The Journal of Supercomputing (2024) 80:14295-14329
https://doi.org/10.1007/s11227-024-05963-8

®

Check for
updates

Trojan playground: a reinforcement learning framework
for hardware Trojan insertion and detection

Amin Sarihi' - Ahmad Patooghy? - Peter Jamieson® - Abdel-Hameed A. Badawy'

Accepted: 3 February 2024 / Published online: 18 March 2024
©The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature
2024

Abstract

Current hardware Trojan (HT) detection techniques are mostly developed based
on a limited set of HT benchmarks. Existing HT benchmark circuits are generated
with multiple shortcomings, i.e., (i) they are heavily biased by the designers’ mind-
set when created, and (ii) they are created through a one-dimensional lens, mainly
the signal activity of nets. We introduce the first automated reinforcement learning
(RL) HT insertion and detection framework to address these shortcomings. In the
HT insertion phase, an RL agent explores the circuits and finds locations best for
keeping inserted HTs hidden. On the defense side, we introduce a multi-criteria RL-
based HT detector that generates test vectors to discover the existence of HTs. Using
the proposed framework, one can explore the HT insertion and detection design
spaces to break the limitations of human mindset and benchmark issues, ultimately
leading toward the next generation of innovative detectors. We demonstrate the effi-
cacy of our framework on ISCAS-85 benchmarks, provide the attack and detection
success rates, and define a methodology for comparing our techniques.

Keywords Hardware Trojan - Hardware security - Reinforcement learning

P4 Abdel-Hameed A. Badawy
badawy @nmsu.edu

Amin Sarihi
sarihi @nmsu.edu

Ahmad Patooghy
apatooghy @ncat.edu

Peter Jamieson

jamiespa@miamioh.edu

Klipsch School of Electrical and Computer Engineering, New Mexico State University,
Las Cruces, NM, USA

Department of Computer Systems Technology, North Carolina A&T State University,
Greensboro, NC, USA

Electrical and Computer Engineering Department, Miami University, Miami, OH, USA

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s11227-024-05963-8&domain=pdf

14296 A.Sarihi et al.

1 Introduction

As per a DoD report [1] released in 2022, 88% of the production and 98% of the
assembly, packaging, and testing of microelectronic chips are performed outside of
the USA. The growing multi-party production model has significantly raised secu-
rity concerns about malicious modifications in the design and fabrication of chips,
i.e., hardware Trojan (HT) insertion. HTs are defined as any design or manufacturing
violations in an integrated circuit (IC) concerning the intent of the IC. Upon activa-
tion, an HT may lead to erroneous outputs (e.g. , Fig. 1) and possibly leak of infor-
mation [2]. According to the adversarial model introduced by Shakya et al. [3], HTs
can be inserted into target ICs according to the following scenarios:

¢ Design source code or netlist can be infected with HTs by compromised employ-
ees.

e Third-party intellectual properties (IPs) like processing cores, memory modules,
I/O components, and network-on-chip [4] are often purchased and incorporated
into a design to speed up time-to-market and lower design expenses. However,
integrating IPs from untrusted vendors can pose a risk to the security and integ-
rity of the IC.

¢ An untrusted foundry may reverse-engineer the GDSII physical layout to obtain
the netlist and insert HTs inside them.

e Malicious third-party CAD tools may also insert HTs into designs

Researchers have been mostly using established benchmarks reported by Shakya et
al. and Salmani et al. [3, 5] as a reference to study the impact of HTs.! Subsequently,
various HT detection approaches have been developed based on these benchmarks over
the past decade [7-10]. Despite the valuable effort to create HT benchmarks for the
community, these benchmarks are limited in size and variety needed to push detection
tools into more realistic modern scenarios. For instance, the small set of benchmarks
makes it hard to leverage and train machine learning (ML) HT detectors, where more
training data negatively impacts classification accuracy. Some research studies have
tried to alleviate this problem by using techniques to shuffle data for ML-based detec-
tors, e.g. , the leave-one-out cross-validation method [8]; however, it does not solve the
problem entirely. The existing HT benchmarks also suffer from an inherent human bias
in the insertion phase since they are tightly coupled with the designer’s mindset. For
instance, the HT benchmarks in [11] only consider signal activity for HT insertion, i.e.,
HTs are randomly inserted into a pool of available rare nets of the circuit. The flaws in
the insertion phase simplify the problem’s complexity, leading security researchers to
develop HT detectors finely tuned to flawed scenarios [10, 12]. In contrast, adversaries
devise new HT attacks that combine different ideas where detectors fall short of expos-
ing them. Another equally important problem in this domain is having almost no HT
detectors publicly available. This deprives other researchers of accessing these tools
and imposes a considerable latency for newcomers to hardware security.

! The benchmarks are available on Trust-Hub [6].

@ Springer

Trojan playground: a reinforcement learning framework for... 14297

Fig.1 An HT with a trigger e ————

and payload. Whenever A = 1, ! A
B =1, and C = 0, the trigger is !
activated (D = 1) and the XOR : B —
i
1
\

payload inverts the value of E
C
Payload
—Di — JD

This work attempts to move this research space forward by developing next-gener-
ation HT insertion and detection methods based on reinforcement learning. The devel-
oped RL-based HT insertion tool creates new HT benchmarks according to the crite-
ria passed to the tool by the user. The insertion criteria is an RL rewarding function
modified by a user that relies on the RL agent to insert HTs into designs automatically.
The netlist is considered an environment in which the RL agent tries to insert HTs to
maximize a gained reward. The rewarding scheme of the proposed insertion tool is
tunable, which can push the agent toward a specific goal in the training session. Our
insertion tool is a step toward preparing the community for future HTs inserted by non-
human agents, e.g. , Al agents. We also propose an RL-based HT detector with a tun-
able rewarding function that helps detect inserted HTs based on various strategies. To
explore this space, we have studied three different detection rewarding functions for the
RL detector agent. The agent finds test vectors yielding the highest rewards per each
reward function. Then, the generated test vectors activate and find HTs in the IC. The
test engineer passes the test vectors to the chip and monitors the output for deviations
from the golden model.

Our proposed toolset enables the researchers to experience HT insertion and
detection within a unified framework. The framework only requires users to set the
parameters to insert and detect HTs without human intervention. There have been
previous efforts to automate the HT insertion and detection process [11, 13, 14];
however, they need an intermediate effort hindering us from creating a vast quantity
of HTs (more explanation in Sect. 2).

Similar to several previous works [2, 10, 15, 16], this paper’s threat model
assumes that the perpetrator is capable of inserting HTs into a design’s netlist. The
netlist can be obtained through state-of-the-art reverse-engineering techniques in
the foundry, and HT triggers are constructed and placed in the design layout. On
the defense side, we assume a security engineer receives a post-silicon hard IP that
may or may not contain malicious HTs. Using a golden model, the security engineer
generates a set of minimal test vectors to activate as many HTs as possible. The
test engineer does not know the insertion criteria; however, they generate test vec-
tors based on multiple insertion mentalities. If the output(s) of the design-under-test
deviate(s) from the golden model, it can insinuate malicious behavior.

We make the following contributions in the paper with respect to our previous
publications [18, 19]:

@ Springer

14298 A.Sarihi et al.

e We developed a tunable RL-based HT insertion tool free of human bias, capable
of automatic HT insertion and creating a large population of valid HTs for each
design

e We introduce a tunable RL-based multi-criteria HT detection tool that helps a
security engineer to better prepare for different HT insertion strategies.

e We introduce and use a generic methodology to compare HT detectors fairly. The
methodology is based on the confidence value metric that helps the security engineer
select the proper detector based on the chip’s application and security requirements.

Our results show that our developed detection tool with all three detection approaches
has an average 90.54% detection rate for our HT-inserted benchmarks. We compare
these detection results to existing state-of-the-art detection methods and show how our
techniques find previously unidentifiable HTs. As we believe that HT detection will be
implemented as a variety of detection strategies, the uniquely identified HTs suggest
that our detection techniques and framework are important contributions to this space.

The remainder of this paper is organized as follows: Sect. 2 reviews the related
work and explains the fundamentals of RL. The mechanics of our proposed HT
insertion and detection approaches are presented in Sects. 3 and 4, respectively. We
introduce our HT comparison methodology in Sect. 5. Section 6 demonstrates the
experimental results, and Sect. 7 concludes the paper.

2 Related work

This section summarizes the previous studies in HT insertion and detection.

2.1 Hardware Trojan insertion and benchmarks

The first attempts to gather benchmarks with hard-to-activate HTs were made by
Shakya et al. and Salmani et al. [3, 5]. A set of 96 trust benchmarks with different
HT sizes and configurations are available at Trust-Hub [6]. While these benchmarks
are a valuable contribution to the research community, they have three drawbacks:

1. The limited number of Trojan circuits represents only a subset of the possible
HT insertion landscape in digital circuits, which hampers the ability to develop
diverse HT countermeasures,

2. They lack incorporating state-of-the-art Trojan attacks, and

3. They fail to populate a large enough HT dataset required for ML-based HT detec-
tion.

Krieg [20] investigates the practicality of the Trusthub benchmark for hardware
security study from five different perspectives: Correctness, Maliciousness, Stealthi-
ness, Persistence, and Effectiveness. The paper lists nine main flaws that undermine
the feasibility of Trusthub for security evaluations, including pre-/post-synthesis
simulation mismatch, unsatisfiable trigger conditions, incorrect original designs,

@ Springer

Trojan playground: a reinforcement learning framework for... 14299

and buggy wiring. The paper shows that out of the 83 benchmarks, only three hold
all the properties, and the rest fail in at least one or more studied aspects.

Various approaches to insert HTs have been attempted. Jyothi et al. [21] proposed
a tool called TAINT for automated HT insertion into FPGAs at the RTL-level, gate-
level netlist, and post-map netlist. The tool also allows the user to insert HTs in FPGA
resources such as look-up tables (LUTs), flip-flops (FFs), block random access mem-
ory (BRAM), and digital signal processors (DSP). Despite the claimed automated pro-
cess, the user is expected to select the trigger nets based on suggestions made by the
tool. The results section shows that the number of available nodes in post-map netlists
drops significantly, leaving less flexibility for Trojan insertion compared to RTL codes.

