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Error-bounded lossy compression has been identified as a promising solution for significantly reducing

scientific data volumes upon users’ requirements on data distortion. For the existing scientific error-bounded

lossy compressors, some of them (such as SPERR and FAZ) can reach fairly high compression ratios and some

others (such as SZx, SZ, and ZFP) feature high compression speeds, but they rarely exhibit both high ratio

and high speed meanwhile. In this paper, we propose HPEZ with newly-designed interpolations and quality-

metric-driven auto-tuning, which features significantly improved compression quality upon the existing

high-performance compressors, meanwhile being exceedingly faster than high-ratio compressors. The key

contributions lie as follows: (1) We develop a series of advanced techniques such as interpolation re-ordering,

multi-dimensional interpolation, and natural cubic splines to significantly improve compression qualities with

interpolation-based data prediction. (2) The auto-tuning module in HPEZ has been carefully designed with

novel strategies, including but not limited to block-wise interpolation tuning, dynamic dimension freezing, and

Lorenzo tuning. (3) We thoroughly evaluate HPEZ compared with many other compressors on six real-world

scientific datasets. Experiments show that HPEZ outperforms other high-performance error-bounded lossy

compressors in compression ratio by up to 140% under the same error bound, and by up to 360% under the

same PSNR. In parallel data transfer experiments on the distributed database, HPEZ achieves a significant

performance gain with up to 40% time cost reduction over the second-best compressor.

CCS Concepts: • Information systems→ Data compression; • Theory of computation→ Data com-

pression; • Mathematics of computing→ Interpolation.
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1 INTRODUCTION

The gigantic scale and exceptionally intense computation power of modern supercomputers have

empowered the exascale scientific simulation applications to generate tremendous amounts of

data in short periods, bringing up significant burdens for distributed scientific databases and cloud

data centers. For instance, A one-trillion particle Hardware/Hybrid Accelerated Cosmology Code

(HACC) [15] can harness approximately 22PB output data in a single simulation, and Community

Earth System Model (CESM) [20] simulation may generate 2.5PB data for a simulation task [41].

To this end, error-bounded lossy compression techniques have been developed for those scientific

data, and they have been recognized as the most proper strategy to manage the extremely large

amount of data. The advantage of error-bounded lossy compression is primarily two-fold. On the

one hand, it can reduce the original data to an incredibly shrunken size which is much smaller

than the compressed data size generated by a lossless compressor. On the other hand, the error-

bounded lossy compression can constrain the point-wise data distortion strictly upon the users’

requirements. Existing state-of-the-art error-bounded lossy compressors in diverse archetypes,

such as prediction-based model ś SZ3 [32, 53] and QoZ [35], transform-based model ś ZFP [33]

and SPERR [27], and dimension-reduction-based model ś TTHRESH [7], have been widely adopted

in many use cases in practice.

Considering the abundant scope of related optimization strategies, we summarize the existing

error-bounded lossy compressors as well as their pros and cons as follows. The orthogonal transform-

based compressors like ZFP, exhibit high execution speeds but their compression ratios are limited

to a certain extent because they focus on only local correlations (confined within 4𝑑 -blocks). The

wavelet-based compressors such as SPERR and the Singular Value Decomposition (SVD) based

compression such as TTHRESH, although can obtain quite high compression ratios, suffer from

very low compression speeds attributed to their high-cost integrated data operation modules.

Some prediction-based compressors (e.g. SZ3 and QoZ) deliver relatively high compression ratios

with moderate running speeds, nevertheless, they may suffer from relatively low compression

ratios in some cases. Recently, FAZ [36] attempted to create a hybrid framework taking advantage

of heterogeneous compression techniques, however, its design fully orients the optimization of

rate-distortion, so that its compression/decompression is much slower than the classic compressors

such as SZ and ZFP.

