
IEEE TRANSACTIONS ON INFORMATION THEORY 1

Competing Bandits in Non-Stationary
Matching Markets

Avishek Ghosh, Abishek Sankararaman, Kannan Ramchandran, Tara Javidi and Arya Mazumdar

Abstract—Understanding complex dynamics of two-sided on-
line matching markets, where the demand-side agents compete
to match with the supply-side (arms), has recently received
substantial interest. To that end, in this paper, we introduce the
framework of decentralized two-sided matching market under
non stationary (dynamic) environments. We adhere to the serial
dictatorship setting, where the demand-side agents have unknown
and different preferences over the supply-side (arms), but the
arms have fixed and known preference over the agents. We
propose and analyze an asynchronous and decentralized learning
algorithm, namely Non-Stationary Competing Bandits (NSCB),
where the agents play (restrictive) successive elimination type
learning algorithms to learn their preference over the arms.
The complexity in understanding such a system stems from
the fact that the competing bandits choose their actions in an
asynchronous fashion, and the lower ranked agents only get to
learn from a set of arms, not dominated by the higher ranked
agents, which leads to forced exploration. With carefully defined
complexity parameters, we characterize this forced exploration
and obtain sub-linear (logarithmic) regret of NSCB. Furthermore,
we validate our theoretical findings via experiments.

Index Terms—Matching markets, Multi Agent Bandits, Non-
Stationary Bandits

I. INTRODUCTION

Repeated decision making by multiple agents in a com-
petitive and uncertain environment is a key characteristic of
modern day, two sided markets, e.g., TaskRabbit, UpWork,
DoorDash, etc. Agents often act in a decentralized fashion
on these platforms, and understanding the induced dynamics
is an important step before designing policies around how to
operate such platforms to maximize various system objectives
such as revenue, efficiency and equity of allocations [1],
[2]. A body of recent work is aimed at understanding the
decentralized learning dynamics in such matching markets [3],
[2], [4], [5], [6], [7]. This line of work studies the matching
markets introduced first by the seminal work of [8], under
the assumption where the participants are not aware of their
preference and learn it over time by participating in the market.
A key assumption made in these studies is that the true
preferences of the market participants are static over time, and
thus can be learnt with repeated interactions.

Avishek Ghosh is with the Systems and Control Engg Dept. and the Centre
for Machine Intelligence and Data Science, Indian Institute of Technology,
Bombay.

Abishek Sankararaman is with AWS AI, Santa Clara, USA
Kannan Ramchandran is with the EECS department, UC Berkeley
Tara Javidi is with the Dept. of Electrical and Computer Engineering and

Halıcıoglu Data Science Institute, UC San Diego
Arya Mazumdar is with Halıcıoglu Data Science Institute, UC San Diego
Contact avishek ghosh@iitb.ac.in for further questions.

Markets, however are seldom stationary and continuously
evolving. Indeed, an active area of research in management
sciences and operations research revolve around understanding
the equilibrium properties in such evolving markets [9], [10],
[11], [1]. However, a central premise in this line of work is that
the participants have exact knowledge over their preferences,
and only need to optimize over other agents’ competitive
behaviour and future changes that may occur. In this work,
we take a step towards bridging the two aforementioned lines
of work. To be precise, we study the learning dynamics
in markets where both the participants do not know their
exact preferences and the unknown preferences are themselves
smoothly varying over time.

Conceptually, the seemingly simple addition of varying
preferences invalidates the core premise of learning algorithms
in a stationary environment (such as those in [4], [3]) where
learning is guaranteed to get better with time as more samples
can potentially be collected. In a dynamic environment, agents
need to additionally trade-off collecting more samples by
competing with other agents to have a refined estimate, with
the possibility that the quantity to be estimated being stale and
thus not meaningful.

Model Overview: The model we study consists of N agents
and k ≥ N resources or arms, where the agents repeatedly
make decisions of which arm to match with over a time
horizon of T . The agents are globally ranked from 1 through
N , i.e., the agent ranking is uniform for all the arms. Keeping
the same terminology as of [3], we call this globally ranked
model serial dictatorship1. The agents are initially assumed to
not know their rank. In each round, every agent chooses one
of the k arms to match with. Every arm that has one or more
agents requesting for a match, allocates itself to the highest
ranking agent requesting a match2, while blocking all other
requesting agents. If at time t, agent j is matched to arm `,
then agent i sees a random reward independent of everything
else with mean µj,`,t. The agents that are blocked are notified
of being blocked and receive 0 reward. Moreover the agents
are decentralized, i.e., make decisions on which arm to match
is a function of the history of the arms chosen, arms matched
and rewards obtained at that agent.

The serial dictatorship model is as an important special case
of the general matching market, with applications in pareto-
optimal allocations that occur in cloud computing [12], [13],
crowd-sourcing [14] and question-answering platforms [15].

1We clarify here that the term ‘serial dictatorship’ in the matching literature
usually refers to an allocation mechanism, but in this paper, it is used just to
denote the uniform ranking of the agents.

2If i < j, then agent with rank i is said to be higher ranked than agent j

IEEE TRANSACTIONS ON INFORMATION THEORY 2

In fact, in the classical application of matching universities
to applicants (Gale and Shapley, 1962), a serial dictatorship
model is reasonable since the university ranking is same
for all the applicants. For stationary markets, decentralized
algorithms was first studied in the serial dictatorship setting
[3], [7], before being generalized to arbitrary markets [4]. Thus
in this context, our work contributes to the growing body of
work on decentralized learning in matching markets, whereby
we give first algorithms and results in the non-stationary
setting under the serial dictatorship model.

The key departure from prior works of [2], [4], [3] is
that the unknown arm-means between any agent j and arm
` is time-varying, i.e., the mean is dependent on time t.
We call our model smoothly varying, because we impose
the constraint that for all agents j and arms `, and time t,
|µj,`,t−µj,`,t+1| ≤ δ, for some known parameter δ. However,
we make no assumptions on the synchronicity of the markets,
i.e., the environments of different agents can change arbitrarily
with the only constraint that any arm-agent pair means does
not change by more than δ in one time-step.

From a practical perspective, slow variation is a reasonable
model in many settings of cloud computing ([12]) and financial
applications, where the number of decisions are typically
made in the order of seconds, while distribution changes/shifts
typically occur at a larger time-scale of minutes or even
hours. We show later that this model even with known δ,
highlights the key tension in the multi-agent setting since
the environments across agents varies asynchronously and
designing decentralized algorithms is challenging and requires
several technical novelties. Algorithms adaptive to general
non-stationarity are unknown even for the single agent bandit
problem [16] and thus, we leave the general non-stationary
market bandits to future work.

Decentralized decision making: The decision making by
agents in our models are decentralized - i.e., at each time
the decision of which arm to pull is based only on the
information collected by that agent thus far. At each time
after the pull of an arm, every agent either observes that
they collided and thus get no reward, or receive a stochastic
reward. In addition to rewards, we also assume that agents
can write limited information on a ‘black-board’, which act
as a public broadcast. In our model, we only assume that at
each time-step, each agent can write one arm-id in {1, · · · , k}
on the board. Such models of information sharing across
agents is standard in decentralized matching markets - for
example [4] assume that at the end of every time-step, every
agent can observe the arms played by all agents in that time-
step. Indeed, the black-board model of communication is a
stronger assumption than that of [4] since using the black-
board protocol model, the communication model of [4] can be
implemented. Our aim in introducing the black-board model
is to build a warm-up of minimal information sharing in the
time-varying market case that allows for algorithm design.
Further, in Section VII, we remove the usage of the black-
board and only assume the communication model of [4], derive
algorithms building on the tools from the black-board model

and show that low regret is achievable3.
Key technical challenges: Even in the single agent case

without competitions, algorithms such as UCB [17] perform
poorly compared to non-stationary bandit algorithms such as
SnoozeIT [16] that adapts to the varying arm means (c.f.
Figure 2a) in smoothly varying environments. The reason is
that stationary algorithms such as UCB weighs all the samples
collected thus far equally in identifying which arm to pull,
while adaptive algorithms such as SnoozeIT weighs recent
samples more than older samples in order to estimate the arm-
mean at the current time point. This is exacerbated in a multi-
agent competitive setup where agents need to decide whether
to pull an arm that yielded good results in the past, but is
facing higher competition at the present.

We circumvent this problem by introducing the idea of
forced exploration in the algorithm. Since the environments are
time-varying possibly asynchronously across agents, a lower
ranked agent may be forced to explore and obtain linear regret,
if any of the higher ranked agents are exploring. To build
intuition, consider a 2 agent system in which the higher ranked
agent is called Agent 1, and the other agent is Agent 2.
Suppose, Agent 1’s environment (i.e., arm-means) are volatile
where the gap between the best and second best arm is small,
while Agent 2 has a more benign environment, where all arm-
means are well separated and not varying with time. In this
case, Agent 1 will be forced to explore arms a lot as its
environment is fluctuating with no clear best arm emerging.
Since any collision implies that Agent 2 will not receive a
reward, Agent 2 is also forced to explore and play sub-optimal
arms a linear number to times to evade collision, even when it
knows its own best arms. This phenomenon indeed also occurs
in the stationary setting, albeit in the stationary setting, every
agent knows that after an initial exploration time, all agents
will “settle” down and find their best arm. This is the concept
of freezing time introduced in [3], [7], that plays a critical role
in both the design and analysis of algorithms in the stationary
case. In the non-stationary setting however, there is no single
freezing time for the agents —rather agents must continuously
switch between exploring and exploiting, as their environment
varies with time.

A. Our Contributions

1) Algorithms: We introduce a learning algorithm, NSCB,
in which agents proceed in phases with asynchronous start and
end-points, wherein in each phase, agents explore among those
arms that are not currently preferred by higher-ranked agents,
and subsequently exploit a good arm, for a dynamic duration
of time in which the estimated best arm can remain to be
optimal. The main algorithmic innovation is to identify that the
static synchronous arm-deletion strategy of UCB-D3 [3], can
be coupled with SnoozeIT to yield a dynamic, asynchronous
explore-exploit type algorithm for non-stationary bandits.

3However, we clarify here that the information communicated through the
black-board in our algorithms is not a strict superset of the information
communicated by [4]. This is because if an agent is exploring in our algorithm,
they do not communicate their match on the black-board. However, if an agent
is exploiting, they communicate additional information about how far into time
they will continue to pull that arm.

IEEE TRANSACTIONS ON INFORMATION THEORY 3

2) Technical novelty in the analysis: In order to analyze and
prove that NSCB yields good regret guarantees, we introduced
this notion of forced exploration. Roughly speaking, this is
the regret incurred due to exploration of an agent, when the
higher ranked agents are exploring. This extra regret is a
consequence of the rank ordering via the serial-dictatorship
(which we define in Section I-A3) model, whereby agents can
incur collision and do not get any reward. Although agents in
the stationary setting also incur forced exploration, its effect
is bounded since every agent can eventually guarantee that
the best arm can be learnt. However, in an asynchronously
varying environment, bounding this term is non-trivial. We
circumvent this by decomposing the forced exploration of
an agent recursively; an agent ranked r effectively explores
if either its own environment is fluctuating and thus hard
to identify its best arm, or if the agent ranked r − 1 is
effectively exploring. We leverage this to recursively bound
the regret of agent ranked r as a function of agent ranked
r − 1. Unravelling this recursion yields the final regret. In
the process, we also derive new regret bounds for the general
Snooze-IT algorithm of [16] for the general k armed bandit
that generalizes the 2 armed bound obtained in [16], which
may be of independent interest.

3) Superior empirical performance in experiments: We
empirically validate our algorithms to demonstrate that it (i)
is simple to implement, (ii) the results match the theoretical
insights, such as agents incurring additional regret due to
forced explorations and (iii) outperforms prior state of art UCB
D3 [3] in both stationary and non-stationary environments. The
last point is compelling and demonstrates that our algorithm
is strictly more general than UCB-D3 by being provably and
empirically superior to UCB-D3 in non-stationary environ-
ment, and being empirically superior to UCB-D3 in stationary
environments. Theoretically, we show that the regret bounds
of our algorithm matches order-wise that of UCB-D3 in the
stationary environment (cf. Sections V-C and VI-B).

II. RELATED WORK

A. Bandits and Matching Markets

Bandits and matching markets have received a lot of at-
tention lately, owing to both their mathematical non-triviality
and the enormous practical impact they hold. Regret min-
imization in matching markets was first introduced in [2]
which studied the much simpler problem of stationary markets
under a centralized scheme, where a central entity matches
agents with arms at each time. They showed that under this
policy, a learning algorithm can get per-agent regret scaling as
O(log(T)). Subsequently, [3] studied the decentralized version
of the problem under the serial dictatorship and proposed the
UCB-D3 algorithm that achieved O(log(T)) per-agent regret.
Subsequently, [4] proposed CA-UCB, a fully decentralized
algorithm that could achieve O(log2(T)) per-agent regret in
the general decentralized stationary markets. Furthermore, [18]
study the problem of coordination free decentralized structured
market and obtain similar regret guarantees. Matching markets
has been an active area of study in combinatorics and theo-
retical computer science due to the algebraic structures they

present [19], [20], [21]. However, these works consider the
equilibrium structure and not the learning dynamics induced
when participants do not know their preferences.