Reverse-engineering tools can also identify security-critical circuitry in designs that
can direct attackers to insert efficient HTs. Fyrbiak et al. [13] introduced HAL, a gate-
level netlist reverse-engineering tool that offers offensive reverse-engineering strategies
and defensive measures, such as developing arbitrary Trojan detection techniques. The
authors believe that adversaries are more likely to insert HTs through reverse-engineer-
ing techniques and are less likely to have direct access to the original HDL codes. A
hardware Trojan that leaks cryptographic keys has been inserted with the tool; none-
theless, it requires human effort for insertion, which hinders the production of a large
HT dataset [22]. Further endeavors have been made to follow a threat model in which
an adversary is located in a foundry with sophisticated reverse-engineering capabili-
ties. Perez et al. [23] targets SCTs (side-channel Trojans), more commonly found in
crypto cores. The authors showcase a flow to insert HTs to leak confidential informa-
tion based on power signatures. During this process, an adversary takes advantage of
ECO (engineering change order), a flow originally used to fix bugs in finalized layouts.
The work in [24] builds upon the previous study by manufacturing an ASIC prototype
with four HT-infected versions of AES and PRESENT. Puschner et al. [25] propose a
de-coupled insertion and detection flow where the red team is responsible for inserting
ECO-based HTs in design layouts, and the blue team must find the malicious embed-
ding by investigating SEM (Scanning Electron Microscope) images vs GDSII (Graphic
Design System 1) files. The study shows that the ECO-inserted HTs are less challeng-
ing to find. Hepp et al. [26] use the ECO flow to insert HTs in the design layout without
prior knowledge of its functionality. The study explores three new criteria for selecting
the HT payload and triggers: transition probability, imprecise information flow tracking
of selected signals, and the RELIC score. The RELIC score is a metric that provides an
attacker with information about the location of a flip-flop relative to the data path or the
control path. The authors operate under the assumption of a 24-h time window for the
attacker to complete the insertion process.

Cruz et al. [11] tried to address the benchmark shortcomings by presenting a
toolset capable of inserting a variety of HTs based on the parameters passed to the
toolset. Their software inserts HTs with the following configuration parameters: the
number of trigger nets, the number of rare nets among the trigger nodes, a rare net
threshold (computed with functional simulation), the number of the HT instances to
be inserted, the HT effect, the activation method, its type, and the choice of payload.
Despite increasing the variety of inserted HTs, there is no solution for finding the
optimal trigger and payload nets. The TRIT benchmark set generated by this tool is
available on Trust-Hub [6].

@ Springer

14300 A.Sarihi et al.

Cruz et al. [22] propose MIMIC, an ML framework for automatically generating
Trojan benchmarks. The authors extracted 16 functional and structural features from
existing Trojan samples. Then, they trained ML models and generated a large number
of hypothetical Trojans called virtual Trojans for a given design. The virtual Trojans
are then compared to a reference Trojan model and ranked. Finally, the selected Trojan
will be inserted into the target circuit using suitable trigger and payload nets. The HT
insertion process is highly convoluted, requiring multiple stages and expertise. MIMIC
is not released publicly, and rebuilding the tool from their work is an extensive pro-
cess. MIMIC’s HT insertion criteria are very similar to [11], and it suffers the same
shortcomings [11].

To deceive machine learning HT detection approaches, Nozawa et al. [27] have
devised adversarial examples. Their proposed method replaces the HT instance with its
logically equivalent circuit, so the classification algorithm erroneously disregards it. To
design the best adversarial example, the authors have defined two parameters: Trojan-
net concealment degree (TCD), which is tuned to maximize the loss function of the
neural network in the detection process, and a modification evaluating value (MEV) that
should be minimized to have the least impact on circuits. These two metrics help the
attacker to look for more effective logical equivalents and diversify HTs. The equivalent
HTs are inserted in trust-hub benchmarks, and they decrease accuracy significantly.

Sarihi et al. [18] (our prior work) inserted a large number of HTs into ISCAS-85
benchmarks with Reinforcement Learning. The HT circuit is an agent that interacts
with the environment (the circuit) by taking five different actions (next level, previ-
ous level, same level up, same level down, no action) for each trigger input. Level
denotes the logic level in the combinational circuits. The agent moves the Trojan inputs
throughout the circuit and explores various locations suitable for embedding HTs. Trig-
gers are selected according to a set of SCOAP (Sandia Controllability/Observability
Analysis Program [28]) parameters, i.e., a combination of controllability and observa-
bility. The agent is rewarded in proportion to the number of circuit inputs it can engage
in the HT activation process.

Gohil et al. [16] proposed ATTRITION, another RL-based HT insertion platform
where signal probability is the target upon which the trigger nets are selected. The
agent tries to find a set of so-called compatible rare nets, i.e., a group of rare nets that
can be activated together with an input test vector. The test vector is generated using
an SAT-solver. The authors also propose a pruning technique to limit the search space
for the agent to produce more HTs in a shorter period. The tool is claimed to be open-
source, but only the source code was released.

Table 1 summarizes the existing artifacts and research in the HT insertion space.
It represents the target technology (2nd column); summarizes the insertion criteria
(3rd column); shows if the tool is automated (4th column) and if the tool or its arti-
facts are openly released (S5th column).

2.2 Hardware Trojan detection

Chakraborty et al. [15] introduced MERO, a test vector generator that tries to trigger
possible HTs by exciting rare-active nets multiple times. The algorithm’s efficacy

@ Springer

Trojan playground: a reinforcement learning framework for... 14301

Table 1 Survey of previous HT insertion tools

Tool Domain Insertion criteria Automate Open-source
Trust-Hub [3] ASIC/FPGA Secret leakage, signal prob X x
HAL [13] ASIC/FPGA Neighborhood control value X v
TAINT [21] FPGA Not mentioned X x
TRIT [11] ASIC Signal prob X X
Yu et al. [14] ASIC Transition prob v X
Nozawa et al. [27] ASIC Same as [3] X X
MIMIC [22] ASIC Struct & Funct. Features v X
Sarihi et al. [18] ASIC SCOAP parameters v x
ATTRITION [16] ASIC Signal prob v X
Perez et al. [23, 24] ASIC Power leakage X X
Puschner et al. [25] ASIC No restrictions v v
BioHT [26] ASIC Multiple criteria v X

is tested against randomly generated HTs with rare triggers. MERO’s detection rate
significantly shrinks as circuit size grows.

Hasegawa et al. [8] have proposed an ML method for HT detection. The method
extracts 51 circuit features from the trust-hub benchmarks to train a random forest
classifier that eventually decides whether a design is HT-free. The HT classifier is
trained on a limited HT dataset with an inherent bias during its insertion phase.

Lyu et al. [12] proposed TARMAC to map the trigger activation problem to the
clique cover problem, i.e., treating the netlist as a graph. They utilized an SAT-solver
to generate the test vector for each maximal satisfiable clique. The method lacks
scalability as it should run on each suspect circuit separately. Also, the achieved per-
formance is not stable [2]. Implementation of the method is neither trivial nor avail-
able publicly to researchers [16].

TGRL is an RL framework used to detect HTs [2]. The agent decides to flip a bit
in the test vector according to an observed probability distribution. The reward func-
tion, which combines the number of activated nets and their SCOAP [28] param-
eters, pushes the agent to activate as many signals as possible. Despite its higher HT
detection rate than MERO and TARMAC, the algorithm was not tested on any HT
benchmarks [16].

DETERRENT, an RL-based detection method [10], finds the smallest set of test
vectors to activate multiple combinations of trigger nets. The RL state is a subset of
all possible rare nets, and actions are appending other rare nets to this subset. The
authors used an SAT-solver to determine if actions are compatible with the rare nets
in the subsets, and they only focused on signal-switching activities as their target.

The HW2VEC tool [29] converts RTL-level and gate-level designs into a data-
flow graph and abstract syntax tree to extract a feature set that represents the struc-
tural information of the design. Extracted features are used to train a graph neural
network to determine whether a design is infected with HTs. The authors test the
tool with 34 circuits infected by in-house generated HTs.

@ Springer

14302 A.Sarihi et al.

Table2 Survey of previous HT

) Study Detection basis Open-source
detection tools
MERO [15] Switching activity X
Hasegawa et al. [8] Netlist features x
TARMAC et al. [12] Switching activity X
TGRL et al. [2] Switching activity x
DETERRENT et al. [10] Switching activity X
HW2VEC [29] Graph structural info v
{J SON } <cCo,cC1,c0> m corcor AC“O"S

Clean

Veri'log Yosys tool generates ccn ce1600 Sme Reward HT-Inserted

c!esngn design equivalent Internal Python tool Net classification Remforcement netlist (.v)

(input) data-structure (.json converts the .json file based on SCOAP learning module

file) into circuit graph parameters explores the design

Fig.2 The proposed RL-based HT insertion tool flow

We note that of the methods reviewed above (and others studied but not discussed
here), the only publicly available tool is HW2VEC. Table 2 summarizes the previ-
ous works in HT detection where researchers have used various criteria in detecting
HTs (2nd column) and the open-source state of the work (3rd column).

3 The proposed HT insertion

Figure 2 shows the flow of the proposed HT insertion tool. The first step creates a
graph representation of the flattened netlist from the circuit. Yosys Open Synthesis
Suite [30] translates the HDL (Verilog) source of the circuit into a JSON (JavaScript
Object Notation) [31] netlist, which enables us to parse the internal graph represen-
tation of the circuit. Next, the tool finds a set of rare nets to be used as HT trigger
nets (this step is described in detail in Sect. 3.1). Finally, an RL agent uses the rare
net information and attempts to insert an HT to maximize a rewarding function as
described in Sect. 3.2.

3.1 Rare netS extraction

We use the parameters introduced in [9] to identify trigger nets. These parameters
are defined as functions of net controllability and observability. Controllability
measures the difficulty of setting a particular net in a design to either ‘0’ or ‘I’. Con-
versely, observability is the difficulty of propagating a net value to at least one of the
circuit’s primary outputs [28].

The first parameter is called the HT trigger susceptibility parameter, and it is
derived from the fact that low-switching nets have mainly a high difference between
their controllability values. Equation (1) describes this parameter:

@ Springer

Trojan playground: a reinforcement learning framework for... 14303

|CC1(Net;) — CCO(Net,)|

HISWNety) = S (CCT(Ner), CCONer,)) v

where HTS is the HT trigger susceptibility parameter of the net; CCO(Net;) and
CC1(Net;) are the combinational controllability 0 and 1 of Net,;, respectively. The
HTS parameter ranges between [0, 1) such that higher values correlate with lower
activity on the net.

The other parameter, specified in Eq. (2), measures the ratio of observability to
controllability:

CO(Net,)
CC1(Net;) + CCO(Net,) 2

OCR(Net,) =

where OCR is the observability to controllability ratio. This equation requires that
the HT trigger nets be hard to control but not so hard to observe. Unlike the HTS
parameter, OCR is not bounded and belongs to the [0, co) interval. We will specify
thresholds (see Sect. 6) for each parameter and use them as filters to populate the set
of rarely-activated nets for our tool.