For modern scientific databases and cloud data centers which often involve multiple sites over

a wide area network (WAN), the extremely large amount of raw data costs an unacceptable time

to transfer between machines. Therefore, data compressors are critical for efficient data transfer

because transferring compressed data will significantly reduce the time cost, as confirmed by prior

research [26, 38]. In this case, compression ratios and speeds are both critical for achieving high data

transfer throughput. However, designing a versatile error-bounded lossy compressor that delivers

high compression ratios with sufficient performance (i.e. speed) is quite challenging. On one hand,

to reach a high compression performance, general techniques have to perform relatively simple

data transform [33] or prediction within short-range areas [5, 30, 53], which cannot take advantage

of long-range data correlations, thus leading to very limited compression ratios inevitably. On

the other hand, to reach a high compression ratio, general techniques are applying sophisticated
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techniques such as wavelet transform on the full data input [27, 36] or higher-order SVD [7], which

suffer from very expensive operations inevitably, conflicting with our high-performance objective.

As such, we must design more compact and effective data operation methods with relatively low

computational costs, featuring high speed meanwhile yielding comparable compression ratios

compared to the existing high-ratio compression techniques.

In order to design an error-bounded compressor that features both high compression ratios and

satisfactory speeds, we propose an optimized quality-metric-driven error-bounded lossy compressor

(called HPEZ) by developing a brand-new auto-tuning strategy and an anchor-based level-wise

hybrid interpolation predictor. Integrating extensively optimized interpolation predictors and

auto-tuning modules, HPEZ attains far better compression ratios and lower distortions than other

high-performance error-bounded lossy compressors with limited compression speed degradation.

HPEZ substantially outperforms high-ratio compressors in terms of speed. It achieves optimized

throughput performance in a variety of use cases such as parallel data transfer for large (distributed)

databases. We attribute our contributions as follows:

• Founded on theoretical analysis and algorithmic optimizations, we substantially upgrade the

most critical step in the quality-oriented compression ś interpolation prediction, leading to

an immensely improved data prediction accuracy.

• We develop a series of optimization strategies including block-wise interpolation tuning,

dynamic dimension freezing, and Lorenzo tuning, which can substantially improve the

adaptability of the auto-tuning for the compression across a broad spectrum of inputs.

• We perform solid experiments using 6 real-world scientific datasets. HPEZ significantly

outperforms state-of-the-art error-bounded lossy compressors in terms of rate-distortion,

while still having a satisfactory speed. It preserves a leading speed compared to other high-

ratio compressors. Consequently, it achieves the best throughput in distributed data transfer

over WAN based on our experiments. HPEZ exhibits the least time cost in data transfer for

most scientific datasets with up to 40% time reduction.

The remainder of this paper is organized as follows: Section 2 introduces related works. Section

3 provides the research background and the research problem formulation. Section 4 demonstrates

the overall framework of HPEZ. The new designs of interpolation predictors in HPEZ are illustrated

in detail in Section 5, and our designed auto-tuning blocks are proposed in Section 6. In section

7, the evaluation results are presented and analyzed. Finally, Section 8 concludes our work and

discusses future work.

2 RELATED WORK

In general, scientific data compression techniques can be divided into two categories - lossless

compression and lossy compression. Examples of existing lossless compressors for databases are

Gorilla [40] and AMMO [48] for time-series data, and traditional lossy data compression methods

include ModelarDB [18, 22] for time-series data and [13, 25, 28, 51] for Geology spatial-temporal

data. Besides that, error-bounded lossy compression has been preferred and crafted to serve various

scientific data reduction applications [9] and scientific databases. To meet the requirement of

scientists, the error-bounded lossy compression needs to constrain the point-wise compression

errors within a certain value, which differs from compression techniques for traditional data such

as JPEG-2000 [44] for image data and h.265 [42] for video data. The error-bounded scientific

compressors are classified into four main categories: prediction-based, transform-based, dimension-

reduction-based, and neural-network-based. They also essentially utilize approaches to manage

the data distortion in line with user-specified error bounds.
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The prediction-based compressors use data prediction techniques, like linear regression [30] and

dynamic spline interpolations [53], to anticipate the data points. Well-known examples are SZ2 [30]

and SZ3 [32, 53]. Transform-based compressors, on the other hand, use data transformations to de-

correlate the data, then switch to compress themore compressible transformed coefficients. ZFP [33],

for example, is a typical example that employs exponent alignment, orthogonal discrete transform,

and embedded encoding. SPERR [27], a more recent work, leverages wavelet transform for data

compression. Dimension-reduction-based compressors apply dimension reduction techniques, with

(high-order) singular vector decomposition (SVD) being a case in point (for instance, TTHRESH

[7]). Neural-network-based compressors [14, 17, 34, 37] utilize neural network models like the

autoencoder family [8, 23, 24], however, the speeds of them and relatively quite slow.