B. Non-Stationary Bandits

The framework on non stationary bandits were introduced in
[22] in the framework of restless bandits, and later improved
by [23]. There has been a line of interesting work in this
domain–for example in [24], [25], [26] the abruptly changing
or switching setup is analyzed, where the arm distributions are
piecewise stationary and an abrupt change may happen from
time to time. In particular [26] proposes a change point based
detection algorithm to identify whether an arm distribution
has changes of not in a piecewise stationary environment.
Furthermore, in [27], a total variation budgeted setting is
considered, where the total amount of (temporal) variation
is known, but the change may happen, either smoothly or
abruptly.

Moreover, in the above-mentioned total variation budget
based non-stationary framework, an adaptive algorithm, that
does not require the knowledge of the drift parameter is
obtained in [28] for the standard bandit problem and later
extended to [29] for the contextual bandit setup.

On the other hand, there are a different line of research that
focuses on the smoothly varying non-stationary environment,
in contrast to the above mentioned abrupt or total budgeted
setup, for example see [30], [16]. Note that [30] modify the
sliding window UCB algorithm of [24] and employ windows
of growing size. On the other hand, very recently [16] ana-
lyzed the smoothly varying framework by designing windows
of dynamic length and test for optimality within a sliding
window. The algorithm of [16], namely Snooze-IT, is an
asynchronous algorithm that works on repeated Explore and
Commit (ETC) type principle where the explore and commit
times are random.

In this paper, we work with the smoothly varying non-
stationary framework of [16]. We choose this algorithm be-
cause of its simplicity, and the dynamics and competition that
comes out of a market framework is better understood in such
a sliding window based Explore and Commit type algorithm.
In general, we believe that our basic principle can be adapted
to any sliding window based algorithm in a non-stationary
environment.

a) Notation:: For a positive integer r, we denote the set
{1, 2, . . . , r} by [r]. Moreover, For 2 integers, a, b, the notation
a%b implies the remainder (modulo) operation. Throughout
the paper, we use C,C1, C2, . . . , c, c1, c2, . . . as universal
constants, the value of which may change from instance to
instance.

III. PROBLEM SETUP

We consider the standard setup with N agents and k arms,
with k ≥ N 4. At time t, every agent j ∈ [N] has a

4The condition k ≥ N is without loss of generality. Because in the case
when k < N , as we will see from our learning algorithms, the bottom N−k
ranked agents will determine that they will not be matched in the stable match.
Thus, they can drop out after the rank-estimation phase leaving the system to
effectively be that of k ≥ N .

IEEE TRANSACTIONS ON INFORMATION THEORY 4

ranking of the arms, which is dictated by the arm means
{µj,`,t}j∈[N],`∈[k], and this ranking is not known to the agents.
On the other hand, it is assumed that the agents are ranked
homogeneously for all the arms, and the ranking is known to
the arms. This is called the serial dictatorship model, is a well
studied model in the market economy (see [31], [3]).

Without loss of generality, it is assumed that the rank of
agent j ∈ [N] is j. We say agent j is matched to arm ` at
time t, if agent j pulls and receives (non zero) reward from
arm `. Our goal here is to find the unique stable matching
(uniqueness ensured by the serial dictatorship model) between
the agents and the arm side in a non-stationary (dynamic)
environment. Our definition of stability is identical to that of
the classical Gale-Shapley matching ([8]); i.e., a matching is
termed stable, if there exists no pair of agent-arm, who would
mutually prefer each other as opposed to their current partners
in the matching.

As explained in the introduction, we consider the smooth
varying framework of [30], [16] to model the non-stationary,
which assumes |µj,`,t+1 − µj,`,t| ≤ δ for all t, j, k, and the
maximum drift is δ. We dub this as a δ-shifted system.

We write `(1,t)∗ as the arm preferred by the the Agent ranked
1 at time t, i.e., `(1,t)∗ = argmax`∈[k]µ1,`,t. Similarly, for
Agent ranked j, the preferred arm is given by

`
(j,t)
∗ = argmax

`∈[k]\{`(1,t)∗ ,.,`
(j−1,t)
∗ }µj,`,t

So, we see that (1, `
(1,t)
∗) forms a stable match, and so does

(j, `
(j,t)
∗) for 2 ≤ j ≤ N . Let L(j)(t) be the arm played by an

algorithm A. The regret of agent j playing algorithm A upto
time T is given by

Rj =

T∑
t=1

E[µ
j,`

(j,t)
∗ ,t

− µj,L(j)(t),t1ML(j)(t)
=j],

where M(.) indicates whether arm L(j) is matched.

IV. WARM-UP: NSCB WITH 2 AGENTS

We now propose and analyze the algorithm, Non-Stationary
Competing Bandits (NSCB) to handle the competitive nature of
a market framework under a smoothly varying non-stationary
environment. To understand the algorithm better, we first
present the setup with 2 agents and k arms, and then in
Section VI, we generalize this to N agents.

We consider N = 2, since it is the simplest non-trivial
setup to gain intuition about the complexity of the competitive
nature of NSCB algorithm. Without loss of generality, assume
that agent r has rank r, where r ∈ {1, 2}. So, in the above
setup, Agent 1 is the highest ranked agent.

A. Black Board model:

Moreover, to begin with and for simplicity, we assume
a black-board model, and later in Section VII, remove the
necessity of this black board. We emphasize that black-board
model of communication is quite standard in centralized multi-
agent systems, with applications in game theory, distributed
learning and auction applications [32], [33], [34]. Through
this black-board, the agents can communicate to one other.

Algorithm 1 NSCB with N = 2; for Agent 1

1: Input: Horizon T , drift limit δ
2: Initialize set of tuples S1 = φ, episode index i1 ← 1
3: RANK ESTIMATION()
4: for t = 1, 2, . . . , T do
5: Pull-Arm by Agent 1:
6: if S1 = φ then
7: Play round-robbin (i.e., pull arm t% k); set zt(1)←

Explore
8: else
9: Play arm x, such that (x, s) ∈ S1 s.t. s > t; set

zt(1)← Exploit
10: end if
11: Test by Agent 1:
12: if Arm a = Lambda-Opt (λ̃, [k]) (see Definition 1) then
13: Λi1 ← t − si1 , buffer1 =

max
(

8
δ

√
k log T

Λi1
− 2(k − 1), 0

)
14: if buffer1 > Λi1 then
15: S1 ← S1 ∪ {(a, si1 + buffer1)}, Updates black-

board with (a, si1 + buffer1)
16: end if
17: else
18: i1 ← i1 + 1, si1 ← t (next epoch starts)
19: end if
20: Release arm by Agent 1:
21: if ∃(x, s) ∈ S1 : s ≤ t then
22: S1 ← S1 \ (x, s), release arm x, i1 ← i1 +1, si1 ← t
23: end if
24: end for

As we will see subsequently, Agents write critical information
like the arm preferred by it, the duration of commitment to a
particular arm etc to the blackboard, so that all the other agents
can read the information and change their learning algorithm
accordingly. Recall that, at each time-step, each agent can
only write at-most one arm-id in {1, · · · , k} on the board.
Such models of information sharing across agents is standard
in decentralized matching markets - for ex. [4] assume that
at the end of every time-step, every agent can observe the
arms played by all agents in that time-step. Thus the black-
board model of information sharing is weaker than that of [4].
Furthermore, in Section VII, we remove access to this black-
board and show that low regret is achievable even if the only
information agents have are the arms they play and the rewards
they achieve.

The learning algorithm is presented in Algorithm 1 and 2 for
Agents 1 and 2 respectively. The algorithms run over several
episodes indexed by i1 and i2 for Agents 1 and 2 respectively.

B. Algorithm for Agent 1

We formally describe the action of Agent 1 in Algorithm 1.
We first start with the rank estimation subroutine.

a) RANK ESTIMATION ():: We let both agents pull
arm 1 in the first time slot. Agent 1, will see a (non-zero)

IEEE TRANSACTIONS ON INFORMATION THEORY 5

reward, and hence estimates its rank to be 1. The other agent,
will see a 0 reward, so it estimates its rank as 2.

Since Agent 1 is highest ranked agent, it does not face any
collision. It plays the well-known and standard Successive
Elimination (SE) type algorithm (see [35]). The learning
algorithm for Agent 1 bears resemblance with the SnoozeIT
algorithm of [16], except the fact that we have k arms in the
system as opposed to 2 arms of SnoozeIT 5. In a nutshell,
the agent (a) first explores to identify if there is a best arm and
(b) if it finds a best arm, it commits to that for some amount
of time. Note that with non-stationary environment, Agent 1
needs to repeat this procedure over time.

Let us set up a few notation. We denote zt(1) to denote
the phase of Agent 1, and zt(1) ∈ {Explore,Exploit}.
In Algorithm 1, we we use {si1}i1=1,2,.. to denote the starting
of epochs, and i1 as the index count. At time t, Agent 1 checks
whether there exists an optimal arm by the following test.

1) Test for Optimality: Let µ̂a,t(w̃) denote the empirical
reward mean of arm a at time t, based on its last w̃ pulls. We
now define the rest bases on which our learning algorithms
decide whether to commit on an arm or not.

Definition 1: (Lambda-Opt (λ̃,A)) At time t, an arm a is
said to be Lambda-Opt (λ̃,A) with respect to set A, if there
exists λ̃ ∈ (0, 1) such that µ̂a,t(w̃) > µ̂b,t(w̃) + 4r(w̃)− (k−
1)δ, for all b ∈ A \ {a}, where w̃ = c1 log T

λ̃2
, and r(w̃) =√

2 log T
w̃ .

Intuitively, the above test decides whether the lower confidence
interval of arm a is bigger than that of the upper confidence
interval of arm b with some additional slack. Since the mean
rewards are bounded in [0, 1], if the above test succeeds, it can
be shown (see Lemma 3) that learning algorithms can commit
on arm a and incur 0 regret for some time, determined by the
buffer length.

Since Agent 1 faces no competition, A = [k] (the set of
all arms), but A will be different for Agent 2, as we will
see shortly. In Algorithm 1, we denote Λi1 as the duration
of the exploration period before the test succeeds at episode
i1. After the test, the agent exploits the obtained best arm for
(buffer1 − Λi1) time, and then releases it. We define the set
S1 to determine whether Agent 1 should commit or continue
exploring.

In Figure 1, we consider one episode of Agent 1, where the
yellow segments indicate the exploration time, and at the end
of that, the purple segment indicates the commit (exploitation)
(to say arm i∗) time. Furthermore, when Agent 1 commits, it
writes the arm on which it is committing and the duration of
the commit to the black-board, so that Agent 2 can accordingly
choose actions from a restricted set of arms to avoid collision.
Note that, there is no competition here, and the (interesting)
market aspect is absent.

C. Algorithm for Agent 2

The actions of Agent 2 borne out the competition (market)
aspect of the problem, and is written formally in Algorithm 2.

5In fact we obtain theoretical guarantees for SnoozeIT with k arms in
Appendix A which may be of independent interest.

Algorithm 2 NSCB with N = 2; for Agent 2

1: Initialize set of tuples S(j)
2 = φ, ∀ j ∈ [k], episode index

i2 ← 1
2: for t = 1, 2, . . . , T do
3: Pull-Arm by Agent 2:
4: if Agent 1 is not committed then
5: Play round robbin on [k] (pull arm t + 1 % k), set

zt(2)←Explore ALL
6: else if Agent 1 is committed to arm j and S(j)

2 = φ
then

7: Play round robbin on [k] \ {j} (i.e., pull arm index
t%(k − 1)-th smallest arm id in [k] \ {j})

8: zt(2)←Explore-j
9: else if Agent 1 is committed to arm j, and ∃(x, s) ∈

S
(j)
2 s.t. s > t then

10: Play arm x; set zt(2)←Exploit
11: end if
12: if {zt(1) 6= zt−1(1)} OR {zt(2) 6= zt−1(2)} then
13: i2 ← i2 + 1, ti2 ← t
14: end if
15: Test by Agent 2:
16: for j ∈ [k] s.t. zt(2) ∈

{Explore-j,Explore ALL} do
17: if Arm a = Lambda-Opt (λ̃, [k] \ {j}) then
18: τ

(j)
i2

← t − ti2 , buffer2 =

max

(
8
δ

√
(k − 1) log T/τ

(j)
i2
− 2(k − 2), 0

)
19: if buffer2 > τ

(j)
i2

then
20: S

(j)
2 ← S

(j)
2 ∪ {(a,min{ti2 + buffer2, si1+1)}

21: end if
22: end if
23: end for
24: Release arms for Agent 2:
25: for j ∈ [k] do
26: if ∃(x, s) ∈ S(j)

2 : s ≤ t then, S(j)
2 ← S

(j)
2 \ (x, s)

27: end for
28: end for

To fix notation, we denote {ti2}i2=1,2,.. as the time instances
where an epoch starts for Agent 2, and i2 denotes the episode
index. Moreover, we use the notation zt(2) to denote the
state of Agent 2, and as explained in Algorithm 2, zt(2) ∈
{Explore ALL,Explore − j,Exploit(x)}, where the
terms are explained shortly.

We observe from Algorithm 2 ensures that Agent 2 won’t
collide with Agent 1. This is because, in case of collision,
Agent 2 will receive a deterministic zero reward, and thus
will encounter maximum instantaneous regret.

Hence, Agent 2 gets to explore all the k arms, and plays in a
round robbin fashion only when Agent is also exploring (and
has not committed yet). This is called the Explore ALL
phase. This is shown in light green in Figure 1, and line 5 of
Algorithm 2.