3.2 RL-Based HT insertion

The RL environment is, in fact, the circuit in which the agent is trying to insert HTSs.
The agent’s action is to insert combinational HTs where trigger nets are ANDED,
and the payload is an XOR gate (same as Fig. 1). The RL agent starts from a reset
condition, taking a series of actions that eventually insert HTs in the circuit. Dif-
ferent HT insertion options are represented with a state vector in each circuit. For
a given HT, the state vector is comprised of s, = [s}, S,, ..., 8,2, S,_, S,] Where s,
through s,_, are the logic levels of the HT inputs, and s,_; and s,, are the logic levels
of the target net and the output of the XOR payload, respectively. Figure 3 shows
how we conduct the circuit levelization. Here, the circuit primary inputs (PIs) are
considered level 0. The output level of each gate is computed by Eq. (3):

Level(output) = MAX(Level(in,), Level(in,)) + 1 3)

As an example, the HT in Fig. 4 (in yellow) has the state vector s, = [2, 1,3, 4].
The action space of the described HT agent is multi-discrete, i.e., each input of the
HT may choose an action from a set of five available actions. These actions are:

e Next level: the input of the HT moves to one of the nets that are one level higher
than the current net level.

e Previous level: the input of the HT moves to one of the nets that are one level
lower than the current net level.

e Same level up: the input of the HT will move to one of the nets at the same
level as the current net level. The net is picked by pointing to the next net in
the ascending list of net IDs for the given level.

@ Springer

14304 A.Sarihi et al.

Pl
P,

Pl

Pl,
Pl

Plg

Fig.3 Levelizing a circuit. The output level of each digital gate is computed by

max(Level(inl), Level(in2)) + 1
Trigger MTricger 1 F=====5
Nets

Fig.4 Obtaining the state vector in the presence of an HT in the circuit

e Same level down: the input of the HT will move to one of the nets at the same
level as the current net level. The net is picked by pointing to the previous net
in the ascending list of nets for the given level.

e No action: the input of the HT will not move. If an action leads the agent to
step outside the circuit boundaries, it is substituted with a “No action”.

The action space is also represented by a vector where its size is equal to the
number of the HT inputs, and each action can be one of the five actions above,
e.g. , for the HT in Fig. 4, the action space would be a, = [a,, a,] since it has two
inputs. Hypothetical actions for the first and the second inputs can be the same
level up/down and next/previous level, respectively.

The flow of our RL inserting agent is described in Algorithm 1. The SCOAP
parameters are first computed (line 1). We specify two thresholds Ty and Tyep
and require our algorithm to find nets that have higher HTS values than T, and

@ Springer

Trojan playground: a reinforcement learning framework for... 14305

lower OCR values than T, (line 2). These nets are classified as rare nets. The algo-
rithm consists of two nested while loops that keep track of the terminal states and the
elapsed timesteps. The latter defines the total number of samples the agent trains on.
We have used the OpenAl Gym [32] environment to implement our RL agent.
Algorithm 1 Training of the HT inserting Reinforcement Learning Agent

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:

© ® 3> q R w

Input: Graph G, HTS Threshold Tyrs, OCR Threshold
Tocr, Circuit Inputs in_ports, State Space sq,

Terminal State Terminalsiqte, Total Timesteps j;
Output: HT Benchmark HTBenchmark;

: Compute SCOAP parameters:

< CC0,CC1,CO >= computeSCOAP(G);

. Get the set of rare nets:

rare_nets = Compute_Rare_Nets(G,Turs, Tocr);

. counter = 0;
: while (counter < j) do

HT = reset_environment();
Terminalsiqie = false;
while !(Terminalgiqie) do
G, s¢, Terminalstate, HTiriggers = action(HT);
HT _activated = PODEM (G);
tempreward = (HTiriggers N rare_nets).count();
if (HT _activated) then
if (temprewara == 1) then
reward = §;

else if (tempyewara == 2) then
reward = 16;

else if (temprewarda == 3) then
reward = 100;

else if (temprewara == 4) then
reward = 1000;

else if (temprewara == 5) then
reward = 10000;

else
reward = —1;

end if

end if

update_PPO(action, s¢, reward);
counter+ = 1;
end while

29: end while
30: HTBenchmark = Graph_to_netlist(G)

The first used method is called reset_environment(), which resets the environment
before each episode and returns the initial location of the agent HT (line 5). The HT
is randomly inserted within the circuit according to the following rules.

@ Springer

14306 A.Sarihi et al.

Rule (1) Trigger nets are selected randomly from the list of the total nets.

Rule (2) Each net can drive a maximum of one trigger net.

Rule (3) Trigger nets cannot be assigned as the target.

Rule (4) The target net is selected with respect to the level of trigger nets. To
prevent forming combinational loops, we specify that the level of the target net
should be greater than that of the trigger nets.

In each episode of the training process, we keep the target net unchanged to help the
RL algorithm converge faster. Instead of manually specifying a target net, we let the
algorithm explore the environment and choose a target net. The terminal state vari-
able TS is set to False to check the termination condition for each episode. When the
trigger nets’ level reaches the target net’s level, or the number of steps per episode
reaches an allowed maximum (lines 6-7), TS becomes True, which terminates the
episode.

The training process of the agent takes place in a loop where actions are being
issued, rewards are collected, the state is updated, and eventually, the updated graph
is returned. To test the value of an action taken by the RL agent (meaning if the HT
can be triggered with at least one input pattern), we use PODEM (Path-Oriented
Decision Making), an automatic test pattern generator [33] (line 9). This algorithm
uses a series of backtracing and forward implications to find a vector that activates
the inserted HT. If the HT payload propagates through at least one of the circuit
outputs, the action gains a reward proportional to the number of rare triggers on the
HT. After the number of rare triggers is counted in line 10, the agent is rewarded in
lines 11 through 25. The rewarding scheme is designed such that the agent would
start finding HTs with a 1 rare trigger net and adding more rare nets while exploring
the environment. Additionally, the exponential reward increase in each case ensures
that the agent is highly encouraged to find HTs with at least three or more rare trig-
ger nets. If an HT is not activated with PODEM or no rare nets are among the HT
triggers, the agent will be rewarded —1. Since the agent is unlikely to find high-
reward HTs at the beginning of the exploration stage, the first two rewarding cases
(temp,,,,ara = 1 and temp,,,,.,. = 2) should be set such that the agent sees enough
positive, rewarding improvements, yet be more eager to find more HTs that yield
higher rewards. After extensive experiments with the RL agent, the reward values
are assigned to different cases.

We use the PPO (proximal policy optimization) [17] RL algorithm to train the
RL agent. PPO can train agents with multi-discrete action spaces in discrete or con-
tinuous spaces. The main idea of PPO is that the new updated policy (which is a set
of actions to reach the goal) should not deviate too far from the old policy follow-
ing an update in the algorithm. To avoid substantial updates, the algorithm uses a
technique called clipping in the objective function [17]. Using a clipped objective
function, PPO restricts the size of policy updates to prevent them from deviating
too much from the previous policy. This constraint promotes stability and ensures
that the updates are controlled within a specific range, which helps avoid abrupt
changes that may negatively affect the agent’s performance. At last, when the HTs
are inserted, the toolset outputs Verilog gate-level netlist files that contain the mali-
cious HTs (line 30).

@ Springer

Trojan playground: a reinforcement learning framework for... 14307

4 The proposed HT detection

From a detection perspective, we must determine whether a given circuit is clean or
Trojan-infected. To achieve this goal, an RL agent is defined that applies its gener-
ated test vectors to circuits and checks for any deviation at the circuits’ primary out-
puts with respect to the expected outputs (golden model). The agent interacts with
the circuit (performs actions) by flipping the vector values to activate certain inter-
nal nets. The action space is an n-dimensional binary array where #n is the number of
circuit primary inputs. The action space vector q, is defined as a, = [a;, a,, ..., a,].
The agent decides to toggle each g; to transition to another state or leave them
unchanged. a; = 0 denotes that the value of the ith bit of the input vector should
remain unchanged from the previous test vector. In contrast, a; = 1 means that the
ith input bit should flip. The RL agent follows a z policy to decide which actions
should be commenced at each state. The z policy is updated using a policy gradient
method [34] where the agent commences actions based on probability distribution
from the z policy. The assumption is that attackers are likely to choose trigger nets
with a consistent value (0 or 1) most of the time. Thus, a detector aims to activate as
many dormant nets as possible. We consider two different approaches for identifying
such rare nets:

(1) Dynamic simulation: We feed each circuit with 100K random test vectors and
record the value of each net. Then, we populate the switching activity statistics
during the simulation time and set a threshold 6 for rare nets where the switching
activity for a net below 6 denotes that the net is rare. 6 is in the range of [0, 1].

(2) Static simulation: We use the HTS parameter in Eq. (1) and a threshold to find
rare nets. Categorizing rare nets with this approach provides the security engi-
neer with an extra option for detection.

In a circuit with m rare nets, the state space is defined as State, = [y, 5,, ..., S,,]
where s, is associated with the ith net in the set. If an action (a test vector) sets the
ith net to its rare value, s; will be 1; otherwise, s; stays at 0. As can be inferred, the
action and state spaces are multi-binary.

Attackers tend to design multi-trigger HTs [11], and this should be considered
when HT detectors are designed. The final purpose of our detector is to generate
a set of test vectors that can trigger as many rare nets as possible. To achieve this
goal, a part of the rewarding function should enumerate rare nets. However, we
should avoid over-counting situations where a rare net has successive dependent rare
nets. An example case is shown in Fig. 5 where four nets net|, net,, net;, and net,
(with their switching probabilities and their rare values) are all dependent rare nets.
Instead of including all four nets in the state space, we choose the rarest net as the
representative net since activating the rarest net ensures the activation of the others
as well. In this example, net, is selected as the set representative. This policy helps
accelerate the RL agent to converge on the global minima faster. Figure 6 summa-
rizes our proposed detection flow.

@ Springer

14308 A.Sarihi et al.

’

\
................... !
net 1
1 0.0076 (0) !
0.22 (1) 1
.................... net4 :
0.432 (0) :’
N, ,I’
Fig.5 State pruning identifies nets in the same activation path
et @)
{JSON} 1010001 Scenarios
101001 7 T b
HT-free c N N Acnon 2
Verilog onversion Conversion to BLtic ar.|d q]
to data . Dynamic Net Pruning 3
Directed N . & 3
structure Graph Simulation State 3
rap a,| Reward -

Fig.6 The proposed detection flow

As for rewarding the agent, we consider three rewarding functions, which we
explain here. Our multi-rewarding detector enables security engineers to better pre-
pare for attackers with different mindsets.

