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Abstract
Given pointwise samples of an unknown function belonging to a certain model set,
one seeks in optimal recovery to recover this function in a way that minimizes the
worst-case error of the recovery procedure. While it is often known that such an
optimal recovery procedure can be chosen to be linear, e.g., when the model set is
based on approximability by a subspace of continuous functions, a construction of the
procedure is rarely available. This note uncovers a practical algorithm to construct a
linear optimal recovery map when the approximation space is a Chevyshev space of
univariate functions that has dimension at least three and contains the constants.

Keywords Optimal recovery · Chebyshev spaces · ℓ1-minimization · Simplex
algorithm

Mathematics Subject Classification (2010) 41A05 · 41A10 · 41A50 · 90C05

1 Problem setting

Throughout this note, one works in the space C(X ) of continuous functions on a
compact setX equipped with the uniform norm defined for f ∈ C(X ) by ∥ f ∥C(X ) =
max{| f (x)|, x ∈ X }. Given points x (1), . . . , x (m) ∈ X , an unknown function f ∈
C(X ) is observed via the point values

yi = f (x (i)), i ∈ {1, . . . ,m}.
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This so-called a posteriori information alone is not enough to approximate/learn/
recover f in any meaningful way. One also needs some a priori information, usually
expressed by the membership of f to some model set K, i.e., by f ∈ K. The perfor-
mance of a recovery procedure—which is nothing else than a map " from Rm into
C(X )—can then be assessed via its worst-case error over K, defined as

wceK(") := sup
f ∈K

∥∥ f − "([ f (x (1)); . . . ; f (x (m))])
∥∥
C(X )

. (1)

The question being addressed in this note reads as follows:

Can one construct an optimal recovery procedure ", i.e., one that minimizes wceK(")? (Q)

This objective is too ambitious for a general model set K, so one concentrates in
particular on model sets based on approximation capabilities. Precisely, given a subset
V of C(X ) and a parameter ε ≥ 0, one considers the approximability model

KV,ε =
{
f ∈ C(X ) : distC(X )( f ,V) ≤ ε

}
.

The premise that the observed function f belongs to KV,ε can be viewed as mak-
ing explicit an assumption often appearing implicitly in numerical methods. Indeed,
with Pn denotes the space of polynomials of degree < n, one often targets error
bounds featuring distC(X )( f ,Pn)—hence, no error when f ∈ Pn : this is the exact-
ness principle—and this presupposes that distC(X )( f ,Pn) should be small. A typical
example is supplied by the design of quadrature formulas, discussed in [16] along
the lines of the exactness principle. In the rest of this note, the implicit-made-explicit
assumption therefore takes the form of the prior distC(X )( f ,V) ≤ ε for some n-
dimensional subspace V of C(X ) sharing key similitudes with Pn , i.e., Chebyshev
spaces containing constant functions. Some important properties of Chebyshev spaces
are recalled in Section 3. For now, one only mentions that these spaces essentially do
not exist in dimension d > 1. Arguably, this restricts the impact of the positive answer
toQuestion (Q) given for the caseX = [−1, 1]. However, even in this elementary case,
a knowledge gap is still filled by the complete answer exposed in this note. For sure,
some pieces were known—they are recalled in Section 4—but they did not provide
a genuinely constructive recovery procedure. Here, a practical recovery algorithm is
indeed provided. The correctness of this algorithm is justified in Section 5. Section 6
concludes with some related remarks, including a recipe to compute the maximum
ratio of uniform and discrete norms over Chebyshev spaces.

2 Description of an optimal algorithm

Before launching into theoretical considerations, one directly puts forward the pro-
posed procedure as Algorithm 1 below, with points requiring justification indicated

123

57   Page 2 of 14



Full recovery from point values...

by a triangle ◃. But first, one quickly elucidates the notation aS and MS for a vector
a ∈ Rm and for a matrix M ∈ Rn×m when S ⊆ {1, . . . ,m} is an index set of size
|S| = n: they represent the subvector in Rn , resp. the submatrix in Rn×n , obtained
by keeping only entries, resp. columns, indexed by S. Note that n ≤ m is assumed,
for otherwise there would exist h ∈ V \ {0} such that h(x (1)) = · · · = h(x (1)) = 0,
which, by considering f + th as t → ∞, would yield wceKV,ε

(") = ∞ for any ".

