Geophysical Research Letters’

RESEARCH LETTER
10.1029/2023GL106485

Key Points:

o The dependence of natural gouge
friction on temperature and velocity
cannot be captured by empirical laws
with constant coefficients

o The competition of healing
mechanisms explains a velocity- and
temperature-controlled transition be-
tween velocity-weakening and
hardening

e The constitutive law explains the
mechanics of natural gouge from
various tectonic settings, allowing
scaling up from laboratory to nature

Supporting Information:

Supporting Information may be found in
the online version of this article.

Correspondence to:

S. Nie,
shiyingn@usc.edu

Citation:

Nie, S., & Barbot, S. (2024). Velocity and
temperature dependence of steady-state
friction of natural gouge controlled by
competing healing mechanisms.
Geophysical Research Letters, 51,
€2023GL106485. https://doi.org/10.1029/
2023GL106485

Received 20 SEP 2023
Accepted 29 APR 2024

Author Contributions:
Conceptualization: Shiying Nie,
Sylvain Barbot

Data curation: Shiying Nie

Formal analysis: Shiying Nie,

Sylvain Barbot

Funding acquisition: Sylvain Barbot
Investigation: Shiying Nie,

Sylvain Barbot

Methodology: Shiying Nie,

Sylvain Barbot

Project administration: Sylvain Barbot
Resources: Shiying Nie, Sylvain Barbot
Software: Shiying Nie

Supervision: Sylvain Barbot

© 2024. The Author(s).

This is an open access article under the
terms of the Creative Commons
Attribution-NonCommercial-NoDerivs
License, which permits use and
distribution in any medium, provided the
original work is properly cited, the use is
non-commercial and no modifications or
adaptations are made.

'.) Check for updates

A n . l ADVANCING
nu EARTH AND

-~ SPACE SCIENCES

Velocity and Temperature Dependence of Steady-State o
Friction of Natural Gouge Controlled by Competing Healing
Mechanisms

Shiying Nie' © and Sylvain Barbot'
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Abstract The empirical rate- and state-dependent friction law is widely used to explain the frictional
resistance of rocks. However, the constitutive parameters vary with temperature and sliding velocity, preventing
extrapolation of laboratory results to natural conditions. Here, we explain the frictional properties of natural
gouge from the San Andreas Fault, Alpine Fault, and the Nankai Trough from room temperature to ~300°C for a
wide range of slip-rates with constant constitutive parameters by invoking the competition between two healing
mechanisms with different thermodynamic properties. A transition from velocity-strengthening to velocity-
weakening at steady-state can be attained either by decreasing the slip-rate or by increasing temperature. Our
study provides a framework to understand the physics underlying the slip-rate and state dependence of friction
and the dependence of frictional properties on ambient physical conditions.

Plain Language Summary The physics of friction is crucial to understanding fault mechanics,
impacting virtually every aspect of earthquake initiation, propagation, and associated hazards. The mechanics of
active fault zones exhibit a complex dependence on temperature and sliding velocity among other factors. The
frictional resistance of natural gouge can be explained by empirical rate- and state-dependent friction laws for a
limited range of conditions. However, explaining the non-stationary frictional behavior of gouge friction and
extrapolation of laboratory constraints to natural conditions remains challenging. In this study, we describe a
constitutive law that predicts the velocity of sliding of natural gouge based on applied shear stress, effective
confining pressure, and the ambient temperature of the fault. The transition from stable to unstable sliding is
controlled by the competition between micro-mechanisms of deformation within the gouge that dominate in
distinct ranges of temperature and slip-rate. Once calibrated to mechanical data for a specific lithology and
confining pressure, the model explains the temperature and slip-rate control on fault stability, allowing
extrapolation of laboratory data to natural conditions.

1. Introduction

The slip-rate and state dependence of friction is a key feature of fault mechanics that enables runaway instabilities
and the recurrence of earthquakes (Dieterich, 1972, 1978). The unstable nature of rock friction is widely
recognized as the origin of stick-slip instabilities in natural faults (Brace & Byerlee, 1966; Byerlee & Brace, 1968;
Ohnaka & Shen, 1999; Scholz, 1998), allowing laboratory analogs, down-scaled versions of earthquakes (Latour
et al., 2013; McLaskey, 2019). The frictional behavior of rocks may be described by constitutive laws calibrated
with laboratory observations that predict the slip-rate based on shear stress and one or more state variables
representing the evolving texture of fault gouge (Dieterich, 1979a, 1979b, 1981; Gu et al., 1984; Ruina, 1983;
Rice & Ruina, 1983).