4.1 Rewarding function SSD

In our first rewarding function (Algorithm 2) called SSD (Subsequent State Detec-
tor), we push the RL agent to build on its current state. We use a copy of the previ-
ous state and encourage the agent to generate state vectors that differ from the previ-
ous one. The hypothesis is to push the agent toward finding test vectors that lead to
various unseen states. To compute the reward, the pruned current and previous state
vectors and their lengths are passed as inputs to Algorithm 2. The rewarding func-
tion comprises an immediate and a sequential part, initialized to O in lines 1 and 2,
respectively. Whenever the state transitions, we iterate through the loop K times.
We calculate the sequential reward by making a one-to-one comparison between the
nets in the old and new states. In lines 5-11, the highest reward is given when an
action can trigger a net not triggered in the previous state, i.e., +40. If a rare net is
still activated in the current state, the agent will still get rewarded +20. The worst
state transition is whenever an action leads to a rare net losing its rare value, which
is rewarded —3. Lastly, if the agent cannot activate a rare net after a state transition,
it will be rewarded —1. This process is depicted in Fig. 7.

The immediate award is the number of activated rare nets in the new state. The
ultimate reward value is a linear combination of the immediate and sequential
rewards with coefficients 4; and A,, respectively, which are tunable parameters to be
set by the user. We build the state vector with the obtained rare nets from functional
simulation.

@ Springer

Trojan playground: a reinforcement learning framework for... 14309

Fig.7 Rare net transition (state Previous State ——Jp 0 1 1
transition) in the current and
previous states and correspond-

s ——> (IO

Current State ——J)p 1 0 1

Algorithm 2 Rewarding Function SSD

Input: Statey,., Statec,,, State Vector Length K
Output: Rewardyina

1: Rewardyqg = 0;

2: Rewardgeq = 0;

3. for k€ {0,...,K — 1} do

4. if (Statecur[k] = 0 and Statepre[k] = 0) then

5 Rewardgeq+ = —1;

6. else if (Statecyr[k] = 0 and Stateyrc[k] = 1) then
7: Rewardgeq+ = —3;

8. else if (Statecyr[k] =1 and Stateyrc[k] = 0) then
9: Rewardgeq+ = 40;

10: else if (Statecyr[k] = 1 and Statep,c[k] = 1) then

11: Rewardgeq+ = 20;
12: end if
13: end for

14: Rewardrmqg. = Stateey,.count(1)
15 Rewardyfinag = M X Rewardgeq + Ao X Rewardrmq

4.2 Rewarding function SAD

Algorithm 3 describes our second rewarding function called SAD (Switching Activ-
ity Detector). In this case, the agent gains rewards proportional to the difficulty of
the rare nets triggered. First, the reward vector is initiated with a length equal to the
state vector (line 1). Each element in the reward vector has a one-to-one correspond-
ence with rare nets on the state vector. The reward for each rare net is computed by
taking the inverse of the net switching activity rate (line 4). In some cases, a net
might have a switching probability of 0. In such cases, activating the net would be
rewarded 10X times the greatest reward in the vector (line 12). Thus, upon observ-
ing every new state, the agent will be rewarded based on the activated nets and the
reward vector (line 18). If a rare net is not activated, —1 will be added to the final
reward (line 20). The algorithm encourages the agent to trigger the rarest nets in the
circuit directly.

@ Springer

14310 A.Sarihi et al.

Algorithm 3 Rewarding Function SAD

Input: Net switching vector Switchingyector,
Current state vector Stateyector, State Vector Length K
Output: Final reward Rewardyinai

1: Rewardyector = [0] ¥ K

2. for k € {0,...,K — 1} do

3. if (Switchingyector[k])! = 0) then
4: Rewardyector[k] = Switchingyector[k] ™!
5: else

6: Rewardyector[k] = 0

7. end if

8: end for

9: rewardyq, = max(Rewardyector| |)
10: for k€ {0,..., K —1} do

11: if (Switchingyector[k] == 0) then
12: Rewardyector[k] = 10 * reward,,qq
13: end if

14: end for

15: Rewardfina =0

16: for k€ {0,..., K — 1} do

17: if (Stateyector[k] == 1) then

18: Reward fina+ = Rewardyector [k]
19: else
20: Rewardyipa+ = —1
21: end if
22: end for

4.3 Rewarding function COD

The third rewarding function is described in Algorithm 4 and is called COD (Con-
trollability Observability Detector). In this scenario, rare nets are populated based
on the threshold of the HTS parameter computed during the static simulation using
Eq. (1). When a rare net in the set is activated, the agent is rewarded with the con-
trollability of the rare value (line 4). Otherwise, it will receive —1 from the environ-
ment (line 6). This scenario aims to investigate controllability-based HT detection
with the RL agent. Figure 8 shows an example where an RL action is XORed with
an old test vector, generating a new test vector. It also shows how activating rare nets
(from SAD and COD) leads to state transitions where an activated net corresponds
toa ‘1’ in the state vector.

@ Springer

Trojan playground: a reinforcement learning framework for... 14311

Old Test Vector Action New Test Vector

1 0 1

0 XOR 0 0

1 b 1 = 0

0 1 1

0 1 1

State Space Rare Nets Status New State

S1 Active 1
Sz | Action | inactive 0
53 = Active 1
Sq Inactive 0
S5 Inactive 0

Fig. 8 Test vector generation and state transition for SAD and COD

Algorithm 4 Rewarding Function COD

Input: Controllability reward vector Rewardyecctor,
Current state vector Stateyector, State Vector Length K,
Output: Final reward Rewardfinal

1: Rewardginag =0
2. for k€ {0,...,K —1} do
3. if Stateyector[k] == 1 then

4: Reward fina+ = Rewardyector k]
5: else

6: Rewardyipag+ = —1

7. end if

8: end for

5 The proposed generic HT detection metric

We propose the following methodology to the community for fair and repeatable
comparisons among HT detection methods. In addition, our methodology can help
compare different HT insertion techniques for a given HT detector. This methodol-
ogy obtains a confidence value that one can use to compare different HT detection
methods.

Figure 9 shows four possible outcomes when an HT detection tool studies a given
circuit. From the tool user’s perspective, the outcomes are probabilistic events. For
example, when an HT-free circuit is being tested, the detection tool may either

@ Springer

14312 A. Sarihi et al.

Fig.9 Possible outcomes of an Real Labels
HT detection trial

Predicted Labels

classify it as an infected or a clean circuit, i.e., Prob(FP) + Prob(TN) = 1 where FP
and TN stand for False Positive and True Negative events. Similarly, for HT-infected
circuits, we have Prob(FN) + Prob(TP) = 1. FN and FP are two undesirable out-
comes at which detectors misclassify the given circuit. However, the FN cases pose
a significantly greater danger as they result in a scenario where we rely on an HT-
infected chip. In contrast, an FP case means wasting a clean chip by either not sell-
ing or not using it. So, we need to know how the user of HT detection tools (might
be a security engineer or a company representative) prioritizes FN and FP cases. We
define a parameter a as the ratio of the undesirability of FN over FP. The tool user
determines a based on characteristics and details of the application that eventually
chips will be employed in, e.g. , the risks of using an infected chip in a device with
a sensitive application versus using a chip for home appliances. Note that the user
sets this value, which is not derived from the actual FP and FN. After « is set, it is
plugged into Eq. (4) and a general confidence basis Conf. Val is computed.

(1 - FP)

This metric can compare HT detection methods fairly regardless of their detec-
tion criteria and implementation methodology. The defined confidence metric com-
bines the two undesirable cases to their severity from a security engineer’s point of
view. The Conf. Val ranges between [135.;"“]‘ The closer the value is to a, the
more confidence in the detector. The absolute minimum of the Conf. Val = 1/3 that
happens when @ = 1 and FP = FN = 50%. This analysis assumes that FN and FP
are independent probabilities. We note that, for some detection methods, FP is
always 0. For instance, test-based HT detection methods that apply a test vector to
excite HTs use a golden model (HT-free) circuit for comparison and decision mak-
ing, and it is impossible for a non-infected circuit to have a mismatch with the
golden model (from the perspective of functional simulation). It is impossible for
such methods to detect an HT in a clean circuit falsely. However, our metric is gen-
eral and captures such cases.

@ Springer

Trojan playground: a reinforcement learning framework for... 14313

10 —— a=10
-0— o=4

= FN=10%

81 ..o FN=25%

Confidence Value

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
False Negative (FN)

Fig. 10 Confidence value vs. the percentage of FN in our detectors assuming « = 10 and « = 4

Figure 10 shows the relation between the confidence value and the FN percent-
age for @ = 10 and @ = 4 for a test-based detector. As can be observed, the slopes of
the graphs are different when FN approaches zero. The maximum tolerable FN is
an upper bound for the FN value at which we gain at least half the maximum con-
fidence. As shown with the dashed lines in Fig. 10, the maximum tolerable FN for
a =4 and @ = 10 is, respectively, FN = 25% and FN = 10%. Based on the figure, it
can be inferred that choosing a higher base a will make it more challenging to attain
higher confidence values. This fact should be considered when selecting « and inter-
preting the confidence values.

In addition to the detection quality, which the proposed confidence value can
measure, HT detection methods should also be compared from a computational cost
point of view. In particular, we encourage researchers to report the runtime of their
methods and the training time, if applicable.

6 Experimental results and discussion

This section demonstrates the efficiency of the developed HT insertion and detec-
tion framework. For our experiments, we use an AMD EPYC 7702P 64-Core CPU
with 512 GB of RAM to train and test our agents. The training of the RL agents is
done using the Stable Baselines library [35] with MLP (multi-layer perceptron) as
the PPO algorithm policy [17]. The benchmark circuits are selected from ISCAS-
85 [36] and converted into equivalent circuit graphs using NetworkX [37]. Our HT
benchmarks and test vectors are available to download from [38]. The HTs are in
structural Verilog format, making them easy to use. The input orders of the test vec-
tors are the same as [39]. Our toolset is developed in Python to (1) quickly adopt
available libraries and (2) facilitate future expansions and integration with other
tools that researchers may develop.

@ Springer

14314 A.Sarihi et al.

Table 3 Characteristics of different circuits from ISCAS-85 benchmark

Benchmark # of Inputs # of Levels #ofnodes #ofnets T, Tyre Description

c432 36 40 352 492 14 0.85 27-Channel Interrupt
Controller

c880 60 43 607 889 15 0.82 8-Bit ALU

cl1355 41 44 957 1416 20 0.75 32-Bit SEC Circuit

c1908 33 52 868 1304 14 0.90 16-bit SEC/DED Circuit

c2670 233 28 1323 1807 20 0.83 12-bit ALU and Controller

¢3540 50 60 1539 2527 15 0.84 8-bit ALU

c5315 178 63 2697 4292 21 0.79 9-bit ALU

c6288 32 240 4496 6801 18 0.8 16 x 16 Multiplier

c7552 207 53 3561 5433 20 0.8 32-Bit Adder/Comparator

Table 4 Mean HT detection/
insertion training time of the RL
algorithm for different ISCAS-

Benchmark Insertion/detec- Insertion/detection training time
tion timesteps

85 benchmarks 432 120K/450K 1h40m/1h7m
¢880 132K/495K 2h36m2h7m
c1355 145K/550K 3h10m2h27m
¢1908 160K/605K 5h25m/2h40m
2670 175K/665K 8h1m/7h23m
¢3540 192K/731K 12h 1 m/5h 24
¢5315 211K/800K 23h 16 m/15h 36 m
6288 232K/880K 57h 18 m/59h 16 m
7552 255K/970K 26h 15 m/44h 15 m

Table 3 provides details of the benchmark circuits used in our experiments. The
table represents the number of primary inputs (2nd column), logic levels (3rd col-
umn), number of nodes including inputs, outputs, and logic gates (4th column), and
nets (S5th column). We have specified Ty and Ty such that 5% of all nets in each
circuit are considered as rare nets (6th and 7th columns, respectively). This was
done to enable a fair comparison between the circuits. Finally, the circuit functional-
ity is listed in the 8th column.