The aforementioned compressors each have their strengths and weaknesses, depending on the

nature of the input data and user needs. To enhance scientific error-bounded lossy compression,

two emerging approaches are raised to further refine the specialization of the compressor or to

boost its versatility. Regarding compressor specialization, MDZ [52], a prediction-based compressor,

is specifically tailored for molecular dynamics simulation data. SZx [49] offers low-ratio lossy

compression at incredibly high speeds. CuSZ [45], CuSZ+ [46] and FZ-GPU [50] delve into GPU-

based scientific lossy compression to quicken the compression process. [19] aims at maintaining

the quantities of interest (QoI) of the input data. When it comes to enhancing the versatility of

lossy compressors, QoZ [35] integrates user-specified quality metric optimization targets and

anchor-point-based level-wise interpolation auto-tuning into the SZ3 compression framework. This

can effectively improve the compression quality with limited speed degradation. FAZ [36], a hybrid

compression framework, combines diverse compression techniques and adaptively generates the

compression pipeline for varying inputs, while suffering from low compression speed.

With all those evolving works taken into insight, there is still a lack of broad-spectrum scientific

error-bounded lossy compressors that can achieve both top-tier compression quality and adequate

compression speed. In this paper, our proposed solution endeavors to fill this gap: we pursue both

high compression quality (by optimizing the rate-distortion) and high execution throughput across

a wide range of scientific datasets.

3 PROBLEM FORMULATION AND ANALYSIS

In this section, we mathematically formulate our research target and then present the fundamental

analysis for addressing the target. With those analyses, we can determine the best-fit archetype for

the to-be-proposed compressor HPEZ.

3.1 Problem Formulation

The target of HPEZ is to jointly optimize the compression ratio and the user-specified quality

metrics (PSNR, SSIM, etc.). Moreover, the proposed new compressor is expected to have relatively

high compression and decompression speeds and be well-adapted to diverse types of input data

(integer and floating point, single-dimensional and multi-dimensional, and so on).

Eq. 1 is the formulated research target in this paper. A compressor 𝐶 and a decompressor

𝐷 compose the error-bounded lossy compression framework, together with their configuration

parameters (denoted by 𝜃 ). With the input data (denoted by 𝑋 ) and a user-specified absolute error

bound 𝑒 , the compression framework generates compressed data (denoted as 𝑍 = 𝐶𝜃 (𝑋 )) and the

decompressed data (denoted as𝑋
′
= 𝐷𝜃 (𝑍 )), which should strictly respect the error bound (denoted

𝑒) point-wisely. Under those mandatory conditions, HPEZ determines 𝐶 , 𝐷 , and 𝜃 by optimizing

the compression ratio under a user-specified quality metric requirement (denoted as𝑚0). Each

quality metric corresponds to (and is calculated from) a function 𝑀 , which can be chosen from

PSNR, SSIM, a constant function (in case no quality but just compression ratio is concerned), etc.
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Moreover, to ensure the applicability of our proposed compressor for various use cases, we would

like the proposed compressor to become a high-performance compressor (including SZ3, QoZ, et

al.) having an overall execution speed of at least comparable to SZ3.

𝐶, 𝐷, 𝜃 = argmax
𝐶,𝐷,𝜃

|𝑋 |

|𝑍 |

𝑠 .𝑡 . |𝑥𝑖 − 𝑥
′

𝑖 | ≤ 𝑒,∀𝑥𝑖 ∈ 𝑋

𝑀 (𝑋,𝑋
′

) =𝑚0

(1)

3.2 Determining the Best-fit Compressor Archetype for HPEZ

As mentioned before, our proposed compressor should exhibit both good rate-distortion and

relatively high speeds. To this end, we need to investigate existing scientific error-bounded lossy

compressors to identify the best-fit compressor archetype for our design. The categorization of

compressors is priorly discussed in Section 1 and Section 2, but to conduct a deeper analysis here

we categorize the existing compressors into more types according to their designs:

• Hybrid-data-prediction-based: Applying multiple data predictors for data prediction and

reconstruction, such as regressors and Lorenzo predictors [30, 55].

