in Hurricane using the 4
most similar fields with our method and the method from
Underwood [3]. We don’t consider Lu [22] or [6] as they
do not support out of sample prediction. In the worst case,
prior approaches like Underwood [3] have very extreme outlier

Type Method 10%  MedAPE 90%
Out-of-Sample  Underwood [3] 1.11ell 1.30ell 1.35¢l1l
Proposed method 12.5 12.5 17.2
In-Sample Underwood [3] 0.9 2.7 3.8
Tao [6] 82 90 93
Lu [22] 157 193 256
Proposed method 0.16 0.71 35

TABLE II: Worst Out of Feild Prediction Error on Hurricane trained
with 4 fields for SZ3. Tao [6] and Lu [22] do not support out of
sample prediction so are ommited In-Sample Predication Accuracy
on 2D Slices of Miranda VX for SZ3 - le-6

mispredictions. For example, when predicting with V with
TC, U, CLOUD, and PRECIP, Underwood [3] get a median
absolute percentage error of nearly 1.35¢l11%. In contrast,
our approach get a worst 90% APE 17.2 across all fields.
Key Finding 2 We vastly improve accuracy on out of sample
prediction from 1.35¢11% to 17.2% compared to [3].

D. Major Result 3: Bounded — Conformal Prediction

Prior work has focused on providing point estimates for
compressibility. By introducing conformal prediction, we now
have statistical bounds on each estimate produced by our
methods. This allows us to 1) describe the uncertainty in
individual point estimates 2) compute and measure trade-offs
between accuracy of estimations and the amount and diversity
of data collected. We present confidence intervals from the
conformal prediction in Figure 6. For example, we can observe
the greater uncertainty in the out-of-sample prediction cases
compared to the in-sample prediction. Lastly, we computed
the percentage of cases that the predicted = actual line
that escapes the confidence interval for each of the plots.
We found that the percentage lines up with what is specified
in the theory for conformal prediction suggesting that we
have met the underlying assumptions for these methods. Key
Finding 3 Conformal Prediction provides actual bounds on
the occurrence of mispredictions.

E. Major Result 4: Cheaper to Train

Prior approaches have generally used all available data to
train the model. However, with the introduction of out-of-
sample prediction, we can now potentially train on a subset of
fields from an application saving time gathering the training
predictors to save time producing a model. However, this
immediately begs the question of how to determine which data
to train on. We can begin with a small sample from each field,
and from that, we can look at the similarity between fields
as estimated using our predictors. From this, we can drive
a methodology to determine the order to explore the fields
more completely. We present one such table in Table III. Our
proposal involves assessing the similarity between two distinct
fields by evaluating the spatial smoothness within the context
of predicting CR. Previous analyses have consistently shown
that compressibility is intrinsically linked to spatial smooth-
ness, such as [3], [26]. Hence, we suggest a practical solution
that involves examining the relative decay of singular values



of the covariance matrix of the blocks X®,b = 1,2,...,B
(denoted as X in Section IV-A) for the 2D slices of the data.
To establish a comprehensive measure of spatial smoothness
for the two fields, we propose employing the Mahalanobis dis-
tance. This distance metric quantifies the dissimilarity between
the distributions of relative decay in singular values for the
fields under consideration. By employing this approach, we ef-
fectively capture the variability in spatial smoothness between
the two fields using a concise, single metric. Furthermore, it
facilitates the selection of appropriate training fields for precise
estimation of compressibility in out-of-sample scenarios.

We consider the impact of doing this filtering by field in
Figure 5. We start by defining a field of interest — we will
not include the field of interest in the training set. We add the
fields to the training process in order by the most similar fields
to the field of interest. Generally, we observe that as we add
fields, we can see that the median absolute percentage error
and the uncertainty generally improve as the number of fields
increases according to the order that we propose (with the
minor exceptions of QRain, QGraup, Qsnow, Precip, however
in these cases the MedAPE was already small in these cases),
and the 10% and 90% MedAPE tightens as the number of
fields increases.

Let us consider the case of training a predictor to provide
coverage for fields CLOUD, QCLOUD, PRECIP, QGRAUP,
QRAIN, QSNOW, QICE, TC, and V from the Hurricane
dataset to an accuracy of least 8%. A field is covered if we
sample that field, or we sample the set of fields that get at
least 8% accuracy without field prediction using our selection
criteria above. Using an open source SAT solver, our method
identifies a minimal training set of CLOUD, QCLOUD,
QGRAUP, QSNOW, and TC in less than a millisecond®. Even
without leveraging this approach, we are 1.42x faster to train
than [3] due to the speed improvement of our metrics. Key
Finding 4 Leveraging our approach to limit the volume of
training data needed to obtain coverage results in a speedup
of 2.56x relative to training a separate model for each field.

