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Abstract
Current hardware Trojan (HT) detection techniques are mostly developed based 
on a limited set of HT benchmarks. Existing HT benchmark circuits are generated 
with multiple shortcomings, i.e., (i) they are heavily biased by the designers’ mind-
set when created, and (ii) they are created through a one-dimensional lens, mainly 
the signal activity of nets. We introduce the first automated reinforcement learning 
(RL) HT insertion and detection framework to address these shortcomings. In the 
HT insertion phase, an RL agent explores the circuits and finds locations best for 
keeping inserted HTs hidden. On the defense side, we introduce a multi-criteria RL-
based HT detector that generates test vectors to discover the existence of HTs. Using 
the proposed framework, one can explore the HT insertion and detection design 
spaces to break the limitations of human mindset and benchmark issues, ultimately 
leading toward the next generation of innovative detectors. We demonstrate the effi-
cacy of our framework on ISCAS-85 benchmarks, provide the attack and detection 
success rates, and define a methodology for comparing our techniques.
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1  Introduction

As per a DoD report [1] released in 2022, 88% of the production and 98% of the 
assembly, packaging, and testing of microelectronic chips are performed outside of 
the USA. The growing multi-party production model has significantly raised secu-
rity concerns about malicious modifications in the design and fabrication of chips, 
i.e., hardware Trojan (HT) insertion. HTs are defined as any design or manufacturing 
violations in an integrated circuit (IC) concerning the intent of the IC. Upon activa-
tion, an HT may lead to erroneous outputs (e.g. , Fig. 1) and possibly leak of infor-
mation [2]. According to the adversarial model introduced by Shakya et al. [3], HTs 
can be inserted into target ICs according to the following scenarios:

•	 Design source code or netlist can be infected with HTs by compromised employ-
ees.

•	 Third-party intellectual properties (IPs) like processing cores, memory modules, 
I/O components, and network-on-chip [4] are often purchased and incorporated 
into a design to speed up time-to-market and lower design expenses. However, 
integrating IPs from untrusted vendors can pose a risk to the security and integ-
rity of the IC.

•	 An untrusted foundry may reverse-engineer the GDSII physical layout to obtain 
the netlist and insert HTs inside them.

•	 Malicious third-party CAD tools may also insert HTs into designs

Researchers have been mostly using established benchmarks reported by Shakya et 
al. and Salmani et al. [3, 5] as a reference to study the impact of HTs.1 Subsequently, 
various HT detection approaches have been developed based on these benchmarks over 
the past decade [7–10]. Despite the valuable effort to create HT benchmarks for the 
community, these benchmarks are limited in size and variety needed to push detection 
tools into more realistic modern scenarios. For instance, the small set of benchmarks 
makes it hard to leverage and train machine learning (ML) HT detectors, where more 
training data negatively impacts classification accuracy. Some research studies have 
tried to alleviate this problem by using techniques to shuffle data for ML-based detec-
tors, e.g. , the leave-one-out cross-validation method [8]; however, it does not solve the 
problem entirely. The existing HT benchmarks also suffer from an inherent human bias 
in the insertion phase since they are tightly coupled with the designer’s mindset. For 
instance, the HT benchmarks in [11] only consider signal activity for HT insertion, i.e., 
HTs are randomly inserted into a pool of available rare nets of the circuit. The flaws in 
the insertion phase simplify the problem’s complexity, leading security researchers to 
develop HT detectors finely tuned to flawed scenarios [10, 12]. In contrast, adversaries 
devise new HT attacks that combine different ideas where detectors fall short of expos-
ing them. Another equally important problem in this domain is having almost no HT 
detectors publicly available. This deprives other researchers of accessing these tools 
and imposes a considerable latency for newcomers to hardware security.

1  The benchmarks are available on Trust-Hub [6].
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This work attempts to move this research space forward by developing next-gener-
ation HT insertion and detection methods based on reinforcement learning. The devel-
oped RL-based HT insertion tool creates new HT benchmarks according to the crite-
ria passed to the tool by the user. The insertion criteria is an RL rewarding function 
modified by a user that relies on the RL agent to insert HTs into designs automatically. 
The netlist is considered an environment in which the RL agent tries to insert HTs to 
maximize a gained reward. The rewarding scheme of the proposed insertion tool is 
tunable, which can push the agent toward a specific goal in the training session. Our 
insertion tool is a step toward preparing the community for future HTs inserted by non-
human agents, e.g. , AI agents. We also propose an RL-based HT detector with a tun-
able rewarding function that helps detect inserted HTs based on various strategies. To 
explore this space, we have studied three different detection rewarding functions for the 
RL detector agent. The agent finds test vectors yielding the highest rewards per each 
reward function. Then, the generated test vectors activate and find HTs in the IC. The 
test engineer passes the test vectors to the chip and monitors the output for deviations 
from the golden model.

Our proposed toolset enables the researchers to experience HT insertion and 
detection within a unified framework. The framework only requires users to set the 
parameters to insert and detect HTs without human intervention. There have been 
previous efforts to automate the HT insertion and detection process [11, 13, 14]; 
however, they need an intermediate effort hindering us from creating a vast quantity 
of HTs (more explanation in Sect. 2).

Similar to several previous works [2, 10, 15, 16], this paper’s threat model 
assumes that the perpetrator is capable of inserting HTs into a design’s netlist. The 
netlist can be obtained through state-of-the-art reverse-engineering techniques in 
the foundry, and HT triggers are constructed and placed in the design layout. On 
the defense side, we assume a security engineer receives a post-silicon hard IP that 
may or may not contain malicious HTs. Using a golden model, the security engineer 
generates a set of minimal test vectors to activate as many HTs as possible. The 
test engineer does not know the insertion criteria; however, they generate test vec-
tors based on multiple insertion mentalities. If the output(s) of the design-under-test 
deviate(s) from the golden model, it can insinuate malicious behavior.

We make the following contributions in the paper with respect to our previous 
publications [18, 19]:

Fig. 1   An HT with a trigger 
and payload. Whenever A = 1 , 
B = 1 , and C = 0 , the trigger is 
activated ( D = 1 ) and the XOR 
payload inverts the value of E 
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•	 We developed a tunable RL-based HT insertion tool free of human bias, capable 
of automatic HT insertion and creating a large population of valid HTs for each 
design

•	 We introduce a tunable RL-based multi-criteria HT detection tool that helps a 
security engineer to better prepare for different HT insertion strategies.

•	 We introduce and use a generic methodology to compare HT detectors fairly. The 
methodology is based on the confidence value metric that helps the security engineer 
select the proper detector based on the chip’s application and security requirements.

Our results show that our developed detection tool with all three detection approaches 
has an average 90.54% detection rate for our HT-inserted benchmarks. We compare 
these detection results to existing state-of-the-art detection methods and show how our 
techniques find previously unidentifiable HTs. As we believe that HT detection will be 
implemented as a variety of detection strategies, the uniquely identified HTs suggest 
that our detection techniques and framework are important contributions to this space.