6.1 Timing complexity and scalability

Table 4 provides timing information on training the HT insertion and detection
agents per circuit. The 2nd column shows the total timesteps for insertion/detection,
and the 3rd column shows the total spent time. We initialize training the inserting
agent in c432 with 120K timesteps and an episode length of 450. We increase both
values by 10% for each succeeding circuit to ensure enough exploration is made in
each circuit as their size grows. As for detection, we start with 450K timesteps and
increase it by 10% for subsequent circuits, and we keep the episode length at 10. The

@ Springer

Trojan playground: a reinforcement learning framework for... 14315

201

-
v
L

Frequency
=
o
"

8 10 11 12 13 14 17 18 19 20 21 22 23 24 25 27 28 29 30 31 32 33 35 36 38 39 40 41 45 46 50 51
Logic Level

(a) c3540

15 A

Frequency
-
o

6 7 8 91011121314161718192021222324252627282930323336373839404142444648505152535455
Logic Level

(b) 5315

Fig. 11 Distribution of rare nets in ¢3540 and ¢5315

short episode length allows the agent to experience different states, thereby increas-
ing the chances of exploration. The test vectors are collected after running the agent
for 20K episodes in the testing phase.

In our experiments, c6288 takes the most time in both insertion and detection
scenarios (2.5 days), which we argue is reasonable for an attacker and the defense
engineer. Note that we have not used optimization techniques to reduce the number
of gates and nets in the benchmarks. Such techniques can notably decrease the RL
environment size and, subsequently, the training time. That being said, the impact of
optimization techniques on detection/insertion quality should be investigated, but it
is beyond the scope of this paper.

6.2 Insertion, detection, and confidence value figures
Figure 11 illustrates the logical depth distribution of rare nets in ¢3540 and ¢5315
circuits. Although rare nets are primarily found in the lower logic levels, there are

still a significant number of rare nets in the higher levels, which could contribute
to the creation of stealthier hardware Trojans. As explained in Sect. 3.2, the level

@ Springer

14316 A.Sarihi et al.

Table 5 Number of inserted HTs under P, and Py, scenarios for ISCAS-85 benchmark circuits

Bench- P, na — Total P,”-Hh —Total P,,,,—3 Phl-gh -3 Pu—4 thh -4 Pa—5 thh -5
mark

c432 1866 2788 1688 2331 160 453 18

c880 1954 2116 1595 1736 327 373 32

cl355 921 1400 815 1116 86 268 20 16
c1908 1247 1576 1121 1240 126 321 0 15
c2670 206 434 188 406 18 28 0 0
c3540 410 767 367 703 41 64 2 0
c5315 434 797 406 719 28 77 0 1
6288 531 475 459 426 67 46 5 3
c7552 769 683 704 615 64 67 1 1

The zeros were bolded to make them easy to spot and stand out

of the HT trigger nets is limited by the payload’s level. Suppose a payload is not
selected from the higher-level nets. In that case, the agent has less opportunity to
explore higher-level trigger nets, which might harm the insertion exploration of new
HTs. To enable more exploration, we define the following two payload selection sce-
narios: (1) P,,,, in which the agent selects payloads randomly, and (2) P, where
payload net is selected such that at least 80% of rare nets are within the agent’s sight.

Table 5 provides information about the number of inserted HTs using P,,,, and
Py, scenarios for each benchmark circuit. The 2nd and 3rd columns show the total
number of HTs successfully inserted by the agent. The numbers followed by each
insertion scenario in the remaining columns show the number of rare nets among the
five input triggers. For instance, in c¢432, 1866 HTs were inserted under P,,,, where
1688 of those had 3 rare nets, 160 of those had 4 rare nets, and only 18 of those had
5 rare nets. As can be observed, in most cases, the number of inserted HTs under
P,ep 1 higher than P, except for ¢6288 and ¢7552. Also, fewer HTs are inserted
as the number of rare triggers increases. In other words, it becomes more difficult for
the RL agent to find HTs with higher rare nets. There are some cases under P,,,; — 5
and Py, — 5 that the agent could not insert any HTs. These rows in the table are
shown as 0, e.g. , in ¢2670.

Figure 12 displays the HT detection accuracy percentages for the studied circuits
under P,,,, and P, insertion scenarios. Figures 13, 14, and 15 provide details
about the detection accuracy of each HT group, separately. Besides SSD, SAD, and
COD, there is an extra detection scenario called Combined where all the test vectors
produced by SSD, SAD, and COD are consolidated and applied to the circuits for
HT detection. No detection rates are reported in cases where no HTs were inserted.
It can be observed from both Table 5 and Figs. 12, 13, 14, and 15 that despite more
inserted HTs in the P, scenario, they do not evade detection any better than the
random payload selection scenario and the detection rates are almost the same. Nev-
ertheless, the extra inserted HTs under P, can be used to train better ML HT detec-
tors. Figures 12, 13, 14, and 15 also suggest that SSD, SAD, and COD are vital to
providing better HT detection coverage. Figure 16 displays the number of times each

@ Springer

Trojan playground: a reinforcement learning framework for... 14317

Total Detection Percentages for Pyang HTS

100% A Z=2 ssD
ES1 SAD
v : = cop
% 80% A ’—‘H I Combined
5 N
g 60%- A
& \‘H
c ‘\‘.
-% 40% 1 ‘HH
g N
8 20%- H‘H
A
0% - oy
°" 432 880 1355 1908 2670 3540 5315 6288 7552

ISCAS-85 Circuits
(a) Prand HTs

Total Detection Percentages for Ppgn HTS

100% A N Z= Ssb
o \ N =
g 80% - H H EEE Combined
: : :
S 60%: H H
< \
L 40%- E H
o \ \
8 20% E E
0% - N !

c432 c880 c1355 ¢c1908 2670 ¢3540 ¢5315 6288 7552
ISCAS-85 Circuits

(b) Phigh HTs

Fig. 12 Detection accuracy of SSD, SAD, COD, and Combined scenarios under Py, and Py, insertion
scenarios in ISCAS-85 benchmark circuits

detector was ranked first in nine benchmark circuits under our two insertion strate-
gies. While COD ties with SAD under P, ,,,,, it becomes the best detector under Py,
SSD only outperforms in 1 benchmark circuit in both scenarios. The figure suggests
that solely developing HT detectors based on signal activity might not achieve the
expected outcomes. Nevertheless, SAD still plays an essential role in overall HT
detection accuracy. The impact of the Combined scenario is vital as it improves the
overall detection accuracy in most cases. For instance, in ¢3540, none of the detec-
tors can perform better than 60% in the P,,,; scenario while the Combined detection
accuracy is nearly 75%. It also can be seen that adding more rare nets to the HT
trigger does not necessarily lead to stealthier HTs. For example, in ¢880, c1355, and
¢1908, there are HTs with five trigger nets that were 100% detected, while the detec-
tion accuracy was less for HTs with fewer rare triggers in the same circuits.

Another important observation is the different magnitude of detection accu-
racy among the benchmark circuits. While we achieve 100% accuracy in c6288,
it is about 25-30% lower in ¢3540 and ¢6288. Table 3 shows that ¢6288 is a

@ Springer

14318 A.Sarihi et al.

Total Detection Percentages for Pr;ng — 3 HTs

100% 1 SsD
N \ KX SAD
% 80% 1 j ": = Eoor:bined
2 S A o\
v \ \= [\
5 60%- \ N N
E \ I N
S ao%: \ - A
3 \ 2 N
° \ ‘= N
A 20%- \ N [;
\ ‘ [
N \= N
0% Al [(0
c432 c880 c1355 c1908 c2670 ¢3540 c5315 c6288 c7552

ISCAS-85 Circuits
(a) Prond —3 HT's

Total Detection Percentages for Ppjgh — 3 HTs

100% - q Z=2 SsD
] EXI SAD
g \ = i E COD
g 80% 1 : }: ‘FE [Combined
: \ i
S 60%1 \ N N
= \ N A
S 40%- \ A N
g \ - N
A 20% : \: \E
il |
o/ 4N LN LN
0% c432 c880 c1355 ¢c1908 2670 3540 ¢5315 6288 7552

ISCAS-85 Circuits
(b) Phigh —3 HT's

Fig. 13 Detection accuracy of SSD, SAD, COD, and Combined scenarios under Py, and Py, insertion
scenarios for 3-input HTs

multiplier circuit. It contains 240 full and half adders arranged in a 15 X 16 matrix
[39]. ¢3540, on the other hand, has 14 control inputs for multiplexing and mask-
ing data. ¢7552 also contains multiple control signals and bit masking operations.
We hypothesize that the detection accuracy is higher in c6288 due to having fewer
control signals that disable circuit components and signals. Accordingly, they get
more frequently activated in c6288 than ¢3540 and ¢7552. In other words, these
results imply that inserting HTs in control paths can lead to stealthier HTs than
data paths in circuits. Another interesting finding pertains to the detection rate
in c432. After administering 100K random test patterns, we discovered that the
rarest net in the circuit was triggered 7% of the times, starkly contrasting to other
circuits where many nets exhibit less than 1% switching activity. It implies that
random test patterns probably more easily activate the inserted HTs in c432. We
generated 20K random test patterns to prove this hypothesis and passed them
to the circuit. These test patterns detected 99% of HTs, indicating that attackers

@ Springer

Trojan playground: a reinforcement learning framework for... 14319

Total Detection Percentages for Prapg — 4 HTs

100% 1 ri 33)
f EX sAD
v f : . cop
g 80% 1 _ }. B Combined
5 ‘\ ‘\=
o
3 60% 1 } \=
\ [
c 1 f \
S 40% ‘ \=
[*] { §
2 1 [:
8 20%1 \‘ N
\ N\
0%] N
’ c432 c880 c1908 2670 c3540 c6288 c7552
ISCAS-85 Circuits
(a) Prana —4 HT's
Total Detection Percentages for Ppjgh — 4 HTs
100% 1 \ Ssb
KX sAD
g \ == cop
% 80% - "\H B Combined
= N
S N
S 60% H.
& H.
c N
2 40%- N
© o\
@ NH
o 20%-1 H‘.
N
0% - 4 L‘L

c432 c80 c1355 ¢c1908 2670 c3540 5315 6288 7552
ISCAS-85 Circuits

(b) Ph'igh —4 HTs

Fig. 14 Detection accuracy of SSD, SAD, COD, and Combined scenarios under Py, and Py, insertion
scenarios for 4-input HTs

should carefully evaluate the activity profile of the nets before compromising
circuits.