Algorithm 1 Optimal recovery procedure from point values for Chebyshev approx-
imability prior
Require: Points x(1), . . . , x(m) ∈ [−1, 1] (completed with x(0) = −1 and x(m+1) = 1 if necessary) and
functions v1, . . . , vn forming a basis for the n-dimensional Chebyshev space V ⊆ C[−1, 1] containing
the constant functions

Ensure: m ≥ n ≥ 3
do create the matrix M ∈ Rn×m having entries Mj,i = v j (x(i)), j ∈ {1, . . . , n}, i ∈ {1, . . . ,m}
for k ∈ {1, . . . ,m + 1} do

select a point z(k) ∈ (x(k−1), x(k))
create the vector b(k) ∈ Rn having entries b(k)j = v j (z(k)), j ∈ {1, . . . , n}
compute an index set Sk ⊆ {1, . . . ,m} of size |Sk | = n so that the vector a(k) ∈ Rm supported on Sk

and satisfying a(k)Sk
= M−1

Sk
b(k) is a solution to ◃

minimize
a∈Rm

∥a∥1 subject to Ma = b(k)

end for
for i ∈ {1, . . . ,m} do

define a continuous function a♯
i on [−1, 1] by ◃

a♯
i (x) =

{∑n
j=1

[
M−1

Sk

]
i, j v j (x) if i ∈ Sk

0 if i /∈ Sk

}

, x ∈ (x(k−1), x(k)), k ∈ {1, . . . ,m + 1}

a♯
i (x

(ℓ)) =
{
1 if i = ℓ
0 if i ̸= ℓ

}
, ℓ ∈ {1, . . . ,m}

end for
return the optimal recovery map "♯ : y ∈ Rm ,→ ∑m

i=1 yi a
♯
i ∈ C[−1, 1] ◃

To confirm that Algorithm 1 acts as intended, three points need to be accounted for:
the existence and computability of an index set Sk with the required property, the
continuity of the functions a♯

1, . . . , a
♯
m , and the optimality of the recovery map "♯.

The last two points rely on results about Chebyshev spaces and optimal recovery,
which are covered in Sections 3 and 4. As for the first point, it can be explained right
now. Concerning existence, recall that an optimization program

minimize
a∈Rm

∥a∥1 subject to Ma = b (2)

always admits an n-sparse solution â ∈ Rm (this can be proved along the lines of
[13, Theorem 12.7] and [9, Theorem 6.1]), say supported on some S ⊆ {1, . . . ,m}
with |S| = n. The constraint Mâ = b then reads MSâS = b, i.e., âS = M−1

S b.
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Concerning computability, it can be realized by recasting (2) as a standard-form linear
program to be solved via the simplex algorithm. Precisely, introducing a slack variable
c = [a+; a−] ∈ R2m with nonnegative vectors a+, a− ∈ Rm satisfying a = a+ − a−

and |a| = a+ + a−, the ℓ1-minimization (2) is equivalent to

minimize
c∈R2m

2m∑

j=1

c j subject to
[
M

∣∣ − M
]
c = b and c ≥ 0.

Solving the latter with the simplex algorithm yields a solution ĉ = [̂a+; â−] which is
an extreme point of the feasibility polytope and as such (see, e.g., [9, Lemma 20.2])
is n-sparse. In turn, the solution â = â+ − â− to (2) is also n-sparse.

3 Reminders on Chebyshev spaces

Chebyshev subspaces are at the center of approximation theory: they are defined as
the subspaces from which best approximants always exist and are unique. Remark-
ably, in C(X ), they coincide with the subspaces for which Lagrange interpolation
is always possible and unique. Precisely, an n-dimensional subspace V of C(X )

is a Chebyshev space if and only if, for any distinct points ξ (1), . . . , ξ (n) ∈ X
and any values γ1, . . . , γn ∈ R, there exists a unique function v ∈ V such that
v(ξ (1)) = γ1, . . . , v(ξ

(n)) = γn . By considering the linear map v ∈ V ,→
[v(ξ (1)); . . . ; v(ξ (n))] ∈ Rn , this is easily seen to be equivalent to the invertibility
of the n × n matrix with entries v j (ξ

(i)), where (v1, . . . , vn) denotes a basis for V .
Fixing such a basis, the determinant of this matrix must be nonzero and, hence, must
be either always positive or always negative for all pointsets ! = (ξ (1), . . . , ξ (n))

satisfying ξ (1) < · · · < ξ (n). Protected against division by zero, one can now consider
the function L!,i ∈ V defined for x ∈ X by

L!,i (x)

∣∣∣∣∣∣∣

· · · v1(ξ (i−1)) v1(x) v1(ξ (i+1)) · · ·
...

...
...

· · · vn(ξ (i−1)) vn(x) vn(ξ (i+1)) · · ·

∣∣∣∣∣∣∣

/
∣∣∣∣∣∣∣

· · · v1(ξ (i−1)) v1(ξ
(i)) v1(ξ

(i+1)) · · ·
...

...
...

· · · vn(ξ (i−1)) vn(ξ
(i)) vn(ξ

(i+1)) · · ·

∣∣∣∣∣∣∣
.