The remainder of this paper is organized as follows: Sect. 2 reviews the related 
work and explains the fundamentals of RL. The mechanics of our proposed HT 
insertion and detection approaches are presented in Sects. 3 and 4, respectively. We 
introduce our HT comparison methodology in Sect. 5. Section 6 demonstrates the 
experimental results, and Sect. 7 concludes the paper.

2 � Related work

This section summarizes the previous studies in HT insertion and detection.

2.1 � Hardware Trojan insertion and benchmarks

The first attempts to gather benchmarks with hard-to-activate HTs were made by 
Shakya et al.  and Salmani et al. [3, 5]. A set of 96 trust benchmarks with different 
HT sizes and configurations are available at Trust-Hub [6]. While these benchmarks 
are a valuable contribution to the research community, they have three drawbacks: 

1.	 The limited number of Trojan circuits represents only a subset of the possible 
HT insertion landscape in digital circuits, which hampers the ability to develop 
diverse HT countermeasures,

2.	 They lack incorporating state-of-the-art Trojan attacks, and
3.	 They fail to populate a large enough HT dataset required for ML-based HT detec-

tion.

Krieg [20] investigates the practicality of the Trusthub benchmark for hardware 
security study from five different perspectives: Correctness, Maliciousness, Stealthi-
ness, Persistence, and Effectiveness. The paper lists nine main flaws that undermine 
the feasibility of Trusthub for security evaluations, including pre-/post-synthesis 
simulation mismatch, unsatisfiable trigger conditions, incorrect original designs, 
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and buggy wiring. The paper shows that out of the 83 benchmarks, only three hold 
all the properties, and the rest fail in at least one or more studied aspects.

Various approaches to insert HTs have been attempted. Jyothi et al. [21] proposed 
a tool called TAINT for automated HT insertion into FPGAs at the RTL-level, gate-
level netlist, and post-map netlist. The tool also allows the user to insert HTs in FPGA 
resources such as look-up tables (LUTs), flip-flops (FFs), block random access mem-
ory (BRAM), and digital signal processors (DSP). Despite the claimed automated pro-
cess, the user is expected to select the trigger nets based on suggestions made by the 
tool. The results section shows that the number of available nodes in post-map netlists 
drops significantly, leaving less flexibility for Trojan insertion compared to RTL codes.

Reverse-engineering tools can also identify security-critical circuitry in designs that 
can direct attackers to insert efficient HTs. Fyrbiak et al. [13] introduced HAL, a gate-
level netlist reverse-engineering tool that offers offensive reverse-engineering strategies 
and defensive measures, such as developing arbitrary Trojan detection techniques. The 
authors believe that adversaries are more likely to insert HTs through reverse-engineer-
ing techniques and are less likely to have direct access to the original HDL codes. A 
hardware Trojan that leaks cryptographic keys has been inserted with the tool; none-
theless, it requires human effort for insertion, which hinders the production of a large 
HT dataset [22]. Further endeavors have been made to follow a threat model in which 
an adversary is located in a foundry with sophisticated reverse-engineering capabili-
ties. Perez et al.  [23] targets SCTs (side-channel Trojans), more commonly found in 
crypto cores. The authors showcase a flow to insert HTs to leak confidential informa-
tion based on power signatures. During this process, an adversary takes advantage of 
ECO (engineering change order), a flow originally used to fix bugs in finalized layouts. 
The work in [24] builds upon the previous study by manufacturing an ASIC prototype 
with four HT-infected versions of AES and PRESENT. Puschner et al. [25] propose a 
de-coupled insertion and detection flow where the red team is responsible for inserting 
ECO-based HTs in design layouts, and the blue team must find the malicious embed-
ding by investigating SEM (Scanning Electron Microscope) images vs GDSII (Graphic 
Design System II) files. The study shows that the ECO-inserted HTs are less challeng-
ing to find. Hepp et al. [26] use the ECO flow to insert HTs in the design layout without 
prior knowledge of its functionality. The study explores three new criteria for selecting 
the HT payload and triggers: transition probability, imprecise information flow tracking 
of selected signals, and the RELIC score. The RELIC score is a metric that provides an 
attacker with information about the location of a flip-flop relative to the data path or the 
control path. The authors operate under the assumption of a 24-h time window for the 
attacker to complete the insertion process.

Cruz  et al.  [11] tried to address the benchmark shortcomings by presenting a 
toolset capable of inserting a variety of HTs based on the parameters passed to the 
toolset. Their software inserts HTs with the following configuration parameters: the 
number of trigger nets, the number of rare nets among the trigger nodes, a rare net 
threshold (computed with functional simulation), the number of the HT instances to 
be inserted, the HT effect, the activation method, its type, and the choice of payload. 
Despite increasing the variety of inserted HTs, there is no solution for finding the 
optimal trigger and payload nets. The TRIT benchmark set generated by this tool is 
available on Trust-Hub [6].
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Cruz et al.  [22] propose MIMIC, an ML framework for automatically generating 
Trojan benchmarks. The authors extracted 16 functional and structural features from 
existing Trojan samples. Then, they trained ML models and generated a large number 
of hypothetical Trojans called virtual Trojans for a given design. The virtual Trojans 
are then compared to a reference Trojan model and ranked. Finally, the selected Trojan 
will be inserted into the target circuit using suitable trigger and payload nets. The HT 
insertion process is highly convoluted, requiring multiple stages and expertise. MIMIC 
is not released publicly, and rebuilding the tool from their work is an extensive pro-
cess. MIMIC’s HT insertion criteria are very similar to [11], and it suffers the same 
shortcomings [11].

To deceive machine learning HT detection approaches, Nozawa  et al.  [27] have 
devised adversarial examples. Their proposed method replaces the HT instance with its 
logically equivalent circuit, so the classification algorithm erroneously disregards it. To 
design the best adversarial example, the authors have defined two parameters: Trojan-
net concealment degree (TCD), which is tuned to maximize the loss function of the 
neural network in the detection process, and a modification evaluating value (MEV) that 
should be minimized to have the least impact on circuits. These two metrics help the 
attacker to look for more effective logical equivalents and diversify HTs. The equivalent 
HTs are inserted in trust-hub benchmarks, and they decrease accuracy significantly.

Sarihi et al.  [18] (our prior work) inserted a large number of HTs into ISCAS-85 
benchmarks with Reinforcement Learning. The HT circuit is an agent that interacts 
with the environment (the circuit) by taking five different actions (next level, previ-
ous level, same level up, same level down, no action) for each trigger input. Level 
denotes the logic level in the combinational circuits. The agent moves the Trojan inputs 
throughout the circuit and explores various locations suitable for embedding HTs. Trig-
gers are selected according to a set of SCOAP (Sandia Controllability/Observability 
Analysis Program [28]) parameters, i.e., a combination of controllability and observa-
bility. The agent is rewarded in proportion to the number of circuit inputs it can engage 
in the HT activation process.

Gohil et al. [16] proposed ATTRITION, another RL-based HT insertion platform 
where signal probability is the target upon which the trigger nets are selected. The 
agent tries to find a set of so-called compatible rare nets, i.e., a group of rare nets that 
can be activated together with an input test vector. The test vector is generated using 
an SAT-solver. The authors also propose a pruning technique to limit the search space 
for the agent to produce more HTs in a shorter period. The tool is claimed to be open-
source, but only the source code was released.