To further evaluate the efficacy of our HT detectors, we compare the Combined
detector with DETERRENT [10] and HW2VEC [29], two state-of-the-art HT detec-
tors. We use the test vectors generated by DETERRENT [10] and collect detec-
tion figures for 4 reported ISCAS-85 benchmark circuits, namely ¢2670, ¢5315,
6288, and ¢7552.> We also replicate the steps in HW2VEC [29] by gathering the
TJ_RTL dataset, which contains 26 HT-infected (labeled as ‘1’) and 11 HT-Free
circuits (labeled as ‘0’). We train an MLP (multi-layer perceptron) binary classi-
fier to detect the HTs. For the test dataset, we collect the graph embeddings of the
HTs generated by the inserting RL agent. Additionally, we add an HT-free version
of the original ISCAS-85 circuits and another one synthesized with the academic

2 We reached out to the authors of TARMAC and TGRL techniques, but we did not receive the test pat-
terns at the time of submission.

@ Springer

14320 A.Sarihietal.
Total Detection Percentages for Prong — 5 HTS
100% 1 Z=2 SSD
SAD
() NN COD
2 80%- B Combined
€
]
S 60%
o
c
2 40%H
[9)
)
8 20%
0% - r T T
c432 c880 cl355 ¢1908 2670 3540 ¢5315 6288 7552
ISCAS-85 Circuits
(a) Prana —5 HT's
Total Detection Percentages for Ppjgh — 5 HTs
100% Z= ssD
E SAD
() NN COD
g 80% B Combined
€
3
5 60%
a.
c
2 40%
Q
3
A 20%
0% T T T
c432 c880 cl1355 ¢1908 2670 c3540 5315 6288 c7552

ISCAS-85 Circuits
(b) Prign —5 HT's

Fig. 15 Detection accuracy of SSD, SAD, COD, and Combined scenarios under Py, and Py, insertion

scenarios for 5-input HTs

Phigh

P rand

Insertion Scenarios

S SSD
XX» SAD
i COD

0

T T T T

1 2 3 4
of times each detector was ranked 1st

5

Fig. 16 Comparing the number of times each of SSD, SAD, and COD are ranked as the best detector in

our two insertion scenarios

@ Springer

Trojan playground: a reinforcement learning framework for... 14321

100% BZZI DETERRENT
XX HW2VEC
o I Combined
D 80% A
2
[}
£ 60% K
o] X
o K
5 ‘
o i o
S 40% K
9 K
8 X
g 2
O 20% .
R
o
P
0% -
c5315 c6288 c7552
ISCAS-85 Benchmark Circuits
(a) Prona HT's
100% EZZ DETERRENT
XX HW2VEC
R I Combined
9 XX
> 80% 03059
o R
S RS
g X
2 60%- RXX
& RS
5 558
o X
= 40% o20de
9] odele
Q Kl X
- ll X
o] R
O 20%- KK
KX
RXX

0% -

5315 6288 7552
ISCAS-85 Benchmark Circuits

(b) Phign, HT's

Fig. 17 Comparison of HW2VEC [29], Combined, and DETERRENT [10] detection rates under a P
and b Py, insertion scenarios

rand

NanGateOpenCell45nm library to the test batch to record the number of 7Ns and
FPs. As shown in Table 2, DETERRENT solely considers signal activity while
HW2VEC captures structural information of circuits.

Figure 17 shows the detection accuracy of each HT detector for each benchmark
circuit. The detection accuracy is reported for the total inserted HTs in Table 5 for
both P,,,, and P, insertion scenarios. The figure shows that the Combined detec-
tor outperforms DETERRENT and HW2VEC in 3 of our benchmark circuits. The
average detection rate among the 4 benchmarks is 87% percent. While the detection
gap between Combined and DETERRENT is significant in ¢2670 and ¢5315, it is
less evident in ¢6288 and ¢7552. HW2VEC, on the other hand, demonstrates mini-
mal detection variance in all 4 circuits and outperforms Combined in ¢7552. Fur-
thermore, HW2VEC illustrates robust performance with HT-Free circuits, correctly
classifying them as TN's and a FP rate of 0.

In another experiment, we train our MLP with 7J_RTL + EPFL [40] benchmark
suites to obtain a more balanced dataset (26 instances labeled as ‘1’ and 30 instances

@ Springer

14322 A.Sarihi et al.

Table 6 Individual contribution

ircui D #
of SSD. SAD. and COD in Circuit SS. SSD% SAD# SAD% COD# COD%

detection of unique HTs 432 2 0.1% 275 1474% 297 15.86%
880 49 252% 16 081% 16 0.81%
1355 0 0% 0 0% 40 434%
c1908 1 0.08% 1 0.08% 13 1.04%
2670 0 0% 1 048% 66 32.03%
3540 7 170% 29 7.07% 18 4.39%
5315 1 024% 8 193% 9 2.17%
6288 0 0% 0 0% 8 151%
7552 16 208% 29 371% 15 1.95%

labeled as ‘0’). While the FP remains 0, similar to the previous experiment, the HT
detection accuracy drops to 48%. This sheds light on the shortcomings of the current
benchmarks used for training ML HT detectors, and it raises the necessity of having
a more diverse and larger dataset to attain more dependable results. Overall, these
two experiments demonstrate the potential of the RL inserting agent and the advan-
tages of a multi-criteria detector compared to a single-criterion (DETERRENT) HT
detector.

Table 6 shows the individual detection contribution of SSD, SAD, and COD
toward overall HT detection for each benchmark circuit. The 2nd, 4th, and 6th col-
umns display the number of HTs exclusively detected by each detector followed by
their contribution in the overall HT detection in the 3rd, 5th, and 7th columns for
SSD, SAD, and COD, respectively. As can be inferred, COD has the highest individ-
ual contribution, followed by SAD and SSD. This table is evidence of the importance
of the multi-criteria HT detector for higher accuracy.

To compute the confidence value of each detector, the overall detection accu-
racy of each detector is calculated in all nine circuits under both insertion scenarios.
Then, each averaged value is plugged into Eq. (4). Assuming a = 10, the confi-
dence values for each SSD, SAD, COD, and combined scenarios are 2.43, 3.36, 3.09,
and 5.13, respectively. Thus, the security engineer can put more confidence in the
Combined detector since it has the highest confidence values. DETERRENT’s and
HW2VEC’s confidence values are 1.24 and 4.34, respectively.

6.3 Average episode length and reward

Figure 18 shows the average episode length and reward of the inserting and detec-
tor RL agents for the ¢5315 benchmark circuit. As seen from Fig. 18a, initially, the
agent leans more toward ending the training episodes to avoid further losses. This
trend continues until it gradually increases the episode length, increasing the reward,
which can be observed in Fig. 18b. Eventually, the agent collects more and more
rewards. Although the agent accumulates higher rewards in P, the detection rate
is not significantly different from P,,,,. Figure 18c demonstrates the agent’s abil-
ity to augment rewards in our three detection scenarios at an almost steady pace; it

@ Springer

Trojan playground: a reinforcement learning framework for... 14323

Average Episode Length per Step

500 1 - Prand

400+

3001
200 1
100 1

ok 50k 100k 150k 200k
Steps

(a) Average Episode Length per Step in HT insertion
for ¢5315

2000

Average Episode Length

Average Episode Reward per Step

~—— Prand

—— Phigh

1500

1000 1

500 4

Average Episode Reward
o

ok 50k 100k 150k 200k
Steps
(b) Average Episode Reward per Step in HT insertion
for ¢5315

Average Episode Reward per Step

15004 — 55D

e SAD

e COD
1000 -
500 A
0 4

ok 100k 200k 300k 400k 500k 600k 700k 800k
Steps

(c) Average Episode Reward per Step in HT Detec-
tion for ¢5315

Average Episode Reward

Fig. 18 The average episode length and reward vs. the number of steps in both HT insertion and detec-
tion for ¢5315

@ Springer

14324 A.Sarihi et al.

c1908
c3540
c5315
c7552

80% |

ElvR

60%

40% A

Detection Percentage

20%1

=\]

0%- =
° 4K-6K 6K-8K 8K-10K 10K-12K 12K-14K 14K-16K 16K-18K 18K-20K

Test Vector Intervals

Fig. 19 The number of generated test vectors (x-axis) versus the HT detection accuracy (y-axis)

learns how to increase rewards along the way. It is worthwhile to point out that the
proposed RL framework can save the state of the RL models at arbitrary intervals,
which helps test the agent’s efficacy at different timesteps. Note that since the detec-
tor’s episode length is always 10, this data was not included in the graph. The agent
can always be trained for longer steps, but one should consider the trade-off between
the time required and the accuracy achieved.

6.4 Test vector size versus accuracy

We also investigate the relationship between the number of applied test vectors and
the HT detection accuracy. For this experiment, we collect a set of test vectors that
have obtained a certain minimum reward. We run the trained RL agent for 20K
episodes to identify such vectors. We set a cut-off reward of one-tenth of the col-
lected reward in the last training episode. We collect 20K test vectors that surpass
this reward threshold. The HT detection distribution of the collected test vectors
is shown in Fig. 19 for ¢1908, ¢3540, ¢5315, and ¢7552 under the P,,,, insertion
scenario and the SAD detection scenario. The x-axis displays the intervals of the
applied test vectors, and the y-axis shows the detection percentage of each particular
interval. As can be seen, the first 2K vectors have the greatest contribution toward
HT detection. This figure is nearly 90% for ¢1908 and just below 40% for ¢7552. A
similar comparison can be made between different HT detectors to help us find the
relation between the quantity (number of test vectors) and the quality (the detection
accuracy). Such analysis leads us to answer the question, “Does adding more test
vectors to the testing batch improve detection?" If the answer is negative, adopting
more intelligent rewarding functions might be considered to offset this diminishing
returns effect. That being said, in certain instances, adding more test batches leads
to higher detection rates. We tested this scenario for ¢3540 where the Combined
detection rate with 20K test patterns is around 80% in the P,,,, scenario. We ran the
trained detector agents SSD, SAD, and COD for 20K episodes, but this time, we col-
lected all the test patterns that returned positive rewards. Accordingly, we collected
191K, 183K, 121K for SSD, SAD, and COD and the detection rates were 89, 86, and
97%, respectively.

