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Abstract—Learning a smooth graph signal from partially

observed data is a well-studied task in graph-based machine

learning. We consider this task from the perspective of optimal

recovery, a mathematical framework for learning a function from

observational data that adopts a worst-case perspective tied to

model assumptions on the function to be learned. Earlier work

in the optimal recovery literature has shown that minimizing a

regularized objective produces optimal solutions for a general

class of problems, but did not fully identify the regularization

parameter. Our main contribution provides a way to compute

regularization parameters that are optimal or near-optimal

(depending on the setting), specifically for graph signal processing

problems. Our results offer a new interpretation for classical

optimization techniques in graph-based learning and also come

with new insights for hyperparameter selection. We illustrate the

potential of our methods in numerical experiments on several

semi-synthetic graph signal processing datasets.

I. INTRODUCTION

In graph signal processing, one starts with a dataset defined
over an irregular graph domain and the goal is to recover
a signal on vertices of the graph (e.g. discrete labels or
regression values) when given access to only one part of the
signal [Dong et al., 2020, Ortega et al., 2018]. As a concrete
example, the graph may encode US counties (nodes) and their
physical adjacencies (edges) while the signals may represent
voting patterns, birthrates, or any number of other attributes
influenced by geographic region [Jia and Benson, 2020]. As
other examples, in biology, the graph may represent a gene in-
teraction network while signals may indicate expression levels
of individual genes [Dong et al., 2020]; in neuroscience, brain
activity signals coming from fMRI data may be analyzed over
a graph representing physical connections or co-activations
among regions of a brain [Huang et al., 2018], etc.

The task of recovering a graph signal from partial infor-
mation about it is also known as graph-based semi-supervised
learning [Zhou et al., 2003, Belkin et al., 2004, Zhu et al.,
2003]. This task has been studied in depth by researchers from
many related academic communities including machine learn-
ing, statistics, and of course signal processing. In all of these
settings, a common assumption is that signals vary smoothly
over the graph’s edge structure, meaning that adjacent nodes
often share similar labels [Zhou et al., 2003, Zhu et al., 2003,
Belkin et al., 2004, Xu et al., 2010, Dong et al., 2020]. Many
formal objective functions and theoretical results for graph
signal processing and semi-supervised learning are justified by
assuming that graph signals come from a certain well-behaved
probability distributions [Zhu et al., 2003, Dong et al., 2019].
This often leads to objective functions that can be minimized
using simple matrix-based methods [Zhu et al., 2003, Zhou
et al., 2003, Belkin et al., 2004]. However, the performance
is affected by the choice of a regularization parameter in the

objective function and it is not always clear how to select
such a parameter. In another direction, there has been a recent
surge of interest in using graph-neural networks for learning
over graphs. This is often successful in practice but typically
comes with no mathematical guarantees.

In our work, we address the graph signal processing task
from a novel perspective—that of optimal recovery. This
perspective does not rely on the assumption that ground
truth signals are drawn from a well-behaved distribution.
Instead, the goal is to find optimal solutions under worst-case
assumptions about graph smoothness and labeling error. This
approach comes with several benefits. Primarily, we present
new theoretical results on finding best solutions under the
optimal recovery framework (locally and globally, see later
sections for technical details). Along the way, we highlight
the connections between the optimization problems stemming
from this framework and the classical techniques encountered
in graph signal processing. One significant contribution is to
provide rigorous theoretical guarantees for selecting the regu-
larization parameter in the objective function being minimized.
Setting this parameter is not entirely free of challenges, as
it actually depends on the parameters characterizing graph
smoothness and labeling error. Nevertheless, our results offer
fresh intuition on how to reasonably choose the regularization
parameters intrinsic to objective functions common in graph
signal processing. Finally, we provide a proof-of-concept
implementation of our approach and illustrate its performance
in several empirical graph signal processing experiments.