It is called the i th fundamental Lagrange interpolator on!, by virtue of L!,i ('
( j)) =

δi, j for i, j ∈ {1, . . . , n}. Note that L!,i has no zeros besides ξ (1), . . . , ξ (i−1), ξ (i+1),

. . . , ξ (n), otherwise γ1 = · · · = γn = 0 could be interpolated on a set of n distinct
points by two different functions from V , namely by 0 and by L!,i . Note also that,
for a fixed x /∈ {ξ (1), . . . , ξ (n)}, the sequence (L!,i (x))ni=1 cannot keep a constant
sign when n ≥ 3: if x ∈ (ξ (i), ξ i+1) for some i ∈ {1, . . . , n − 1}, then L!,i (x)
and L!,i+1(x) are both positive, but L!,i−1(x) or L!,i+2(x)—whichever exists—is
negative, and if x < ξ (1), say, then L!,1(x) is positive, but L!,2(x) is negative.
In the multivariate situation, it is easy to realize that the matrix with entries v j (ξ

(i))

cannot be invertible for all choices of distinct points ξ (1), . . . , ξ (n). This is formalized
by Mairhuber–Curtis theorem: if d > 1 and X ⊆ Rd contains an interior point, then
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there is no Chebyshev subspace V of C(X ) with dimension n ≥ 2. Thus, one usually
considers Chebyshev spaces on X = [−1, 1] and X = T, with the prototypical
examples being spaces of algebraic polynomials and of trigonometric polynomials.
In these univariate situations, involving a simple notion of differentiation, Lagrange
interpolation can painlessly be generalized to Hermite interpolation, leading to the
introduction of extended Chebyshev spaces as spaces for which Hermite interpolation
is always possible and unique. On compact intervalsX = [a, b], extended Chebyshev
spaces even turn out to be extended complete Chebyshev spaces1. These spaces do
not need a formal definition here, as it suffices to say that they are characterized by
the existence of a basis (u0, . . . , un−1) of the form

u0(x) = w0(x),

u1(x) = w0(x)
∫ x

t
w1(x1)dx1,

...

un−1(x) = w0(x)
∫ x

t
w1(x1)

∫ x1

t
w2(x2) · · ·

∫ xn−2

t
wn−1(xn−1) dxn−1 · · · dx2dx1,

relative to positive weights w0 ∈ Cn−1[a, b], w1 ∈ Cn−2[a, b], . . . , wn−1 ∈ C[a, b]
and a point t ∈ [a, b]. Clearly, taking w0 = · · · = wn−1 = 1 generates the shifted
monomial basis with u j (x) = (x − t) j/ j !.

4 Reminders on optimal recovery

The question addressed in this note is an instance of the generic optimal recovery
problem, on which a brief rundown is laid out here. The following results, either
classical or due to [6] for the approximability model, can all be found in [9, Chapters
9 and 10]. In an abstract setting, an object f from a normed space F—not necessarily
a function space—is assumed to belong to a model set K ⊆ F and is observed via
y = ) f for some linear map ) : F → Rm , i.e., via yi = λi ( f ), i = 1, . . . ,m, for
some linear functionals λ1, . . . , λm ∈ F∗. The goal is to recover not necessarily f
itself, but Q( f ) for some linear map Q : F → Z , and to do so in an optimal way, so
as to minimize the worst-case error over K, defined as

wceK,Q(") := sup
f ∈K

∥∥Q( f ) − "() f )
∥∥
Z .

If the model setK is symmetric and convex and if the quantity of interest Q : F → R
is a linear functional, it is well known that the set of recovery maps " : Rm → R
minimizing wceK,Q(") contains a linear map "♯. This linearity result is a typical
statement inOptimalRecovery (see [14] for an in-depth discussion), but it is not always

1 This result can be found in [3, Theorem 5, p 97] with a different terminology. It has also been reproved
in a simpler way in [10, Appendix A.3].
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constructive. In case of the approximability set KV,ε = { f ∈ F : distF ( f ,V) ≤ ε}
relative to a linear subspace V of F and a parameter ε ≥ 0, such a linear optimal
recovery map is given as "♯ = ⟨a♯, ·⟩, where a♯ ∈ Rm is a solution to

minimize
a∈Rm

∥∥∥∥Q −
m∑

i=1

aiλi

∥∥∥∥
F∗

subject to
m∑

i=1

aiλi (v) = Q(v) for all v ∈ V. (3)

This result was proved in [6] as a consequence of theHahn–Banach extension theorem.
It can also be deduced from the above linearity result—which is a consequence of the
Hahn–Banach separation theorem—using the following argument already outlined
in [8]: since it is enough to minimize the worst-case error over KV,ε among linear
recovery maps "a = ⟨a, ·⟩, and since the worst-case error for linear maps "a is

wceKV,ε ,Q("a) = sup
f ∈C(X )

