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1. Introduction

The question “Do linear problems have linear optimal algorithms?” was surveyed by [18]. He gave 
the commonly accepted answer “usually but not always”. This question, central to the subject of 
Optimal Recovery, is also one of the main concerns of the present article. We shall start by recalling 
the meaning of this cryptic question and by introducing our notation, already employed in [6], which 
is inspired by the field of Learning Theory. The concepts differ by names only from familiar concepts 
traditionally encountered in the field of Information-Based Complexity (IBC), see e.g. [17]. We try to 
draw parallels between the terminologies of these fields below.

Common to the two notational settings is the use of the letter f for the objects of interest, since 
in both cases they are primarily thought of as functions, although they could be seen as arbitrary 
elements from a prescribed normed space. Whereas we use the notation F for this normed space (and 
H when it is a Hilbert space), F typically stands for a strict subset of the said normed space in IBC. We 
too assume that our objects of interest live in a strict subset of F , but it is denoted by K and called 
model set. The premise that f ∈ K is referred to as a priori information, since it reflects some prior 
scientific knowledge about realistic objects of interest. In addition, we have at our disposal some a 
posteriori information in the form yi = λi( f ), i = 1, . . . , m, for some linear functionals λ1, . . . , λm ∈ F ∗ . 
Oftentimes, these linear functionals are point evaluations, giving rise, in IBC parlance, to the standard 
information y1 = f (x(1)), . . . , ym = f (x(m)). We call y ∈ Rm the observation vector and notice that it 
can be written as y = # f for some linear map # : F →Rm , referred to as observation map. From the 
available information, both a priori and a posteriori, the task is to recover (approximate, learn,...) the 
object f in full or maybe just to estimate a quantity of interest Q f , where Q : F → Z is a linear map 
from F into another normed space Z . Such a map Q is called the solution operator in IBC. Our task is 
realized by way of a recovery map $ :Rm → Z —we refrain from using the IBC term algorithm, since 
computational feasibility is not a requirement at this point. The performance of this recovery map is 
assessed by the (global) worst-case error defined as

ErrQ ,K(#,$) := sup
f ∈K

∥Q ( f ) − $(# f )∥Z .

We are interested in how small the latter can be, in other words in the intrinsic error—often labeled 
radius of information in IBC—defined as

Err∗Q ,K(#) := inf
$:Rm→Z

ErrQ ,K(#,$).

Moreover, our quest is concerned with optimal recovery maps, i.e., recovery maps $opt :Rm → Z that 
achieve the above infimum. With the terminology settled, the initial question may now be phrased 
as: “among all the possible optimal recovery maps, is there one which is linear?”. It is well known 
that the answer is affirmative in two prototypical situations: (i) when the quantity of interest Q is a 
linear functional and the model set K is symmetric and convex (this goes back to [22]) and (ii) when 
F is a Hilbert space and the model set is a centered hyperellipsoid. Another situation allowing for 
linear optimal recovery maps involves F = C(X ), although the existence arguments rarely turn into 
practical constructions, except in a handful of cases such as [7].

One contribution of the present article is to uncover yet another situation where optimality of 
linear recovery maps occurs, precisely when the model set is the intersection of two centered hy-
perellipsoids. We do actually construct the linear optimal recovery map: it is given by constrained 
regularization with parameters that are clearly determined. In fact, we determine the corresponding 
radius of information simultaneously: it is the optimal value of a semidefinite program. The main the-
oretical tool is Polyak’s S-procedure, which elucidates exactly when a quadratic inequality (with no 
linear terms) is a consequence of two quadratic inequalities (with no linear terms). This S-procedure 
is in general not valid with more quadratic inequalities, explaining why our result pertains to the 
intersection of two centered hyperellipsoids only. This foremost result is established in Section 2
and some implications are derived in subsequent sections. Specifically, Section 3 lists a few simple 
consequences. One of them is the solution, in the so-called global Optimal Recovery setting, of the 
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two-space problem, where the model set is based on approximability capabilities of two linear sub-
spaces. The other consequences concern two situations for which the observations are inaccurate: 
first, when inaccuracies are bounded in ℓ2, we retrieve—and extend to infinite dimensions—some ear-
lier results of ours; second, when some observations are exact while an ℓ2-bound is available for 
the inaccurate ones, we uncover an optimal recovery map built by constrained regularization, hence 
linear. Section 4 presents a more intricate consequence of Section 2, namely the scenario of inaccu-
rate observations bounded in ℓ1. There, the result is not as pleasing as hoped for, but it nonetheless 
reveals, somewhat surprisingly, that linear recovery maps can be optimal in this scenario, too. The 
caveat is that the result holds conditionally on a certain sufficient condition. This condition is close to 
tautological, but it has the advantage of being computationally verifiable. Our numerical experiments 
(outlined in the reproducible files accompanying this article) indicate that the condition is likely to 
hold in case of small ℓ1-inaccuracies.