• Interpolation-based: Leveraging interpolations for prediction-based data compression [35, 53].

• Discrete-orthogonal-transform-based: Making use of block-wise Discrete Orthogonal Trans-

form and embedded coding in the compression [33].

• Wavelet-transform-based: Combining wavelet transforms and coefficient encoding methods

for compression [27, 36].

• SVD-based: In TTHRESH [7], high-order singular value decomposition is the core of its data

processing techniques.

• Deep-learning-based: Quite a few deep-learning-based error-bounded lossy compressors

have been proposed. Among them, there are autoencoder-based ones [17, 34] and

coordinate-network-based ones [16, 39].

Several existing works [34ś36] have also conducted systematic and thorough experimental

analyses of those compressors in diverse types, having tested them in multiple aspects including

and not limited to execution speeds, rate-distortion, and practical use cases (e.g. I/O throughput).

We conclude their findings as follows:

• Despite their great potential in achieving high compression ratios, wavelets-based and SVD-

based compressors suffer from low compression speeds due to high computational costs.

With fixed data processing strategies, certain examples of them such as SPERR and TTHRESH

also fail to perform well in terms of rate-distortion on some data inputs.

• Discrete-orthogonal-transform-based ZFP has a very high compression efficiency, but it only

presents quite limited compression ratios.

• The practicality of current deep-learning-based compressors is also not satisfactory. The

networks integrated into them either need per-data online training (for each compression

task) or large sizes of training data from the same application for pre-training. This fact

greatly damages the availability and efficiency of deep-learning-based compressors.

• Compared with others, prediction-based compressors (including hybrid-data-prediction-

based and interpolation-based ones) have the advantage of achieving both good compression

ratios and acceptable compression speeds. Among them, interpolation-based compressors

such as SZ3 [32] and QoZ [35] optimize the compression rate-distortion. In the experiments

carried out by [35], QoZ shows the best performance in the parallel I/O throughput tests.
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According to our research target and the pros and cons of existing compressor archetypes, we

develop a novel high-performance effective compressor namely HPEZ based on the interpolation-

based compressor design. In Section 4, 5, and 6, we will fully demonstrate the design details of

HPEZ, including the research background and newly proposed features.

4 HPEZ DESIGN OVERVIEW

In this section, we propose an overview of the HPEZ compressor. As an interpolation-based scientific

error-bounded lossy compressor, HPEZ is designed for structured data grids in types of floating

points and integers. HPEZ is adaptive to either one-dimensional (1D) or multi-dimensional (2D, 3D,

4D ...) inputs, and exploits the dimension-wise spatial correlations and smoothness of them. HPEZ

also has the potential to be applied to other domains including image and video because those

data are also formatted as (or can be transformed into) structured data grids. The compression

framework of HPEZ is illustrated in Figure 1. HPEZ takes advantage of the SZ3 modular framework

[32], which contains the auto-tuning module, data prediction module, error quantization module,

Huffman encoding module, and the Zstd lossless module. The detailed demonstration of the HPEZ

compression pipeline is as follows:

• Step 1: Auto-tuning. With a user-specified quality metric optimization target, HPEZ first

auto-tunes its predictor configurations, which will be featured in Section 6.

• Step 2: Data prediction: HPEZ applies the auto-tuned data predictor on the whole input,

acquiring the prediction errors.

• Step 3: Linear quantization (error control): A linear error quantization module quantizes

the data prediction errors in step 2 to control the element-wise decompression error. For

example, for each data value 𝑥 and its prediction 𝑥
′
, the original error is 𝑒 = 𝑥 − 𝑥

′
and the

quantized error 𝑒𝑞 satisfies |𝑒𝑞 − 𝑒 | <= 𝜖 (𝜖 is the error bound). In this way, we can use 𝑥
′
+ 𝑒𝑞

as the decompression of 𝑥 which is bounded by 𝜖 .

• Step 4: Huffman encoding: The quantized prediction errors acquired from Step 3 are

further encoded with Huffman encoding. A more concentrated distribution of quantization

errors will lower the encoded tree size, therefore the reduction of prediction error is key to

improving the compression ratio.

• Step 5: Lossless postprocessing: The encoded quantized errors and other metadata are

losslessly compressed by Zstd [12] to further reduce the compressed size.