{∣∣∣∣Q( f ) −
m∑

i=1

aiλi ( f )
∣∣∣∣ : ∥ f − v∥C(X ) ≤ ε for some v ∈ V

}

= sup
f ∈C(X )
v∈V

{∣∣∣∣Q( f ) −
m∑

i=1

aiλi ( f )
∣∣∣∣ : ∥ f − v∥C(X ) ≤ ε

}

= sup
g∈C(X )
v∈V

{∣∣∣∣

(
Q(g) −

m∑

i=1

aiλi (g)
)
+

(
Q(v) −

m∑

i=1

aiλi (v)
)∣∣∣∣ : ∥g∥C(X ) ≤ ε

}

= sup
g∈C(X )

{∣∣∣∣Q(g) −
m∑

i=1

aiλi (g)
∣∣∣∣ : ∥g∥C(X ) ≤ ε

}
+ sup

v∈V

{∣∣∣∣Q(v) −
m∑

i=1

aiλi (v)
∣∣∣∣

}

=
∥∥∥∥Q −

m∑

i=1

aiλi

∥∥∥∥
F∗

× ε +
{
+∞ if Q(v) ̸= ∑m

i=1 aiλi (v) for some v ∈ V
0 if Q(v) = ∑m

i=1 aiλi (v) for all v ∈ V

}
,

(4)

the minimization of the latter among all a ∈ Rm indeed reduces to the program (3).

It is also worth pointing out that the minimal worst-case error—aka intrinsic error—
cannot exceed the so-called null error. Over the model set KV,ε, this means that
the minimal worst-case error for any linear quantity of interest Q : F → Z is
lower-bounded by the product of the approximability parameter ε and an indicator
µV,Q()) of the compatibility between the model (through V) and the observation
process (through )). Precisely, one has

min
":Rm→R

wceKV,ε ,Q(") ≥ µV,Q())×ε, where µV,Q()) := sup
h∈ker())\{0}

∥Q(h)∥Z
distC(X )(h,V)

, (5)

with equality occurring when Q : F → R is a linear functional. The indicator
µV,Q()) was introduced in the article [6], which provides references to its earlier
appearances in the case Q = Id, where it can be interpreted as the reciprocal of an
angle between V and ker()).
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In the framework of this note, where the space F is C(X ) and the observation func-
tionals λi are evaluations δx (i) at points x

(i), if Q = δx is the evaluation at a point
x /∈ {x (1), . . . , x (m)}, then one has ∥Q − ∑m

i=1 aiλi∥F∗ = 1+ ∥a∥1; hence, an opti-
mal recovery map over KV,ε takes the form "♯ = ⟨a♯(x), ·⟩, where a♯(x) ∈ Rm is a
solution to

minimize
a∈Rm

∥a∥1 subject to
m∑

i=1

aiv(x (i)) = v(x) for all v ∈ V. (6)

Here and in the rest of this section, the subspace V ⊆ C(X ) is arbitrary and the
following facts do not yet rely on it being a Chebyshev space. For instance, the above
optimization program always reduces to (2) with b = b(x) := [v1(x); . . . ; vn(x)],
simply by remarking that the constraint in (6) is met for all v ∈ V if and only if it is
met for all of the elements of a basis (v1, . . . , vn) for V . Furthermore, since Q = δx
is a linear functional, equality holds in (5), which, in conjunction with (4), leads to an
important identity already found in [6, Subsection 4.2], namely

µV,δx ()X ) = 1+ ∥a♯(x)∥1,

where )X : F → Rm denotes the linear map defined by )X ( f ) = [ f (x (1)); . . . ;
f (x (m))].
For the full recovery problem, i.e., for Q = Id, it was noticed in [6] that solving (6)
for all x ∈ X demonstrates the existence of an optimal recovery map "♯ : Rm →
C(X ) which is linear. Precisely, if a♯(x) ∈ Rm represents again a (not necessarily
unique) solution to (6), then the linear map "♯ defined by "♯(y)(x) = ∑m

i=1 yia
♯
i (x)

minimizes the worst-case error over KV,ε. Indeed, for any f ∈ KV,ε, with v ∈ V
chosen so that distC(X )( f ,V) = ∥ f − v∥C(X ), one has

∥ f − "♯()X f )∥C(X ) = max
x∈X

∣∣∣ f (x) −
m∑

i=1

f (x (i))a♯
i (x)

∣∣∣

= max
x∈X

∣∣∣( f − v)(x) −
m∑

i=1

( f − v)(x (i))a♯
i (x)

∣∣∣

≤ max
x∈X

∥∥∥δx −
m∑

i=1

a♯
i (x)δx (i)

∥∥∥
C(X )∗

× ∥ f − v∥C(X )

≤ max
x∈X

(
1+ ∥a♯(x)∥1

)
× ε

= max
x∈X

µV,δx ()X ) × ε.