2. Solution for the two-hyperellipsoid-intersection model set

From now on, the space F where the objects of interest live will be a Hilbert space (of possibly 
infinite dimension), hence it shall be designated by H . There are other Hilbert spaces involved as 
ranges of linear maps, such as the quantity of interest Q . We will use the notation ∥ · ∥ and ⟨·, ·⟩
indistinctly for all the associated Hilbert norms and inner products. Thus, the model set considered in 
this section—an intersection of two centered hyperellipsoids—takes the form

K = { f ∈ H : ∥R f ∥ ≤ 1 and ∥S f ∥ ≤ 1} (1)

for some Hilbert-valued bounded linear maps R and S defined on H . We assume throughout that

ker(R) ∩ ker(S) ∩ ker(#) = {0}, (2)

for otherwise the worst-case error of any recovery map $, i.e.,

ErrQ ,K(#,$) := sup
∥R f ∥≤1
∥S f ∥≤1

∥Q f − $(# f )∥ (3)

would be infinite for Q = Id, say. We also assume that # : H →Rm is surjective, for otherwise some 
observations would be redundant. This allows us to define the pseudo-inverse of # as

#† = #∗(##∗)−1 : Rm → H .

2.1. Main result

The result stated below not only provides the value of the radius of information, i.e., of the minimal 
worst-case error over all recovery maps, but it also identifies an optimal recovery map. The latter 
involves the constrained regularization maps parametrized by a, b ≥ 0 and defined as

$a,b : y ∈Rm +→
[

argmin
f ∈H

a ∥R f ∥2 + b ∥S f ∥2 s.to # f = y
]

∈ H, a,b > 0, (4)

$a,0 : y ∈Rm +→
[

argmin
f ∈H

∥S f ∥2 s.to # f = y and R f = 0
]

∈ ker(R), a > 0, (5)

$0,b : y ∈Rm +→
[

argmin
f ∈H

∥R f ∥2 s.to # f = y and S f = 0
]

∈ ker(S), b > 0. (6)

Although not obvious at first sight, the maps $a,b are linear. For instance, when a, b > 0, they indeed 
take the form, with N := ker# denoting the null space of # and RN , SN standing for the restrictions 
of R, S to N ,

$a,b = #† −
[
aR∗

N RN + bS∗
N SN

]−1(
aR∗

N R + bS∗
N S

)
#†, (7)
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where the invertibility of aR∗
N RN + bS∗

N SN follows from (2).1 It is also worth pointing out that

Id − $a,b# =
[
aR∗

N RN + bS∗
N SN

]−1(
aR∗

N R + bS∗
N S

)
. (8)

The justification of both (7) and (8) can be found in the appendix. There, we also establish the con-
vergence of $a,b(y) to $a,0(y) as b → 0 and of $a,b(y) to $0,b(y) as a → 0, the convergence being 
understood in the weak sense when dim(H) = ∞.

Theorem 1. For the two-hyperellipsoid-intersection model set (1), the square of the radius of information of 
the observation map # : H →Rm for the estimation of Q is given by the optimal value of the program

minimize
a,b≥0

a + b s.to a∥Rh∥2 + b∥Sh∥2 ≥ ∥Q h∥2 for all h ∈ ker#. (9)

Further, if a♯, b♯ ≥ 0 are minimizers of this program, then Q ◦ $a♯,b♯
is an optimal recovery map. In short,

ErrQ ,K(#, Q ◦ $a♯,b♯
)2 = inf

$:Rm→Z
ErrQ ,K(#,$)2 = a♯ + b♯. (10)