HPEZ leverages existing modules in stereotype prediction-based error-bounded compression model

(orange ones in Figure 1) and interpolation techniques (yellow ones in Figure 1). Most importantly,

our HPEZ framework introduces several new modules and significantly improved components

(as marked in blue and pink), including interpolation designs and auto-tuning techniques. In the

data prediction module and the auto-tuning module, new designs have been incorporated in HPEZ

to enhance the compression rate-distortion substantially. With those new designs, first, we have

significantly improved the interpolation-based data predictors in HPEZ, introducing multiple

refinements upon the existing dynamic spline interpolation; Second, the auto-tuning module of

HPEZ has also been facilitated with new components for handling new interpolation configurations

and boosting adaptability for more datasets. Third, the compression speed of HPEZ still maintains

at a high level, empowering it to well-fit efficiency-oriented tasks. Those newly proposed designs

will be demonstrated in Section 5 and Section 6.

5 HPEZ INTERPOLATION-BASED PREDICTOR

In this section, we describe the details of our fine-tuned multi-component interpolation-based

data predictor for HPEZ. Compared to the existing interpolation-based predictors, the HPEZ
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Since 𝑓1, 𝑓2, and 𝑓3 have 12 coefficients in total and Eq. 4 only has 10 conditions, two more

boundary conditions are needed. The traditional SZ3 and QoZ cubic spline interpolation [35, 53]

applies the following ’not-a-knot’ conditions:

𝑓
′′′

1 (𝑖 − 1) = 𝑓
′′′

2 (𝑖 − 1); 𝑓
′′′

2 (𝑖 + 1) = 𝑓
′′′

3 (𝑖 + 1) (5)

Then with Eq. 4 and Eq. 5, the prediction value of 𝑝𝑖 is:

𝑝𝑖 = 𝑓2 (𝑖) = − 1
16
𝑑𝑖−3 +

9
16
𝑑𝑖−1 +

9
16
𝑑𝑖+1 −

1
16
𝑑𝑖+3 (6)

However, there are other choices for the 2 boundary conditions, which may lead to different

cubic spline interpolation formulas. We explore another set of boundary conditions: the natural

spline condition, which is:

𝑓
′′

1 (𝑖 − 3) = 0; 𝑓
′′

3 (𝑖 + 3) = 0 (7)
Combining Eq. 4 and Eq. 7, the interpolation function for predicting 𝑝𝑖 would be written as:

𝑝𝑖 = 𝑓2 (𝑖) = − 3
40
𝑑𝑖−3 +

23
40
𝑑𝑖−1 +

23
40
𝑑𝑖+1 −

3
40
𝑑𝑖+3 (8)

Our experiments with multiple datasets under diverse error thresholds showed that Eq. 2, Eq. 6,

and Eq. 8 have distinct advantages. In different cases, each of them is able to outperform others.

Therefore, we employ all 3 of them and dynamically select from them for each task.

5.3 1D and Multi-dimensional Spline Interpolation

In traditional interpolation-based compressors, for each data point, the interpolation is performed

along a single dimension, so we need to switch the interpolation directions during this process

and arrange an order for those directions. In the following text, we call the interpolation method

adopted by SZ3/QoZ 1D-style interpolation. As an example, in Figure 4 (a), the 1D-style interpolation

first proceeds interpolations along Dim0, then performs the rest of the interpolations along Dim1.

Actually, The existing 1D-style interpolation has not fully exploited the multi-dimensional

continuity and smoothness of input data arrays, because all the interpolations are constricted in a

single-dimensional direction. To address this limitation, we propose a new interpolation paradigm

for HPEZ called multi-dimensional spline interpolation, which can take better advantage of data

correlation across multiple dimensions. As shown in Figure 4 (b), the multi-dimensional spline

interpolation initially performs the 1D interpolations for some data points as there are only 1D

neighbors at the moment, then it performs 2D interpolations for the remaining data points that

already have neighbors in two dimensions. The multi-dimensional spline interpolation is symmetric

across all the dimensions, meaning that it does not need a selection of dimensional order.

With themain concept of the HPEZmulti-dimensional spline interpolation inmind, two questions

remain: how should we carry out the multi-dimensional interpolations specifically, and why does

it outperform the 1D-style interpolations?