FE Major Result 5: Lightweight for run-time performance

In this section, we empirically test the speedup for two use
cases we modeled in the previous section. These results were
run on a slice of the Hurricane CLOUD dataset. Figure 7
shows the speedup using predictions vs not using predictions
for 5 compressors and 4 prediction methods for 50 search
iterations. We see that depending on the speed of the compres-
sors, and their consistency each method can achieve some can
get speedups for each compressor. However, unlike the other
methods, we show speedups for this use case for each com-
pressor considered whereas other methods demonstrate some
slowdowns relative to not using predictions. Also, important is
the accuracy — only results from Underwood and our method
were sufficiently accurate to get good estimates of the tuning

“Most applications use fewer than 13 fields thus SAT is applicable, For large
numbers of fields, we use a greedy algorithm that provides a 2-approximation
of SAT that runs in O(N). Regardless, the ordering determined by SAT is not
used in estimation, and is not on the critical path.
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of the compressors. Tao [6] gets a speedup of .55, Underwood
[3], 2.13, and our approach gets 3.05. We exclude the results
from Lu [22] here because Lu’s approach cannot predict the
compression ratio for non-SZ2 and ZFP compressors. Key
Finding 5 We achieve a roughly 3 x performance improvement
relative to not using estimates and improvement over the next
best method [3].

G. Major Result 6: Speedup Analysis

For use case A, accuracy is of paramount importance
because of the exponential degradation in the accuracy of
the search. For this approach, dataset-specific but error-bound
agnostic predictors can be somewhat costly compared to the
cost of a single compressor invocation, provided that the error-
bound specific predictors are fast. For this use case, it is



Cloud QCloud Precip

\Y% QVapor

Cloud 190.8 8600.3
QCloud 851.3 76238.9
Precip 838.7 78542.2
QGraup 4243 32865.2
QRain 458.4 36086.1
QSnow 372.7 26429.4
Qlce 187.4 8081.2
TC . 211.8 21712.6
U 79.7 78.0 221.5 87.2 24025.3
\% 190.8 187.4 211.8 221.5 8.9 3386.6 2346.2
w 129.4 ; 32. 3 4. 166.8 872  3386.6 326839.3
QVapor 8600.3 762389 785422 328652  36086.1 264294  8081.2  21712.6 240253 23462  326839.3

TABLE III: Field Similarity for the Hurricane Dataset

also possible to achieve a speedup if the error-bound specific
calculations are approximately the same cost as the compressor
if they offer more consistent timing than a compressor — which
is true of all of the predictors and compressors we tried. For
example, suppose that a compressor, dataset predictors, and
error bounds specific predictors all had a runtime of mean and
standard deviation of 1, but the error bound specific predictors
had a standard deviation of .33, a speedup of 2.56x is possible
over 100,000 search iterations on 40 processors like was used
in [1] to find configurations that satisfied climate codes.

For use case B, accuracy is of moderate importance. It still
needs to be accurate, but how accurate depends on the average
relative difference in the compression ratios. For competitive
compressors for which the compression ratios are similar,
little estimation error can be tolerated, but when there are
larger gaps between compressors on specific datasets — which
intuitively happens when the patterns in the data correspond
to the compression principles of a particular compressor as
opposed to others — the noise from predictions can be much
higher as seen in [6]. For this use case, the performance
of the dataset and error-bound specific predictors can also
be somewhat high compared to the runtime of any one
compressor and still achieve a speedup.

For use case C, accuracy is of mild importance because
mispredictions are compensated for by the algorithm. Ad-
ditionally, the user can over-allocate storage relative to the
prediction to decrease the possibility of under-allocation. With
this, we can determine a factor o which corresponds to the
percentage of mispredictions on the dataset. With our approach
based on conformal prediction, we can easily choose this
parameter and determine a priori our space vs speed tradeoffs
relative to a traditional approach. What is interesting about
use case C, is that for the serial case, there is a maximal
speedup of ~ 2, but in the parallel case, higher speedups are
possible because of the overhead of the parallel reduction.
Key Finding 6 Our novel modeling gives us insight into how
much improvements in estimation accuracy or speed can affect
speedup for various use cases.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we demonstrated both empirical and analysis
that show that fast and accurate compression ratio estimates
can accelerate a variety of real-world compression use cases in
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Fig. 7: Speedup for use case A. Lu only supports SZ so is
excluded for other compressors

parallel. We additionally advance the state of the art in com-
pression ratio estimation by introducing a black box method
that is accurate, robust, cheaper to train, and lightweight. For
future work, we want to take this foundation to other use cases
of compression ratio estimation.
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