The proof of this result is postponed for a short while. Before that, we address the question of 
whether the optimization program (9) can be solved in practice. The answer is yes, at least when 
H is finite-dimensional. Indeed, if (h1, . . . , hn) denotes a basis for N = ker#, representing h ∈ N as 
h = ∑n

i=1 xihi for x ∈ Rn allows us to reformulate the constraint a∥Rh∥2 + b∥Sh∥2 ≥ ∥Q h∥2 for all 
h ∈ N as a⟨R′x, x⟩ + b⟨S′x, x⟩ ≥ ⟨Q′x, x⟩ for all x ∈Rn , where R′, S′, Q′ ∈Rn×n are symmetric matrices 
with entries

R′
i, j = ⟨R(hi), R(h j)⟩, S′

i, j = ⟨S(hi), S(h j)⟩, Q′
i, j = ⟨Q (hi), Q (h j)⟩. (11)

Thus, the program (9) is equivalent to the semidefinite program2

minimize
a,b≥0

a + b s.to aR′ + bS′ ≽ Q′.

Such a semidefinite program can be solved efficiently via a variety of solvers, e.g. the ones embedded 
in the matlab-based modeling system CVX [10], although they (currently) all struggles when n is in 
the thousands.

2.2. Justification

The proof of Theorem 1 is broken down into three small results which we find useful to isolate 
as separate lemmas. The first lemma estimates the radius of information from below and the second 
lemma is a key step for the third lemma, which estimates the radius of information from above using 
constrained regularization maps. Here is the first lemma.

Lemma 2. The squared worst-case error of any recovery map $ satisfies, with N := ker#,

ErrQ ,K(#,$)2 ≥ LB := sup
h∈K∩N

∥Q h∥2 (12)

and this lower bound LB can be reformulated as

LB = inf
a,b≥0

a + b s.to a∥Rh∥2 + b∥Sh∥2 ≥ ∥Q h∥2 for all h ∈ N .

1 In the infinite-dimensional setting, this assumption should in fact be strengthened to the existence of δ > 0 such that 
max{∥Rh∥, ∥Sh∥} ≥ δ∥h∥ for all h ∈ ker #, see e.g. [21, Theorem 12.12].

2 Here and in other places, we use the standard notation M ≽ 0 to signify that a matrix M is positive semidefinite. The same 
notation is used for operators.
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Proof. We include the argument for the first part, even though it is very classical. It starts by con-
sidering any h ∈ K ∩ N and by noticing that both +h and −h belong to K ∩ N before observing 
that

ErrQ ,K(#,$)2 = sup
f ∈K

∥Q f − $(# f )∥2 ≥ max
±

∥Q (±h) − $(0)∥2

≥ 1
2
∥Q h − $(0)∥2 + 1

2
∥ − Q h − $(0)∥2 = ∥Q h∥2 + ∥$(0)∥2

≥ ∥Q h∥2.

Finally, it finishes by taking the supremum over h ∈ K ∩ N to derive that ErrQ ,K(#, $)2 ≥ LB.
The argument for the second part begins by reformulating the lower bound as

LB = inf
γ

γ s.to ∥Q h∥2 ≤ γ whenever h ∈ N satisfies ∥Rh∥2 ≤ 1 and ∥Sh∥2 ≤ 1.

By the version of Polyak’s S-procedure recalled in the appendix and its extension to the inifinite-
dimensional case, the latter constraint is equivalent to3

there exist a,b ≥ 0 such that ∥Q h∥2 − γ ≤ a
(
∥Rh∥2 − 1

)
+ b

(
∥Sh∥2 − 1

)
for all h ∈ N .

The latter decouples as

there exist a,b ≥ 0 such that γ ≥ a + b and a∥Rh∥2 + b∥Sh∥2 ≥ ∥Q h∥2 for all h ∈ N .

Therefore, the lower bound takes the form

LB = inf
γ

a,b≥0

γ s.to γ ≥ a + b and a∥Rh∥2 + b∥Sh∥2 ≥ ∥Q h∥2 for all h ∈ N .

Since the minimal value that γ can achieve under these constraints is a + b, this infimum indeed 
reduces to the form of the lower bound announced in the statement of lemma. !