On the other hand, if Agent 1 has committed to an arm,
say the j-th arm, it it of best interest for Agent 2 to explore
within the set [k] \ {j}. Otherwise, it will encounter collision

IEEE TRANSACTIONS ON INFORMATION THEORY 6

(a) (b)

Fig. 1: Action of Agents 1 and 2 in a matching markets

once in ever k rounds. This is called the Explore-j phase
of Agent 2. This is shown in dark-green in Figure 1 and lines
7-8 of Algorithm 2. In the figure, j = i∗.

Apart from Explore ALL and Explore-j, Agent 2 also
gets to commit or Exploit an arm. Observe that Agent 2
only gets to commit when Agent 1 has committed already
(to an arm j)–otherwise it will face collision. Agent 2 tests
whether an arm is best for it by the Lambda-Opt (λ̃,A) test
with A = [k] \ {j}. If such an arm exists, then Agent 2 gets
to commit to it. Similar to Agent 1, we define ti2 as the time
instance when the Lambda-Opt (λ̃,A) test succeeds for Agent
2 and define τ (j)

i2
as the duration of the test. Since Agent 2

tests with k − 1 arms, the buffer2 is set accordingly.
From Line 20 of Algorithm 2, note that Agent 2 only gets to

commit to the ‘optimal’ arm until min{ti2 + buffer2, si1+1}.
Hence, we restrict Agent 2 to end its exploitation as soon
as the exploitation of Agent 1 ends. The reasoning is same—
Agent 1 starts exploring right after its exploitation and Agent 2
must release the arm it was exploiting to avoid collision. Also,
observe that since Agent 2 never updates the black board. This
is because Agent 2 is the lowest rank agent in the system, and
the action of Agent 1 is not influenced by Agent 2.

From line 20 of Algorithm 2, Agent 2 constructs the sets
S

(j)
2 , which denote the exploitation period of Agent 2, without

arm j in the system. This is used to represent the different
phases of Agent 2 in Algorithm 2 in a compact form.

Saving extra exploration: Note that Agent 2 continues to
test for an optimal arm even when Agent 1 is exploring. It
might seem to be wasteful at first since it cannot commit
immediately. This is useful because, Agent 2 constructs the
sets S(j)

2 , and as soon as Agent 1 commits to arm j with S(j)
2

being non-empty, Agent 2 gets to commit leveraging this test.
This saves extra exploration for Agent 2 and hence reduces
regret.

From the above description, we characterize the fundamen-
tal reason, for which Agent 2 might suffer additional regret,
which we now discuss.
Forced Exploration: Consider Scenario 3 of Fig-

ure 1(b). Here, Agent 2 has decided to commit on an arm
before Agent 1. However, it cannot start to exploit since
Agent 1 is still exploring. Otherwise, it will periodically face
collisions (and get 0 reward, hence incurring linear regret
in this duration). This is the additional exploration faced by
Agent 2, which we term as forced exploration (shown in blue
in Figure 1(b)). In Theorem 1, we characterize the regret stems
from this forced exploration.

Furthermore, as shown in Figure 1 and discussed in Algo-
rithm 2 (line 20), Agent 2 is forced to terminate its exploitation
and start exploration, as soon as the exploitation of Agent 1
ends. Note that this also results in higher regret of Agent 2,
as it does not get to fully exploit the arm it was committed to.

In the subsequent section, we characterize the price paid by
Agent 2 because of the above-mentioned restrictions.

V. THEORETICAL GUARANTEES FOR NSCB WITH N = 2

We first define the dynamic gap of the problem, and then
use it to obtain a regret upper bound.

A. Problem Complexity—Dynamic Gap

We define the (dynamic) gap, denoted by {λCt [r]}t=1,2,.. for
agent r, which determines how complex the problem is. This is
expressed as an average gap between the pairwise arm-means
over a window of specified length.

Definition 2: For C ⊆ [k], we define the dynamic gap of
Agent r on a dominated set C as,

λCt [r] = max
λ∈[0,1]

{
min

a,b∈[k]\C
a6=b

1

w(λ)
|

t∑
t′=s

µr,a,t′ − µr,b,t′ | ≥ λ
}
,

and if such a λ does not exist, we set λCt [r] = c1

√
log T
t . Here,

s = t− w(λ) + 1, and w(λ) = c0(k−|C|) log T
λ2 . For shorthand,

if C = φ (null set), we denote λφt [r] = λt[r]. Here c1 and c0
are universal constants.

Remark 1: We first note that when δ = 0 (stationary system)
and C = φ, the dynamic gap reduces to the gap between
the best and the second best arm. Note that the latter is the
usual definition of problem complexity in multi-armed bandit
problems ([36]).

Remark 2: When C = φ and k = 2, the above definition
matches exactly to that of ‘detectable gap’ of [16].

Remark 3: The dominated dynamic gap is a strict general-
ization of the usual window based average gap used in non-
stationary bandits. We introduce a dominated set C, for the
competitive market setting, since the actions of lower ranked
agents are dominated by that of higher ranked ones.

B. Regret Guarantee

We now characterize the regret of Agent 1 and 2 playing
Algorithms 1 and 2 respectively.

Theorem 1 (2 Agent NSCB): Suppose we run Algorithm 2
with 2 Agents upto horizon T with drift δ. Then the expected
regret for Agent 1 is

R1(δ) ≤ C
m∑
`=1

1

λmin,`[1]
k log T,

and for Agent 2 is

R2(δ) ≤ C1

m∑
`=1

{(
1

λmin,`[2]
+

1

(λmin,`[1])2

)
k log T

+ d(k

k − 1
)1/3e

(
1

mina∈[k] λ
{a}
min,`[2]

)
(k − 1) log T

}
,

IEEE TRANSACTIONS ON INFORMATION THEORY 7

where horizon T is divided into m blocks, each having length
at most min{c δ−2/3k1/3 log1/3 T, T}. Here

λmin,`[r] = min
t∈`-th block

λt[r] and λ
{a}
min,`[r] = min

t∈`-th block
λ
{a}
t [r]

denote the dynamic gap of Agent r over entire `-th block.
Remark 4: In order to succinctly represent the regret bounds,

similar to [16], we define the quantity λCmin,`[r], which is the
minimum dynamic gap of agent r over the `-th block. When
C = φ, we denote this by λmin,`[r].

C. Discussion

Regret of Agent 1: The regret of Agent 1 is given by
k log T
λmin,`[1] , summed over blocks, where λmin,`[1] is the complex-
ity parameter (dynamic gap) for Agent 1. In the special case,
where δ = 0 (stationary system), the number of blocks is 1,
and the complexity parameter coincides with the the definition
of classical gap (difference between the best and the second
best arm) of the stationary setup. In this case, this regret bound
matches to that of the classical instance dependent regret of
Upper Confidence Bound (UCB) algorithm of [17].

Regret of Agent 1 matches [16]: Observe that the regret
of Agent 1 matches exactly to Snooze-IT of [16]. Since
Agent 1 faces no collision, we were able to recover the regret
of Snooze-IT.

Regret of Agent 2: The regret of Agent 2 has 3 components.
The first term, k log T

λmin,`[2] comes from the Explore-ALL. In
this phase, Agent 2 explores all arms and the regret is similar
to Agent 1. Note that this is dependent on the complexity og
Agent 2.

The second term in the regret expression, [1
λmin,`[1]]

2k log T
originates from the Forced Exploration of Agent 2.
Note that this depends on the complexity (gap) of Agent 1.
This validates our intuition, since, when Agent 1’s environ-
ment is complex, it takes more exploration for Agent 1, and
as a result Agent 2 faces additional forced exploration. This
is a manifestation of the competitive structure of the market
framework, since the regret of Agent 2 is influenced by that
of higher ranked agent.

The third term in the regret expression comes from
Explore-j phase, where Agent 1 is committed on arm j.
Observe that here, the dominated gap naturally comes into
the picture. The pre-factor of [k/(k − 1)]1/3 appears for the
following reason. We design the blocks in such a way that
each block contains at most 2 phases of Agent 1. Moreover, we
show that the number of epochs for Agent 2 in one exploitation
phase of Agent 1 is at most 2d[k/(k − 1)]1/3e.

Regret matches to UCB-D3 of [3] in stationary setup: We
compare the regret of NSCB with that of the non-stationary
UCB-D3 of [3]. In the stationary environment (δ = 0), the
definition of gap is invariant with time. For Agent 2, from [3,
Corollary 2], we obtain the regret to be O[1

ρ2 (k − 1) log T],
where ρ is the stationary dominated gap. Note that this
is exactly same as Theorem 1 (except for a mildly worse
dependence on k). Hence, we recover the order-wise optimal
regret in the stationary setting.

VI. NSCB ALGORITHM WITH N COMPETING AGENTS

In this section, we extend NSCB for N agents. We stick to
the notation where we denote the r-th ranked Agent as Agent
r and focus on its the learning algorithm. Let us fix some
notation first.

We denote Ct(r) as the set of committed arms by agents
ranked higher that r (i.e., Agents 1, 2, . . . , r − 1). This can
be defined sequentially in the following way: let Ct(1) ∈
{φ, 1, . . . , k} as the arm committed by Agent 1. We define
Ct(r) = {Ct(1), . . . , Ct(r − 1)} as the committed (or dom-
inated) set of Agent r. The learning scheme is presented in
Algorithm 3

Similar to Algorithms 1 and 2, we start with the rank
estimation sub-routine, the end of which agents know their
own rank.
RANK ESTIMATION() The rank estimation takes N − 1

time steps. At t = 1, all agents pull arm 1. In the subsequent
steps, i.e., for t ∈ [2, N − 1], agents, the agents who were
matched to an arm, continues to play the matched arm–and
the rest of the agents play arm (indexed by) t. By inductive
reasoning, thanks to the collision structure, it is easy to observe
that, by N − 1 time instant, all agents know their own rank.

In Algorithm 3, we denote {tir}ir=1,2,.. as the start epochs
of episodes for Agent r. Furthermore, to denote the state of
Agent r we define zt(r) as the following:

zt(r) = {Explore− Ct(r),Exploit(x)},

where in Explore − Ct(r), the r-th agent plays in a round
robbin fashion on the set of [k] \ Ct(r) arms (line 18 of
Algorithm 3) , and in Exploit(x) it pulls arm indexed by x
(line 20).

At time t, Agent r first looks at the black-board, and using
the information, it constructs the dominated set Ct(r), which
contains all the committed arms from Agents 1 to r−1. Based
on Ct(r), Agent r updates zt(r) to reflect whether it is in
Explore-Ct(r) phase, or in the exploit phase. In particular,
Agent r gets to commit on an arm in [k]\Ct(r), if all the higher
ranked agents have already committed, i.e., |Ct(r)| = r − 1.
A new phase is spawned for Agent r if either the dominated
set Ct(r) 6= Ct(r − 1) changes, or its own phase ends. Both
this cases are captured by zt(r), and hence, based on whether
zt(r) changes or not, Agent r decides to start a new phase.

The test procedure of Agent r is similar to that of Agent 2,
with a difference that Agent r tests in the arms in the subset
[k]\Ct(r), and hence the buffer length is accordingly designed.
Once the Agent commits on an arm (say x), it writes the triplet
(x, exploit period, r) to the black board. It also updates the
dominated set Ct+1(r) for the next round.

Similar to Algorithm 2, we also need to ensure that Agent r
ends its exploitation phase when any higher ranked agent starts
exploring, otherwise it will face collision. This is ensured by
defining t̄ir in line 25 of Algorithm 3.

We emphasize again that Agent r only gets to commit
when |Ct(r)| = r − 1, i.e., Agents 1 through r − 1 has
already committed. This leads to additional exploration, which
we call forced exploration. In the subsequent section,
we characterize the additional regret incurred by this forced
exploration.

IEEE TRANSACTIONS ON INFORMATION THEORY 8

Algorithm 3 NSCB for r-th Agent

1: Input: Horizon T , drift limit δ
2: Initialize S

(Ω)
r = φ for all Ω ⊆ [k], and |Ω| ≤ r − 1,

Initialize ir ← 1, C1(r) = φ
3: RANK ESTIMATION()
4: for t = 1, 2, . . . , T do
5: Update State zt(r):
6: if |Ct(r)| < r − 1 then
7: zt(r)← Explore− Ct(r)
8: else if ∃(x, s) ∈ S(Ct(r))

r s.t. s > t, then
9: zt(r)← Exploit(x)

10: else
11: zt(r)← Explore− Ct(r)
12: end if
13: if zt(r) 6= zt−1(r) then
14: ir ← ir + 1, tir ← t
15: end if
16: Pull-Arm by Agent r:
17: if zt = Explore− Ct(r) then
18: Play round robbin with [k] \ Ct(r) (i.e., pull t+ (r−

|Ct(r)|−1)%(k−|Ct(r)|) smallest arm in [k]\Ct(r))
19: else if zt = Exploit(x) then
20: Play arm x
21: end if
22: Test by Agent r:
23: for Ω ⊆ [k] s.t. |Ω| = r − 1 and zt(r) = Explore-

Ct(r) do
24: if Arm a = Lambda-Opt (λ̃, [k] \ Ω) then
25: τ

(Ω)
ir

← t − tir , bufferr =

max

(
8
δ

√
(k − |Ct(r)|) log T

τ
(Ω)
ir

− 2(k − r), 0

)
,

define t̄ir = min{tir + bufferir , tir−1+1}
26: if bufferir > τir , then SΩ

r ← SΩ
r ∪ {(a, t̄ir)},

else iir ← ir + 1, tir ← t
27: end if
28: end if
29: end for
30: Updates Black Board:
31: if ∃(x, s) s.t. s ≥ t + 1, then write (x, t̄ir , r) on the

black board end if
32: Updates Dominated set Ct+1(r):
33: Updates Ct+1(r) = {x ∈ [k] : ∃s > t + 1, and ∃j ≤

r − 1 s.t. (x, s, j) exists on board}
34: end if
35: end for

Saving extra exploration: Note that Agent r constructs the
sets SΩ

r for all Ω ⊆ [k] with |Ω| = r− 1. As explained in the
2 agent case, this saves extra exploration for Agent r, because
if the statistical test succeeds on an arm j ∈ [k] \ Ct(r), and
there exists Ω, with |Ω| = r − 1 such that SΩ

r is non-empty,
Agent r immediately commits to arm j.