Empirical friction laws capture the direct velocity dependence of friction and the transient phase that follows
perturbations of shear stress, normal stress, or temperature (Chester, 1994; Dieterich, 1979a; Linker & Dieter-
ich, 1992), reproducing experimental data for many lithologies in a wide range of hydrothermal settings (e.g.,
Blanpied et al., 1995; den Hartog et al., 2021; He et al., 2007; Niemeijer et al., 2016; Okuda et al., 2023; Saffer &
Marone, 2003; Zhang et al., 2017). Friction laws enable numerical modeling of natural faults (e.g., Barbot, 2020;
Barbot et al., 2012; Julve et al., 2023; Liu et al., 2020; Qiu et al., 2016; Sathiakumar & Barbot, 2021; Shi
et al., 2022; Tse & Rice, 1986; Veedu & Barbot, 2016), successfully explaining a variety of fault behaviors,
encompassing creep, slow-slip events, and crack-like or pulse-like seismic ruptures (e.g., Barbot, 2019b; Cattania
& Segall, 2019; Lapusta & Rice, 2003; Nie & Barbot, 2021, 2022; Wang & Barbot, 2023).
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The frictional parameters vary widely depending on hydrothermal conditions, slip-rate, pore-fluid and confining
pressure, and other factors in laboratory experiments, even for a given lithology. For example, phyllosilicate-rich
natural gouge from the Alpine Fault, Nankai Trough, and the Central San Andreas Fault (CSAF) (Boulton
etal., 2014, 2018; Carpenter et al., 2015; den Hartog et al., 2012; Moore et al., 2016; Niemeijer et al., 2016; Tesei
et al., 2014) consistently show a drastic reduction of the strengthening effect or even a transition from velocity-
strengthening to velocity-weakening at steady-state with increasing temperature and/or decreasing slip-rate
(Figure 1). The velocity dependence of frictional stability can be captured using a cut-off velocity in the fric-
tion law (e.g., Matsuzawa et al., 2010; Okubo, 1989; Shibazaki et al., 2010), but this approach does not incor-
porate the temperature dependence. Despite the importance of these effects on fault dynamics, the origin of the
different regimes of stability is still poorly understood, hindering ongoing efforts to build physical models of the
seismic cycle consistent with rock mechanics.

In this study, we use a physics-based constitutive model of rate- and state-dependent friction based on the
competition between multiple healing mechanisms (Barbot, 2022) to capture the variations of frictional properties
of natural gouge with temperature and slip-rate under constant coefficients. In the next section, we describe the
details of the constitutive framework. We then calibrate the model to experimental data from gouge samples cored
from the San Andreas Fault Observatory at Depth (SAFOD) that document the frictional behavior from room
temperature to 250°C and within three orders of magnitude of slip-rates from a few nanometers to micrometers
per second (Moore et al., 2016). Finally, we show that the constitutive model applies to a variety of natural rock
samples under varying parametric configurations, including gouge from the South Alpine Fault in New Zealand
(Barth et al., 2013), the Alpine Fault Deep Fault Drilling Project (Boulton et al., 2014), the Zuccale Fault in Italy
(Collettini et al., 2011), and the Nankai Trough (den Hartog et al., 2012) from room temperature to about 300°C
and slip-rate ranging from nanometers to millimeters per second. The model provides comprehensive predictions
for different slip-rate and temperature regimes of fault stability simultaneously by incorporating the competition
between healing mechanisms, allowing extrapolation of laboratory data to natural fault conditions and more
realistic simulations of the seismic cycle.