The second lemma is reminiscent of a result already obtained (with n = 2) in [8, Lemma 13] for 
Q = Id and in [9, Lemma 3] for an arbitrary linear quantity of interest Q , but the new proof presented 
here is more transparent, as it avoids arguments involving semidefinite matrices. As such, it is valid 
in infinite-dimensional Hilbert spaces, too.

Lemma 3. Let N be a linear subspace of H and let R1, . . . , Rn be Hilbert-valued linear maps defined on H. 
Suppose that c1, . . . , cn > 0 satisfy

∥Q h∥2 ≤
n∑

i=1

ci∥Rih∥2 for all h ∈ N . (13)

Then, setting T = ∑n
i=1 ci R∗

i,N Ri : H → N and assuming that TN = ∑n
i=1 ci R∗

i,N Ri,N : N → N is invert-
ible, one has

∥∥∥Q T −1
N

( n∑

i=1

ci R∗
i,N Ri f i

)∥∥∥
2
≤

n∑

i=1

ci
∥∥Ri f i

∥∥2
for all f1, . . . , fn ∈ H .

3 To verify the applicability of the S-procedure, note that h = 0 satisfies the strict feasibility condition (h ∈ N , ∥Rh∥2 < 1, 
∥Sh∥2 < 1) and that any a, b > 0 satisfy the positive definiteness condition (aR∗

N RN + bS∗
N SN ≻ 0).
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Proof. To ease notation, let h := ∑n
i=1 ci R∗

i,N Ri f i . Note that h belongs to N , and so does T −1
N h. In 

view of (13), it is enough to prove that

n∑

i=1

ci∥Ri T
−1
N h∥2 ≤

n∑

i=1

ci
∥∥Ri f i

∥∥2
. (14)

The left-hand side of (14), which we denote by LHS for short, is manipulated as follows:

LHS =
n∑

i=1

ci∥Ri,N T −1
N h∥2 =

n∑

i=1

ci

〈
R∗

i,N Ri,N T −1
N h, T −1

N h
〉
=

〈 n∑

i=1

ci R∗
i,N Ri,N T −1

N h, T −1
N h

〉

=
〈

TN T −1
N h, T −1

N h
〉
=

〈
h, T −1

N h
〉
=

〈 n∑

i=1

ci R∗
i,N Ri f i, T −1

N h
〉
=

n∑

i=1

ci

〈
R∗

i,N Ri f i, T −1
N h

〉

=
n∑

i=1

ci

〈
Ri f i, Ri T

−1
N h

〉
.

From the general inequality ⟨u, v⟩ ≤ (∥u∥2 + ∥v∥2)/2, we derive that

LHS ≤
n∑

i=1

ci

2

(∥∥∥Ri f i

∥∥∥
2
+

∥∥∥Ri T
−1
N h

∥∥∥
2
)

= 1
2

n∑

i=1

ci

∥∥∥Ri f i

∥∥∥
2
+ 1

2
LHS,

which is just a rearrangement of the desired inequality (14). !

The third and final lemma gives an upper bound for the squared worst-case error of the con-
strained regularization map $a,b .

Lemma 4. Suppose that a, b > 0 satisfy

∥Q h∥2 ≤ a∥Rh∥2 + b∥Sh∥2 for all h ∈ ker#.

Then one has

ErrQ ,K(#, Q ◦ $a,b)
2 ≤ a + b.

Proof. The squared worst-case error of the recovery map Q ◦ $a,b is

ErrQ ,K(#, Q ◦ $a,b)
2 = sup

f ∈K
∥Q f − Q ◦ $a,b(# f )∥2 = sup

∥R f ∥≤1
∥S f ∥≤1

∥Q (Id − $a,b#) f ∥2

= sup
∥R f ∥≤1
∥S f ∥≤1

∥∥∥Q
[
aR∗

N RN + bS∗
N SN

]−1(
aR∗

N R f + bS∗
N S f

)∥∥∥
2
,

where we have made use of (8) with N = ker#. Then, invoking Lemma 3 for n = 2, R1 = R , R2 = S , 
and f1 = f2 = f , we obtain

ErrQ ,K(#, Q ◦ $a,b)
2 ≤ sup

∥R f ∥≤1
∥S f ∥≤1

(
a∥R f ∥2 + b∥S f ∥2) ≤ a + b,

which is the announced result. !