Table 1 summarizes the existing artifacts and research in the HT insertion space. 
It represents the target technology (2nd column); summarizes the insertion criteria 
(3rd column); shows if the tool is automated (4th column) and if the tool or its arti-
facts are openly released (5th column).

2.2 � Hardware Trojan detection

Chakraborty et al. [15] introduced MERO, a test vector generator that tries to trigger 
possible HTs by exciting rare-active nets multiple times. The algorithm’s efficacy 
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is tested against randomly generated HTs with rare triggers. MERO’s detection rate 
significantly shrinks as circuit size grows.

Hasegawa et al. [8] have proposed an ML method for HT detection. The method 
extracts 51 circuit features from the trust-hub benchmarks to train a random forest 
classifier that eventually decides whether a design is HT-free. The HT classifier is 
trained on a limited HT dataset with an inherent bias during its insertion phase.

Lyu et al. [12] proposed TARMAC to map the trigger activation problem to the 
clique cover problem, i.e., treating the netlist as a graph. They utilized an SAT-solver 
to generate the test vector for each maximal satisfiable clique. The method lacks 
scalability as it should run on each suspect circuit separately. Also, the achieved per-
formance is not stable [2]. Implementation of the method is neither trivial nor avail-
able publicly to researchers [16].

TGRL is an RL framework used to detect HTs [2]. The agent decides to flip a bit 
in the test vector according to an observed probability distribution. The reward func-
tion, which combines the number of activated nets and their SCOAP [28] param-
eters, pushes the agent to activate as many signals as possible. Despite its higher HT 
detection rate than MERO and TARMAC, the algorithm was not tested on any HT 
benchmarks [16].

DETERRENT, an RL-based detection method [10], finds the smallest set of test 
vectors to activate multiple combinations of trigger nets. The RL state is a subset of 
all possible rare nets, and actions are appending other rare nets to this subset. The 
authors used an SAT-solver to determine if actions are compatible with the rare nets 
in the subsets, and they only focused on signal-switching activities as their target.

The HW2VEC tool [29] converts RTL-level and gate-level designs into a data-
flow graph and abstract syntax tree to extract a feature set that represents the struc-
tural information of the design. Extracted features are used to train a graph neural 
network to determine whether a design is infected with HTs. The authors test the 
tool with 34 circuits infected by in-house generated HTs.

Table 1   Survey of previous HT insertion tools

Tool Domain Insertion criteria Automate Open-source

Trust-Hub [3] ASIC/FPGA Secret leakage, signal prob ✘ ✘
HAL [13] ASIC/FPGA Neighborhood control value ✘ ✔
TAINT [21] FPGA Not mentioned ✘ ✘
TRIT [11] ASIC Signal prob ✘ ✘
Yu et al. [14] ASIC Transition prob ✔ ✘
Nozawa et al. [27] ASIC Same as [3] ✘ ✘
MIMIC [22] ASIC Struct & Funct. Features ✔ ✘
Sarihi et al. [18] ASIC SCOAP parameters ✔ ✘
ATTRITION [16] ASIC Signal prob ✔ ✘
Perez et al. [23, 24] ASIC Power leakage ✘ ✘
Puschner et al. [25] ASIC No restrictions ✔ ✔
BioHT [26] ASIC Multiple criteria ✔ ✘
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We note that of the methods reviewed above (and others studied but not discussed 
here), the only publicly available tool is HW2VEC. Table 2 summarizes the previ-
ous works in HT detection where researchers have used various criteria in detecting 
HTs (2nd column) and the open-source state of the work (3rd column).

3 � The proposed HT insertion

Figure 2 shows the flow of the proposed HT insertion tool. The first step creates a 
graph representation of the flattened netlist from the circuit. Yosys Open Synthesis 
Suite [30] translates the HDL (Verilog) source of the circuit into a JSON (JavaScript 
Object Notation) [31] netlist, which enables us to parse the internal graph represen-
tation of the circuit. Next, the tool finds a set of rare nets to be used as HT trigger 
nets (this step is described in detail in Sect. 3.1). Finally, an RL agent uses the rare 
net information and attempts to insert an HT to maximize a rewarding function as 
described in Sect. 3.2.

3.1 � Rare netS extraction

We use the parameters introduced in [9] to identify trigger nets. These parameters 
are defined as functions of net controllability and observability. Controllability 
measures the difficulty of setting a particular net in a design to either ‘0’ or ‘1’. Con-
versely, observability is the difficulty of propagating a net value to at least one of the 
circuit’s primary outputs [28].

The first parameter is called the HT trigger susceptibility parameter, and it is 
derived from the fact that low-switching nets have mainly a high difference between 
their controllability values. Equation (1) describes this parameter:

Table 2   Survey of previous HT 
detection tools

Study Detection basis Open-source

MERO [15] Switching activity ✘
Hasegawa et al. [8] Netlist features ✘
TARMAC et al. [12] Switching activity ✘
TGRL et al. [2] Switching activity ✘
DETERRENT et al. [10] Switching activity ✘
HW2VEC [29] Graph structural info ✔

Fig. 2   The proposed RL-based HT insertion tool flow
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where HTS is the HT trigger susceptibility parameter of the net; CC0(Neti) and 
CC1(Neti) are the combinational controllability 0 and 1 of Neti , respectively. The 
HTS parameter ranges between [0, 1) such that higher values correlate with lower 
activity on the net.

The other parameter, specified in Eq. (2), measures the ratio of observability to 
controllability:

where OCR is the observability to controllability ratio. This equation requires that 
the HT trigger nets be hard to control but not so hard to observe. Unlike the HTS 
parameter, OCR is not bounded and belongs to the [0,∞) interval. We will specify 
thresholds (see Sect. 6) for each parameter and use them as filters to populate the set 
of rarely-activated nets for our tool.

3.2 � RL‑Based HT insertion

The RL environment is, in fact, the circuit in which the agent is trying to insert HTs. 
The agent’s action is to insert combinational HTs where trigger nets are ANDED, 
and the payload is an XOR gate (same as Fig. 1). The RL agent starts from a reset 
condition, taking a series of actions that eventually insert HTs in the circuit. Dif-
ferent HT insertion options are represented with a state vector in each circuit. For 
a given HT, the state vector is comprised of st = [s1, s2,… , sn−2, sn−1, sn] where s1 
through sn−2 are the logic levels of the HT inputs, and sn−1 and sn are the logic levels 
of the target net and the output of the XOR payload, respectively. Figure 3 shows 
how we conduct the circuit levelization. Here, the circuit primary inputs (PIs) are 
considered level 0. The output level of each gate is computed by Eq. (3):

As an example, the HT in Fig. 4 (in yellow) has the state vector st = [2, 1, 3, 4] . 
The action space of the described HT agent is multi-discrete, i.e., each input of the 
HT may choose an action from a set of five available actions. These actions are:

•	 Next level: the input of the HT moves to one of the nets that are one level higher 
than the current net level.

•	 Previous level: the input of the HT moves to one of the nets that are one level 
lower than the current net level.