We feature the HPEZ multi-dimensional interpolation as follows. For each data point 𝑥 , suppose

𝑋𝑖 (1 ≤ 𝑖 ≤ 𝑛) are all the available 1D interpolation results for predicting 𝑥 (which can either be

linear interpolation or cubic interpolation and are along all dimensions), the multi-dimensional

interpolation result 𝑋
′
is a linear-combination of 𝑋𝑖 :

𝑋
′

=

𝑛∑︁

𝑖=1

𝛼𝑖𝑋𝑖 (

𝑛∑︁

𝑖=1

𝛼𝑖 = 1) (9)

Theorem 5.1. With fine-tuned 𝛼𝑖 , 𝑋
′
would have a no higher prediction error than that of the

1D-style interpolation 𝑋𝑖 .

Proof. Without loss of generality, we can regard {𝑋𝑖 } and 𝑋
′
as random variables, in which

{𝑋𝑖 } are independent with each other. When dealing with smooth data inputs, the {𝑋𝑖 } can be

thought of as no-biased estimations of 𝑥 , i.e. 𝐸 (𝑋𝑖 ) = 𝑥 .
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Table 1. Information of the datasets in experiments

App. # files Dimensions Total Size Domain Type

RTM [21] 37 449×449×235 6.5GB Seismic Wave Floating points

SEGSalt [4] 3 1008×1008×352 4.2GB Geology Floating points

Miranda [1] 7 256×384×384 1GB Turbulence Floating points

SCALE-LetKF [3] 12 98×1200×1200 6.4GB Climate Floating points

CESM-ATM [20] 33 26×1800×3600 17GB Weather Floating points

JHTDB [29] 10 512×512×512 5GB Turbulence Floating points

NSTX-GPI [2] 1 50000×80×64 977MB Fusion Integer

APS 5 1792×2048 71MB Material Integer

7.1.2 Comparison of lossy compressors in evaluation. In our experiments, we compare HPEZ with

six other error-bounded lossy compressors, which have been verified to have good compression

quality and/or performance in prior works [32, 35, 36, 53]. The six compressors can be categorized

into high-performance compressors and high-ratio compressors. The high-performance

compressors have relatively fast compression speeds with moderate compression ratios, including

SZ3.1 [32], ZFP 0.5.5 [33], and QoZ 1.1 [35]. The high-ratio compressors achieve a high compression

ratio/quality with advanced data processing methods, therefore having relatively low compression

speeds. They are SPERR 0.6 [27], FAZ [36], and TTHRESH [7]. HPEZ should be categorized as a

high-performance compressor because it exhibits comparable compression speed with modern

high-performance compressors.

We didn’t involve deep-learning-based compressors due to the following reasons: 1) Coordinate-

network-based compressors suffer from extremely low compression speeds which are far from

acceptable. 2) Autoencoder-based compressors also have low compression speeds (not comparable

with high-performance compressors. For example, AE-SZ has similar speeds with SPERR [34]).

Meanwhile, their compression ratios are lower than SZ3 as validated in [34].

7.1.3 Experimental configurations and evaluation metrics. In the compression experiments, the error

bound mode we adopted is value-range-based error bound (denoted as 𝜖) [43], which is essentially

equivalent to the absolute error bound (denoted as 𝑒), with the relationship of 𝑒 = 𝜖 · 𝑣𝑎𝑙𝑢𝑒_𝑟𝑎𝑛𝑔𝑒 .

Since the value-range-based error bound can adapt to diverse amplitudes of datasets, it has been

broadly used in the lossy compression community [30ś32, 36, 55].

We perform the evaluation based on the following key metrics:

• Speeds: Check the compression and decompression speeds of compressors.

• Compression ratio (CR) under the same error bound: Compression ratio is the metric mostly

cared for by the users. Given the input data 𝑋 and compressed data 𝑍 , the compression ratio

𝐶𝑅 is: 𝐶𝑅 =

|𝑋 |
|𝑍 |

( | | is the size operator).

• Rate-PSNR plots: Plot curves for compressors with the bit rate of the compressed data and the

decompression data PSNR.

• Rate-SSIM plots: Another rate distortion evaluation plotting bit rate and SSIM [47].

• Parallel throughput performance with compressors: Simulate and perform parallel data

transfer tests on the distributed scientific database on multiple supercomputers.