With this series of lemmas at hand, we are now ready to justify the main result of this section.
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Proof of Theorem 1. Let a♯, b♯ ≥ 0 be minimizers of the optimization program (9). On the one hand, 
Lemma 2 guarantees that

inf
$:Rm→Z

ErrQ ,K(#,$)2 ≥ a♯ + b♯. (15)

On the other hand, by the feasibility of a♯ and b♯ , we have ∥Q h∥2 ≤ a♯∥Rh∥2 + b♯∥Sh∥2 for all h ∈
ker#. To deal with the possibility of a♯ or b♯ being zero, we consider, for any ε > 0, a(ε)

♯ := a♯ + ε > 0

and b(ε)
♯ := b♯ + ε > 0 and notice that ∥Q h∥2 ≤ a(ε)

♯ ∥Rh∥2 + b(ε)
♯ ∥Sh∥2 for all h ∈ ker#. Lemma 4

then guarantees that ErrQ ,K(#, Q ◦$a(ε)
♯ ,b(ε)

♯
)2 ≤ a(ε)

♯ + b(ε)
♯ . It is now easy to see that taking (possibly 

weak) limits as ε → 0 yields

ErrQ ,K(#, Q ◦ $a♯,b♯
)2 ≤ a♯ + b♯. (16)

The inequalities (15) and (16) together fully justify (10) and thus complete the proof. !

2.3. Side results

In this section, we put forward an interpretation of the radius of information that differs from the 
minimal value of the program (9) and we shed light on the extremizer appearing in the expression of 
the lower bound from (12)—which is now known to coincide with the squared radius of information. 
Although these results are not used later, we include them here because they appear interesting 
for their own sake. Both results call upon the largest eigenvalue, denoted by λmax, of self-adjoint 
operators.

Proposition 5. For the two-hyperellipsoid-intersection model set (1), the radius of information of the obser-
vation map # : H →Rm for the estimation of Q is also given as the optimal value λ♯ of the program

minimize
τ∈[0,1]

λmax
(

Q N [(1 − τ )R∗
N RN + τ S∗

N SN ]−1 Q ∗
N

)
,

where N := ker#. Moreover, if τ♯ ∈ (0, 1) represents a minimizer of the above program, then a♯ := (1 −τ♯)λ♯

and b♯ := τ♯λ♯ are minimizers of (9).

Proof. The foremost observation consists in reformulating the constraint in (9) as

λmax
(

Q N [aR∗
N RN + bS∗

N SN ]−1 Q ∗
N

)
≤ 1. (17)

Indeed, the said constraint can be equivalently expressed in the form

aR∗
N RN + bS∗

N SN ≽ Q ∗
N Q N

⇐⇒ Id ≽ [aR∗
N RN + bS∗

N SN ]−1/2 Q ∗
N Q N [aR∗

N RN + bS∗
N SN ]−1/2

⇐⇒ 1 ≥ λmax
(
[aR∗

N RN + bS∗
N SN ]−1/2 Q ∗

N Q N [aR∗
N RN + bS∗

N SN ]−1/2)

⇐⇒ 1 ≥ λmax
(

Q N [aR∗
N RN + bS∗

N SN ]−1 Q ∗
N

)
.

Thus, the above-defined a♯ = (1 − τ♯)λ♯ and b♯ = τ♯λ♯ are feasible for (9), since then

λmax
(

Q N [a♯R∗
N RN + b♯ S∗

N SN ]−1 Q ∗
N

)

= 1
λ♯

λmax
(

Q N [(1 − τ♯)R∗
N RN + τ♯ S∗

N SN ]−1 Q ∗
N

)
= 1. (18)

It now remains to show that a + b ≥ a♯ + b♯ whenever a, b > 0 are feasible for (9). To see this, with 
τ = b/(a + b) and 1 − τ = a/(a + b), notice that

7
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λ♯ ≤ λmax
(

Q N [(1 − τ )R∗
N RN + τ S∗

N SN ]−1 Q ∗
N

)

= (a + b)λmax
(

Q N [aR∗
N RN + bS∗

N SN ]−1 Q ∗
N

)

≤ (a + b),

where (17) was used for the last inequality. The desired conclusion follows from λ♯ = a♯ + b♯ . !