II. THE PERSPECTIVE FROM OPTIMAL RECOVERY

Let G = (V,E) be an undirected graph with N = |V |
vertices identified with 1, 2, . . . , N . A signal f defined on
V is thus identified with a vector f 2 RN . The previously-
mentioned common assumption that f varies smoothly over
the graph’s edge structure qualitatively translates into the fact
that the values fi and fj do not differ much if the vertices i
and j are strongly connected. Quantitatively, putting a weight
wi,j � 0 on the edge connecting i and j, thus defining a
(weighted, symmetric) adjacency matrix W 2 RN⇥N , the
assumption takes the form

1

2

NX

i,j=1

wi,j(fi � fj)
2  "2

for a small " > 0 standing for a graph smoothness parameter.
Introducing the graph Laplacian L = D�W 2 RN⇥N , where
D is the diagonal matrix with entries Di,i =

PN
j=1 Wi,j , the

assumption succinctly reads

hLf, fi  "2, or kL1/2fk2  ".
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We recall that the square-root L1/2 of L is well-defined
because the graph Laplacian L is positive semidefinite. Note
that it is not positive definite, since 0 is always an eigenvalue
of L. In fact, its multiplicity equals the number of connected
components C of G, with orthogonal eigenvectors provided
by the indicator vectors 1C 2 {0, 1}N of C. Throughout, we
shall assume that the graph G is known, and hence that L is
available to the user.

As for the unknown f , it is partially observed—or labeled1.
In other words, there is a subset V`, with size |V`| = n`, of
vertices for which the fi, i 2 V`, are known. In reality, they
are known up to additive errors, so that the user has access to

yi = fi + ei, i 2 V`.

To abbreviate, we write y = ⇤f + e 2 Rn` , where the linear
map ⇤ : RN ! Rn` satisfies ⇤⇤⇤ = In` here (since, up to
a proper ordering of the vertices, (the matrix of) ⇤ takes the
form

⇥
In` | 0

⇤
). We shall assume that an `2-bound on the

error vector e is available, namely

kek2  ⌘

for a small ⌘ > 0 standing for a labeling error parameter.
Our objective is now to estimate the graph signal f on the

set of unlabeled vertices, i.e., on Vu = V \V`, which has size
|Vu| = nu = N � n`. In the framework of optimal recovery,
we aim at doing so in a worst-case optimal way given the
graph smoothness and labeling error assumptions, expressed
as f 2 K and e 2 E , where the model set K and the uncertainty
set E are given as

K = {f 2 RN : kL1/2fk2  "}, (1)
E = {e 2 Rn` : kek2  ⌘}. (2)

A scheme to estimate f|Vu
2 Rnu from y 2 Rn` is nothing

but a map � : Rn` ! Rnu , which we call a recovery map.
We are interested in those recovery maps that are optimal

• in the global setting, i.e.,

sup{kf|Vu
��(⇤f + e)k2 : f 2 K, e 2 E}

is as small as possible;
• in the local setting, i.e., at any given y 2 Rn` ,

sup{kf|Vu
� zk2 : f 2 K, e 2 E ,⇤f + e = y}

evaluated at z = �(y) is as small as possible. Such a
�(y) 2 Rnu is called a Chebyshev center for the set
S = {f|Vu

: f 2 K, e 2 E ,⇤f + e = y}, as it is easily
seen to be a center of a minimal-radius ball containing S .

If we believe that the observed labels need to be adjusted, too,
instead of estimating f|Vu

, we may want to estimate f in full.
We may also want to estimate the average of f or its value
at a particular vertex i0 2 V . To deal with these situations all
at once, we introduce a quantity of interest Q : RN ! Rn,
which in the examples above is given by, respectively,

Q(f) = f|Vu
, Q(f) = f, Q(f) =

1

N

X

i2V

fi, Q(f) = fi0 .

1Labels are real numbers here, not elements of a binary set such as {0, 1}.

In this generality, the global and local worst-case errors for
the estimation of Q are defined, for � : Rn` ! Rn and for
y 2 Rn` , z 2 Rn, by

gwceQ(�) = sup
f2K,e2E

{kQ(f)��(⇤f + e)k2},

lwceQ(y, z) = sup
f2K,e2E

{kQ(f)� zk2 : ⇤f + e = y}.

We call a recovery map � : Rn` ! Rn globally optimal if it
minimizes gwceQ(�) and locally optimal if �(y) minimizes
lwceQ(y, z) for any given y 2 Rn` . Of course, locally optimal
recovery maps are automatically globally optimal, but they
are typically harder to produce (as the current work will also
illustrate). We may therefore relax the aspiration of genuine
optimality to one of near optimality by merely requiring that
lwceQ(y,�(y))  C inf{lwceQ(y, z), z 2 Rn} for some
absolute constant C > 1.