A. Regret Guarantee

We characterize the regret of r-th agent, with r ≥ 2. Note
that the regret of Agent 1 will be identical as Theorem 1, since

it faces no competition and hence no collision.
As explained in Algorithm 3, the regret of r-th Agent will

depend on the dynamic gap of Agents 1 to r − 1. Hence,
for mathematical tractability and notational convenience, we
define the following constrained dynamic gap of the problem.

∆t[r] = min
C∈[k],|C|≤r−2

λCt [r], ∆̃t[r] = min
C∈[k],|C|≤r−1

λCt [r]

Remark 5: Note that the definitions of ∆t[r] and ∆̃t[r]
are generalizations of the dynamic gap λCt [r], with further
restrictions on the dominated set C.
With this, we have the following result:

Theorem 2 (N agent NSCB): Suppose we run Algorithm 3
for N agents with δ drift. The regret for r-th ranked agent is
given by

Rr(δ) ≤ C
m∑
`=1

[
k

k − r + 2
]1/3

{[
k log T

∆min,`[r]
+

k log T

∆2
min,`[r − 1]

]

+

⌈(
k − r + 2

k − r + 1

)1/3
⌉(

1

∆̃min,`[r]

)
(k − r + 1) log T

}
,

where we divide the horizon T in m blocks, having at most
min{c δ−2/3k1/3 log1/3 T, T} length. Here

∆min,`[r] = min
t∈` block

∆t[r] and ∆̃min,` = min
t∈` block

∆̃t[r]

denote the gap for `-th block.
Remark 6: The terms in the regret expression depends on the

dynamic gap of Agent r and r−1. As shown in Appendix H,
it turns out that owing to the serial dictatorship nature of the
problem, in order to characterize the regret of Agent r, it is
sufficient to look at the behavior of Agent r−1. This inductive
argument helps us to extend the results in a 2-agent NSCB to
a general N -agent NSCB.

Remark 7: The performance of Agent r depends crucially
on Agent r−1, and based on whether Agent r−1 is exploring
or exploiting, the regret depends on the higher ranked r − 2
agents. Hence, the dynamic gap depending on both r− 1 and
r − 2 sneaks in the regret expression via ∆t[r] and ∆̃t[r].

B. Discussion

Special case, r = 2: When r = 2 in Theorem 2, we exactly
get back the regret of Agent 2 in Theorem 1. So, for Agent 2,
there is no additional cost for extending NSCB to N agents.

Different terms of Theorem 2: Similar to the 2 agent case,
the first term in the regret expression presents the regret from
exploration of Agent r, when Agent r−1 is exploring. Hence,
the size of the dominated set is at most r−2, and the dynamic
gap is given by ∆min,`[r].

Similarly, the second term corresponds to the forced ex-
ploration of Agent r. This occurs when Agent r is ready to
commit, but is forced to explore since Agent r−1 is exploring.
Note that this depends on how complex the system of Agent
r−1 is. Since Agent 1 is exploring, the size of the dominated
set is still r − 2, and the dynamic gap is ∆min,`[r].

Finally, the third term corresponds to the regret when Agent
r has committed. Observe that, in this case, the size of

IEEE TRANSACTIONS ON INFORMATION THEORY 9

Algorithm 4 Black board removal for N = 2

Initialize Q0 ← Explore
for t = 1, . . . , T do

if Agent 2 experiences collision then
Qt ← toggle(Qt−1)

end if
end for

dominated set is at most r − 1. Hence, it is characterized by
∆̃t[r].

Note that we characterize the regret of Agent r by focusing
on one phase of Agent r − 1 (similar to the 2 agent case),
and we show that the number of epochs of Agent r − 1 in
one block is at most 4d[k/(k − r + 2)]1/3e, which causes the
multiplicative pre-factor. Note that with r = 2, the factor is
absent, since the blocks are designed to contain at most 2
epochs of Agent 1.

Regret matches UCB-D3 of [3] in stationary setup: Note
that, in the stationary setup (δ = 0), the regret expression in
Theorem 2 matches to that of UCB-D3 (except a mildly weak
dependence on k), which is shown to be order optimal. So,
NSCB recovers the optimal regret in the stationary case.

VII. NSCB WITHOUT BLACK BOARD; TOWARDS
COMPLETE DECENTRALIZATION

Upto now, we present NSCB with a black board, via which
the agents communicate among themselves. In this section, we
remove this, and obtain the same information via collision. We
emphasize that without the black board, the learning algorithm
is completely decentralized.

A. Special case: Black board removal with N = 2

In the presence of the black board, Agent 2 knows whether
Agent 1 is exploring (on all [k] arms) or committed to a
particular arm. The same information can be gathered from
a collision. Agent 2 maintains a latent variable Qt, which
indicates whether Agent 1 is in Explore or Exploit phase.
At the beginning, Q0 ← Explore.

The routine is formally written in Algorithm 4. If at round
t, Agent 2 faces a collision on arm j, one of two things
can happen—(a) Agent 1 has ended exploring and committed
to arm j or (b) Agent 1 has ended its exploitation and is
exploring. This is true from the design of NSCB. After a
collision, Agent 2 looks at Qt−1. If Qt−1 = Explore, then
case (a) has happened and if Qt−1 = Exploit, then case (b)
has happened. So, just toggling the variable Qt is enough for
Agent 2 to keep track of Agent 1. It is easy to see that, from
the round robbin structure of exploration, that after Agent’s 1
phase changes, it may take upto k time steps for a collision
to take place.

Lemma 1 (Regret Guarantee): Suppose δ′ = C kδ, for a
constant C > 1. Then, for a δ shifted system, NSCB without
blackboard the regret of Agent 1 and 2 are given by

RNo-Blackboard
1 (δ) ≤ R1(δ′) and RNo-Blackboard

2 (δ) ≤ R2(δ′)

Algorithm 5 Black board removal for r-th Agent NSCB

Initialize M0[s]← Explore for all s ∈ [r − 1]
for t = 1, . . . , T do

if Agent r experiences collision and reward goes to Agent
r′ < r then
Mt[r

′]← toggle(Mt−1[r′])
end if

end for

where R1(.) and R2(.) denote the regret of Agent 1 and 2
respectively as shown in Theorem 1 with the presence of the
black board. So, the regret guarantees of Theorem 1 extend in
this case with δ replaced by δ′.

Remark 8: It is easy to check from Theorem 1 that the regret
increases with an increasing drift δ. In the framework without
blackboard, we incur additional regret since δ′ = Ckδ (and
δ′ > δ). We upper bound the performance without black board
by a worse system with drift δ′ > δ having a blackboard. The
additional regret can be thought as the price of removing the
blackboard.

Remark 9: The above lemma can be shown via a reduction
argument (see Appendix I3). For a δ shifted system, upto time
k, the maximum total shift is kδ, and hence with δ′, we ensure
that the system remains stationary in these k time steps. We
emphasize that NSCB is an asynchronous algorithm, and the
dentition of δ′ helps in reducing the reduction to a worse
system with drift δ′ > δ.

B. Black board removal with N agents

NSCB is an asynchronous algorithm, and hence establishing
coordination between agents is quite non-trivial. In previous
works, such as [3], the learning includes a fixed set of
time slots for communication among agents. This coordinated
communication can not be done for NSCB, since the phases
start and end at random times. Hence, to handle this problem,
we consider a slightly stronger reward model. We emphasize
that the stronger reward model was also used in previous works
such as [4].

Communication model: To ease communication across
agents, we assume that in case of collision, the reward is
given to the highest ranked agent, and all the remaining agent
gets zero reward, as well as the index of the agent who gets
the (non-zero) reward. We remark that this side information
is not impractical in applications like college admissions, job
markets etc., and this exact reward model is also studied in
[4].

The routine is formally written in Algorithm 4. Under
this new reward model, Agent r maintains a set of la-
tent variables, Mt[s] for all s ∈ [r − 1], where Mt[s] ∈
{Explore,Exploit}. If at time t, if Agent r experiences a
collision, and the reward goes to an Agent r′, with r′ < r (i.e.,
r′ is a higher ranked agent), then Agent r toggles Mt[r

′]. In
this way, after a collision on arm j, Agent r knows that either
Agent r′ has committed on arm j or it is exploring on a set of
arms including j. Hence, based on Mt−1[r′], Agent r knows
which event has happened exactly, which is the information

IEEE TRANSACTIONS ON INFORMATION THEORY 10

a black board would have provided. From the round robbin
nature of exploration, detecting this may take at most k steps.

Lemma 2 (Regret Guarantee): Suppose δ′ = C kδ, for a
constant C > 1. Then, for a δ shifted system, NSCB without
blackboard the regret of Agent r is given by

RNo-Blackboard
r (δ) ≤ Rr(δ′)

where Rr(.) denotes the regret of Agent r, as in Theorem 2
with the presence of the black board. So, the regret guarantee
of Theorem 2 extends in this case with δ replaced by δ′.

Remark 10: Similar to the 2 agent case, here also, the
removal of black board results in an increase of regret,since
we replace δ by δ′, which is bigger than δ.

Remark 11: The above result holds under the modified and
stronger reward model. Design of an efficient coordination
protocol in an asynchronous system is left as future work.

VIII. SIMULATIONS

In Figure 2, we show through simulations that - (i) Snooze-
IT of [16] outperforms vanila UCB of [17] in the case of single
agent, (ii) NSCB multi-agent setting is effective to simulate
and matches the theoretical insights, and (iii) in the multi-
agent case, NSCB outperforms UCB-D3, especially for higher
ranked agents. In all settings, we consider the arms to have
Gaussian distribution with variance 0.4 and means varying
with time as given below. All plots are plotted after averaging
over 10 runs, with the median being highlighted in bold, and
the inter-quantile range between the 25th and 75th quantiles
in the shaded region. In the single agent setting of Figure
2a, we considered three arms, with the third arm having a
fixed mean of 0.5 throughout. In the multi-agent setting in
Figures 2b, 2c, 2d, 2e, 2g, 2h, 2i, we initialized the arm
means randomly from the uniform distribution on [0, 1]. In
each of the 10 runs, the arm means for every agent-arm pair
evolved independently according to a symmetric random walk
by either adding or subtracting a value of δ as specified in
the plot title. We simulated the NSCB algorithm by assuming
access to a black-board, the performance on which can be
translated to the setting without access to the black-board as
seen in Lemma 2. For UCB-D3, we use the standard hyper-
parameters recommended in [3]. The plots are averaged over
the randomness in the arm-mean variation across time as well.

We observe in Figure 2a, that the performance of
Snooze-IT is much better than that of the classical UCB
algorithm of [17]. In Figures 2b and 2c, we validate the
performance of NSCB for a 3 agent system with different
values of δ. We first note that the regret flattens out some-
times, which indicates that the NSCB algorithm has chosen
an ‘optimal’ arm, and commit to it, incurring zero regret as
shown in Lemma 3. Furthermore, matching to our intuition,
the regret of agent ranked 1 is the lowest, then Agent 2 and
and finally Agent 3. This is because as Theorem 1 and 2
suggest, the performance of an Agent gets dominated by all the
agents ranked higher. Furthermore, observe that the flattening
of regret for Agents 2 and 3 are much infrequent compared to
that of Agent 1.

Impact of non-stationarity: In Figures 2g, 2h, 2i, we
compare the performance of our proposed NSCB algorithm

with a baseline of UCB-D3. This baseline ignores time-
varying aspect of the problem and thus the difference in
performance of the two algorithms reveal the impact of non-
stationarity on the observed regret. In Figures 2d and 2e, we
consider a dynamic environment. We find that although the
performance of agent 1 is similar in the two systems, the
performance of the lower ranked agents are much superior
in NSCB compared to UCB-D3. This shows that NSCB is
sensitive to the potential variations in arm-means and helps all
agents adapt faster compared to UCB-D3 which is designed
assuming the environment is stationary. Moreover, since the
phase lengths grow exponentially with time in UCB-D3 where
lower ranked agents assume that the best arm of the higher
ranked agents will remain constant within a phase. In the
dynamic case, this assumption is no longer valid, and thus the
regret of lower ranked agents are much worse under UCB-D3,
as compared to NSCB.

In Figure 2f, we take a stationary environment and compare
UCB D3 with NSCB run with δ = 0.025. In this plot we
observe that even in the stationary setting, the regret of NSCB
is superior to UCB-D3. The reason is that the phase lengths
in UCB-D3 was fixed to be exponentially growing, while the
phase lengths in NSCB is chosen adaptively depending on the
empirical arm means.