2. Constitutive Framework

To explain the velocity and temperature control of the steady-state velocity dependence of friction of natural fault
gouge, we consider a thermally activated constitutive law based on the real area of contact and the healing of
micro-asperities (Barbot, 2019a, 2022, 2023). The constitutive law for cataclastic flow describes the frictional
strength in isobaric conditions as

vl (@) oo le7,)| ®
V() d() nR\T T()

where p is the frictional resistance controlled by the instantaneous slip-rate V and the temperature 7. The repre-
sentative size of micro-asperities d corresponds to the local radius of curvature at contact junctions and constitutes a
state variable for the evolving texture of the gouge layer. The constants V;, = 1 pm/s, d, = 1 pm, and T;, = 25°C
represent reference values of slip-rate, micro-asperity size and ambient temperature, respectively. The reference
friction coefficient y is a material property corresponding to the ratio of plowing to indentation hardness (Bowden
& Tabor, 1950, 1964). The coefficients n and m are the stress and microasperity-size power exponents, respec-
tively. The exponential term corresponds to an Arrhenius activation with the energy and temperature of activation
Q and T, respectively, involving the universal gas constant R. As the laboratory data considered in this study is
limited to up to 300°C at constant pore fluid and confining pressure, Equation 1 incorporates only a single
mechanism of deformation and, therefore, does not capture the brittle-to-ductile transition observed at higher
temperatures and lower slip-rates (Blanpied et al., 1995; den Hartog et al., 2012; Niemeijer et al., 2016; Okuda
et al., 2023). Capturing the brittle-to-flow transition requires a constitutive model dependent on multiple defor-
mation mechanisms (Barbot, 2023; Barbot & Zhang, 2023). Given the isobaric experimental conditions considered
in this study, we also ignore the nonlinear direct and evolutionary effects of normal stress (Barbot, 2024).

The evolution of the effective asperity size incorporates time-dependent healing by multiple micro-physical
mechanisms and slip-dependent comminution by grain fracturing and contact rejuvenation (Barbot, 2022). The
corresponding evolution law in isobaric conditions can be cast in additive form, following
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Figure 2. Mechanisms of deformation and healing enabling seismic cycles across a frictional interface. (a) Case of solid-solid
or bare contact with contact rejuvenation by dilatant shear during sliding and compaction creep accommodated by
viscoelasticity or pressure-solution creep during relocking. (b) Case of solid-gouge-solid contact where granular flow,
fracturing, and subcritical crack growth accommodate dilatant shear and comminution. The closure/cementation of cracks
enables healing of the interface. Each mechanism acting on different minerals is associated with specific constitutive
properties. The deformation associated with healing and contact rejuvenation is anelastic and proceeds as a time-dependent
or slip-dependent processes.

7—2 2
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where d is the rate of change of micro-asperity size. In Equation 2, the first term on the right-hand side corre-
sponds to healing with the micro-asperity size power exponent p, and the reference growth rate G, for the healing
mechanism k£ = 1 to N. We ignore possible coupling effects between healing mechanisms. The second term on the
right-hand side of Equation 2 represents the reduction of asperity size during shear over the gouge thickness h
with the characteristic strain 1/4 due to rejuvenation of the contact population (Figure 2). Alternatively, the
evolution law can be expressed in multiplicative form, as

o 315 /Y ©)
=]pkdpk 2h ’

involving the difference in the logarithm of the healing and weakening terms. The evolution laws of Equations 2
and 3 may produce different evolutionary effects, for example, varying slip weakening distance (Figure 2 and
Figure S1 in Supporting Information S1), but produce the same response at steady-state (Ampuero &
Rubin, 2008; Beeler et al., 1994; Bhattacharya et al., 2017, 2022; Nakatani, 2001; Rathbun & Marone, 2013). In
both formulations, the healing rate G, is thermally activated following an Arrhenius formulation, as

H(l 1
v @

d/lV

d- 2"

G/(T) = G0 exp[

Figure 1. Velocity and temperature dependence of friction of natural gouge from laboratory experiments. (a) Schematic of friction evolution during a velocity-jump
experiment with possible velocity-strengthening (a — b > 0) and velocity-weakening (a — b < 0) at steady-state. (b) Measured (diamonds) and interpolated (background
color) value of a — b as a function of velocity and temperature for the Southern Deforming Zone sample cored from San Andreas Fault Observatory at Depth in the
Central San Andreas Fault. (c) Laboratory measurements of ¢ — b from natural gouge for different loading velocities at room temperature. (d) Variation of a — b under

various temperature slip-rate conditions.
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where Gg = (1 um)P*/s is the reference growth rate, H, is the activation enthalpy, and T is the activation tem-
perature. The ratio H, /T, represents the change of entropy of healing. The evolution of asperity size leads to a
change in the real area of contact that modulates the frictional strength. Equivalent evolution laws based on the
age of contact that fall in the aging-law and slip-law end-members are discussed in Appendix A.