III. SELECTION OF THE REGULARIZATION PARAMETER

We now show that (near-)optimal recovery maps can be ob-
tained through Tikhonov-style regularization and we uncover
a principled way to choose the regularization parameter based
on the graph smoothness and labeling error parameters. We
start with some preparatory information about regularization
before presenting our genuine optimality result in the global
setting and our near optimality result in the local setting.

A. Rundown on regularization

When searching for the signal f 2 RN that produced the
observation vector y 2 Rn` , it is natural to try and make the
data-fidelity term k⇤f�yk22 small. Furthermore, to enforce the
graph smoothness condition that kL1/2fk22 is small, one can
incorporate this condition as a constraint in a miminization
problem or add the regularization term �kL1/2fk22 to the
objective function, as done e.g. in [Belkin et al., 2004]. Instead
of parametrizing by � > 0, it will be more convenient for our
purpose to parametrize by some ⌧ 2 (0, 1), thus leading to the
regularization map �⌧ : Rn` ! RN given by

�⌧ : y 7! argmin
f2RN

(1� ⌧)kL1/2fk22 + ⌧k⇤f � yk22.

This map is well defined under the assumption that at least one
vertex is observed in each connected component of the graph,
which translates into ker(L) \ ker(⇤) = {0} or equivalently
into the invertibility of (1 � ⌧)L + ⌧⇤⇤⇤ (see §1 in the
supplementary material). Indeed, as the minimizers f⌧ of
the above objective function are characterized by the normal
equation (1 � ⌧)Lf⌧ + ⌧⇤⇤(⇤f⌧ � y) = 0, this invertibity
shows that f⌧ is unique and is equal to

�⌧ (y) =
�
(1� ⌧)L+ ⌧⇤⇤⇤

��1
(⌧⇤⇤y). (3)

This expression reveals in particular that �⌧ is a linear map.
The extreme case ⌧ ! 0 is interpreted as the minimizer of

k⇤f�yk22 subject to L1/2f = 0, which is not very interesting,
see §2 for explanation. The extreme case ⌧ ! 1 is interpreted
as the minimizer of kL1/2fk22 subject to ⇤f = y, which
appears commonly in graph signal processing under the names
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of harmonic method [Zhu et al., 2003] or interpolatory method
[Belkin et al., 2004].

B. Genuine optimality in the global setting

It was recognized already in [Melkman and Micchelli, 1979,
Micchelli, 1993] that the regularization maps �⌧ produce a
globally optimal recovery map for some parameter ⌧ 2 (0, 1),
but the choice of this parameter was not made explicit.
Theorem 1 below shows that this parameter can be obtained by
solving a semidefinite program. Such a result was established
in [Foucart and Liao, 2023] in a slightly more restrictive
setting, namely the place of L1/2 was taken by an orthogonal
projector and only full recovery (i.e., Q = IN ) was considered.

Theorem 1. Given a linear quantity of interest Q : RN ! Rn,
let K and E be the model and uncertainty sets from (1)-(2).
Defining ⌧[ = d[/(c[ + d[) where c[, d[ � 0 are solutions to

minimize
c,d�0

c"2 + d⌘2 s.to cL+ d⇤⇤⇤ ⌫ Q⇤Q, (4)

the linear map Q � �⌧[ : Rn` ! Rn is a globally optimal
recovery map relative to K and E , meaning that

gwceQ(Q ��⌧[) = inf
�:Rn`!Rn

gwceQ(�).

The justification of this theorem relies on the two lemmas
below, whose proofs appear in §3 and §4 of the supplementary
material. Lemma 2 relies on a version of the S-procedure due
to Polyak [1998] and follows [Foucart and Liao, 2023] closely,
but the argument for Lemma 3 follows a different route to deal
with a quantity of interest Q 6= IN .

Lemma 2. For an arbitrary recovery map � : Rn` ! Rn, the
squared global worst-case error is lower-bounded as

gwceQ(�)2 � sup
h2RN

{kQ(h)k22 : kL1/2hk22  "2, k⇤hk22  ⌘2}

= inf
c,d�0

{c"2 + d⌘2 : cL+ d⇤⇤⇤ ⌫ Q⇤Q}.