•	 Same level up: the input of the HT will move to one of the nets at the same 
level as the current net level. The net is picked by pointing to the next net in 
the ascending list of net IDs for the given level.

(1)HTS(Neti) =
|CC1(Neti) − CC0(Neti)|

Max(CC1(Neti),CC0(Neti))

(2)OCR(Neti) =
CO(Neti)

CC1(Neti) + CC0(Neti)

(3)Level(output) = MAX(Level(in1), Level(in2)) + 1
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•	 Same level down: the input of the HT will move to one of the nets at the same 
level as the current net level. The net is picked by pointing to the previous net 
in the ascending list of nets for the given level.

•	 No action: the input of the HT will not move. If an action leads the agent to 
step outside the circuit boundaries, it is substituted with a “No action”.

The action space is also represented by a vector where its size is equal to the 
number of the HT inputs, and each action can be one of the five actions above, 
e.g. , for the HT in Fig. 4, the action space would be at = [a1, a2] since it has two 
inputs. Hypothetical actions for the first and the second inputs can be the same 
level up/down and next/previous level, respectively.

The flow of our RL inserting agent is described in Algorithm  1. The SCOAP 
parameters are first computed (line 1). We specify two thresholds THTS and TOCR 
and require our algorithm to find nets that have higher HTS values than THTS and 
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lower OCR values than TOCR (line 2). These nets are classified as rare nets. The algo-
rithm consists of two nested while loops that keep track of the terminal states and the 
elapsed timesteps. The latter defines the total number of samples the agent trains on. 
We have used the OpenAI Gym [32] environment to implement our RL agent.

Algorithm 1   Training of the HT inserting Reinforcement Learning Agent

The first used method is called reset_environment() , which resets the environment 
before each episode and returns the initial location of the agent HT (line 5). The HT 
is randomly inserted within the circuit according to the following rules.
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•	 Rule (1) Trigger nets are selected randomly from the list of the total nets.
•	 Rule (2) Each net can drive a maximum of one trigger net.
•	 Rule (3) Trigger nets cannot be assigned as the target.
•	 Rule (4) The target net is selected with respect to the level of trigger nets. To 

prevent forming combinational loops, we specify that the level of the target net 
should be greater than that of the trigger nets.

In each episode of the training process, we keep the target net unchanged to help the 
RL algorithm converge faster. Instead of manually specifying a target net, we let the 
algorithm explore the environment and choose a target net. The terminal state vari-
able TS is set to False to check the termination condition for each episode. When the 
trigger nets’ level reaches the target net’s level, or the number of steps per episode 
reaches an allowed maximum (lines 6–7), TS becomes True , which terminates the 
episode.

The training process of the agent takes place in a loop where actions are being 
issued, rewards are collected, the state is updated, and eventually, the updated graph 
is returned. To test the value of an action taken by the RL agent (meaning if the HT 
can be triggered with at least one input pattern), we use PODEM (Path-Oriented 
Decision Making), an automatic test pattern generator [33] (line 9). This algorithm 
uses a series of backtracing and forward implications to find a vector that activates 
the inserted HT. If the HT payload propagates through at least one of the circuit 
outputs, the action gains a reward proportional to the number of rare triggers on the 
HT. After the number of rare triggers is counted in line 10, the agent is rewarded in 
lines 11 through 25. The rewarding scheme is designed such that the agent would 
start finding HTs with a 1 rare trigger net and adding more rare nets while exploring 
the environment. Additionally, the exponential reward increase in each case ensures 
that the agent is highly encouraged to find HTs with at least three or more rare trig-
ger nets. If an HT is not activated with PODEM or no rare nets are among the HT 
triggers, the agent will be rewarded −1 . Since the agent is unlikely to find high-
reward HTs at the beginning of the exploration stage, the first two rewarding cases 
( tempreward = 1 and tempreward = 2 ) should be set such that the agent sees enough 
positive, rewarding improvements, yet be more eager to find more HTs that yield 
higher rewards. After extensive experiments with the RL agent, the reward values 
are assigned to different cases.

We use the PPO (proximal policy optimization) [17] RL algorithm to train the 
RL agent. PPO can train agents with multi-discrete action spaces in discrete or con-
tinuous spaces. The main idea of PPO is that the new updated policy (which is a set 
of actions to reach the goal) should not deviate too far from the old policy follow-
ing an update in the algorithm. To avoid substantial updates, the algorithm uses a 
technique called clipping in the objective function [17]. Using a clipped objective 
function, PPO restricts the size of policy updates to prevent them from deviating 
too much from the previous policy. This constraint promotes stability and ensures 
that the updates are controlled within a specific range, which helps avoid abrupt 
changes that may negatively affect the agent’s performance. At last, when the HTs 
are inserted, the toolset outputs Verilog gate-level netlist files that contain the mali-
cious HTs (line 30).



14307

1 3

Trojan playground: a reinforcement learning framework for…

4 � The proposed HT detection

From a detection perspective, we must determine whether a given circuit is clean or 
Trojan-infected. To achieve this goal, an RL agent is defined that applies its gener-
ated test vectors to circuits and checks for any deviation at the circuits’ primary out-
puts with respect to the expected outputs (golden model). The agent interacts with 
the circuit (performs actions) by flipping the vector values to activate certain inter-
nal nets. The action space is an n-dimensional binary array where n is the number of 
circuit primary inputs. The action space vector at is defined as at = [a1, a2,… , an] . 
The agent decides to toggle each ai to transition to another state or leave them 
unchanged. ai = 0 denotes that the value of the ith bit of the input vector should 
remain unchanged from the previous test vector. In contrast, ai = 1 means that the 
ith input bit should flip. The RL agent follows a � policy to decide which actions 
should be commenced at each state. The � policy is updated using a policy gradient 
method [34] where the agent commences actions based on probability distribution 
from the � policy. The assumption is that attackers are likely to choose trigger nets 
with a consistent value (0 or 1) most of the time. Thus, a detector aims to activate as 
many dormant nets as possible. We consider two different approaches for identifying 
such rare nets: 

(1)	 Dynamic simulation: We feed each circuit with 100K random test vectors and 
record the value of each net. Then, we populate the switching activity statistics 
during the simulation time and set a threshold � for rare nets where the switching 
activity for a net below � denotes that the net is rare. � is in the range of [0, 1].

(2)	 Static simulation: We use the HTS parameter in Eq. (1) and a threshold to find 
rare nets. Categorizing rare nets with this approach provides the security engi-
neer with an extra option for detection.

In a circuit with m rare nets, the state space is defined as Statet = [s1, s2,… , sm] 
where si is associated with the ith net in the set. If an action (a test vector) sets the 
ith net to its rare value, si will be 1; otherwise, si stays at 0. As can be inferred, the 
action and state spaces are multi-binary.