The healing mechanisms are defined by their distinct thermo-mechanical parameters affected by grain shape,
composition, and deformation process (Barbot, 2022; Sleep, 1994, 2006). Healing associated with compaction
creep may occur by subcritical crack growth (H. Atkinson, 1988), pressure-solution creep (Gratier et al., 2009),
intra-granular deformation (Hirth & Tullis, 1992), and closure of cracks at different rates depending on miner-
alogy, texture, and temperature (Figure 2). Additional healing may occur without significant fault-perpendicular
shortening by crack healing, crack sealing, and cementation of the pore space (Andreani et al., 2004; Gratier
et al., 2003; Putnis & Mauthe, 2001).

Considering two healing mechanisms, that is, using N = 2 in Equation 2 or Equation 3, we obtain velocity-
weakening and velocity-strengthening friction at steady-state in different velocity and temperature regimes
controlled by the growth rates and thermodynamic properties of each mechanism. The dominant healing
mechanism is associated with the largest grain size at steady-state, which depends on temperature and slip-rate
(Figure S2 in Supporting Information S1). When one mechanism dominates, the associated strain-rate can be
orders of magnitude higher than the other. However, the transition between healing mechanisms leads to a gradual
change of steady-state velocity dependence within specific ranges of temperatures and slip-rates.

3. Constitutive Properties of San Andreas Fault Gouge

We first focus the analysis on laboratory experiments on gouge samples from the San Andreas Fault at SAFOD,
which offered direct access to the local creeping segment, allowing the study of the mechanical, compositional,
and frictional properties of fault gouge (Carpenter et al., 2015; Lockner et al., 2011; Thurber et al., 2004). The
borehole crossed two creeping strands of the CSAF at about 3 km depth (Zoback et al., 2010, 2011). Samples from
the Southern Deforming Zone (SDZ) and Central Deforming Zone are rich in phyllosilicates, including saponite,
corrensite, and serpentinite, and exhibit steady-state velocity-strengthening at room temperature. The slightly
stronger SDZ strand, with a lower phyllosilicate and higher quartz and feldspar content, becomes velocity-
weakening under elevated temperature or sufficiently low velocity (Moore et al., 2016).

We utilize the mechanical data from velocity-step experiments on the SDZ samples for three orders of magnitude
of slip-rates, from nanometers to micrometers per second, from room temperature at 25 to 250°C in isobaric
conditions, with a constant effective normal stress of & = 100 MPa (Moore et al., 2016). The loading rate of the
slowest experiments is close to the long-term slip-rate of the San Andreas Fault (Barbot et al., 2009, 2013),
approaching the conditions of rupture nucleation. We first use the RSFit3000 methodology (Skarbek & Sav-
age, 2019) to derive the empirical rate- and state-dependent parameters (Ruina, 1983), including the reference
friction coefficient y, a, b, the characteristic weakening distance L, and the system stiffness k (Figure S3 in
Supporting Information S1). A key aspect of rate- and state-dependent friction laws is the steady-state velocity
dependence parameter, characterized by

o
—bh=—% 5
“ alnV ®)