Impact of market competition: In Figures 2g, 2h, 2i,
we compare the performance of our proposed NSCB algo-
rithm with a baseline where every agent independently runs
SnoozeIT by treating collisions as 0 reward. This baseline
ignores the competition induced by the multi-agent market
structure and thus reveals the impact of competition on the
observed regret. In Figures 2g and 2h, we simulate a dynamic
environment with the δ value specified in the plot title. The
same δ value is used as input to both NSCB and SnoozeIT.
In Figure 2i, we consider a stationary system with both
NSCB and SnoozeITusing δ = 0.025. We observe in the
figures that although for the highest ranked agent 1, the two
algorithms yield comparable performance, the regret of the
other two agents are larger under SnoozeIT compared to
NSCB. The reason is that agent ranked 1 does not ‘see‘
competition as there are no arm-collisions experienced. Thus
NSCB performs comparable to an algorithm that ignores the
presence of collisions. However, for the other two agents 2
and 3, SnoozeIT incurs larger regret as SnoozeIT ignores
collisions. NSCB yields lower regret for agents 2 and 3 since
NSCB carefully accounts for the impact of collisions.

IX. CONCLUSION AND OPEN PROBLEMS

We introduced the problem of decentralized, online learning
in two-sided markets when the underlying preferences vary
smoothly over time. We propose and analyze an asynchronous
algorithm, namely NSCB, first for 2 agents, and then for N
agents. We provide a complete characterization of the regret
of NSCB. Moreover, we verify via simulations, the theoretical
insight we previously obtained. This paper however leaves
several intriguing open problems: (a) we want to understand
whether the assumption of known δ be relaxed, i.e., a step
towards making NSCB parameter-free and problem adaptive;

IEEE TRANSACTIONS ON INFORMATION THEORY 11

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 2: In (a), we compare SnoozeIT and UCB with k = 3. In (b) and (c) NSCB on a system with 3 agents and 4 arms is
simulated, and the same systems are compared with UCB-D3 in (d) and (e). In (f) we compare against a stationary system
with NSCB run with δ = 0.025. In Figures (g), (h) and (i), we compare the regret of NSCB with every agent independently
running SnoozeIT. As can be seen, that for the highest ranked agent 1, both NSCB and SnoozeIT has comparable regret.
However, for the other two lower ranked agents, the regret of SnoozeIT is much larger than that of NSCB.

(b) whether it is possible to extend our analytic framework
to the dynamic framework to general markets beyond serial
dictatorship; and (c) to consider other forms of non-stationary
such as piece-wise constant markets or variations with a total
budget constraint. We keep these as future endeavors.

APPENDIX

A. Preliminaries: Theoretical Guarantees of SNOOZE-IT
with k arms

As is standard in formalizing bandit processes [36], we
assume that the random process lies in a probability space

IEEE TRANSACTIONS ON INFORMATION THEORY 12

endowed with a collection of independent and identically
distributed random variables (Ui,j [t])i∈[N],j∈[k]t≥1. For each
i ∈ [N] and j ∈ [k], and k ≥ 1, the random variables (Ui[k])
is distributed as the 0 mean, unit variance Gaussian random
variable6. With this description, the realized reward by agent
i ∈ [N], when it matches with arm j ∈ [k] for the kth time at
time-index t is given by Ui,j [k]+µi,j,t. In this description, the
set of arm-means (µi,j,t)i∈[N],j∈[k],t∈[T] are fixed non-random
parameters.

Definition 3 (Good Event):

E :=

N⋂
i=1

E(i),

where

E(i) :=

{
∀t ∈ [T],∀j ∈ [k],∀w ≤ t,∣∣∣∣ 1

w

w∑
s=0

Ui,j [t− s]
∣∣∣∣ ≤ r(w)

}
,

here r(w) :=
√

8 log(T)
w .

In words, the event E is the one in which every contiguous
sequence of i.i.d. random variables is ‘well-behaved’. The
event E(1) is identical to the good-event specified for the single
agent case in [16]. Standard concentration inequalities give
that this occurs with high probability which we record in the
proposition below.

Proposition 1:

P[E] ≥ 1− 2Nk

T 2
.

Implication: The above proposition states that it is sufficient
to look at the behavior of the learning algorithm under event
E . Since the rewards are bounded by 1, the additional regret
incurred over T rounds will be O(NkT), which decays with T ,
and hence, from now on, we only focus on events conditioned
on E .

Proof 1: Fix a t ∈ [T], i ∈ [N], j ∈ [k] and w ≤ t. Classical
sub-gaussian inequality gives that

P

[∣∣∣∣ 1

w

w−1∑
s=0

Ui,j [t− s]
∣∣∣∣ > r(w)

]
≤ 2 exp

(
−1

2
wr(w)2

)
,

=
2

T 4
.

Now, taking an union bound over t, i, j and w gives that

P[E{] ≤ 2Nk

T 2
.

The definition of the good event is useful due to the
following result.

Lemma 3 (No regret in the exploit-phase): If the good event
E in Definition 3 holds, then every agent in every exploit phase
will incur 0 regret.

Proof 2: We first prove the result for agent ranked 1. For
any phase i1 of Agent 1, denote by time t = gi1 to be the

6Our analysis can be extended verbatim to any sub-gaussian distribution

time-instant at which an arm a and λ > 0 is identified that
satisfies a >λ b (this means arm a = Lambda-Opt(λ, [k] from
Definition 1) for all b ∈ [k] \ {a}. In words, time gi1 is the
time when the statistical test by Agent 1 succeeds. Recall from
the notations in the algorithm that Λi1 := gi1 − si1 .

Suppose in a phase i1, agent 1 exploits an arm a ∈ [k] one
or more rounds. Notationally, this is from times [gi1 +1, si1+1].
We will show that (i) there exists a minimum gap λ > 0, such
that at time gi1+1, for all arms a

′ ∈ [k] \ {a}, the mean of
arm a exceeds a

′
by a certain margin, and (ii) in the duration

[si1 + τi1 , si1+1] is set such that the chosen arm a continues
to be optimal in the entire EXPLOIT phase.

The first claim is formalized below.
Claim 1: Under the good event E , there exists a time t

′ ∈
[si1 , gi1], such that for all arms b ∈ [k] \ {a}, µa,t′ − µb,t′ ≥
4
√

4 log(T)
Λi1

− 2(k − 1)δ.
Proof 3: The statistical test succeeded at time gi1 , i.e., there

exists a λ > 0 such that a >λ b, for all b ∈ [k] \ {a}. By
Definition 1, the window size w := kd c1 log(T)

λ2 e. Since the
test succeeds at time t = gi1 , clearly w ≤ Λi1 .

In order to describe the proof, we set some notations. For
every arm a ∈ [k], denote by the set of times L(a)

i1
:=

{l(a)
1 , · · · , l(a)

w/k} to be the w/k times arm a was played in the
time-interval [gi1 −w, gi1]. These times are random variables
—however conditioned on gi1 , these are deterministic since in
the Explore phase of Algorithms 2 and 3, agents explore the
arms in a round-robin fashion from arms indexed the smallest
to the largest. Denote by µa,t(w/k) := k

w

∑
s∈L(a)

i1

µa,s. For

every arm a ∈ [k], denote by the random index la to be the
number of times arm a has been played in the past, before
time gi1 − w.

Since the statistical test succeeds at time t = gi1 , we have
from Definition 1

µa,t(w/k) +
k

w

la+w/k∑
s=la

Ua[s]

> µb,t(w/k) +
k

w

lb+w/k∑
s=lb

Ub[s] + 4r(w/k)− (k − 1)δ.

Re-arranging and using the definition of the Good event, we
have

µa,t(w/k)− µb,t(w/k)

> 4r(w/k)− (k − 1)δ +
1

w

lb+w/2∑
s=lb

Ub[l]−
1

w

la+w/2∑
s=la

Ua[l],

≥ 2r(w/k)− (k − 1)δ.

where the second inequality stems from the definition of the
good event. Now, since the drift is bounded by δ, we have that

µa,t(w/k)− µb,t(w/k) ≤ k

w

∑
s∈L(a)

i1

(µa,s − µb,s) + (k − 1)δ.

IEEE TRANSACTIONS ON INFORMATION THEORY 13

Combining the preceding two displays, we get that

k

w

∑
s∈L(a)

i1

(µa,s − µb,s) > 2r(w/k)− 2(k − 1)δ.

The second inequality follows from the fact that the window
size w ≤ Λi1 is smaller than the explore duration of phase i1.
Substituting the expression for r(w/k), we obtain

r(w/k) =

√
8k log T

w
= cλ,

where c is a universal constant.
Since λ is constrained with the number of samples in w,

we have

c1k log T

λ2
≤ Λi1 ⇒ λ ≥ c0

√
k log T

Λi1

Substituting this, we obtain

k

w

∑
s∈L(a)

i1

(µa,s − µb,s) ≥ 2

√
4k log(T)

Λi1
− 2(k − 1)δ

= 4

√
k log(T)

Λi1
− 2(k − 1)δ

Now, since the average gap exceeds a bound, it implies that
there exists at-least one t

′ ∈ [si1 , gi1] such that µa,t′ −µb,t′ >
4
√

k log(T)
Λi1

− 2(k − 1)δ.
Now, since the drift at each time-step in each arm is at-
most δ, arm a will remain optimal compared to arm b at-
least in the time-interval [t

′
, t
′

+ 2
δ (4
√

k log(T)
Λi1

− 2(k − 1))],
i.e., arm a is optimal compared to arm b in the duration
[t
′
, t
′

+ 4
δ

√
4k log(T)

Λi1
− 2(k − 1)]. Since t

′ ≥ si1 , and from
Algorithms 1, 2 and 3 the definition of buffer period is
buffer1 := 4

δ

√
4k log(T)

Λi1
− 2(k − 1), arm a is superior to

arm b in the exploit duration of phase i1. Now, since arm b
was arbitrary, this implies that Agent 1 will incur no regret
during the exploit phase of i1.

For the general case, we will prove by induction. Suppose
the induction hypothesis that all agent ranked 1 through to
r−1 are incurring 0 regret in an exploit phase. Notice from the
description of Algorithm 3 that agent ranked r can potentially
go into an exploit phase if and only if all agents ranked 1
through r − 1 are in an exploit phase. Additionally, the base
case of the induction hypothesis is what we established in the
preceding paragraph where agent ranked 1 incurs 0 regret in
the exploit phase. Under this induction hypothesis, we will
now argue that agent ranked r will also incur 0 regret in the
corresponding exploit phase.

We make one observation based on the serial-dictatorship
structure. If all agents ranked 1 through r−1 are in (i) Exploit
phase and (ii) are incurring 0 regret, then the stable match
optimal arm for agent ranked r is to play the arm with the
highest mean among those arms not being exploited by agents
ranked 1 through r − 1. This is a simple consequence of the
definition of stable match (c.f. Section III). Thus, it suffices

to argue that when agent ranked r commits, it commits to the
optimal arm. We use identical arguments as for agent ranked
1 to show the following:

Claim 2: If at time t, for a given Ω ⊂ [k] with |Ω| =
r−1, the statistical test succeeds with arm a ∈ [k], then there
exists a time t

′ ∈ [sir , t], such that for all arms b ∈ Ω \ {a},
µa,t′ − µb,t′ ≥ 4

√
4(k − r) log(T)

Λi1
− 2(k − r + 1)δ.

The proof follows identical arguments as that of Claim 1 by
using the observation that r(w) is a decreasing function of w.

We now characterize the regret in the exploration phase,
where SNOOZE-IT plays the round robbin algorithm. We
first start with the setup where an agent gets to explore all
k arms. Later, we can easily extend these results, where an
agent explores a subset of arms.

Let us first recall a few notation from the previous section.
For Agent 1, in episode i1, assume that the test succeeds at
gi1 , and accordingly we define ∆i1 = gi1 − si1 . We have the
following result:

Lemma 4 (Episode Regret): Under the good event E , the
Regret of Agent 1 in the exploration phase of i1-th phase is
given by

R1 ≤ C1

[
k
√

Λi1 log T
]
.

Proof 4: The regret of Agent 1 in episode i1 is given by

R1 =

si1+1∑
t=si1+1

µ∗t − µSNOOZE−IT (t).

The above can be further decomposed as

R1 =

gi1∑
t=si1+1

µ∗t − µSNOOZE−IT (t)

+

si1+1∑
t=si1+1

µ∗t − µSNOOZE−IT (t).