@ Springer

Trojan playground: a reinforcement learning framework for... 14325

6.5 RL Feasibility in practice

RL agents have been extensively used in various application domains where deci-
sion making is required, e.g. , robotics control [41, 42], gaming [43, 44], autono-
mous driving [45], computer architecture [46, 47], and hardware security [48].
Training RL models requires a large amount of interaction with the environment to
learn an optimal policy. This can be costly in many environments (including the HT
space) where the interactions with the environment are computationally expensive.
The OpenAl RL agent that defeated the DOTA world champions famously took
10 months to train [49]. Despite the training hurdle, RL introduces some valuable
advantages in relationship to HTs. First, RL facilitates the exploration of complex
environments that humans cannot easily accomplish. It automates the decision-mak-
ing process and eases automation especially where tasks must be performed repeat-
edly or in large volumes. RL, as an unsupervised learning technique, can build train-
ing sets for other agents that are then trained via supervised learning, for instance,
an HT benchmark for training an ML-based HT detector. Moreover, RL removes
the human bias stemming from a particular mindset in the process. RL has already
proved to be a valuable solution in the HT domain [2, 10, 16]. While utilizing RL
helps security engineers produce test vectors, the next generation of malicious actors
might be bots designed to compromise security. Hence, despite the added layer of
complexity, we believe that utilizing an RL approach for HT insertion and detection
is feasible where the sheer complexity of the problem means that we need to explore
all potential research avenues.

7 Conclusions and future directions

This paper presented the first framework for joint HT insertion and detection. The
inserting and detection RL agents have tunable rewarding functions that enable
researchers to experiment with different approaches to the problem. This framework
will accelerate HT research by helping the research community evaluate their inser-
tion/detection ideas with less effort. Our inserting tool provides a robust dataset that
can be used for developing finer HT detectors, and our detector tool emphasizes the
need for a multi-criteria detector that can cater to different HT insertion mindsets.
We also presented a methodology to help the community compare HT detection
methods, regardless of their implementation details. We applied this methodology
to our HT detection and discovered that our tool offers the highest confidence in
HT detection when using a combined detection scenario. We aim to explore more
benchmarks and create a more diverse HT dataset for the community.

As an extension to this work, we aim to explore more benchmarks and provide
support for other circuits, including sequential ones in our flow, e.g. , ISCAS-89 [50]
and ITC’99 [51] benchmarks. One solution to tackle these circuits would be utiliz-
ing Design for Testability (DFT) techniques such as scan chains [52]. In a full scan
design, memory elements are connected to the chain, enabling test engineers to use
combinational test patterns instead of sequential ones. Given the existence of this

@ Springer

14326 A.Sarihi et al.

playground infrastructure, further research questions and more complex ideas can be
explored.

Author contributions Initial draft of the manuscript was prepared by A.S.; all authors edited it. All the
development of the technical work was done by A.S. The technical feedback, discussions, and ideas were
developed as a team.

Funding This work has been partially funded by NSF grants 2219680 and 2219679.

Availability of data and materials Our HT benchmark and test vectors are available on https://github.
com/NMSU-PEARL/Hardware-Trojan-Insertion-and-Detection-with-Reinforcement-Learning We will
share the hardware Trojan benchmark on a case-by-case basis. Requests can be made on the same GitHub
repository.

Declarations
Conflict of interest The authors declare no competing interests.

Ethical approval Not applicable.

References

1. Securing Defense-Critical Supply Chains: An action plan developed in response to President
Biden’s Executive Order 14017. https://tinyurl.com/3wmddx5d

2. Pan Z, Mishra P (2021) Automated test generation for hardware trojan detection using reinforce-
ment learning. In: Proceedings of the 26th Asia and South Pacific Design Automation Conference,
pp 408-413. https://doi.org/10.1145/3394885.3431595

3. Shakya B, He T, Salmani H, Forte D, Bhunia S, Tehranipoor M (2017) Benchmarking of hardware
trojans and maliciously affected circuits. J Hardw Syst Secur 1(1):85-102. https://doi.org/10.1007/
$41635-017-0001-6

4. Sarihi A, Patooghy A, Khalid A, Hasanzadeh M, Said M, Badawy A-HA (2021) A survey on
the security of wired, wireless, and 3d network-on-chips. IEEE Access. https://doi.org/10.1109/
ACCESS.2021.3100540

5. Salmani H, Tehranipoor M, Karri R (2013) On design vulnerability analysis and trust benchmarks
development. In: 2013 IEEE 31st International Conference on Computer Design (ICCD). IEEE, pp
471-474 https://doi.org/10.1109/ICCD.2013.6657085

6. Trust-Hub. https://trust-hub.org/. Accessed 8 Nov 2023

7. Salmani H (2016) Cotd: Reference-free hardware trojan detection and recovery based on controlla-
bility and observability in gate-level netlist. IEEE Trans Inf Forensics Secur 12(2):338-350. https://
doi.org/10.1109/TIFS.2016.2613842

8. Hasegawa K, Yanagisawa M, Togawa N (2017) Trojan-feature extraction at gate-level netlists and its
application to hardware-Trojan detection using random forest classifier. In: 2017 IEEE International
Symposium on Circuits and Systems (ISCAS). IEEE, pp 1-4. https://doi.org/10.1109/ISCAS.2017.
8050827

9. Sebt SM, Patooghy A, Beitollahi H, Kinsy M (2018) Circuit enclaves susceptible to hardware tro-
jans insertion at gate-level designs. IET Comput Digit Tech 12(6):251-257. https://doi.org/10.1049/
iet-cdt.2018.5108

10. Gohil V, Patnaik S, Guo H, Kalathil D, Rajendran J (2022) Deterrent: detecting Trojans using rein-

forcement learning. In: Proceedings of the 59th ACM/IEEE Design Automation Conference, pp
697-702. https://doi.org/10.1145/3489517.3530518

@ Springer

https://github.com/NMSU-PEARL/Hardware-Trojan-Insertion-and-Detection-with-Reinforcement-Learning
https://github.com/NMSU-PEARL/Hardware-Trojan-Insertion-and-Detection-with-Reinforcement-Learning
https://tinyurl.com/3wmddx5d
https://doi.org/10.1145/3394885.3431595
https://doi.org/10.1007/s41635-017-0001-6
https://doi.org/10.1007/s41635-017-0001-6
https://doi.org/10.1109/ACCESS.2021.3100540
https://doi.org/10.1109/ACCESS.2021.3100540
https://doi.org/10.1109/ICCD.2013.6657085
https://trust-hub.org/
https://doi.org/10.1109/TIFS.2016.2613842
https://doi.org/10.1109/TIFS.2016.2613842
https://doi.org/10.1109/ISCAS.2017.8050827
https://doi.org/10.1109/ISCAS.2017.8050827
https://doi.org/10.1049/iet-cdt.2018.5108
https://doi.org/10.1049/iet-cdt.2018.5108
https://doi.org/10.1145/3489517.3530518

Trojan playground: a reinforcement learning framework for... 14327

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

Cruz J, Huang Y, Mishra P, Bhunia S (2018) An automated configurable trojan insertion framework
for dynamic trust benchmarks. In: 2018 Design, Automation & Test in Europe Conference & Exhi-
bition (DATE). IEEE, pp 1598-1603. https://doi.org/10.23919/DATE.2018.8342270

Lyu Y, Mishra P (2020) Scalable activation of rare triggers in hardware trojans by repeated maximal
clique sampling. IEEE Trans Comput Aided Des Integr Circuits Syst 40(7):1287-1300. https://doi.org/
10.1109/TCAD.2020.3019984

Fyrbiak M, Wallat S, Swierczynski P, Hoffmann M, Hoppach S, Wilhelm M, Weidlich T, Tessier R,
Paar C (2018) HAL—the missing piece of the puzzle for hardware reverse engineering, Trojan detec-
tion and insertion. IEEE Trans Dependable Secur Comput. https://doi.org/10.1109/TDSC.2018.28121
83

Yu S, Liu W, O’Neill M (2019) An improved automatic hardware trojan generation platform. In: 2019
IEEE Computer Society Annual Symposium on VLSI (ISVLSI). IEEE, pp 302-307. https://doi.org/10.
1109/ISVLSIL.2019.00062

Chakraborty RS, Wolff F, Paul S, Papachristou C, Bhunia S (2009) Mero: a statistical approach for
hardware Trojan detection. In: International Workshop on Cryptographic Hardware and Embedded Sys-
tems. Springer, Berlin, pp 396—410. https://doi.org/10.1007/978-3-642-04138-9_28

Gohil V, Guo H, Patnaik S, Rajendran J (2022) Attrition: attacking static hardware Trojan detection
techniques using reinforcement learning. In: Proceedings of the 2022 ACM SIGSAC Conference on
Computer and Communications Security, pp 1275-1289. https://doi.org/10.1145/3548606.3560690
Schulman J, Wolski F, Dhariwal P, Radford A, Klimov O (2017) Proximal policy optimization algo-
rithms. arXiv preprint arXiv:1707.06347

Sarihi A, Patooghy A, Jamieson P, Badawy A-HA (2022) Hardware Trojan insertion using reinforce-
ment learning. In: Proceedings of the Great Lakes Symposium on VLSI 2022, pp 139-142. https:/doi.
org/10.1145/3526241.3530379

Sarihi A, Jamieson P, Patooghy A, Badawy A-HA (2023) Multi-criteria hardware Trojan detection: a
reinforcement learning approach. In: 2023 IEEE 66th International Midwest Symposium on Circuits
and Systems (MWSCAS), pp 1093-1097

Krieg C (2023) Reflections on trusting TrustHUB. In: 2023 IEEE/ACM International Conference on
Computer Aided Design ICCAD). IEEE, pp 1-9

Jyothi V, Krishnamurthy P, Khorrami F, Karri R (2017) Taint: tool for automated insertion of Trojans.
In: 2017 IEEE International Conference on Computer Design (ICCD). IEEE, pp 545-548. https://doi.
org/10.1109/ICCD.2017.95

Cruz J, Gaikwad P, Nair A, Chakraborty P, Bhunia S (2022) Automatic hardware Trojan insertion using
machine learning. arXiv preprint arXiv:2204.08580

Perez T, Imran M, Vaz P, Pagliarini S (2021) Side-channel trojan insertion-a practical foundry-side
attack via eco. In: 2021 IEEE International Symposium on Circuits and Systems (ISCAS). IEEE, pp
1-5. https://doi.org/10.1109/ISCAS51556.2021.9401481