Lemma 3. If c, d � 0 satisfy cL+d⇤⇤⇤ ⌫ Q⇤Q, then, setting
⌧ = d/(c+ d), one has, for all f 2 RN and all e 2 Rn` ,

kQ(I ��⌧⇤)f �Q�⌧ek22  ckL1/2fk22 + dkek22.

Proof of Theorem 1. Let c[, d[ � 0 be minimizers of (4).
On the one hand, according to Lemma 2, the squared global
worst-case error of any recovery map � : Rn` ! Rn satisfies

gwceQ(�)2 � c["
2 + d[⌘

2.

On the other hand, the linearity of Q��⌧[ , ⌧[ := d[/(c[+d[),
implies that its squared global worst-case error becomes

gwceQ(Q ��⌧[)
2 = sup

f2K,e2E
kQ(I ��⌧⇤)f �Q�⌧ek22,

which, according to Lemma 3, does not exceed

sup
f2K,e2E

ckL1/2fk22 + dkek22 = c["
2 + d[⌘

2.

All in all, we have shown that gwceQ(Q ��⌧[)  gwceQ(�)
for any map � : Rn` ! Rn, which is the desired result.

Remark. To achieve genuine optimality, exact knowledge of
the parameters " and ⌘ is needed, but near optimality is
achievable when these are overestimated by some "̄ and ⌘̄
satisfying "̄  C" and ⌘̄  C⌘, see §5.

Remark. The semidefinite program (4), featuring an N ⇥N
matrix, does not run when N is in the thousands. Nonetheless,
it is expected that the computational burden could be alleviated
if Q maps into a low-dimensional space Rn. This is certainly
the case in the extreme case n = 1, see §6.

C. Near optimality in the local setting

In contrast to the global setting, we are unaware of a general
result stating that the regularization maps �⌧ produce a locally
optimal recovery map for some parameter ⌧ 2 (0, 1). For
full recovery (Q = IN ), such a statement is true in at least
two situations, though. The first situation requires ⇤⇤⇤ = In`

(which is the case here) and an orthogonal projector P in
place of L1/2 (up to normalization, L1/2 happens to be an
orthogonal projector if G is an unweighted graph made of
disconnected complete subgraphs of identical sizes, see §7):
it was established in [Foucart and Liao, 2023] that �⌧] is a
locally optimal recovery map when ⌧] is the unique parameter
⌧ between 1/2 and "/("+⌘) satisfying the eigenvalue equation

�min((1� ⌧)P + ⌧⇤⇤⇤)

=
(1� ⌧)2"2 � ⌧2⌘2

(1� ⌧)"2 � ⌧⌘2 + (1� ⌧)⌧(1� 2⌧)�2
,

where �=min{kPfk2 :⇤f=y}=min{k⇤f � yk2 :Pf=0}.
The second situation requires working in the complex setting:
it was established in [Beck and Eldar, 2007] that �⌧[ is a
locally optimal recovery map when ⌧[ = d[/(c[ + d[), with
c[, d[ solving the semidefinite program

minimize
c,d,t�0

c"2 + d(⌘2�kyk22) + t s.to cL+ d⇤⇤⇤ ⌫ IN

and

cL+ d⇤⇤⇤ d⇤⇤y

dy⇤⇤ t

�
⌫ 0.

In the real setting, although the value of lwceIN (y,�⌧[(y)) is
only guaranteed to provide an upper bound for the minimal
local worst-case error, it is not unlikely that �⌧[ is genuinely
a locally optimal recovery map—this is the case in the first
situation (result not published yet).

Regardless of the above considerations, relaxing genuine
optimality to near optimality, it can always be guaranteed that
some regularization map �⌧ produces a locally near optimal
recovery map for a parameter ⌧ 2 (0, 1) that can be computed.
This is the gist of the following result, see §8 for a proof.

Theorem 4. Given a linear quantity of interest Q : RN ! Rn,
let K and E be the model and uncertainty sets from (1)-(2).
For y 2 Rn` , let bf 2 RN be the solution to

minimize
f2RN

max
n
kL1/2fk22,

"2

⌘2
k⇤f � yk22

o
.

Then bf agrees with �⌧\(y), where ⌧\ is the unique parameter
⌧ 2 (0, 1) satisfying

kL1/2�⌧ (y)k2 =
"

⌘
k⇤�⌧ (y)� yk2.