where u is the steady-state friction coefficient, defined as the ratio of the shear and effective normal stresses, and
V is the slip-rate across the fault. The sign of a — b controls frictional stability, that is, the potential of a fault to
generate dynamic ruptures (Figure 1a). Steady-state velocity-weakening friction, which occurs for a — b < 0,
allows the nucleation and propagation of earthquakes and slow-slip events. In contrast, velocity-strengthening
condition, with a — b > 0, promotes stable sliding, manifested as fault creep (Harris, 2017) or afterslip
following mainshock ruptures (Marone et al., 1991). The constitutive parameters are scattered with a small
dynamic range, consistent with a single deformation mechanism. However, there is a clear dependence of the
state-dependence parameter b on temperature and velocity, indicating changes in the underpinning evolutionary
process (Figure S3 in Supporting Information S1). The corresponding trend of a — b shows a clear sensitivity to
slip-rate and temperature, delineating two distinct stability regimes (Figure 3). The velocity-weakening regime
operates at high temperatures and low slip rates.
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Figure 3. Comparison between simulated and measured frictional data for samples from the Southern Deforming Zone of the
San Andreas Fault Observatory at Depth. (a) Comparison between simulated (background color) and measured (colored
triangles) steady-state velocity-dependence parameter a — b. (b) Simulated (lines) and regressed (triangles) a — b parameters
as a function of velocity colored by temperature. (c) Simulated (lines) and regressed (triangles) a — b parameters as a function
of temperature colored by velocity. (d) Comparison of the synthetic (lines) and raw friction coefficient measurements (gray
dots). The red solid lines and black dashed lines denote simulations conducted using Equations 2 and 3, respectively.

To explain the experimental data, recognizing the various merits and shortcomings of the slip law and aging law
end-members (Beeler et al., 1994; Bhattacharya et al., 2022, and references therein), we conduct numerical
simulations of the velocity jump experiments with a spring-slider assembly with the constitutive laws of
Equations 1 and 2 and separately with Equations 1 and 3. The conservation of linear momentum in isobaric
condition implies

j6 = —k(V —Vy) (6)
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Table 1

Constitutive and Physical Parameters of the Simulated Velocity-Step
Experiments on the San Andreas Fault Observatory at Depth SDZ Sample

Shown in Figure 3

where k is the stiffness of the system and V; represents the imposed loading
rate, which varies from V| to V, across a velocity step (Figure S4 in Sup-
porting Information S1). As the loading rate barely exceeds micrometers per
second and the gouge is conditionally stable at the experimental conditions,

Parameter

Direct effect
Reference friction coefficient
Reference asperity size
Reference velocity
Effective normal stress
Stress power exponent
Asperity-size power exponent
Activation energy
Reference temperature
Evolutionary effects

Size-sensitivity exponent

Activation enthalpy

Activation temperature

Reference strain

Gouge thickness

Symbol Value we ignore the radiation of seismic waves. We estimate the empirical
parameter a — b using a numerical approximation of Equation 5. Conducting
p 021 such experiments for various temperatures and slip rates allows us to calculate
0 the residuals with the laboratory observations. We optimize 10 constitutive
dO I um parameters (i, n, m, and Q for the direct effect and py, p,, H,, H,, T, and T,
Yo 1 pm/s for the evolutionary effects) by grid search to minimize the root mean square
G 100 MPa of the residuals with about 56 measurements of frictional resistance at steady-
- 24 +5 state and 33 measurements of a — b (Figures S5 and S6 in Supporting
m 164 + 02 Information S1).
Q 85 + 15 kJ/mol The frictional parameters for the SDZ gouge are best explained by the power
g 25°C exponents n = 24 £ 5, m = 1.64 £ 0.2 in the flow law of Equation 1. The
reference friction coefficient p, = 0.21 and the activation energy
Q = 85 £ 15 kJ/mol are constrained by the average frictional resistance at
P 11 steady-state (Figure S5 in Supporting Information S1). The distinct regimes
P2 3.6 of stability are controlled by the competition of healing mechanisms with
H, 80 £ 15 kJ/mol activation enthalpies H; = 80 % 15 kJ/mol and H, = 195 + 45 kJ/mol. The
H, 195 + 45 kJ/mol absolute value of the activation temperatures cannot be determined with the
T, 286°C data available, but the ratio T',/T, = 1.51 is well constrained. The size power
T 106°C exponents for healing p, = 1.1 and p, = 3.6 trade off with each other, but fall
within the expectation of p; < m for steady-state velocity-weakening and
7 01 p» > mfor velocity strengthening. The best-fitting parameters are summarized
h 1 mm

in Table 1.

Note. The uncertainties correspond to plus or minus a standard deviation. The
parameters d, = 1 pm, V, = 1 pm/s, and 7, = 25°C represent scaling factors,
not constitutive parameters per se. The reference friction coefficient y, is a
material property corresponding to the ratio of plowing to indentation
hardness. The gouge thickness 2 = 1 mm is a laboratory setting.