Taking the supremum over f ∈ KV,ε while remarking maxx∈X µV,δx ()X ) =
µV,Id()X ), it follows with the help of (5) that

wceKV,ε,Id("
♯) ≤ µV,Id()X ) × ε ≤ min

":Rm→R
wceKV,ε,Id(").
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This establishes the optimality of "♯, provided "♯ maps in C(X ), i.e., provided x ∈
X ,→ a♯(x) ∈ Rm can bemade continuous by properly selecting theminimizers a♯(x)
for all x ∈ X . This was the intricate part of the argument in [6], carried out under the
proviso that the space V contains the constant functions. But evidently, solving (6)
for all x ∈ X does not constitute a practical algorithm, as opposed to Algorithm 1.
Still, the above considerations are the basis of the validation of Algorithm 1. Note in
passing that, for an arbitrary subspace V , it could be practical to solve (6) for all x in
a fine discretization of X . This would not answer to Question (Q) satisfactorily, but
could nonetheless provide a good ersatz.

5 Validation of the proposed algorithm

It is now time to validate Algorithm 1 by showing that it does indeed return an optimal
recovery map—a linear one, to boot—for the full recovery problem in C[−1, 1] over
KV,ε when V is a Chebyshev space of dimension n ≥ 3 and containing the constant
functions. Recall that proving this statement amounts to justifying the last two points
indicated by some◃ inAlgorithm1, i.e., the continuity ofa♯

1, . . . , a
♯
m and the optimality

of the recovery map "♯. This task will rely on a characterization, for any x ∈ [−1, 1],
of an n-sparse minimizer of the program (6), written here as

minimize
a∈Rm

∥a∥1 subject to Ma = b(x), (7)

recalling that the matrix M ∈ Rn×m and the vector b(x) ∈ Rn have entries

Mj,i = v j (x (i)) and b j (x) = v j (x).

The characterization uses (in one direction only) the following simple observation.

Lemma 1 Let V be an n-dimensional Chebyshev subspace of C[−1, 1]. For x /∈
{x (1), . . . , x (m)} and S ⊆ {1, . . . ,m} of size |S| = n, all the entries of M−1

S b(x) ∈ Rn

are nonzero.

Proof Let c ∈ Rn stand for M−1
S b(x). The identity MS c = b(x) reads∑

i∈S civ(x
(i)) = v(x) for all v ∈ V . For j ∈ S, specifying the latter when v is

the fundamental Lagrange interpolator L j with zeros at x (i), i ∈ S \ { j}, and equal to
one at x ( j) yields c j = L j (x), which is nonzero. ⊓⊔

The above-mentioned characterization of n-sparse solutions to (6)-(7), stated next,
is inspired by the simplex algorithm’s certificate of optimality.

Proposition 2 Let V be an n-dimensional Chebyshev subspace of C[−1, 1]. For x /∈
{x (1), . . . , x (m)} and S ⊆ {1, . . . ,m} of size |S| = n, the vector a(S)(x) ∈ Rm defined
by [a(S)(x)]S = M−1

S b(x) and [a(S)(x)]Sc = 0 is a solution to (7) if and only if

∥M⊤
Sc M

−⊤
S sgn(M−1

S b(x))∥∞ ≤ 1. (8)
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Proof For simplicity of notation, the dependence on x is removed throughout the proof,
so one writes a(S) instead of a(S)(x) and b instead of b(x).
Suppose on the one hand that (8) holds. Then, for any a ∈ Rm such that Ma = b, in
view of aS = M−1

S (b − MScaSc ), one has

∥a∥1 − ∥a(S)∥1 = ∥aSc∥1 + ∥aS∥1 − ∥M−1
S b∥1 = ∥aSc∥1 + ∥M−1

S (b − MScaSc )∥1 − ∥M−1
S b∥1

≥ ∥aSc∥1 + ⟨sgn(M−1
S b),M−1

S (b − MScaSc )⟩ − ⟨sgn(M−1
S b),M−1

S b⟩
= ∥aSc∥1 − ⟨sgn(M−1

S b),M−1
S MScaSc ⟩ = ∥aSc∥1 − ⟨M⊤

Sc M
−⊤
S (sgn(M−1

S b)), aSc ⟩
≥ ∥aSc∥1 − ∥M⊤

Sc M
−⊤
S (sgn(M−1

S b))∥∞∥aSc∥1 ≥ 0.