Note that as shown in Lemma 3, the second term in the above
expression is 0, and so we need to calculate the first term only.
Furthermore,

R1 = 1 +

gi1−1∑
t=si1+1

µ∗t − µSNOOZE−IT (t)

from the fact the the mean rewards lie in [0, 1].
We first note that the statistical test did not pass until

time gi1 − 1. Hence, there exists no two arms a, b such that
a =Lambda-Opt(λ̃, [k]). Using the definition of the statistical
test with t ≤ gi1 − 1, under the good event E , for τ number
of pulls between any 2 arms, we obtain

µa,t(τ)− µb,t(τ) ≤ C1

√
log T

τ
− (k − 1)δ. (1)

Let us now look at the regret decomposition

R1 = 1 +

gi1−1∑
t=si1+1

µ∗t − µSNOOZE−IT (t)

Since, we know that the Snooze-IT plays the round robbin
algorithm in the interval si1 + 1 to gi1 − 1, we split the said

IEEE TRANSACTIONS ON INFORMATION THEORY 14

interval in k parts, L(a)
i1

for all arms a ∈ [k]. Let us first look at
the interval L(a)

i1
where Snooze-IT plays arm a. We obtain∑

t∈L(a)
i1

µ∗t − µa =
∑
t∈L(a)

i1

max
b∈[k]

µb,t − µa,t

Let us now break the above sum. We define the set O∗b as the
set of time indices where arm b is the optimal arm, for all
b ∈ [k]. With this, we have∑
t∈L(a)

i1

µ∗t − µa =
∑

t∈L(a)
i1
∩O∗b

∑
b∈[k]

µb,t − µa,t

=
∑
b∈[k]

∑
t∈L(a)

i1
∩O∗b

µb,t − µa,t

(i)

≤ C
∑
b∈[k]

[|L(a)
i1
∩O∗b |{

√
log T

|L(a)
i1
∩O∗b |

− (k − 1)δ + (k − 1)δ}]

≤ C
∑
b∈[k]

[√
|L(a)
i1
∩O∗b | log T + (k − 1)δ|L(a)

i1
∩O∗b |

]

≤ C
√

log T
∑
b∈[k]

[√
|L(a)
i1
∩O∗b |

]
(ii)

≤ C
√

log T
√
k

√
|L(a)
i1
|

= C
√
k log T

√
|L(a)
i1
|

where (i) follows from Equation 1, and using the fact that we
require at most kδ deviation to align arm a and b (owing to
the round robbin nature of the play). Step (ii) follows from
Cauchy Schwartz inequality. Now, the total regret we obtain
is given by∑

a∈[k]

∑
t∈L(a)

i1

µ∗t − µa ≤
∑
a∈[k]

[
C
√
k log T

√
|L(a)
i1
|
]

≤ C1

[
k
√

log T
√

Λi1

]
Hence, under the good event, the regret of agent 1 is given by

R1 ≤ C1

[
k
√

log T
√

Λi1

]
.

We now connect the quantity Λi1 to the complexity gap
of the problem. Since we are dealing with agent ranked 1,
we consider the set of dominated arms, C = φ (null set). We
write λt[1] as the complexity gap of the problem. We have the
following lemma.

Lemma 5 (Gap dependent regret): The regret of agent 1 is
given by

R1 ≤ Ck
√

Λi1 log T ≤ C

λgi1−1[1]
k log T

Proof 5: The proof depends on the following claim:
Claim 3: In the exploration phase of agent 1, at time

t′ = si1 + τ , if the gap satisfies λt′ [1] > C
√

log T
kτ , then

the statistical test passes at time t′.

In order to show the claim, we first show that for a window
size of w(λt′ [1]) = C k log T

λ2
t′ [1]

, such that all arms have w̃ =

w(λt′ [1])/k samples, we have

µa,t′(w̃)− µb,t′(w̃) > k(λt′ [1]− δ)

for any pair of arms a and b. The above is easy to show
and follows from the definition of the problem complexity,
following the lines of Lemma 5 of [16].

Now, with the window of size k log T
λ2
t′ [1]

, such that all arms
have w̃ samples, we apply the test on arms a and b. After
some algebric manipulation, and invoking the condition of the
test, we observe that as long as λt′ > c

√
log T
τ , or τ > c log T

λ2
t′[1]

,

we can use the window of size k log T
λ2
t′ [1]

and the test succeeds
at the end of the window.

Now, recall that the test did not pass at si1−1, and so from
the above claim, we obtain

λgi1−1[1] ≤ c

√
log T

Λi1 − 1
,

which implies √
Λi1 ≤

C

λgi1−1[1]

√
log T ,

thus proving the lemma.
This concludes the regret proof where the agent gets to

explore all k arms. We now explain how to extend this for
agents exploring a subset of arms. For the general case, we
will focus on the constrained set of arms.

Let us focus on Agent ranked r. It first constructs the set
C(r) at time t. Then, its action will be exploring the arms
in [k] \ C(r). This is given by the setup of the problem. We
have the following claim, which uses identical arguments as
Lemma 4:

Claim 4: The regret in phase ir of Agent r from playing
round-robbin on set [k] \ Cr is given by

Rr ≤
C

λgir−1[1]
(k − |Cr|) log T

When agent r explores all the arms, Cr = φ, and we get back
to the regret of O(k log T).

We finally argue about the length of an epoch. We have the
following claim.

Lemma 6 (Episode length): For k-armed SNOOZE-IT, the
length of an episode is at least cδ−2/3k1/3 log1/3 T .

Proof 6: Recall that, the length of the buffer is set as
4
δ

√
4k log(T)

Λi1
− 2(k − 1). We consider 2 cases:

Case I Λi1 ≥ buffer1: In this case, there is no exploit
phase, and so the length of an episode is Λi1

Case II Λi1 ≥ buffer1: In this setting, there exists an
exploit phase, and the length of the episode is given by
buffer1 (comes from the definition of buffer)

Now considering the above two alternative, the length of
an episode is given by max{Λi1 , buffer1}. In order to lower

IEEE TRANSACTIONS ON INFORMATION THEORY 15

bound the episode length, we minimize max{Λi1 , buffer1},
which happens when

Λi1 =
4

δ

√
4k log(T)

Λi1
− 2(k − 1).

Now, in the standard slowly varying framework, the value of
δ is typically small. For example, see [16] Theorem 3 of [16],
we require δ = 1/Tα for α ∈ (0, 1). In the regime where T
is large, the second term in the above expression becomes a
minor one, and for compactness of the expression, and to ease
the calculation, we ignore the second term. We obtain

Λi1 ≈
4

δ

√
4k log(T)

Λi1
⇒ Λi1 ≈ cδ1/3k1/3 log1/3 T,

and thus the episode length is at least cδ1/3k1/3 log1/3 T ,
which proves the lemma.

B. Continuing the proof of Theorem 1 with results form
Section A

In this section, we prove the regret of both Agents 1 and 2
for Algorithms 1 and 2.

More interestingly, in this section, we provide a full char-
acterization of the regret of Agent 2. Note that since Agent
2 plays on a restrictive or dominated set of arms, dictated
by Agent 1, it encounters additional regret. In the description
of Algorithm 2, we pointed out the scenarios where Agent 2
is forced to (a) either explore or (b) to stop exploiting. Here,
we obtain a regret upper-bound from these forced exploration-
exploitation.

Notation: To better understand the algorithm, let use focus
on a particular phase of Agent 1, say the i1-th epoch/episode.
We use the same notation defined in Algorithm 2. So, si1
denotes that start-time of epoch i1 ans si1+1 denotes the end
of epoch i1. The exploration duration before committing to an
arm is Λi1 , and so the exploitation phase starts at si1 + Λi1 .
Similarly, the length of exploitation is si1+1−Λi1 . Let us also
assume that the committed arm of Agent 1 in this phase is i∗.

In the calculation below, we condition on the good event
E . At the end of this section, we provide a justification of the
sufficiency of conditioning on this event and provide the total
regret guarantees.

Since Agent 1 plays Algorithm 1, as shown in Lemma 3,
during the exploitation phase, it incurs no regret.

During the exploration phase, using Lemma 4, the regret of
Agent 1 in i1-th phase is

R1(i1) ≤ C(k
√

Λi1 log T)

We now look at the behavior of Agent 2, while Agent 1
is in phase i1. As shown in Figure 1, there can be multiple
phases of Agent 2 inside one phase of Agent 1, and hence let
us assume that at the beginning of epoch i1, the phase number
of Agent 2, given by i2 = ni1 , and by the end of phase i1,
the episode index is ni1 +Ni1 , thus ensuring Ni1 number of
episodes of Agent 2, within one episode of Agent 1.

C. Regret of Agent 2 during the exploration period of Agent
1 in the i1th phase

In this phase, which lasts for Λi1 rounds, we characterize the
regret of Agent 2. For this, let us define τni1

as the duration,
starting from si1 it takes for Agent 2 to commit to an arm
unconditionally. This means that in the absence of competition,
starting from si1 , Agent 2 would take τni1

to commit to an
arm by exploring all the arms.

We have 2 cases:
Case I (Λi1 ≤ τni1

): In this case, since Agent 1 commits
first, the regret of Agent 2, from Lemma 4 is given by
O(k

√
Λi1 log T). In this case, Agent 2 is not forced to explore.

Case II (Λi1 ≥ τni1
): In this case, Agent 2 incurs a regret

of O(k
√
τni1

log T) plus some additional regret owing to force
exploration. The forced exploration comes from the fact that in
this case, although Agent 2 has enough information to commit,
it still explores because Agent 1 has not committed yet, and
the commitment of Agent 2 will cause periodic collisions for
Agent 2.

1) Forced Exploration: We now characterize the regret of
Agent 2 form forced exploration. Note that Agent 2 is forced
to explore at time t if:

1) Agent 1 is exploring, and
2) At time t, S(jt)

2 is non-empty, where jt ∈ [k] is the arm
played by Agent 1.

Let us understand this in a bit more detail. If S(jt)
2 is non-

empty, it implies that without the presence of competition,
Agent 2 would have played arm jt. This comes from the
definition of S(.)

2 . Now, when Agent 1 is playing that arm, it
implies a forced exploration on Agent 2. We can write down
the above forced exploration time steps as the following.

Forced Exploration =

si1+Λi1∑
t=si1

k∑
j=1

1(jt = j)1
(
τ (j)
ni1

< t
)
,

where τ (j)
ni1

is defined as the duration of the exploration period
before the (λ̃,A) test succeeds with A = [k]\{j}, when Agent
is in phase Explore ALL.

Since the mean rewards lie in [0, 1], the regret obtained from
forced exploration is

O

si1+Λi1∑
t=si1

k∑
j=1

1(jt = j)1
(
τ (j)
ni1

< t
) ,

Combining this two, the regret of Agent 2 during the
exploration phase of Agent 1 is given by

O
[
1(Case-I)k

√
Λi1 log T + 1(Case -II)

(
k
√
τni1

log T

+

si1+Λi1∑
t=si1

k∑
j=1

1(jt = j)1
(
τ (j)
ni1

< t
))]

IEEE TRANSACTIONS ON INFORMATION THEORY 16

D. Regret of Agent 2 during exploitation phase of Agent 1

Suppose Agent 1 commits to arm i∗. In this phase, Agent
2 is forced to play in a restrictive set [k] \ {i∗}. Note that in
this phase, several cases may happen:

Agent 2 is exploiting: Note that Agent 2 keeps the set S(j)
2

for all j ∈ [k], and if j 6= i∗, Agent 2 immediately commits
to j. Keeping track of such S

(j)
2 thus ensures that agent 2’s

exploration are not wasted.
Furthermore, if S(j)

2 is empty, for all j 6= i∗, Agent 2 will
keep accumulating samples, now from a restrictive set [k] \
{i∗}, and may commit to an arm within the set. In both the
cases, we have shown in Lemma 3 that the regret incurred is
zero.

Agent 2 is exploring: Note that inside the exploit phase
of Agent 1, Agent 2 basically plays the Snooze-IT algorithm
over the arm-set [k] \ {i∗}. Hence, using Lemma 4 on the
constrained set [k] \ i∗, the regret is given by

O

ni1
+Ni1∑

p=ni1
+1

(k − 1)

√
τ̃

(i∗)
p log T

 ,

where Ni1 is the number of phases of Agent 2 in the current
exploitation phase of Agent 1, and τ̃

(i∗)
p is defined as the

duration of the exploration period before the (λ̃,A) test
succeeds with A = [k] \ {i∗}, when Agent 2 is in state
Explore-i∗.

E. Total Regret of both agents in one phase

Putting everything together, the regret of Agent 1 and 2,
denoted by R1(i1) and R2(i1) respectively, during the i1-th
phase of Agent 1 is given by

R1(i1) ≤ O(k
√

Λi1 log T), and

R2(i1) ≤ O

[
1(Case-I)k

√
Λi1 log T︸ ︷︷ ︸

T1

+ 1(Case-II)(k
√
τni1

log T +

si1+Λi1∑
t=si1

k∑
j=1

1(jt = j)1(τ (j)
ni1

< t))

︸ ︷︷ ︸
T2

+

ni1
+Ni1∑

`=ni1+1

(k − 1)

√
τ̃

(i∗)
` log T


︸ ︷︷ ︸

T3

]

1) Regret for Agent 1 in phase i1:: We now bound
√

Λi1
using Lemma 5. In particular, we obtain√

Λi1 ≤ O

(
1

λgi1−1

)√
log T ,

where gi1 = si1 + Λi1 is the time instant where the test
succeeds for Agent 1, and λt denotes the dynamic gap. Hence,
we have

R1(i1) ≤ O(k
√

Λi1 log T) ≤ O

(
k log T

λgi1−1[1]

)
,

2) Regret for Agent 2 in phase i1: We now upper bound
T1, T2 and T3 separately. We first consider T1.

We have

T1 = 1(Case-I)k
√

Λi1 log T ≤ k
√

Λi1 log T ,

and using the same modified lemma as before, we obtain

T1 ≤ O

(
k log T

λgi1−1[1]

)
,

where λgi1−1[1] denotes the dynamic gap for player 1 at time
instant gi1 − 1.

For T2, we have

T2 = 1(Case -II)
(
k
√
τni1

log T

+

si1+Λi1∑
t=si1

k∑
j=1

1(jt = j)1
(
τ (j)
ni1

< t
))

≤

(
k
√
τni1

log T︸ ︷︷ ︸
T2,1

+

si1+Λi1∑
t=si1

k∑
j=1

1(jt = j)1
(
τ (j)
ni1

< t
))

︸ ︷︷ ︸
T2,2

The term T2,1 can be bounded similar to Λi1 . This is the
exploitation time of Agent 2 in the Explore all phase. Hence,
it can be upper bounded as

T2,1 ≤ O

(
k log T

λg̃i1−1[2]

)
,

where g̃i1 = si1 + τni1
is the time instant where the test

succeeds for Agent 2, andλg̃i1−1[2] denotes the dynamic gap
for player 2 at time instant g̃i1 − 1.