The constitutive framework explains the transition between velocity-
weakening and velocity-strengthening at steady-state controlled by slip-rate
and temperature (Figure 3). The model does not resolve a few velocity-step
experiments well because a single set of constitutive parameters is used for
all experimental data. In the higher velocity and/or lower temperature range,
the velocity-strengthening healing mechanism with p;, > m controls the
frictional behavior. In the complementary range with a velocity-weakening behavior, the second healing
mechanism with p, < m dominates (Figure 3a). These results are corroborated by the evolution of the friction
coefficient, whereby only the velocity step from 1072 to 107> pm/s at 200 and 250°C exhibits velocity-weakening
(Figure 3d).

The thermodynamic properties of the SDZ samples provide new insights into the dominant healing mechanisms.
The activation energy H; = 80 kJ/mol is compatible with a variety of healing mechanisms operating in wet
conditions, including subcritical crack growth, pressure solution, and crack healing or crack sealing (B. K.
Atkinson, 1984; Barbot, 2022; Brantley et al., 2008; Marty et al., 2015; Niemeijer et al., 2002; Rimstidt &
Barnes, 1980). With the activation energy H, = 195 kJ/mol, the second healing mechanism may involve the
viscoelastic collapse of a weak mineral phase within the gouge (Barbot, 2022; Hirth et al., 2001; Kronenberg
et al., 1990; Rybacki & Dresen, 2000).

4. Application to Other Fault Gouges

We now consider the velocity-step experiments conducted on natural samples from the South Alpine Fault (Barth
et al., 2013; Boulton et al., 2014, 2018), CSAF (Carpenter et al., 2015), Zuccale Fault (Collettini et al., 2011;
Kaproth & Marone, 2013), and Nankai Trough (den Hartog et al., 2012) at varying slip rates, temperatures, or
both. Most samples exhibit a predominantly velocity-strengthening behavior in the experimental conditions,
consistent with the presence of hydrous minerals and clays in all samples (e.g., smectite, chlorite, illite, saponite).
However, a few cases exhibit velocity-weakening at steady-state for sufficiently low velocity (e.g., Figures 4e, 4h,
and 4i). Regardless, all samples exhibit increasing stability with increasing slip-rate or decreasing temperature.
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Figure 4. Comparison between simulated (lines) and laboratory-derived (dots) velocity dependence parameter (¢ — b) of
natural samples from (a) South Alpine fault (Barth et al., 2013), (b) and (c) Central Deforming Zone (CDZ) and Southern
Deforming Zone of Central San Andreas Fault (CSAF), respectively (Carpenter et al., 2015), (d) Zuccale Fault (Collettini
et al., 2011), (e) lizardite-rich serpentinite sample (Kaproth & Marone, 2013), (f) Alpine DFDP-1 sample (Boulton

et al., 2014), (g) South Alpine outcrop (Boulton et al., 2018), (h) Nankai (simulated) (den Hartog et al., 2012), and (i) CSAF
CDZ (Moore et al., 2016). Colors represent experiments under different temperatures. The dashed line is fora — b = 0.
Additional results for serpentinite gouge Pozzi et al. (2023) are included in Figure S7 of Supporting Information S1.