Moreover, one has lwceQ(y,Q( bf))  2 infz2Rn lwceQ(y, z).
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IV. NUMERICAL VALIDATION

In this section, we illustrate the performance of opti-
mal recovery methods on several semi-synthetic regression
datasets and verify the near optimality of a regularization
parameter in the local setting. We implement our algorithms
in MATLAB and use CVX [Grant and Boyd, 2014] for
solving semidefinite programs. All numerical experiments
are available on the GitHub repository https://github.com/
liaochunyang/ORofGraphSignals.

Let us recall that all our optimal recovery maps correspond
to solving a regularized optimization program with a specific
choice of hyperparameter. This type of regularized objective
is already standard in graph-based machine learning [Belkin
et al., 2004], but it is often unclear how this parameter should
be chosen. The primary goal of our numerical experiments is
to illustrate how our techniques for hyperparameter selection
work in a controlled environment where we have access to
a ground truth graph signal f and we can estimate the true
smoothness and error parameters ✏ and ⌘. In practical settings,
we do not actually have access to f , nor can we estimate "
and ⌘ exactly, but we shall confirm that near optimality is
achievable under mild overestimations of ✏ and ⌘ (see §5).

We consider several real-world graphs and, using a standard
approach [Dong et al., 2019] (see §9 for more details), we
generate synthetic signals f whose values at the nodes are
normalizing to be between 0 and 1 for simplicity. In our
first experiment, we show how the prediction error changes
as the number of labeled vertices grows. We begin by running
all methods for n` = 5 and we keep adding 5 new labeled
nodes at a time—by the end, we have run experiments for
n` ranging from 5 to N/2 in increments of 5. For each
choice of n`, our goal is to recover labels at unlabeled nodes,
i.e., Q(f) = f |Vu , where f is the vector of true node
labels. The prediction error for any estimator f̂ of f |Vu is
defined as kf |Vu � f̂k2. For the smoothness parameter, we
set ✏ = 2kL1/2fk22. Next, we introduce noise artificially by
generating a uniform random vector e and subtract the mean
before scaling so that kek2  ⌘, where ⌘ is chosen as ⌘ = 2
(see §9 for details on other types of noise). We then create the
corrupted labels y = f|V`

+ e. In the supplementary material,
we also consider a mild overestimation on ⌘ by setting ⌘̄ = 2⌘.

In Figure 1, we display the prediction errors produced by
locally/globally optimal recovery maps for the graph Adjnoun
(see §9 for results on other graphs). The constructions of the
globally optimal recovery map and the locally near optimal
recovery map were presented in Theorem 1 and Theorem 4,
respectively. We also use a grid-search approach to find the
smallest prediction error over all regularization parameters in
order to display a curve of the lowest possible prediction
error. This is neither computationally efficient nor realistic,
as it assumes that we can always check the prediction error
for any estimator f̂ , but it provides a bound on the best
case scenario for solving the regularized objective. Comparing
the magenta and the red lines and the black and the green
lines, we observe that an overestimation of ⌘ does not lead to

large differences in prediction error for both local and global
optimal recovery maps, which suggests that one can safely
use a mild overestimation of ⌘ when we cannot access the
true ⌘. We also notice that the prediction errors produced
by locally/globally optimal recovery maps are close to the
prediction error produced by the best Tikhonov regularization
method (blue line).
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Fig. 1. Prediction error vs. number of labeled nodes on graph Adjnoun with
added uniform noise.

In the second experiment (see Figure 2), we confirm the
near optimality of the locally optimal recovery map described
in Theorem 4. The setup of this experiment is similar to the
first experiment. The parameter ⌧]—the unique ⌧ 2 (0, 1) such
that kL1/2�⌧ (y)k2 = ("/⌘)k⇤�⌧ (y)�yk2— is found by the
bisection method and is displayed in Figure 2 by the dashed
vertical line. The blue curve represents an upper bound for the
local worst-case error lwceQ(y,Q � �⌧ (y)) as a function of
the regularization parameter. For each ⌧ in a grid of [0, 1],
this upper bound was computed by solving a semidefinite
relaxation for the local worst-case error, see §10 for details.
Figure 2 not only supports the local near optimality of the
recovery map Q ��⌧] , but it also hints that ⌧] is not far away
the best regularization parameter.
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Fig. 2. Local worst-case error vs. regularization parameter.
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