Note that during the exploration phase of Agent 1, the arms
are being played in a round robbin fashion, and hence

T2,2 ≤
si1+Λi1∑
t=si1

k∑
j=1

1(jt = j)1
(
τ (j)
ni1

< t
)

≤
si1+Λi1∑
t=si1

k∑
j=1

1(jt = j)

≤
k∑
j=1

si1+Λi1∑
t=si1

1(jt = j)1
(
τ (j)
ni1

< t
)

≤
k∑
j=1

Λi1
k

= Λi1 .

Hence, we have

T2,2 ≤ O

(1

λgi1−1[1]

)2

log T

 .
Combining T2,1 and T2,2, we have

T2 ≤ O

(k log T

λg̃i1−1[2]

)
+

(
1

λgi1−1[1]

)2

log T



IEEE TRANSACTIONS ON INFORMATION THEORY 17

Let us now control T3. Note that during the exploitation
phase of Agent 1, Agent 2 only incurs regret while exploring
within the set of [k]\{i∗}. So, using the Lemma 5 now using
on arm set [k] \ {i∗} with cardinality k − 1 is given by

√
τ̃

(i∗)
p ≤ O

 (k − 1)
√

log T

λ
(i∗)
(gni1

,p)−1[2]

 ,

where gni1 ,p
is the time instant where the test succeeds

when Agent 2 is in p-th phase. Furthermore, since Agent 2 is
not playing arm i∗, this regret depends on the dynamic gap
excluding arm i∗, denoted by λ(i∗)

(.) . Using this, we have

T3 =

ni1+Ni1∑
p=ni1

+1

(k − 1)

√
τ̃

(i∗)
p log T

≤
ni1

+Ni1∑
p=ni1+1

 (k − 1) log T

λ
(i∗)
(gni1

,p)−1[2]

 .

Combining T1, T2 and T3, we obtain

R2(i1) ≤ O
[(

k log T

λgi1−1[1]

)
+

(
k log T

λg̃i1−1[2]

)

+

(
1

λgi1−1[1]

)2

log T +

ni1
+Ni1∑

p=ni1
+1

 (k − 1) log T

λ
(i∗)
(gni1

,p)−1[2]

]

≤ O
[(

k log T

λg̃i1−1[2]

)
+

(
1

λgi1−1[1]

)2

k log T

+

ni1+Ni1∑
p=ni1

+1

 (k − 1) log T

λ
(i∗)
(gni1

,p)−1[2]

],
since λt ∈ [0, 1]. What remains is a bound on Ni1 .

F. Total Regret upto time T
In the above calculations, we have the regret for the i1-

th phase of Agent 1 only. Note that the starting instances
of epochs for Agent 1, denoted by {si1}i1=1,2,.. is random.
To handle this issue, the learning epoch is split into several
(deterministic) blocks and the total regret guarantee is given
over these deterministic splits.

G. Total Regret for Agent 1
From Lemma 6, the minimum length of an epoch of Agent

1 is given by Ω(δ−2/3k1/3 log1/3 T). Motivated by this, we fix
the deterministic blocks of length δ−2/3k1/3 log1/3 T so that
each block can accommodate at most 2 phases. Using this, we
write the regret of Agent 1 as

R1 ≤ C
m∑
`=1

1

λmin,`[1]
k log T,

where m denotes the number of blocks, each having
length at most min{c δ−2/3k1/3 log1/3 T, T}, and λmin,`[1] =
mint∈`-th block λt.

1) Total Regret of Agent 2: Now let us look at Agent
2. Note that in the exploitation phase of Agent 1, Agent 2
either plays on a constrained set with k− 1 arms, or uses the
optimistic estimates to exploit. So, using Lemma 6, now on a
constrained set of size (k − 1) the minimum length between
2 epochs of Agent 2 is given by

Ω
(
δ−2/3(k − 1)1/3 log1/3 T

)
.

Note that the since an entire phase of Agent 1, which
includes exploration as well as exploitation is lower bounded
by Ω(δ−2/3k1/3 log1/3 T), trivially the exploitation phase is
at least, Ω(δ−2/3k1/3 log1/3 T). Hence the number of epochs
played by Agent 2 for during the i1-th phase of Agent 1 is
given by

Ni1 ≤ 2× 2×

⌈(
k

k − 1

)1/3
⌉
.

We are now ready to write the total regret of Agent 2 upto

time T . It is given by

R2 ≤ C1

m∑
`=1

{(
1

λmin,`[2]

)
k log T +

(
1

λmin,`[1]

)2

k log T

+

⌈(
k

k − 1

)1/3
⌉(

1

mina∈[k] λ
(a)
min,`[2]

)
(k − 1) log T

}
,

where the number of blocks is denoted by m, each having

length at most min{c δ−2/3k1/3 log1/3 T, T}, and

λmin[`] = min
t∈`-th block

λt.

Furthermore, λ(a)
(.) denotes the dynamic gap in the problem

without arm a.

H. Event E and the total regret

All the above calculations are done conditioned on the good
event. Now the total regret (of agent 1) is upper bounded by

(1− P(E)R1 + P(Ec)× T,

where the second term comes from the trivial fact that the
rewards are within [0, 1], and so the trivial regret is T .
Substituting the expression of P(Ec) from Proposition 1, we
get the regret upper bound as

R1 +
2Nk

T
.

Note that the second term is decreasing with T and hence
considered as the minor term with respect to R1. So, we
conclude that the overall regret is (order-wise) upper bounded
by R1.

Similar arguments and exact conclusion can be drawn for
Agent 2 as well.

In this theorem, we consider the generic case of N agents,
and we characterize the regret of agent ranked r. We consider
the learning of Agent r − 1 as the action of Agent r will be

IEEE TRANSACTIONS ON INFORMATION THEORY 18

dominated by that. The proof here follows in the same lines
as of Theorem 1. The problem has an inductive structure, and
this proof exploits that. We may only focus on the behavior
of r − 1-th agent; very similar to focusing on the first agent
in the previous theorem.

I. Behavior of r − 1-th ranked Agent

We consider 1 epoch of agent r − 1. From the notation of
Algorithm 3, it starts at tir−1 , and let the exploration period is
Λir−1 . Similarly, the exploitation period duration is tir−1+1−
Λir−1

.
Note that if r ≥ 3, the exploration of Agent r − 1 will be

restricted. Let Ct(r−1) be the set of arms dominated by agents
ranked 1 to r−2, i.e., |Ct(r−1)| ≤ r−2. With this, for a fixed
Ct(r− 1), the dynamic gap parameter for Agent ranked r− 1

is given by λ
Ct(r−1)
t [r − 1]. Note that when Ct(r − 1) = φ,

Agent r − 1 will Explore all arms.
1) Regret of Agent r in explore phase of Agent r − 1:

As presented in the previous theorem, we break the regret of
Agent r, during the exploration and the exploitation phase of
agent r − 1.

During the exploration phase, Agent r can either Explore
all arms, or explore within a restricted set. Recall that Ct(r)
denotes the set of arms dominated by agents ranked higher
than Agent r. If Ct(r) = φ, Agent r explores all the arms.
Otherwise it will explore the set of arms given by [k] \ Ct(r).

Similar to the 2 agent case, here also, Agent 2 will face
forced exploration, and the definition is identical—instead of
conditioning on the behavior of Agent 1, here, we condition
on the behavior of Agent r − 1.

Following the same lines, we obtain the regret of Agent r
in the exploration phase of Agent r − 1 is given by

O

[ (k − |Ct(r − 1)|) log T

λ
Ct(r−1)
gir−1

−1[r − 1]

+

(
(k − |Ct(r)|) log T

λ
Ct(r)
gir−1[r]

)

+

 1

λ
Ct(r−1)
gir−1

−1[r − 1]

2

(k − |Ct(r − 1)|) log T

]

where the time instances, gir−1 denote the time the (λ̃,A) test
succeeds for Agent r− 1 with A = [k] \ Ct(r− 1). Similarly,
gir denote the time (λ̃,A) test succeeds for Agent r with A =
[k] \ Ct(r). Note that |Ct(r− 1)| ≤ r− 2 and |Ct(r)| ≤ r− 2,
since Agent r−1 has not committed yet. We upper bound the
following as

O

[(
(k − |Ct(r)|) log T

λ
Ct(r)
gir−1[r]

)

+

 1

λ
Ct(r−1)
gir−1

−1[r − 1]

2

(k − |Ct(r − 1)|) log T

]

2) Regret of Agent r in exploit phase of Agent r − 1:
Similar to the behavior of Agent 2, in this case Agent r may
be multiple epochs inside an exploration period of Agent r−1.

Note that inside the exploit phase of Agent 1, Agent 2 plays
with the arm-set [k] \ Ct(r). Hence, mimicking the regret of
Agent 2 as explained i the proof of Theorem 2, the regret
owing to exploitation is given by

O

ir+Nir∑
p=ir+1

√
(k − |Ct(r)|)τ̃ (Ct(r))

p log T

 ,

where Nir is the number of phases of Agent 2 in the current
exploitation phase of Agent 1, and τ̃

(Ct(r))
j is defined as

the duration of the exploration period before the (λ̃,A) test
succeeds with A = [k] \ Ct(r).

We bound the above as

O

ir+Nir∑
p=ir+1

 (k − |Ct(r)|) log T

λ
Ct(r)
(gir,p)−1[2]

 .
We now need to bound Nir . Note that, when Agent 1

commits, |Ct(r − 1)| = r − 2. As a consequence, using 6
with the constrained set Ct(r− 1), the minimum length of an
episode for Agent r − 1 is Ω(δ−2/3(k − r + 2)1/3 log1/3 T .
Hence, we have

Nir ≤ 2× 2×

⌈(
k − r + 2

k − r + 1

)1/3
⌉
.

We now break the learning horizon into deterministic
epochs. We use deterministic blocks of fixed length given
by O(δ−2/3k1/3 log1/3 T). Now, within one such block, the
number of epochs of Agent r − 1 is upper bounded by

⌈(
k

k − r + 2

)1/3
⌉
.

Hence, in one such deterministic block the regret of Agent
r will be multiplied by the regret in one phase of Agent r− 1
times the number of phases of Agent r − 1.

3) Regret Expression: We are now ready to write the
expression of regret for Agent r. In the above calculation, we
work with a fixed constrained set Ct(r − 1). We now extend
the result uniformly for all constrained set here. We obtain

Rr ≤ C
m∑
`=1

{(
k

k − r + 2

)1/3
[ 1

min
C∈[k]
|C|≤r−2

λCmin,`[r]



+

 1

min
C∈[k]
|C|≤r−2

λCmin,`[r − 1]


2]
k log T +

⌈(
k − r + 2

k − r + 1

)1/3
⌉

×

 1

min
C∈[k]
|C|≤r−1

λCmin,`[r]

 (k − r + 1) log T

}
,

IEEE TRANSACTIONS ON INFORMATION THEORY 19

where we now discuss several terms.
The term min C∈[k]

|C|≤r−2

λCmin,`[r] denotes the (worst-case) gap,

of Agent r on a subset C of cardinality at most r − 2. Note
that this is an lower bound on the term λ

Ct(r)
gir−1[r]. Furthermore,

since we do not have a lower bound on |Ct(r)|, we upper bound
k − |Ct(r)| as k.

Similarly, the second term comes from forced exploration.
The final term also follows from the exploitation of Agent
r. Here, min C∈[k]

|C|≤r−1

λCmin,`[r] denotes the (worst-case) gap, of

Agent r on a subset C of cardinality at most r − 1. Note that
this is an lower bound on the term λ

Ct(r−1)
gir−1 [r − 1].

This above argument proves the theorem under the good
event E . Similar to the proof of Theorem 2, we can extend
the result to the total regret using Proposition 1.

The proof comes from a reduction argument from the setup
without blackboard to the setup with blackboard. Here, we
obtain a sufficient condition on the drift δ′, such that the
dynamics “without blackboard” setup can be reduced to the
problem setting of “with blackboard”.

In the case of two agents, the proof for this reduction uses
the following fact established in Section VII: in the absence of
the black-board, Agent 2 requires at-most k time-steps to infer
the state of agent 1. Thus, if δ

′
= Ckδ, then the deviation

in arm-means in these k time steps before communication
can occur is at-most δ′. This coincides with the deviation of
the setting “with blackboard” where in one time-step Agent 2
learns of the state of Agent 1.

Hence, we can upper bound the performance here by a
worse system with drift δ′. However, from the point of view
of a δ′ shifted system, the framework is equivalent to having
a black board present.

Thus, the regret proofs for the case “without blackboard”
are just corollaries of the regret proof “with blackboard” with
δ′.

The proof of Lemma 2 follows identical argument. With the
modified reward model, we argue in Section VII that it takes at
most k time steps for Agent r to learn the arms that are being
dominated by Agents ranked 1 to r−1. Hence, essentially, the
framework is equivalent to the proof of Lemma 1, and hence
the lemma follows.

REFERENCES

[1] R. Johari, V. Kamble, and Y. Kanoria, “Matching while learning,”
Operations Research, vol. 69, no. 2, pp. 655–681, 2021.