Using the procedure described in the previous section, we obtain constitutive parameters that explain the evo-
lution of the steady-state velocity dependence parameters a — b with temperature and slip-rate (Figure 4), as
summarized in Table 2. As these experiments document a limited range of slip rates and temperatures, a wide
range of thermodynamic properties can explain the mechanical data equally well. The activation enthalpy varies
in the range 50-80 kJ/mol and 80-150 kJ/mol for the low- and high-temperature healing mechanisms, respec-
tively, which is typical in the brittle regime. For example, hornblende (Liu & He, 2020), pyroxene (Tian &
He, 2019), and natural gouges (An et al., 2020; Valdez et al., 2019; den Hartog et al., 2021) in wet conditions
feature an activation enthalpy within 20-65 kJ/mol (Barbot, 2022). Similarly, wet Westerly granite (Blanpied
et al., 1995), basalt (Okuda et al., 2023), and cataclasite gouge from the Alpine Fault (Niemeijer et al., 2016)
exhibit an activation enthalpy for healing in the range 30-55 kJ/mol (Barbot, 2023). The presence of mechanisms
characterized by activation energy greater than 100 kJ/mol suggests the activation of compaction creep of
anhydrous minerals. For instance, the sample from the Zuccale Fault contains calcite (Collettini et al., 2011),
which shows activation energies of 145-250 kJ/mol for viscoelastic flow (Holyoke et al., 2013). Samples from
SAFOD include quartz and feldspar (Carpenter et al., 2015; Moore et al., 2016) that showcase activation energies
for viscoelastic flow of 150-600 kJ/mol (Rybacki & Dresen, 2000) and 135-240 kJ/mol (Rutter & Brodie, 2004a,
2004b), respectively. Conversely, the low activation energy of healing under specific conditions suggests the
deformation of phyllosilicates or other weak minerals (Barbot, 2022; Mares & Kronenberg, 1993; Mariani
et al., 2006; Shea & Kronenberg, 1992).
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Table 2
Constitutive Parameters of Natural Gouge Constrained by Velocity-Step Experiments (Figures 3 and 4)
Fault gouge Mineral assembly n m p, p, H H, T, T, Reference
Alpine Fault Chlorite, illite 29 0.8 1.0 2.5 80 150 217 338 Barth et al. (2013)
Smectite, quartz, K-feldspar 17 1.9 1.3 27 60 80 200 150 Boulton et al. (2014)
Saponite, serpentine 53 09 1.0 3.1 50 180 206 106 Boulton et al. (2018)
San Andreas (CDZ) Saponite 28 1.0 1.2 2.7 80 150 217 325 Carpenter et al. (2015)
Saponite, serpentine 62 09 1.0 2.8 50 180 206 110 Moore et al. (2016)
San Andreas (SDZ) Corrensite, serpentine 26 1.0 1.2 2.7 80 150 217 275 Carpenter et al. (2015)
Zuccale Fault Calcite, smectite 59 0.6 1.1 2.5 80 150 217 308 Collettini et al. (2011)
Lizardite-rich serpentinite 15 1.1 1.0 2.7 80 150 165 308 Kaproth and Marone (2013)
Nankai Trough Smectite, illite, chlorite 29 16 1.0 4.1 80 100 277 278 den Hartog et al. (2012)

Note. The activation energies H, and H, are in kJ/mol. The activation temperatures 7, and T, are in degrees Celsius.

5. Discussion

As evidenced by an abundance of laboratory experiments, the frictional behavior of natural gouge is complex,
involving different stability regimes based on ambient temperature and instantaneous slip rate. The mechanics of
gouge friction cannot be explained using empirical friction laws at constant parameters, at least not as previously
defined (see Appendix A). In contrast, the constitutive framework described in Section 2 captures the frictional
behavior of natural gouge for a wide range of rocks upon parametric adjustments based on lithology and confining
or pore-fluid pressures. The constitutive model employed here applies within a nominal range of temperatures and
slip rates that exclude the brittle-ductile transition. These results facilitate the scaling of laboratory observations
up to natural fault conditions within the relatively low temperatures of the middle and upper crust or the thick
sedimentary layers of accretionary prisms at subduction zones.

The non-stationary properties of gouge friction documented in the laboratory and captured in the constitutive
model imply complex dynamics of natural faults. The unstable friction of phyllosilicate-rich gouge at a suffi-
ciently low slip rate and increased stability at intermediate velocity is particularly relevant to creeping faults.
Although the CSAF exhibits primarily aseismic slip (Barbot et al., 2013; Scott et al., 2020), creep is spatio-
temporally variable and episodic (Khoshmanesh & Shirzaei, 2018; Khoshmanesh et al., 2015; Titus
et al., 2006). This phenomenon is compatible with phyllosilicate gouge friction, which is often found to be
velocity-weakening at low slip speed (e.g., Pozzi et al., 2023), allowing nucleation of instabilities, but velocity-
strengthening at higher velocity, inhibiting the transition to seismic rupture propagation. The slip-rate dependence
of gouge stability may also explain shallow slow-slip events above the seismogenic zone of the San Andreas Fault
(Wet et al., 2013) and the North Anatolian Fault (Kaneko et al., 2013). Furthermore, phyllosilicates typically
exhibit a strong increase of the effective friction coefficient with normal stress (Moore & Lockner, 2008).
Generalizing the constitutive equations to incorporate the effect of normal stress (Barbot, 2024) explains this
behavior (Figure S8 in Supporting Information S1).