• Visualization with the same CR: Comparing the visual qualities of the reconstructed data

from different compressors based on the same CR.

7.2 Experimental Results

7.2.1 Speeds. To verify our categorization of compressors and examine the compression efficiency

of HPEZ, in Table 2 we present the compression and decompression speeds of 6 comparison

compressors and HPEZ (under error bound 1e−3, i.e., 10−3) on the Anvil machine. From the table,

we can clearly observe that the high-performance compressors (SZ 3.1, ZFP 0.5.5, and QoZ 1.1)
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Table 3. Compression Ratios of High-Performance Compressors (SZ, ZFP, QoZ and HPEZ)

Dataset 𝜖 SZ 3.1 ZFP 0.5.5 QoZ 1.1 HPEZ Improve (%)

RTM

1E-2 1764 62.9 2156 2701 25.3

1E-3 249 26.2 285 395 38.6

1E-4 55.3 14.3 58 71.1 22.6

Miranda

1E-2 574.6 46.6 977 1320 35.1

1E-3 168 25.6 181 258 42.5

1E-4 47.3 14.5 47.7 63.6 33.3

SegSalt

1E-2 856 59.1 1005 1484 47.7

1E-3 140.6 24.9 151 260 72.2

1E-4 38.2 14.9 35.9 61.7 61.5

SCALE

1E-2 167.3 14.5 160 186 11.2

1E-3 40.4 7.8 41.5 52.9 27.5

1E-4 14.1 4.6 13.4 15.4 9.2

JHTDB

1E-2 528.2 22.3 647 838 29.5

1E-3 73.2 9.8 77.8 101 29.8

1E-4 15.8 5 15.9 20.6 29.6

CESM-ATM

1E-2 373 18.2 263 675 81.0

1E-3 64.9 9.6 59.4 153 135.7

1E-4 22.9 5.8 21.7 38.9 69.9

Table 4. Compression Ratios of HPEZ and high-ratio compressors (SPERR, FAZ, and TTHRESH)

Dataset 𝜖 SPERR 0.6 FAZ TTHRESH HPEZ

RTM

1E-2 2187 2695 782 2701

1E-3 440 642 71.4 395

1E-4 84.1 119 23.7 71.1

Miranda

1E-2 971.4 996.5 447 1320

1E-3 243.9 263.5 142 258

1E-4 74.5 93.6 55.1 63.6

SegSalt

1E-2 1219.4 1639.6 291 1484

1E-3 228.9 388.9 99.5 260

1E-4 61.3 117.3 28.8 61.7

SCALE

1E-2 103.5 177.9 80.0 186

1E-3 35.5 51.8 18.9 52.9

1E-4 15 16.8 8.4 15.4

JHTDB

1E-2 639.8 726 373 838

1E-3 89.3 90.7 65.1 101

1E-4 19.9 20.2 17.1 20.6

CESM-ATM

1E-2 1221 292 83.5 675

1E-3 150 77.4 20.4 153

1E-4 35 26.3 8.7 38.9

the error bound of 1e-3, HPEZ has a compression ratio of about 2.36× as high as the second-best

(SZ3.1). With these considerable improvements, we can assert that HPEZ is the best choice among

high-performance compressors regarding optimizing the error-bound-fixed compression ratio.

We also compare the compression ratios of HPEZ with the ones from the high-ratio compressors

in Table 4. It shows that HPEZ can obtain even higher compression ratios than them in certain

cases (e.g. on SCALE-LetKF and JHTDB). Note that the speed of HPEZ is substantially faster than

the high-ratio compressors, making it quite competitive over them in speed-concerned use cases.
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Table 5. Compression-based parallel data transfer throughput time (in seconds, 2048 cores, under PSNR=80).

Inter-machine speed is the transfer speed of compressed data between 2 machines.