[2] L. T. Liu, H. Mania, and M. Jordan, “Competing bandits in matching
markets,” in International Conference on Artificial Intelligence and
Statistics. PMLR, 2020, pp. 1618–1628.

[3] A. Sankararaman, S. Basu, and K. A. Sankararaman, “Dominate or
delete: Decentralized competing bandits in serial dictatorship,” in In-
ternational Conference on Artificial Intelligence and Statistics. PMLR,
2021, pp. 1252–1260.

[4] L. T. Liu, F. Ruan, H. Mania, and M. I. Jordan, “Bandit learning in de-
centralized matching markets,” Journal of Machine Learning Research,
vol. 22, no. 211, pp. 1–34, 2021.

[5] X. Dai and M. I. Jordan, “Learning strategies in decentralized matching
markets under uncertain preferences,” Journal of Machine Learning
Research, vol. 22, no. 260, pp. 1–50, 2021.

[6] ——, “Multi-stage decentralized matching markets: Uncertain prefer-
ences and strategic behaviors,” arXiv preprint arXiv:2102.06988, 2021.

[7] S. Basu, K. A. Sankararaman, and A. Sankararaman, “Beyond log2(t)
regret for decentralized bandits in matching markets,” in Proceedings
of the 38th International Conference on Machine Learning, ser.
Proceedings of Machine Learning Research, M. Meila and T. Zhang,
Eds., vol. 139. PMLR, 18–24 Jul 2021, pp. 705–715. [Online].
Available: https://proceedings.mlr.press/v139/basu21a.html

[8] D. Gale and L. S. Shapley, “College admissions and the stability of
marriage,” The American Mathematical Monthly, vol. 69, no. 1, pp. 9–
15, 1962.

[9] E. Damiano and R. Lam, “Stability in dynamic matching markets,”
Games and Economic Behavior, vol. 52, no. 1, pp. 34–53, 2005.

[10] M. Akbarpour, S. Li, and S. O. Gharan, “Thickness and information
in dynamic matching markets,” Journal of Political Economy, vol. 128,
no. 3, pp. 783–815, 2020.

[11] M. Kurino, “Credibility, efficiency, and stability: A theory of dynamic
matching markets,” The Japanese Economic Review, vol. 71, no. 1, pp.
135–165, 2020.

[12] J. Dickerson, K. Sankararaman, K. Sarpatwar, A. Srinivasan, K.-L. Wu,
and P. Xu, “Online resource allocation with matching constraints,” in
International Conference on Autonomous Agents and Multiagent Systems
(AAMAS), 2019.

[13] G. Even, M. M. Halldórsson, L. Kaplan, and D. Ron, “Scheduling with
conflicts: online and offline algorithms,” Journal of scheduling, vol. 12,
no. 2, pp. 199–224, 2009.

[14] L. Massoulié and K. Xu, “On the capacity of information processing
systems,” in Conference on Learning Theory. PMLR, 2016, pp. 1292–
1297.

[15] V. Shah, L. Gulikers, L. Massoulié, and M. Vojnović, “Adaptive match-
ing for expert systems with uncertain task types,” Operations Research,
vol. 68, no. 5, pp. 1403–1424, 2020.

[16] R. Krishnamurthy and A. Gopalan, “On slowly-varying non-stationary
bandits,” arXiv preprint arXiv:2110.12916, 2021.

[17] P. Auer, N. Cesa-Bianchi, and P. Fischer, “Finite-time analysis of the
multiarmed bandit problem,” Machine learning, vol. 47, no. 2, pp. 235–
256, 2002.

[18] C. Maheshwari, S. Sastry, and E. Mazumdar, “Decentralized,
communication-and coordination-free learning in structured matching
markets,” Advances in Neural Information Processing Systems, vol. 35,
pp. 15 081–15 092, 2022.

[19] B. Pittel, “The average number of stable matchings,” SIAM Journal on
Discrete Mathematics, vol. 2, no. 4, pp. 530–549, 1989.

[20] A. E. Roth and J. H. V. Vate, “Random paths to stability in two-
sided matching,” Econometrica: Journal of the Econometric Society,
pp. 1475–1480, 1990.

[21] D. E. Knuth, Stable marriage and its relation to other combinatorial
problems: An introduction to the mathematical analysis of algorithms.
American Mathematical Soc., 1997, vol. 10.

[22] P. Whittle, “Restless bandits: Activity allocation in a changing world,”
Journal of applied probability, vol. 25, no. A, pp. 287–298, 1988.

[23] A. Slivkins and E. Upfal, “Adapting to a changing environment: the
brownian restless bandits,” 2008.

[24] A. Garivier and E. Moulines, “On upper-confidence bound policies for
switching bandit problems,” in International Conference on Algorithmic
Learning Theory. Springer, 2011, pp. 174–188.

[25] P. Auer, P. Gajane, and R. Ortner, “Adaptively tracking the best bandit
arm with an unknown number of distribution changes,” in Proceedings
of the Thirty-Second Conference on Learning Theory, ser. Proceedings
of Machine Learning Research, A. Beygelzimer and D. Hsu, Eds.,
vol. 99. PMLR, 25–28 Jun 2019, pp. 138–158. [Online]. Available:
https://proceedings.mlr.press/v99/auer19a.html

[26] F. Liu, J. Lee, and N. Shroff, “A change-detection based framework for
piecewise-stationary multi-armed bandit problem,” in Proceedings of the
AAAI Conference on Artificial Intelligence, vol. 32, no. 1, 2018.

[27] O. Besbes, Y. Gur, and A. Zeevi, “Stochastic multi-armed-bandit
problem with non-stationary rewards,” Advances in neural information
processing systems, vol. 27, pp. 199–207, 2014.

[28] Z. S. Karnin and O. Anava, “Multi-armed bandits: Competing with op-
timal sequences,” Advances in Neural Information Processing Systems,
vol. 29, pp. 199–207, 2016.

[29] H. Luo, C.-Y. Wei, A. Agarwal, and J. Langford, “Efficient contextual
bandits in non-stationary worlds,” in Conference On Learning Theory.
PMLR, 2018, pp. 1739–1776.

[30] L. Wei and V. Srivatsva, “On abruptly-changing and slowly-varying mul-
tiarmed bandit problems,” in 2018 Annual American Control Conference
(ACC). IEEE, 2018, pp. 6291–6296.

IEEE TRANSACTIONS ON INFORMATION THEORY 20

[31] A. Abdulkadiroğlu and T. Sönmez, “Random serial dictatorship and
the core from random endowments in house allocation problems,”
Econometrica, vol. 66, no. 3, pp. 689–701, 1998.

[32] B. Awerbuch and R. Kleinberg, “Competitive collaborative learning,”
Journal of Computer and System Sciences, vol. 74, no. 8, pp. 1271–
1288, 2008.

[33] S. Buccapatnam, J. Tan, and L. Zhang, “Information sharing in dis-
tributed stochastic bandits,” in 2015 IEEE Conference on Computer
Communications (INFOCOM). IEEE, 2015, pp. 2605–2613.

[34] A. Agarwal, P. L. Bartlett, P. Ravikumar, and M. J. Wainwright,
“Information-theoretic lower bounds on the oracle complexity of
stochastic convex optimization,” IEEE Transactions on Information
Theory, vol. 58, no. 5, pp. 3235–3249, 2012.

[35] A. Slivkins, “Introduction to multi-armed bandits,” arXiv preprint
arXiv:1904.07272, 2019.

[36] T. Lattimore and C. Szepesvári, Bandit algorithms. Cambridge Uni-
versity Press, 2020.

Avishek Ghosh (Ph.D UC Berkeley, 2021) is an Assistant Professor at
the department of Systems and Control Engg. and The Centre for Machine
Intelligence and Data Science at IIT Bombay. Previously, he was an HDSI
(Data Science) Post-doctoral fellow at the University of California, San
Diego. Prior to this, he completed my PhD from the Electrical Engg. and
Computer Sciences (EECS) department of UC Berkeley, advised by Prof.
Kannan Ramchandran and Prof. Aditya Guntuboyina. His research interests
are broadly in Theoretical Machine Learning, including Federated Learning
and multi-agent Reinforcement/Bandit Learning. In particular, Avishek is
interested in theoretically understanding challenges in multi-agent systems,
and competition/collaboration across agents. Before coming to Berkeley,
Avishek completed his masters degree from Indian Institute of Science (IISc),
Bangalore (at the Electrical Communication Engg. Dept) and prior Avishek
completed his bachelors degree from Jadavpur University, in the dept. of
Electronics and Telecommunication Engineering.

Abishek Sankararaman (Ph.D, UT Austin 2019) is a Senior Applied
Scientist at Amazon (AWS) where he conducts research on online learning
and anomaly detection. Before AWS, he was a post-doctoral researcher at
University of California, Berkeley, hosted by Prof. Venkat Anantharam, where
he conducted research on networked learning in multi-armed bandits. Abishek
received his PhD from The University of Texas at Austin, where he was
affiliated with the Simons Center for Network Mathematics and advised by
Prof. François Baccelli. His PhD dissertation was based on analyzing novel
stochastic geometric models for wireless dynamics and spatial random graph
clustering and proving several phase-transition results on these models. Prior
to this, he completed his undergraduate degree from IIT Madras.

Kannan Ramchandran (Ph.D Columbia University, 1993) is a Professor
of Electrical Engineering and Computer Science at UC Berkeley, where
he has been since 1999. He was on the faculty at UIUC from 1993 to
1999, and with AT&T Bell Labs from 1984 to 1990.Prof. Ramchandran
is a Fellow of the IEEE. He has published extensively in his field, holds
over a dozen patents, and has received several awards for his research and
teaching including an IEEE Information Theory Society and Communication
Society Joint Best Paper award for 2012, an IEEE Communication Society
Data Storage Best Paper award in 2010, two Best Paper awards from the IEEE
Signal Processing Society in 1993 and 1999, an Okawa Foundation Prize for
outstanding research at Berkeley in 2001, and an Outstanding Teaching Award
at Berkeley in 2009, and a Hank Magnuski Scholar award at Illinois in 1998.
His research interests are broadly in the area of distributed systems theory
and algorithms intersecting the fields of signal processing, communications,
coding and information theory, and networking. His current systems focus
is on large-scale distributed storage, large-scale collaborative video content
delivery, and biological systems, with research challenges including latency,
privacy and security, remote synchronization, sparse sampling, and shotgun
genome sequencing.

Tara Javidi (Ph.D, Univ. of Michigan, Ann Arbor, 2002) is a Jacobs Family
Scholar, HDSI Fellow, and Professor at Electrical and Computer Engineering
and Halicioglu Data Science Institute (HDSI) of UC San Diego. She received
her BS in electrical engineering at Sharif University of Technology, Tehran,
Iran. She received her MS degrees in electrical engineering (systems) and in
applied mathematics (stochastic analysis) from the University of Michigan,
Ann Arbor. She received her Ph.D. in electrical engineering and computer
science from the University of Michigan, Ann Arbor, in 2002. From 2002 to
2004, Tara Javidi was an assistant professor at the Electrical Engineering
Department, University of Washington, Seattle. In 2005, she joined the
University of California, San Diego, where she is currently a Jacobs Family
Scholar, Halicioglu Data Science Fellow, and Professor of Electrical and
Computer Engineering. In 2012-2013, she spent her sabbatical at Stanford
University as a visiting faculty. Tara Javidi’s research interests are in theory of
active learning, information acquisition and statistical inference, information
theory with feedback, stochastic control theory, and wireless communications
and communication networks. Tara Javidi is currently the Editor in Chief
of IEEE Journal on Selected Areas in Information Theory (2022/23/24).
She is also serving on the Board of Governors of the IEEE Information
Theory Society (2017/18/19-2020/21/22). She perviously served on the (guest)
and associated editorial board of the IEEE Journal of Selected Areas in
Communications, ACM/IEEE Transactions on Networking, the IEEE Infor-
mation Theory Society Newsletter, IEEE Transactions on Network Science
and Engineering, and IEEE Transactions on Information Theory. Tara Javidi
is a Fellow of IEEE. She received numerous awards including Qualcomm
Faculty Award (2018, 2019) for her contributions to wireless technology. Tara
Javidi was a recipient of the National Science Foundation early career award
(CAREER) in 2004, Barbour Graduate Scholarship, University of Michigan,
in 1999, and the Presidential and Ministerial Recognitions for Excellence in
the National Entrance Exam, Iran, in 1992.

Arya Mazumdar (S’05-M’13-SM’16) is an Associate Professor of Data
Science at the University of California San Diego. In 2015–2021, he was an
Assistant followed by an Associate Professor in the College of Information
and Computer Sciences in University of Massachusetts Amherst. Prior to that,
he was a faculty member at University of Minnesota-Twin Cities (2013–15),
and a postdoctoral researcher at Massachusetts Institute of Technology (2011–
12). Arya obtained his Ph.D. degree from University of Maryland, College
Park (2011). He is a recipient of multiple awards, including a Distinguished
Dissertation Award for his Ph.D. thesis (2011), the NSF CAREER award
(2015), an EURASIP JASP Best Paper Award (2020), and the IEEE ISIT
Jack K. Wolf Student Paper Award (2010). He currently serves as an Associate
Editor for the IEEE Transactions on Information Theory and as an Area editor
for Now Publishers Foundation and Trends in Communication and Information
Theory series. His research interests include coding theory, information theory,
statistical learning, and distributed optimization.