Attackers tend to design multi-trigger HTs [11], and this should be considered 
when HT detectors are designed. The final purpose of our detector is to generate 
a set of test vectors that can trigger as many rare nets as possible. To achieve this 
goal, a part of the rewarding function should enumerate rare nets. However, we 
should avoid over-counting situations where a rare net has successive dependent rare 
nets. An example case is shown in Fig. 5 where four nets net1 , net2 , net3 , and net4 
(with their switching probabilities and their rare values) are all dependent rare nets. 
Instead of including all four nets in the state space, we choose the rarest net as the 
representative net since activating the rarest net ensures the activation of the others 
as well. In this example, net4 is selected as the set representative. This policy helps 
accelerate the RL agent to converge on the global minima faster. Figure 6 summa-
rizes our proposed detection flow.
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As for rewarding the agent, we consider three rewarding functions, which we 
explain here. Our multi-rewarding detector enables security engineers to better pre-
pare for attackers with different mindsets.

4.1 � Rewarding function SSD

In our first rewarding function (Algorithm 2) called SSD (Subsequent State Detec-
tor), we push the RL agent to build on its current state. We use a copy of the previ-
ous state and encourage the agent to generate state vectors that differ from the previ-
ous one. The hypothesis is to push the agent toward finding test vectors that lead to 
various unseen states. To compute the reward, the pruned current and previous state 
vectors and their lengths are passed as inputs to Algorithm 2. The rewarding func-
tion comprises an immediate and a sequential part, initialized to 0 in lines 1 and 2, 
respectively. Whenever the state transitions, we iterate through the loop K times. 
We calculate the sequential reward by making a one-to-one comparison between the 
nets in the old and new states. In lines 5–11, the highest reward is given when an 
action can trigger a net not triggered in the previous state, i.e., +40 . If a rare net is 
still activated in the current state, the agent will still get rewarded +20 . The worst 
state transition is whenever an action leads to a rare net losing its rare value, which 
is rewarded −3 . Lastly, if the agent cannot activate a rare net after a state transition, 
it will be rewarded −1 . This process is depicted in Fig. 7.

The immediate award is the number of activated rare nets in the new state. The 
ultimate reward value is a linear combination of the immediate and sequential 
rewards with coefficients �1 and �2 , respectively, which are tunable parameters to be 
set by the user. We build the state vector with the obtained rare nets from functional 
simulation.

Fig. 5   State pruning identifies nets in the same activation path

Fig. 6   The proposed detection flow



14309

1 3

Trojan playground: a reinforcement learning framework for…

Algorithm 2   Rewarding Function SSD

4.2 � Rewarding function SAD

Algorithm 3 describes our second rewarding function called SAD (Switching Activ-
ity Detector). In this case, the agent gains rewards proportional to the difficulty of 
the rare nets triggered. First, the reward vector is initiated with a length equal to the 
state vector (line 1). Each element in the reward vector has a one-to-one correspond-
ence with rare nets on the state vector. The reward for each rare net is computed by 
taking the inverse of the net switching activity rate (line 4). In some cases, a net 
might have a switching probability of 0. In such cases, activating the net would be 
rewarded 10× times the greatest reward in the vector (line 12). Thus, upon observ-
ing every new state, the agent will be rewarded based on the activated nets and the 
reward vector (line 18). If a rare net is not activated, −1 will be added to the final 
reward (line 20). The algorithm encourages the agent to trigger the rarest nets in the 
circuit directly.

Fig. 7   Rare net transition (state 
transition) in the current and 
previous states and correspond-
ing rewards
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Algorithm 3   Rewarding Function SAD

4.3 � Rewarding function COD

The third rewarding function is described in Algorithm 4 and is called COD (Con-
trollability Observability Detector). In this scenario, rare nets are populated based 
on the threshold of the HTS parameter computed during the static simulation using 
Eq. (1). When a rare net in the set is activated, the agent is rewarded with the con-
trollability of the rare value (line 4). Otherwise, it will receive −1 from the environ-
ment (line 6). This scenario aims to investigate controllability-based HT detection 
with the RL agent. Figure 8 shows an example where an RL action is XORed with 
an old test vector, generating a new test vector. It also shows how activating rare nets 
(from SAD and COD) leads to state transitions where an activated net corresponds 
to a ‘1’ in the state vector.
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Algorithm 4   Rewarding Function COD

5 � The proposed generic HT detection metric

We propose the following methodology to the community for fair and repeatable 
comparisons among HT detection methods. In addition, our methodology can help 
compare different HT insertion techniques for a given HT detector. This methodol-
ogy obtains a confidence value that one can use to compare different HT detection 
methods.

Figure 9 shows four possible outcomes when an HT detection tool studies a given 
circuit. From the tool user’s perspective, the outcomes are probabilistic events. For 
example, when an HT-free circuit is being tested, the detection tool may either 

Fig. 8   Test vector generation and state transition for SAD and COD
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classify it as an infected or a clean circuit, i.e., Prob(FP) + Prob(TN) = 1 where FP 
and TN stand for False Positive and True Negative events. Similarly, for HT-infected 
circuits, we have Prob(FN) + Prob(TP) = 1 . FN and FP are two undesirable out-
comes at which detectors misclassify the given circuit. However, the FN cases pose 
a significantly greater danger as they result in a scenario where we rely on an HT-
infected chip. In contrast, an FP case means wasting a clean chip by either not sell-
ing or not using it. So, we need to know how the user of HT detection tools (might 
be a security engineer or a company representative) prioritizes FN and FP cases. We 
define a parameter � as the ratio of the undesirability of FN over FP . The tool user 
determines � based on characteristics and details of the application that eventually 
chips will be employed in, e.g. , the risks of using an infected chip in a device with 
a sensitive application versus using a chip for home appliances. Note that the user 
sets this value, which is not derived from the actual FP and FN . After � is set, it is 
plugged into Eq. (4) and a general confidence basis Conf. Val is computed.

This metric can compare HT detection methods fairly regardless of their detec-
tion criteria and implementation methodology. The defined confidence metric com-
bines the two undesirable cases to their severity from a security engineer’s point of 
view. The Conf.    Val ranges between [ 0.5�

1+0.5�
..�] . The closer the value is to � , the 

more confidence in the detector. The absolute minimum of the Conf. Val = 1∕3 that 
happens when � = 1 and FP = FN = 50 %. This analysis assumes that FN and FP 
are independent probabilities. We note that, for some detection methods, FP is 
always 0. For instance, test-based HT detection methods that apply a test vector to 
excite HTs use a golden model (HT-free) circuit for comparison and decision mak-
ing, and it is impossible for a non-infected circuit to have a mismatch with the 
golden model (from the perspective of functional simulation). It is impossible for 
such methods to detect an HT in a clean circuit falsely. However, our metric is gen-
eral and captures such cases.

(4)Conf. Val =
(1 − FP)

(1∕� + FN)

Fig. 9   Possible outcomes of an 
HT detection trial

HT-infected HT-Free

HT-Free

Real Labels

Predicted Labels

TP FP

FN TN

HT-infected
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Figure 10 shows the relation between the confidence value and the FN percent-
age for � = 10 and � = 4 for a test-based detector. As can be observed, the slopes of 
the graphs are different when FN approaches zero. The maximum tolerable FN is 
an upper bound for the FN value at which we gain at least half the maximum con-
fidence. As shown with the dashed lines in Fig. 10, the maximum tolerable FN for 
� = 4 and � = 10 is, respectively, FN = 25 % and FN = 10 %. Based on the figure, it 
can be inferred that choosing a higher base � will make it more challenging to attain 
higher confidence values. This fact should be considered when selecting � and inter-
preting the confidence values.