Dataset Direction
Inter-machine

SZ3 ZFP QoZ 1.1 SPERR 0.6 FAZ TTHRESH HPEZ
Improve

Speed (GB/s) (%)

CESM-ATM Anvil to Bebop 0.79 ∼0.91 1934 3221 1812 1560 1586 7752 1005 35.6

(41TB) Bebop to Anvil 0.95 ∼1.19 1614 2695 1553 1522 1544 8560 916 39.8

RTM Anvil to Bebop 0.58 ∼1.19 198 362 173 277 494 527 181 -4.8

(14TB) Bebop to Anvil 0.47 ∼1.04 189 524 166 296 474 560 182 -9.5

Miranda Anvil to Bebop 0.46 ∼1.04 49 84 44 72 87 121 39 11.3

(2TB) Bebop to Anvil 0.54 ∼0.82 46 117 49 71 86 120 43 6.5

SCALE-LetKF Anvil to Bebop 0.88 ∼0.94 873 1354 820 1037 782 2354 728 7.0

(13TB) Bebop to Anvil 1.05 ∼1.15 745 1181 707 1007 670 2002 624 6.8

JHTDB Anvil to Bebop 0.83 ∼1.15 567 826 527 645 583 835 417 20.9

(10TB) Bebop to Anvil 0.97 ∼1.18 486 707 473 648 574 883 366 22.7

SegSalt Anvil to Bebop 0.63 ∼1.18 163 289 174 221 251 393 137 15.9

(8TB) Bebop to Anvil 0.76 ∼1.06 167 241 153 213 265 300 132 14.0

Furthermore, we will examine whether HPEZ can over-perform existing state-of-the-art error-

bounded lossy compressors including high-ratio compressors in real-world use cases in which

the compression and decompression time need to be taken into account. To this end, we have

designed a real-world scale parallel data transfer experiment on the distributed scientific database.

In this experiment, a distributed scientific database is established on multiple machines, and to

accomplish the target of fast data transfer and access between the super-computers, instead of

costing unacceptable time transferring the original exascale data, a lossy compressor compresses and

decompresses the data in parallel on the source and destination machine, and only the compressed

data with a highly-reduced size are transferred between the machines. The total time cost of this

task is the accumulation of the local data I/O time, compression time, decompression time, and

transfer time of the compressed data.

To convincingly prove the effectiveness of HPEZ for the parallel data transfer task, we conduct

the corresponding experiments under a certain configuration. For a parallel test with 𝑝 cores,

we augment the datasets by 𝑝 times then let each core compress and decompress the data in the

original size. Using 2048 cores, we leveraged the 7 compressors to compress and transfer the datasets

bidirectionally between the Anvil and Bebop supercomputer, constraining the decompressed data

following the same distortion (PSNR = 80). The inter-machine data transfer is supported by the

Globus Transfer Service [6, 10, 11], which is an efficient and widely adopted data transfer service

in scientific research and education fields. Table 5 presents data transfer speed and the time cost

with each compressor for each dataset. On most of the datasets tested (except for the RTM), HPEZ

improves the optimal overall transfer time by 5% ∼ 40%, and in the worst case (on the RTM dataset),

it is just slightly worse than QoZ 1.1. Therefore, the optimized balance of compression quality and

efficiency of HPEZ does contribute to its utility in real-world large-scale parallel data transfer tasks.

Due to the computing resource limitation for executing the multi-core large-scale data trans-

fer tests and repeating them with different datasets, compressors, and configurations, we have

also designed a model for approximating the actual time costs in those tasks. For a specific core

number 𝑝 and a data transfer speed 𝑠 , we use the sequential compression/decompression speed

of the compression/decompression with the same per-core data to estimate the parallel compres-

sion/decompression time cost, and the approximated data transfer time is just the compressed

data size divides the transfer speed 𝑠 . With those approximation methods, for each dataset, we

approximate the time costs under a variety of compression error bounds, then plot and present the

time cost-PSNR curves in Figure 14. The compressor speeds are acquired on the Anvil machine

introduced in Section 7.1.1, the core numbers are 2048, and the data transfer speed is set to 1GB/s

(according to the experimental results in Table 5). From the plots, we can claim that, for this task,
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compressors in data throughput tasks. In parallel data transmission experiments for distributed

databases, HPEZ can achieve at most 40% time cost reduction over the second bests, when compared

with both high-performance and high-ratio error-bounded lossy compressors.

In the future, we plan to revise and develop HPEZ as follows: first, we will further optimize the

speeds of HPEZ. Second, we will design more effective data prediction techniques for non-smooth

data. Last, we will attempt to integrate compression techniques with a more flexible speed to

adaptively tune the compression pipeline according to the requirements of compression speeds.
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