Proposition 6. Under the setting of Proposition 5, recall that

sup
h∈N

{
∥Q h∥2 : ∥Rh∥2 ≤ 1,∥Sh∥2 ≤ 1

}
= inf

a,b≥0

{
a + b : aR∗

N RN + bS∗
N SN ≽ Q ∗

N Q N
}
. (19)

If h♯ ∈ N and a♯, b♯ > 0 are extremizers of the above two programs, then

(i) ∥Rh♯∥ = 1 and ∥Sh♯∥ = 1;
(ii)

(
a♯R∗

N RN + b♯ S∗
N SN

)
h♯ = Q ∗

N Q N h♯ .

Proof. Setting TN := a♯R∗
N RN + b♯ S∗

N SN , we already know from (18) that λmax
(

Q N T −1
N Q ∗

N
)
= 1. 

In view of ∥Rh♯∥ ≤ 1, ∥Sh♯∥ ≤ 1, ∥Q h♯∥2 = a♯ + b♯ , and writing g♯ := T 1/2
N h♯ , we observe that

∥g♯∥2 = ⟨TN h♯,h♯⟩ = ⟨(a♯R∗
N RN + b♯ S∗

N SN )h♯,h♯⟩ = a♯∥Rh♯∥2 + b♯∥Sh♯∥2

≤
(1)

a♯ + b♯ = ∥Q h♯∥2 = ∥Q N T −1/2
N g♯∥2 = ⟨(T −1/2

N Q ∗
N Q N T −1/2

N )g♯, g♯⟩

≤
(2)

λmax
(
T −1/2

N Q ∗
N Q N T −1/2

N
)
∥g♯∥2 = λmax

(
Q N T −1

N Q ∗
N

)
∥g♯∥2 = ∥g♯∥2.

Since the left-hand and right-hand sides are identical, equality must hold throughout. In particu-
lar, equality in (1) implies (i). As for equality in (2), it imposes that g♯ is an eigenvector associated 
with the eigenvalue λmax

(
T −1/2

N Q ∗
N Q N T −1/2

N
)
= 1, meaning that (T −1/2

N Q ∗
N Q N T −1/2

N )g♯ = g♯ , i.e., 
Q ∗

N Q N h♯ = TN h♯ , which is (ii). !

Remark. The result of Proposition 6 is, in a sense, a characterization of the equality between the 
supremum and the infimum in (19). Indeed, the argument can easily be turned around: given mini-
mizers a♯, b♯ > 0, if we can find h♯ ∈ N satisfying (i) and (ii), then the supremum equals the infimum 
(it is always “at most” by the trivial part of the S-procedure and it is “at least” thanks to the ex-
istence of h♯). Such an approach was used, in essence, to determine explicit solutions of specific 
differential-equation-inspired Optimal Recovery problems featuring two quadratics constraints but 
without invoking Polyak’s S-procedure, see [13,23]. The same circle of ideas extends to the intersec-
tion of n > 2 hyperellipsoids. Indeed, leaving the details to the reader, we state the loose equivalence 
between the equality

sup
h∈N

{
∥Q h∥2 : ∥Rih∥2 ≤ 1, i = 1, . . . ,n

}
= inf

c1,...,cn≥0

{
n∑

i=1

ci : ci R∗
i,N Ri,N ≽ Q ∗

N Q N

}

and, with c♯
1, . . . , c

♯
n > 0 denoting minimizers of the latter, the existence of h♯ ∈ N such that

∥Rih♯∥ = 1, i = 1, . . . ,n, and

(
n∑

i=1

c♯
i R∗

i,N Ri,N

)

h♯ = Q ∗
N Q N h♯.

This gives us a practical way of deciding whether Theorem 1 extends to n > 2 hyperellipsoids: after 
solving a semidefinite program, construct a candidate h♯ by solving an eigenvalue problem and test if 
the ∥Rih♯∥ are all equal. As observed numerically, this occurs in some situations, but certainly not in 
all, in particular not when the Ri are orthogonal projectors (as in the multispace problem described 

8
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below). The moral is that this article deals with the intersection of n = 2 hyperellipsoids not only 
because the strategy based on Polyak’s S-procedure does not apply to n > 2, but also because the 
natural extension is not valid for n > 2.

3. Three easy consequences

The two-hyperellisoid-intersection framework has direct implications for optimal recovery from 
(partially) inaccurate data, to be discussed later, and even more directly for optimal recovery from 
accurate data under the two-space approximability model, to be elucidated right now.