In addition to the detection quality, which the proposed confidence value can 
measure, HT detection methods should also be compared from a computational cost 
point of view. In particular, we encourage researchers to report the runtime of their 
methods and the training time, if applicable.

6 � Experimental results and discussion

This section demonstrates the efficiency of the developed HT insertion and detec-
tion framework. For our experiments, we use an AMD EPYC 7702P 64-Core CPU 
with 512 GB of RAM to train and test our agents. The training of the RL agents is 
done using the Stable Baselines library [35] with MLP (multi-layer perceptron) as 
the PPO algorithm policy [17]. The benchmark circuits are selected from ISCAS-
85 [36] and converted into equivalent circuit graphs using NetworkX [37]. Our HT 
benchmarks and test vectors are available to download from [38]. The HTs are in 
structural Verilog format, making them easy to use. The input orders of the test vec-
tors are the same as [39]. Our toolset is developed in Python to (1) quickly adopt 
available libraries and (2) facilitate future expansions and integration with other 
tools that researchers may develop.

Fig. 10   Confidence value vs. the percentage of FN in our detectors assuming � = 10 and � = 4
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Table 3 provides details of the benchmark circuits used in our experiments. The 
table represents the number of primary inputs (2nd column), logic levels (3rd col-
umn), number of nodes including inputs, outputs, and logic gates (4th column), and 
nets (5th column). We have specified TOCR and THTS such that 5% of all nets in each 
circuit are considered as rare nets (6th and 7th columns, respectively). This was 
done to enable a fair comparison between the circuits. Finally, the circuit functional-
ity is listed in the 8th column.

6.1 � Timing complexity and scalability

Table  4 provides timing information on training the HT insertion and detection 
agents per circuit. The 2nd column shows the total timesteps for insertion/detection, 
and the 3rd column shows the total spent time. We initialize training the inserting 
agent in c432 with 120K timesteps and an episode length of 450. We increase both 
values by 10% for each succeeding circuit to ensure enough exploration is made in 
each circuit as their size grows. As for detection, we start with 450K timesteps and 
increase it by 10% for subsequent circuits, and we keep the episode length at 10. The 

Table 3   Characteristics of different circuits from ISCAS-85 benchmark

Benchmark # of Inputs # of Levels # of nodes # of nets TOCR THTS Description

c432 36 40 352 492 14 0.85 27-Channel Interrupt 
Controller

c880 60 43 607 889 15 0.82 8-Bit ALU
c1355 41 44 957 1416 20 0.75 32-Bit SEC Circuit
c1908 33 52 868 1304 14 0.90 16-bit SEC/DED Circuit
c2670 233 28 1323 1807 20 0.83 12-bit ALU and Controller
c3540 50 60 1539 2527 15 0.84 8-bit ALU
c5315 178 63 2697 4292 21 0.79 9-bit ALU
c6288 32 240 4496 6801 18 0.8 16 × 16 Multiplier
c7552 207 53 3561 5433 20 0.8 32-Bit Adder/Comparator

Table 4   Mean HT detection/
insertion training time of the RL 
algorithm for different ISCAS-
85 benchmarks

Benchmark Insertion/detec-
tion timesteps

Insertion/detection training time

c432 120K/450K 1 h 40 m/1 h 7 m
c880 132K/495K 2 h 36 m/2 h 7 m
c1355 145K/550K 3 h 10 m/2 h 27 m
c1908 160K/605K 5 h 25 m/2 h 40 m
c2670 175K/665K 8 h 1 m/7 h 23 m
c3540 192K/731K 12 h 1 m/5 h 24
c5315 211K/800K 23 h 16 m/15 h 36 m
c6288 232K/880K 57 h 18 m/59 h 16 m
c7552 255K/970K 26 h 15 m/44 h 15 m
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short episode length allows the agent to experience different states, thereby increas-
ing the chances of exploration. The test vectors are collected after running the agent 
for 20K episodes in the testing phase.

In our experiments, c6288 takes the most time in both insertion and detection 
scenarios (2.5 days), which we argue is reasonable for an attacker and the defense 
engineer. Note that we have not used optimization techniques to reduce the number 
of gates and nets in the benchmarks. Such techniques can notably decrease the RL 
environment size and, subsequently, the training time. That being said, the impact of 
optimization techniques on detection/insertion quality should be investigated, but it 
is beyond the scope of this paper.

6.2 � Insertion, detection, and confidence value figures

Figure 11 illustrates the logical depth distribution of rare nets in c3540 and c5315 
circuits. Although rare nets are primarily found in the lower logic levels, there are 
still a significant number of rare nets in the higher levels, which could contribute 
to the creation of stealthier hardware Trojans. As explained in Sect. 3.2, the level 

(a) c3540

(b) c5315

Fig. 11   Distribution of rare nets in c3540 and c5315
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of the HT trigger nets is limited by the payload’s level. Suppose a payload is not 
selected from the higher-level nets. In that case, the agent has less opportunity to 
explore higher-level trigger nets, which might harm the insertion exploration of new 
HTs. To enable more exploration, we define the following two payload selection sce-
narios: (1) Prand in which the agent selects payloads randomly, and (2) Phigh where 
payload net is selected such that at least 80% of rare nets are within the agent’s sight.

Table 5 provides information about the number of inserted HTs using Prand and 
Phigh scenarios for each benchmark circuit. The 2nd and 3rd columns show the total 
number of HTs successfully inserted by the agent. The numbers followed by each 
insertion scenario in the remaining columns show the number of rare nets among the 
five input triggers. For instance, in c432, 1866 HTs were inserted under Prand where 
1688 of those had 3 rare nets, 160 of those had 4 rare nets, and only 18 of those had 
5 rare nets. As can be observed, in most cases, the number of inserted HTs under 
Phigh is higher than Prand except for c6288 and c7552. Also, fewer HTs are inserted 
as the number of rare triggers increases. In other words, it becomes more difficult for 
the RL agent to find HTs with higher rare nets. There are some cases under Prand − 5 
and Phigh − 5 that the agent could not insert any HTs. These rows in the table are 
shown as 0, e.g. , in c2670.