This means that ∥a∥1 ≥ ∥a(S)∥1 for any feasible vector a ∈ Rm in (7), i.e., that a(S)

is indeed a solution to (7).
Suppose on the other hand that (8) does not hold. One considers an index ℓ ∈ Sc such
that |(M⊤

Sc M
−⊤
S sgn(M−1

S b))ℓ| > 1. Then, for t ∈ R, one defines a vector a ∈ Rm

satisfying Ma = b via

aSc = teℓ and aS = M−1
S (b − tMSceℓ).

Since the entries ofM−1
S b are all nonzero by Lemma 1, one has sgn(aS) = sgn(M−1

S b)
when |t | is small enough, in which case

∥a∥1 = ∥aS∥1 + ∥aSc∥1 = ⟨sgn(aS), aS⟩ + |t | = ⟨sgn(M−1
S b),M−1

S (b − tMSc eℓ)⟩ + |t |
= ∥M−1

S b∥1 − t⟨M⊤
Sc M

−⊤
S sgn(M−1

S b), eℓ⟩ + |t | = ∥a(S)∥1 − t (M⊤
Sc M

−⊤
S sgn(M−1

S b))ℓ + |t |.

Thus, when t ̸= 0 is small enough in absolute value and chosen of the appropriate
sign, one obtains ∥a∥1 < ∥a(S)∥1, so that a(S) is not a solution to (7). ⊓⊔
All the ingredients are now in place to complete the justification of the two remaining
points, treated in reverse order of appearance.

Optimality For k ∈ {1, . . . ,m + 1}, the fact that the index set Sk ⊆ {1, . . . ,m}
of size |Sk | = n is the support of a minimizer of ∥a∥1 subject to Ma = b(z(k))
certifies, by Proposition 2, that ∥M⊤

Sck
M−⊤

Sk
sgn(M−1

Sk
b(z(k)))∥∞ ≤ 1. But according

to Lemma 1, as x moves through the subinterval (x (k−1), x (k)), none of the entries of
M−1

Sk
b(x) can vanish,meaning that sgn(M−1

Sk
b(x)) stays the same as sgn(M−1

Sk
b(z(k))),

hence implying that ∥M⊤
Sck
M−⊤

Sk
sgn(M−1

Sk
b(x))∥∞ ≤ 1 for any x ∈ (x (k−1), x (k)). By

Proposition 2 again, this ensures that the vector supported on Sk and equal toM−1
Sk

b(x)
there—this is precisely a♯(x) as defined in Algorithm 1—is a solution to (6)-(7) for
any x ∈ (x (k−1), x (k)) and any k ∈ {1, . . . ,m + 1}.
Moreover, one also notes that a♯(x (k))—defined as a♯(x (k)) = ek—is a solution to (6)-
(7) for x = x (k). Indeed, it meets the constraint in (6) and its ℓ1-norm is ∥ek∥1 = 1,
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while any a ∈ Rm meeting the constraint in (6), in particular with v = 1, obeys∑m
i=1 ai = 1, so its ℓ1-norm satisfies ∥a∥1 ≥ 1.

All in all, as outlined in Section 4, the fact that the vectors a♯(x) are solutions to
(6)-(7) for all x ∈ [−1, 1] guarantees that"♯(y) = ∑m

i=1 yia
♯
i defines a recovery map

that is optimal for the full approximation problem over KV,ε, provided contunuity of
a♯
1, . . . , a

♯
m can be established, which is done next. ⊓⊔

Continuity Since the vector a♯(x) ∈ Rm was defined for x ∈ (x (k−1), x (k)) by
[a♯(x)]Sck = 0 and [a♯(x)]Sk = M−1

Sk
b(x), the map x ,→ a♯(x) is readily continu-

ous on each subinterval (x (k−1), x (k)). To ensure overall continuity, one should check
continuity at x (1), . . . , x (m). Given k ∈ {1, . . . ,m}, one shall verify e.g. that a♯(x)
tends to a♯(x (k)) as x tends to x (k) while belonging to (x (k−1), x (k)).

From above, it is known that a♯(x (k)) = ek is a solution to (6)-(7) with x = x (k).
One claims that the vector a := limx↗x (k) a

♯(x) is also a solution to (6)-(7) with
x = x (k). Indeed, the equality Ma♯(x) = b(x) passes to the limit as x ↗ x (k) to give
Ma = b(x (k)), so that a ∈ Rm is feasible for (7). Moreover, for any a ∈ Rm satisfying
Ma = b(x (k)), let ã ∈ Rm be defined by ãSck = aSck and ãSk = aSk + M−1

Sk
(b(x) −

b(x (k))). From MSck
ãSck = MSck

aSck and MSk ãSk = MSkaSk + b(x) − b(x (k)), one
obtains Mã = MSck

ãSck +MSk ãSk = Ma+ b(x)− b(x (k)) = b(x). By the minimality
property of a♯(x) established before, one deduces that ∥̃a∥1 ≥ ∥a♯(x)∥1, and letting
x tend to x (k) yields ∥a∥1 ≥ ∥a∥1, showing that a is indeed a solution to (6)-(7) with
x = x (k).