The complex frictional behavior of natural gouge may explain the non-stationary creeping behavior observed in
other faults, such as the Laohushan segment of the Haiyuan fault (Jolivet et al., 2012, 2013; Li et al., 2021), and
the Piitlirge and Palu segments of the East Anatolian Fault (Bletery et al., 2020; Cakir et al., 2023; Ragon
et al., 2021). The temperature dependence of gouge friction also implies variations in fault behavior with depth,
including the prevalence of a shallow slip deficit during large earthquakes (Barbot et al., 2023; Fialko et al., 2005;
Qiu et al., 2020) and variations of interseismic coupling as a function of depth (e.g., Jolivet et al., 2015).

6. Conclusion

We describe a constitutive framework for gouge friction that explains the widely observed velocity and tem-
perature dependence of effective mechanical properties. The competition between thermally activated healing
mechanisms and weakening by contact rejuvenation leads to distinct stability regimes with a tendency for
increased stability with increasing slip rate or decreasing temperature. The model applies to a range of
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temperatures and slip-rates within the brittle field for phyllosilicate-rich gouge. Considering additional defor-
mation mechanisms is required to capture the brittle-ductile transition (Barbot, 2023; Barbot & Zhang, 2023). The
constitutive model explains the frictional behavior of natural gouge from the San Andreas Fault, Zuccale Fault,
Alpine Fault, and the Nankai Trough under varying parametric configurations, allowing the extrapolation of
laboratory data to natural fault conditions within the middle and top crust. If the effects of temperature and slip
rate on the frictional resistance are now better understood, the remaining controls of varying pore-fluid pressure
remain elusive. Further experimental work is needed to describe the properties of a wide range of rocks and
calibrate the model for different tectonic contexts and hydrothermal conditions.

Appendix A: Formulations Based on the Age of Contact

In this Appendix, we describe how the empirical evolution laws based on the age of contact can be modified to
enable a stability transition with increasing slip-rate. For simplicity, we discuss the constitutive behavior at
isobaric condition. The temperature effects are captured in the temperature dependence of G;. The evolutionary
effects of rate- and state-dependent friction can be described using the age of contact (Dieterich, 1979a, 1979b;
Ruina, 1983). The relationship between size and age of contact is well-defined when a single healing mechanism
operates (Barbot, 2019a). However, with the competition of multiple healing mechanisms, the apparent age
depends on the healing rate of reference (Barbot, 2022).

Taking arbitrarily the first healing mechanism as a reference and assuming two distinct healing mechanisms, we
define the apparent age of contact as (Barbot, 2019a)

dP
0=—. (AD)
G
Defining the characteristic weakening distance as a fraction of the gouge thickness (Barbot, 2019a)
2h
L="", (A2)
Apy

the evolution law of Equations 2 and 3 can be written as a function of the age of contact. Specifically, Equation 2
becomes

Vo

O=1+at — =, (A3)
L
and Equation 3 becomes
. Ve |ve
0=——In|—/(1 +ad’)|. A4
1| /(1 4 a )] (Ad)
The competition of two healing mechanisms introduces a new term associated with the parameters
G,
= AS
* rGy (A5)
and
p=1—-r (A6)

that depend on the ratio of the micro-asperity size power exponents r = p,/p,. If the second healing mechanism
can be neglected, with G, = 0, then @ = 0 and Equations A3 and A4 reduce to the aging law and the slip law
defined by Ruina (1983), respectively. The correspondence between the apparent age and size of contact indicates
how the empirical evolution laws can be modified to capture the temperature and velocity dependence of the
stability regime of gouge friction. Although the formulations based on the age of contact are mathematically
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adequate, they are physically inconsistent due to the ambiguity of the reference healing rate. When multiple
healing mechanisms operate, using the size of contact is more appropriate.
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