Figure 12 displays the HT detection accuracy percentages for the studied circuits 
under Prand and Phigh insertion scenarios. Figures  13,  14, and  15 provide details 
about the detection accuracy of each HT group, separately. Besides SSD , SAD , and 
COD , there is an extra detection scenario called Combined where all the test vectors 
produced by SSD , SAD , and COD are consolidated and applied to the circuits for 
HT detection. No detection rates are reported in cases where no HTs were inserted. 
It can be observed from both Table 5 and Figs. 12, 13, 14, and 15 that despite more 
inserted HTs in the Phigh scenario, they do not evade detection any better than the 
random payload selection scenario and the detection rates are almost the same. Nev-
ertheless, the extra inserted HTs under Phigh can be used to train better ML HT detec-
tors. Figures 12, 13, 14, and 15 also suggest that SSD, SAD, and COD are vital to 
providing better HT detection coverage. Figure 16 displays the number of times each 

Table 5   Number of inserted HTs under Prand and Phigh scenarios for ISCAS-85 benchmark circuits

The zeros were bolded to make them easy to spot and stand out

Bench-
mark

Prand − Total Phigh − Total Prand − 3 Phigh − 3 Prand − 4 Phigh − 4 Prand − 5 Phigh − 5

c432 1866 2788 1688 2331 160 453 18 4
c880 1954 2116 1595 1736 327 373 32 7
c1355 921 1400 815 1116 86 268 20 16
c1908 1247 1576 1121 1240 126 321 0 15
c2670 206 434 188 406 18 28 0 0
c3540 410 767 367 703 41 64 2 0
c5315 434 797 406 719 28 77 0 1
c6288 531 475 459 426 67 46 5 3
c7552 769 683 704 615 64 67 1 1
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detector was ranked first in nine benchmark circuits under our two insertion strate-
gies. While COD ties with SAD under Prand , it becomes the best detector under Phigh . 
SSD only outperforms in 1 benchmark circuit in both scenarios. The figure suggests 
that solely developing HT detectors based on signal activity might not achieve the 
expected outcomes. Nevertheless, SAD still plays an essential role in overall HT 
detection accuracy. The impact of the Combined scenario is vital as it improves the 
overall detection accuracy in most cases. For instance, in c3540, none of the detec-
tors can perform better than 60% in the Prand scenario while the Combined detection 
accuracy is nearly 75%. It also can be seen that adding more rare nets to the HT 
trigger does not necessarily lead to stealthier HTs. For example, in c880, c1355, and 
c1908, there are HTs with five trigger nets that were 100% detected, while the detec-
tion accuracy was less for HTs with fewer rare triggers in the same circuits.

Another important observation is the different magnitude of detection accu-
racy among the benchmark circuits. While we achieve 100% accuracy in c6288, 
it is about 25–30% lower in c3540 and c6288. Table   3 shows that c6288 is a 

(a) Prand HTs

(b) Phigh HTs

Fig. 12   Detection accuracy of SSD, SAD, COD, and Combined scenarios under Phigh and Phigh insertion 
scenarios in ISCAS-85 benchmark circuits
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multiplier circuit. It contains 240 full and half adders arranged in a 15 × 16 matrix 
[39]. c3540, on the other hand, has 14 control inputs for multiplexing and mask-
ing data. c7552 also contains multiple control signals and bit masking operations. 
We hypothesize that the detection accuracy is higher in c6288 due to having fewer 
control signals that disable circuit components and signals. Accordingly, they get 
more frequently activated in c6288 than c3540 and c7552. In other words, these 
results imply that inserting HTs in control paths can lead to stealthier HTs than 
data paths in circuits. Another interesting finding pertains to the detection rate 
in c432. After administering 100K random test patterns, we discovered that the 
rarest net in the circuit was triggered 7% of the times, starkly contrasting to other 
circuits where many nets exhibit less than 1% switching activity. It implies that 
random test patterns probably more easily activate the inserted HTs in c432. We 
generated 20K random test patterns to prove this hypothesis and passed them 
to the circuit. These test patterns detected 99% of HTs, indicating that attackers 

(a) Prand − 3 HTs

(b) Phigh − 3 HTs

Fig. 13   Detection accuracy of SSD, SAD, COD, and Combined scenarios under Phigh and Phigh insertion 
scenarios for 3-input HTs
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should carefully evaluate the activity profile of the nets before compromising 
circuits.

To further evaluate the efficacy of our HT detectors, we compare the Combined 
detector with DETERRENT [10] and HW2VEC [29], two state-of-the-art HT detec-
tors. We use the test vectors generated by DETERRENT [10] and collect detec-
tion figures for 4 reported ISCAS-85 benchmark circuits, namely c2670, c5315, 
c6288, and c7552.2 We also replicate the steps in HW2VEC [29] by gathering the 
TJ_RTL dataset, which contains 26 HT-infected (labeled as ‘1’) and 11 HT-Free 
circuits (labeled as ‘0’). We train an MLP (multi-layer perceptron) binary classi-
fier to detect the HTs. For the test dataset, we collect the graph embeddings of the 
HTs generated by the inserting RL agent. Additionally, we add an HT-free version 
of the original ISCAS-85 circuits and another one synthesized with the academic 

(a) Prand − 4 HTs

(b) Phigh − 4 HTs

Fig. 14   Detection accuracy of SSD, SAD, COD, and Combined scenarios under Phigh and Phigh insertion 
scenarios for 4-input HTs

2  We reached out to the authors of TARMAC and TGRL techniques, but we did not receive the test pat-
terns at the time of submission.
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(a) Prand − 5 HTs

(b) Phigh − 5 HTs

Fig. 15   Detection accuracy of SSD, SAD, COD, and Combined scenarios under Phigh and Phigh insertion 
scenarios for 5-input HTs

Fig. 16   Comparing the number of times each of SSD , SAD , and COD are ranked as the best detector in 
our two insertion scenarios
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NanGateOpenCell45nm library to the test batch to record the number of TN s and 
FP s. As shown in Table  2, DETERRENT solely considers signal activity while 
HW2VEC captures structural information of circuits.

Figure 17 shows the detection accuracy of each HT detector for each benchmark 
circuit. The detection accuracy is reported for the total inserted HTs in Table 5 for 
both Prand and Phigh insertion scenarios. The figure shows that the Combined detec-
tor outperforms DETERRENT and HW2VEC in 3 of our benchmark circuits. The 
average detection rate among the 4 benchmarks is 87% percent. While the detection 
gap between Combined and DETERRENT is significant in c2670 and c5315, it is 
less evident in c6288 and c7552. HW2VEC, on the other hand, demonstrates mini-
mal detection variance in all 4 circuits and outperforms Combined in c7552. Fur-
thermore, HW2VEC illustrates robust performance with HT-Free circuits, correctly 
classifying them as TN s and a FP rate of 0.

In another experiment, we train our MLP with TJ_RTL + EPFL [40] benchmark 
suites to obtain a more balanced dataset (26 instances labeled as ‘1’ and 30 instances 

(a) Prand HTs

(b) Phigh HTs

Fig. 17   Comparison of HW2VEC [29], Combined, and DETERRENT [10] detection rates under a Prand 
and b Phigh insertion scenarios
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labeled as ‘0’). While the FP remains 0, similar to the previous experiment, the HT 
detection accuracy drops to 48%. This sheds light on the shortcomings of the current 
benchmarks used for training ML HT detectors, and it raises the necessity of having 
a more diverse and larger dataset to attain more dependable results. Overall, these 
two experiments demonstrate the potential of the RL inserting agent and the advan-
tages of a multi-criteria detector compared to a single-criterion (DETERRENT) HT 
detector.

Table  6 shows the individual detection contribution of SSD , SAD , and COD 
toward overall HT detection for each benchmark circuit. The 2nd, 4th, and 6th col-
umns display the number of HTs exclusively detected by each detector followed by 
their contribution in the overall HT detection in the 3rd, 5th, and 7th columns for 
SSD , SAD , and COD , respectively. As can be inferred, COD has the highest individ-
ual contribution, followed by SAD and SSD . This table is evidence of the importance 
of the multi-criteria HT detector for higher accuracy.