Since the two minimizers ek and a must have the same ℓ1-norm, one has ∥a∥1 = 1.
But it also holds that

∑m
i=1 ai = 1 because a satisfies the constraint in (6), in particular

with v = 1. This implies that ai ≥ 0 for all i ∈ {1, . . . ,m}. Besides, given j ∈ Sk ,
the constraint in (6) now written when v is the fundamental Lagrange interpolator L j
with zeros at x (i), i ∈ Sk \ { j}, and equal to one at x ( j) yields a j = L j (x (k)). Thus, if
k /∈ Sk , the sequence (L j (x (k))) j∈Sk would keep a constant (positive) sign. As pointed
in Section 3, this is impossible under the assumption n ≥ 3. It has therefore been
established that k ∈ Sk—in other words, the index of the right endpoint (and of the
left one by a similar argument) of the kth subinterval belongs to the support associated
with this subinterval.

Finally, the desired conclusion a = ek follows from the fact that a and ek are now
known to both be supported on Sk and from the equality MSka = MSk ek inferred from
Ma = b(x (k)) = Mek . ⊓⊔

6 Concluding remarks

Now that the validity ofAlgorithm1 is fully justified, a fewcommentswill be beneficial
to put the result in perspective.

Global vs local optimality The recovery map "♯ produced by Algorithm 1 is globally
optimal, in the sense that it minimizes the global worst-case error (1). There is also

123

57   Page 10 of 14



Full recovery from point values...

the notion of local worst-case error, defined at a particular y ∈ Rm by

lwce(", y) = sup
f ∈K

)X f=y

∥ f − "(y)∥C(X ).

A locally optimal recovery map is one that assigns, to each y ∈ Rm , a minimizer over
g ∈ C(X ) of sup{∥ f − g∥C(X ), f ∈ Ky} where Ky := { f ∈ K : )X f = y}, i.e.,
a Chebyshev center of the set Ky . This note makes no claim about local optimality.
Note that a locally optimal recovery map may involve a costly computation at each
y ∈ Rm , while the cost of constructing the globally optimal recovery map "♯ can
be offloaded to an offline stage producing a♯

1, . . . , a
♯
m , after which the computation

of "♯(y) = ∑m
i=1 yia

♯
i is almost immediate. Note also that the recovery map "♯ is

actually independent of ε > 0 and that it can be—at least abstractly—constructed
knowing only the v j (x (i)) but without explicit expressions for the v j (x) themselves,
until one requires an evaluation of "♯(y) at some point x ∈ [−1, 1].

Data andmodel consistency The optimal recovery map "♯ put forward in this note
is data-consistent—using another jargon, it is interpolatory. Indeed, for any y ∈ Rm ,
one can see that "♯(y)(x (ℓ)) = yℓ for all ℓ ∈ {1, . . . ,m} from

( m∑

i=1

yia
♯
i

)
(x (ℓ)) =

m∑

i=1

yia
♯
i (x

(ℓ)) =
m∑

i=1

yiδi,ℓ = yℓ.

However, it is not model-consistent—in other words, "♯(y) does not always belong
to KV,ε. Indeed, since "♯(y) does not depend on ε, letting ε ↘ 0 in the inequality
distC(X )("

♯(y),V) ≤ ε would imply that "♯(y) ∈ V . This is not the case, but notice
that "♯(y) is nonetheless made of pieces from V .

Streaming data The cost of Algorithm 1 is concentrated mostly on the solutions to
aboutm linear programs,which can be prohibitive for largem. In the common situation
of observation points x (i) arriving sequentially together with the values yi , it is natural
towonderwhether theworkdone for the construction of anoptimal recoverymapbased
on x (1), . . . , x (m) can be leveraged to facilitate the construction based on x (1), . . . , x (m)

and an added x (m+1)—not belonging to (x (m), 1) in the following discussion. When
creating the new Sk—to fix the ideas, a support S associated with a subinterval I—a
simple idea is to provide the simplex algorithm with a ‘warm start’, i.e., a good initial
guess S̃. For instance, if I does not contain the added x (m+1) as an endpoint, then the
guessed S̃ can be chosen as the old S associated with I . But if I does contain x (m+1)

as an endpoint, e.g., I is the left part of an old subinterval J split by x (m+1), since S
should contain (the indices of) the left endpoint of J and of x (m+1), then the guessed S̃
can be a slight modification of the old S associated with J obtained by removing (the
index of) the right endpoint of J and replacing it by (the index of) x (m+1). Empirically,
the speed-up is modest and becomes more significant when the size n of the supports
gets closer to m.
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Ratio of norms The arguments underpinning Algorithm 1 allow one to compute the
exact value of the compatibity indicatorµV,Id()X ), and, as an interesting side product,
they transform into a practical numerical recipe to compute the exact value of the
maximal ratio of uniform and discrete norms in V , i.e., of