3.1. The two-space problem

A model set based on approximability by a linear subspace V of F with parameter ε > 0, namely

K = { f ∈ F : dist( f , V ) ≤ ε},
gained traction after the work of [2]. When F is a Hilbert space, these authors completely solved 
the full recovery (Q = Id) problem even in the local setting—the present article deals solely with the 
global setting. They also raised the question of the multispace problem, a particular case of which 
being the two-space problem where

K = { f ∈ H : dist( f , V ) ≤ ε and dist( f , W ) ≤ η}. (20)

For the multispace problem, they proposed two iterative algorithms which, in the limit, produce 
model- and data-consistent objects. As such, these algorithms yield worst-case errors that are near-
optimal by a factor at most two.

The two-space problem—in fact, even the multispace problem—in an arbitrary normed space F
was solved in [5] but only when the quantity of interest Q is a linear functional. For more general 
linear maps Q , but when F is a Hilbert space, the two-space problem is a special case of our two-
hyperellipsoid-intersection problem. Indeed, the model set (20) is an instantiation of the model set 
(1) with R and S being scaled versions of the orthogonal projectors onto the orthogonal complements 
of V and W , precisely R = (1/ε)P V ⊥ and S = (1/η)P W ⊥ . Thus, Theorem 1 applies directly and we 
arrive, through the change of optimization variables a = cε2 and b = dη2, at the result stated below 
for completeness.

Theorem 7. For the two-space model set (20), the square of the radius of information of the observation map 
# : H →Rm for the estimation of Q is given by the optimal value of the program

minimize
c,d≥0

cε2 + dη2 s.to c∥P V ⊥h∥2 + d∥P W ⊥h∥2 ≥ ∥Q h∥2 for all h ∈ ker#. (21)

Further, if c♯, d♯ ≥ 0 are minimizers of this program and if $c♯,d♯
is the map defined for y ∈Rm by

$c♯,d♯
(y) =

[
argmin

f ∈H
c♯∥P V ⊥ f ∥2 + d♯∥P W ⊥ f ∥2 s.to # f = y

]

(and interpreted via continuity in case c♯ = 0 or d♯ = 0), then the linear map Q ◦ $c♯,d♯
provides an optimal 

recovery map.

3.2. Recovery from ℓ2-inaccurate data

Suppose now that the observations made on the objects of interest f ∈ K are not accurate any-
more, but rather of the form y = # f + e with an error vector e ∈Rm belonging to some uncertainty 
set E . We then need to adjust the notion of worst-case error of a recovery map $ :Rm → Z and thus 
define the quantity

9
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ErrQ ,K,E (#,$) := sup
f ∈K
e∈E

∥Q f − $(# f + e)∥. (22)

As already remarked in [16], this setting can formally be reduced to the setting of accurate data. When 
Q is a linear functional, the existence of a linear optimal recovery map follows for data perturbation 
not only bounded in ℓ2, see e.g. [12,19,4].

In this subsection, both the model set and uncertainty set are hyperellipsoids, i.e.,

K = { f ∈ H : ∥R f ∥ ≤ ε}, (23)

E = {e ∈Rm : ∥Se∥ ≤ η}. (24)

In this situation, the problem at hand reduces to the two-hyperellipsoid-intersection problem with 
accurate data. Indeed, considering the compound variable ̃ f = ( f , e) belonging to the extended Hilbert 
space H̃ := H ×Rm , let us introduce linear maps #̃, Q̃ , R̃ , and S̃ defined on H̃ by

#̃(( f , e)) = # f + e, Q̃ (( f , e)) = Q f , R̃(( f , e)) = (1/ε)R f , S̃(( f , e)) = (1/η)Se. (25)

The worst-case error (22) of the recovery map $ is then expressed as

ErrQ ,K,E (#,$) = sup
∥R̃ f̃ ∥≤1
∥̃S f̃ ∥≤1

∥Q̃ f̃ − $(#̃ f̃ )∥,

i.e., exactly as in (3). Exploiting this analogy, Theorem 1 yields the result stated below. Note that it 
is not entirely new. Indeed, the fact that regularization produces a (linear) optimal recovery map was 
already recognized in [14], see also [15]. However, a recipe for selecting the regularization parameters 
was not given there, except on a specific example. Such a recipe was uncovered in [8] with Q = Id, 
R being an orthogonal projector, and S = Id, and later in [9] with arbitrary Q and R but still with 
S = Id. The extension to S ≠ Id is minor—more pertinent is the fact that the result is now valid in 
infinite dimensions (although solving (26) in practice would then be a challenge).