To compute the confidence value of each detector, the overall detection accu-
racy of each detector is calculated in all nine circuits under both insertion scenarios. 
Then, each averaged value is plugged into Eq.  (4). Assuming � = 10 , the confi-
dence values for each SSD , SAD , COD , and combined scenarios are 2.43, 3.36, 3.09, 
and 5.13, respectively. Thus, the security engineer can put more confidence in the 
Combined detector since it has the highest confidence values. DETERRENT’s and 
HW2VEC’s confidence values are 1.24 and 4.34, respectively.

6.3 � Average episode length and reward

Figure 18 shows the average episode length and reward of the inserting and detec-
tor RL agents for the c5315 benchmark circuit. As seen from Fig. 18a, initially, the 
agent leans more toward ending the training episodes to avoid further losses. This 
trend continues until it gradually increases the episode length, increasing the reward, 
which can be observed in Fig.  18b. Eventually, the agent collects more and more 
rewards. Although the agent accumulates higher rewards in Phigh , the detection rate 
is not significantly different from Prand . Figure  18c demonstrates the agent’s abil-
ity to augment rewards in our three detection scenarios at an almost steady pace; it 

Table 6   Individual contribution 
of SSD , SAD , and COD in 
detection of unique HTs

Circuit SSD # SSD% SAD # SAD% COD # COD%

c432 2 0.1% 275 14.74% 297 15.86%
c880 49 2.52% 16 0.81% 16 0.81%
c1355 0 0% 0 0% 40 4.34%
c1908 1 0.08% 1 0.08% 13 1.04%
c2670 0 0% 1 0.48% 66 32.03%
c3540 7 1.70% 29 7.07% 18 4.39%
c5315 1 0.24% 8 1.93% 9 2.17%
c6288 0 0% 0 0% 8 1.51%
c7552 16 2.08% 29 3.77% 15 1.95%
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(a) Average Episode Length per Step in HT insertion
for c5315

(b) Average Episode Reward per Step in HT insertion
for c5315

(c) Average Episode Reward per Step in HT Detec-
tion for c5315

Fig. 18   The average episode length and reward vs. the number of steps in both HT insertion and detec-
tion for c5315
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learns how to increase rewards along the way. It is worthwhile to point out that the 
proposed RL framework can save the state of the RL models at arbitrary intervals, 
which helps test the agent’s efficacy at different timesteps. Note that since the detec-
tor’s episode length is always 10, this data was not included in the graph. The agent 
can always be trained for longer steps, but one should consider the trade-off between 
the time required and the accuracy achieved.

6.4 � Test vector size versus accuracy

We also investigate the relationship between the number of applied test vectors and 
the HT detection accuracy. For this experiment, we collect a set of test vectors that 
have obtained a certain minimum reward. We run the trained RL agent for 20K 
episodes to identify such vectors. We set a cut-off reward of one-tenth of the col-
lected reward in the last training episode. We collect 20K test vectors that surpass 
this reward threshold. The HT detection distribution of the collected test vectors 
is shown in Fig. 19 for c1908, c3540, c5315, and c7552 under the Prand insertion 
scenario and the SAD detection scenario. The x-axis displays the intervals of the 
applied test vectors, and the y-axis shows the detection percentage of each particular 
interval. As can be seen, the first 2K vectors have the greatest contribution toward 
HT detection. This figure is nearly 90% for c1908 and just below 40% for c7552. A 
similar comparison can be made between different HT detectors to help us find the 
relation between the quantity (number of test vectors) and the quality (the detection 
accuracy). Such analysis leads us to answer the question, “Does adding more test 
vectors to the testing batch improve detection?" If the answer is negative, adopting 
more intelligent rewarding functions might be considered to offset this diminishing 
returns effect. That being said, in certain instances, adding more test batches leads 
to higher detection rates. We tested this scenario for c3540 where the Combined 
detection rate with 20K test patterns is around 80% in the Prand scenario. We ran the 
trained detector agents SSD , SAD , and COD for 20K episodes, but this time, we col-
lected all the test patterns that returned positive rewards. Accordingly, we collected 
191K, 183K, 121K for SSD , SAD , and COD and the detection rates were 89, 86, and 
97%, respectively.

Fig. 19   The number of generated test vectors (x-axis) versus the HT detection accuracy (y-axis)
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6.5 � RL Feasibility in practice

RL agents have been extensively used in various application domains where deci-
sion making is required, e.g.  , robotics control [41, 42], gaming [43, 44], autono-
mous driving [45], computer architecture [46, 47], and hardware security [48]. 
Training RL models requires a large amount of interaction with the environment to 
learn an optimal policy. This can be costly in many environments (including the HT 
space) where the interactions with the environment are computationally expensive. 
The OpenAI RL agent that defeated the DOTA world champions famously took 
10 months to train [49]. Despite the training hurdle, RL introduces some valuable 
advantages in relationship to HTs. First, RL facilitates the exploration of complex 
environments that humans cannot easily accomplish. It automates the decision-mak-
ing process and eases automation especially where tasks must be performed repeat-
edly or in large volumes. RL, as an unsupervised learning technique, can build train-
ing sets for other agents that are then trained via supervised learning, for instance, 
an HT benchmark for training an ML-based HT detector. Moreover, RL removes 
the human bias stemming from a particular mindset in the process. RL has already 
proved to be a valuable solution in the HT domain [2, 10, 16]. While utilizing RL 
helps security engineers produce test vectors, the next generation of malicious actors 
might be bots designed to compromise security. Hence, despite the added layer of 
complexity, we believe that utilizing an RL approach for HT insertion and detection 
is feasible where the sheer complexity of the problem means that we need to explore 
all potential research avenues.

7 � Conclusions and future directions

This paper presented the first framework for joint HT insertion and detection. The 
inserting and detection RL agents have tunable rewarding functions that enable 
researchers to experiment with different approaches to the problem. This framework 
will accelerate HT research by helping the research community evaluate their inser-
tion/detection ideas with less effort. Our inserting tool provides a robust dataset that 
can be used for developing finer HT detectors, and our detector tool emphasizes the 
need for a multi-criteria detector that can cater to different HT insertion mindsets. 
We also presented a methodology to help the community compare HT detection 
methods, regardless of their implementation details. We applied this methodology 
to our HT detection and discovered that our tool offers the highest confidence in 
HT detection when using a combined detection scenario. We aim to explore more 
benchmarks and create a more diverse HT dataset for the community.

As an extension to this work, we aim to explore more benchmarks and provide 
support for other circuits, including sequential ones in our flow, e.g. , ISCAS-89 [50] 
and ITC’99 [51] benchmarks. One solution to tackle these circuits would be utiliz-
ing Design for Testability (DFT) techniques such as scan chains [52]. In a full scan 
design, memory elements are connected to the chain, enabling test engineers to use 
combinational test patterns instead of sequential ones. Given the existence of this 
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playground infrastructure, further research questions and more complex ideas can be 
explored.
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