ρV,X := max
v∈V\{0}

∥v∥∞
maxi∈{1,...,m} |v(x (i))|

. (9)

When V = Pn is the space of algebraic polynomials of degree < n, this maximal
ratio has been well studied—in particular, for equispaced points, see [4, 15]—and
a computational method akin to Remez algorithm has been proposed in [1, Section
6]. The recipe uncovered here for a Chebyshev space V of dimension n ≥ 3 and
containing the constant functions amounts to solving the m + 1 linear programs from
Algorithm 1 to create the index sets S1, . . . , Sm+1. After that, it is summarized as

ρV,X = max
k∈{1,...,m+1}

max
x∈[x (k−1),x(k)]

∑

j∈Sk
sgn((M−1

Sk
b(z(k))) j )(M

−1
Sk

b(x)) j . (10)

In short, one needs to compute the maximal values of functions from V on m + 1
subintervals. The justification of (10) relies on the identity µV,Id()X ) = 1 + ρV,X
established in [6, Lemma 6.2] and on the following observation:

µV,Id()X ) = sup
h∈ker)X \{0}

∥h∥C[−1,1]
distC[−1,1](h,V)

= max
k∈{1,...,m+1}

max
x∈[x(k−1),x(k)]

sup
h∈ker)X \{0}

|h(x)|
distC[−1,1](h,V)

= max
k∈{1,...,m+1}

max
x∈[x(k−1),x(k)]

(
µV,δx ()X )

)
= max

k∈{1,...,m+1}
max

x∈[x(k−1),x(k)]

(
1+ ∥a♯(x)∥1

)

= 1+ max
k∈{1,...,m+1}

max
x∈[x(k−1),x(k)]

∑

j∈Sk
|(M−1

Sk
b(x)) j |

= 1+ max
k∈{1,...,m+1}

max
x∈[x(k−1),x(k)]

∑

j∈Sk
sgn((M−1

Sk
b(z(k))) j )(M−1

Sk
b(x)) j ,

where the last step made use of the fact that the signs of M−1
Sk

b(x) do not change
throughout the interval [x (k−1), x (k)]. Of course, the practicality of the recipe stemming
from (10) depends on the ability to compute the maxima of functions from V . This
task can be efficiently performed in Chebfun [7], an open-sourcematlab package for
numerical computations with functions. This feature, together with the easy handling
of piecewise functions, explains why Chebfunwas preferred for the implementation of
Algorithm 1 in the reproducible file accompanying this note (available on the author’s
webpage). Furthermore, ifV is a space of trigonometric or algebraic polynomials, then
the maximum on a subinterval of a function from V can be computed via semidefinite
programming, as explained in [11]; see Theorem 3.1 in particular.

Best choice of evaluation points Throughout this note, the points x(1), . . . , x (m) were
prescribed. If one could select them freely, one would naturally want to do so in a way
thatmakes theminimalworst-case error as small as possible. According to the previous
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considerations, this amounts to minimizing over all pointsets Xm of size m the ratio
ρV,Xm introduced in (9). This is bound to be a difficult problem, as it is unresolved
even for m = n and V = Pn . Indeed, it is not hard to see that ρPn ,Xn coincides with
the L∞-operator norm of the interpolation operator at Xn = {x (1), . . . , x (n)}, aka
the Lebesgue constant. Pointsets with nearly optimal Lebesgue constant are known
explicitly, but pointsetswith genuinely optimal Lebesgue constant are not, even though
they have been characterized a long time ago; see [2, 12].

Other observation functionals The ℓ1-minimizations at the heart of Algorithm 1
appear thanks to the presence of point evaluations. The situation becomes more com-
plicated if arbitrary observation functionals were involved. Nonetheless, if one had
the freedom to use any observation functionals, it would be natural to wonder about
the power of point evaluations: is the minimal worst-case error much smaller with
unrestricted functionals than with point evaluations only? No attempts were made to
answer this question in the context of this note, but some recent advances are worth
pointing out in a related context where the recovery performance is assessed via the
L2-norm rather than the uniform norm in (1); see, e.g., [5] and the references therein.
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