Perez T, Pagliarini S (2022) Hardware Trojan insertion in finalized layouts: from methodology to a sili-
con demonstration. IEEE Trans Comput Aided Des Integr Circuits Syst. https://doi.org/10.1109/TCAD.
2022.3223846

Puschner E, Moos T, Becker S, Kison C, Moradi A, Paar C (2023) Red team vs. blue team: a real-
world hardware Trojan detection case study across four modern CMOS technology generations. In:
2023 IEEE Symposium on Security and Privacy (SP). IEEE, pp 56-74. https://doi.org/10.1109/SP462
15.2023.10179341

Hepp A, Perez T, Pagliarini S, Sigl G (2022) A pragmatic methodology for blind hardware trojan inser-
tion in finalized layouts. In: Proceedings of the 41st IEEE/ACM International Conference on Computer-
Aided Design, pp 1-9. https://doi.org/10.1145/3508352.3549452

Nozawa K, Hasegawa K, Hidano S, Kiyomoto S, Hashimoto K, Togawa N (2021) Generating adver-
sarial examples for hardware-Trojan detection at gate-level netlists. J Inf Process 29:236-246. https://
doi.org/10.2197/ipsjjip.29.236

Goldstein LH, Thigpen EL (1980) Scoap: sandia controllability/observability analysis program. In:
Proceedings of the 17th Design Automation Conference, pp 190-196. https://doi.org/10.1145/800139.
804528

@ Springer

https://doi.org/10.23919/DATE.2018.8342270
https://doi.org/10.1109/TCAD.2020.3019984
https://doi.org/10.1109/TCAD.2020.3019984
https://doi.org/10.1109/TDSC.2018.2812183
https://doi.org/10.1109/TDSC.2018.2812183
https://doi.org/10.1109/ISVLSI.2019.00062
https://doi.org/10.1109/ISVLSI.2019.00062
https://doi.org/10.1007/978-3-642-04138-9_28
https://doi.org/10.1145/3548606.3560690
http://arxiv.org/abs/1707.06347
https://doi.org/10.1145/3526241.3530379
https://doi.org/10.1145/3526241.3530379
https://doi.org/10.1109/ICCD.2017.95
https://doi.org/10.1109/ICCD.2017.95
http://arxiv.org/abs/2204.08580
https://doi.org/10.1109/ISCAS51556.2021.9401481
https://doi.org/10.1109/TCAD.2022.3223846
https://doi.org/10.1109/TCAD.2022.3223846
https://doi.org/10.1109/SP46215.2023.10179341
https://doi.org/10.1109/SP46215.2023.10179341
https://doi.org/10.1145/3508352.3549452
https://doi.org/10.2197/ipsjjip.29.236
https://doi.org/10.2197/ipsjjip.29.236
https://doi.org/10.1145/800139.804528
https://doi.org/10.1145/800139.804528

14328 A.Sarihi et al.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51

Yu S-Y, Yasaei R, Zhou Q, Nguyen T, Al Faruque MA (2021) Hw2vec: a graph learning tool for auto-
mating hardware security. In: 2021 IEEE International Symposium on Hardware Oriented Security and
Trust (HOST). IEEE, pp 13-23. https://doi.org/10.1109/HOST49136.2021.9702281

Wolf C, Glaser J, Kepler J (2013) Yosys-a free Verilog synthesis suite. In: Proceedings of the 21st Aus-
trian Workshop on Microelectronics (Austrochip)

Bassett L (2015) Introduction to JavaScript Object notation: a to-the-point guide to JSON. O’Reilly
Media, Sebastopol. https://books.google.com/books?id=QvOPCgAAQBAJ

Brockman G, Cheung V, Pettersson L, Schneider J, Schulman J, Tang J, Zaremba W (2016) Openai
gym. CoRR arXiv:1606.01540

Bushnell ML (2000) Essentials of electronic testing for digital. In: Memory & Mixed-Signal VLSI Cir-
cuits. https://doi.org/10.1007/b117406

Nguyen TT, Reddi VJ (2019) Deep reinforcement learning for cyber security. IEEE Trans Neural Netw
Learn Syst. https://doi.org/10.1109/TNNLS.2021.3121870

Raffin A, Hill A, Gleave A, Kanervisto A, Ernestus M, Dormann N (2021) Stable-baselines3: reliable
reinforcement learning implementations. J Mach Learn Res 22(268):1-8

Bryan D (1985) The ISCAS’85 benchmark circuits and netlist format

Hagberg AA, Schult DA, Swart PJ (2008) Exploring network structure, dynamics, and function using
networkX. In: Varoquaux G, Vaught T, Millman J (eds) Proceedings of the 7th Python in Science Con-
ference, Pasadena, CA USA, pp 11-15
GitHub-NMSU-PEARL/Hardware-Trojan-Insertion-and-Detection-with-Reinforcement-Learning:
Reinforcement Learning-based Hardware Trojan Detector—github.com. https://github.com/NMSU-
PEARL/Hardware-Trojan-Insertion-and-Detection-with-Reinforcement-Learning. Accessed 27 Dec
2023

ISCAS High-Level Models. https://web.eecs.umich.edu/~jhayes/iscas.restore/benchmark.html.
Accessed 7 Nov 2023

Amarid L, Gaillardon P-E, De Micheli G (2015) The EPFL combinational benchmark suite. In: Pro-
ceedings of the 24th International Workshop on Logic & Synthesis (IWLS)

Tai L, Paolo G, Liu M (2017) Virtual-to-real deep reinforcement learning: continuous control of mobile
robots for Mapless navigation. In: 2017 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS). IEEE, pp 31-36. https://doi.org/10.1109/IROS.2017.8202134

Hwangbo J, Lee J, Dosovitskiy A, Bellicoso D, Tsounis V, Koltun V, Hutter M (2019) Learning agile
and dynamic motor skills for legged robots. Sci Robot 4(26):5872. https://doi.org/10.1126/scirobotics.
aau5872

Silver D, Huang A, Maddison CJ, Guez A, Sifre L, Van Den Driessche G, Schrittwieser J, Antonoglou
I, Panneershelvam V, Lanctot M et al (2016) Mastering the game of go with deep neural networks and
tree search. nature 529(7587):484-489. https://doi.org/10.1038/nature16961

Silver D, Hubert T, Schrittwieser J, Antonoglou I, Lai M, Guez A, Lanctot M, Sifre L, Kumaran D,
Graepel T et al (2018) A general reinforcement learning algorithm that masters chess, shogi, and go
through self-play. Science 362(6419):1140-1144. https://doi.org/10.1126/science.aar6404

Talpaert V, Sobh I, Kiran BR, Mannion P, Yogamani S, El-Sallab A, Perez P (2019) Exploring applica-
tions of deep reinforcement learning for real-world autonomous driving systems. arXiv preprint arXiv:
1901.01536

Zhou Y, Roy S, Abdolrashidi A, Wong D, Ma PC, Xu Q, Zhong M, Liu H, Goldie A, Mirhoseini A,
et al (2019) Gdp: Generalized device placement for dataflow graphs. arXiv preprint arXiv:1910.01578
Yin J, Eckert Y, Che S, Oskin M, Loh GH (2018) Toward more efficient NOC arbitration: a deep rein-
forcement learning approach. In: Proc. IEEE Ist Int. Workshop Al-assisted Des. Architecture, vol 128
Patnaik S, Gohil V, Guo H, Rajendran JJ (2022) Reinforcement learning for hardware security: opportu-
nities, developments, and challenges. In: 2022 19th International SoC Design Conference (ISOCC), pp
217-218. https://doi.org/10.1109/ISOCC56007.2022.10031569

Berner C, Brockman G, Chan B, Cheung V, Debiak P, Dennison C, Farhi D, Fischer Q, Hashme S,
Hesse C, et al (2019) Dota 2 with large scale deep reinforcement learning. arXiv preprint arXiv:1912.
06680

WWW: ISCAS89 Sequential Benchmark Circuits—filebox.ece.vt.edu. https:/filebox.ece.vt.edu/
~mbhsiao/iscas89.html. Accessed 22 Jan 2024

ITC’99 Benchmark Homepage—cerc.utexas.edu. https://www.cerc.utexas.edu/itc99-benchmarks/
bench.html. Accessed 22 Jan 2024

Springer

https://doi.org/10.1109/HOST49136.2021.9702281
https://books.google.com/books?id=Qv9PCgAAQBAJ
http://arxiv.org/abs/1606.01540
https://doi.org/10.1007/b117406
https://doi.org/10.1109/TNNLS.2021.3121870
https://github.com/NMSU-PEARL/Hardware-Trojan-Insertion-and-Detection-with-Reinforcement-Learning
https://github.com/NMSU-PEARL/Hardware-Trojan-Insertion-and-Detection-with-Reinforcement-Learning
https://web.eecs.umich.edu/%7ejhayes/iscas.restore/benchmark.html
https://doi.org/10.1109/IROS.2017.8202134
https://doi.org/10.1126/scirobotics.aau5872
https://doi.org/10.1126/scirobotics.aau5872
https://doi.org/10.1038/nature16961
https://doi.org/10.1126/science.aar6404
http://arxiv.org/abs/1901.01536
http://arxiv.org/abs/1901.01536
http://arxiv.org/abs/1910.01578
https://doi.org/10.1109/ISOCC56007.2022.10031569
http://arxiv.org/abs/1912.06680
http://arxiv.org/abs/1912.06680
https://filebox.ece.vt.edu/%7emhsiao/iscas89.html
https://filebox.ece.vt.edu/%7emhsiao/iscas89.html
https://www.cerc.utexas.edu/itc99-benchmarks/bench.html
https://www.cerc.utexas.edu/itc99-benchmarks/bench.html

Trojan playground: a reinforcement learning framework for... 14329

52. Narayanan S, Gupta R, Breuer MA (1993) Optimal configuring of multiple scan chains. IEEE Trans
Comput 42(9):1121-1131. https://doi.org/10.1109/12.241600

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such publishing agreement and
applicable law.

@ Springer

https://doi.org/10.1109/12.241600

	Trojan playground: a reinforcement learning framework for hardware Trojan insertion and detection
	Abstract
	1 Introduction
	2 Related work
	2.1 Hardware Trojan insertion and benchmarks
	2.2 Hardware Trojan detection

	3 The proposed HT insertion
	3.1 Rare netS extraction
	3.2 RL-Based HT insertion

	4 The proposed HT detection
	4.1 Rewarding function SSD
	4.2 Rewarding function SAD
	4.3 Rewarding function COD

	5 The proposed generic HT detection metric
	6 Experimental results and discussion
	6.1 Timing complexity and scalability
	6.2 Insertion, detection, and confidence value figures
	6.3 Average episode length and reward
	6.4 Test vector size versus accuracy
	6.5 RL Feasibility in practice

	7 Conclusions and future directions
	References