Theorem 8. For the hyperellipsoidal model and uncertainty sets (23) and (24), the square of the radius of 
information of the observation map # : H → Rm for the estimation of Q is given by the optimal value of the 
program

minimize
c,d≥0

cε2 + dη2 s.to c∥R f ∥2 + d∥S# f ∥2 ≥ ∥Q f ∥2 for all f ∈ H . (26)

Further, if c♯, d♯ ≥ 0 are minimizers of this program and if $c♯,d♯
is the map defined for y ∈Rm by

$c♯,d♯
(y) =

[
argmin

f ∈H
c♯∥R f ∥2 + d♯∥S(y − # f )∥2

]
(27)

(and interpreted via continuity in case c♯ = 0 or d♯ = 0), then the linear map Q ◦ $c♯,d♯
provides an optimal 

recovery map.

Proof. With the change of optimization variables a = cε2 and b = dη2, the program (9) for #̃, Q̃ , R̃ , 
and S̃ becomes

minimize
c,d≥0

cε2 + dη2

s.to c∥R f ∥2 + d∥Se∥2 ≥ ∥Q f ∥2 when f ∈ H, e ∈ Rm satisfy # f + e = 0.

Eliminating e ∈Rm from the above yields the program (26). As for the constrained regularization map 
$a♯,b♯

from (4), it is to be replaced by

y ∈Rm +→
[

argmin
f ∈H,e∈Rm

c♯∥R f ∥2 + d♯∥Se∥2 s.to # f + e = y
]
.

Again, eliminating e ∈Rm from the above leads to (27). !

10
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3.3. Recovery for mixed accurate and ℓ2-inaccurate data

In some situations, parts of the observations on the objects of interest f ∈ K can be made ac-
curately, while other parts are subject to errors. Such a situation occurs e.g. when learning the 
parameters of partial differential equations (using kernel methods, say) from example solutions that 
can be perfectly evaluated at points on the boundary of the domain but imprecisely at points inside 
the domain, see e.g. [1,11]. To cover this possibility, we can decompose the error vector e ∈ Rm as 
e = (e′, e′′) ∈Rm′ ×Rm′′

, with e′ = 0 and ∥e′′∥ ≤ η. More generally, we shall assume that S ′e = 0 and 
∥S ′′e∥ ≤ η for some Hilbert-valued linear maps S ′, S ′′ defined on Rm . We shall therefore consider 
model and uncertainty sets of the form

K = {h ∈ H : ∥R f ∥ ≤ ε}, (28)

E = {e ∈ ker(S ′) : ∥S ′′e∥ ≤ η}. (29)

This time working with the different extended space H̃ = H × ker(S ′), we still introduce linear maps 
#̃, Q̃ , R̃ , and S̃ defined on the compound variable f̃ = ( f , e) ∈ H̃ almost as in (25), but with one 
slight modification for S̃ , namely

#̃(( f , e)) = # f +e, Q̃ (( f , e)) = Q f , R̃(( f , e)) = (1/ε)R f , S̃(( f , e)) = (1/η)S ′′e. (30)

The worst-case error (22) of a recovery map for this mixed error scenario is still identifiable with the 
worst-case error (3) for the two-hyperellipsoid-intersection scenario, so we can once more leverage 
Theorem 1 to derive the following result.

Theorem 9. For the model set (28) and the mixed-uncertainty set (29), the square of the radius of information 
of the observation map # : H →Rm for the estimation of Q is given by the optimal value of the program

minimize
c,d≥0

cε2 + dη2 s.to c∥R f ∥2 + d∥S ′′# f ∥2 ≥ ∥Q f ∥2 for all f ∈ ker(S ′#). (31)

Further, if c♯, d♯ ≥ 0 are minimizers of this program and if $c♯,d♯
is the map defined for y ∈Rm by

$c♯,d♯
(y) =

[
argmin

f ∈H
c♯∥R f ∥2 + d♯∥S ′′(y − # f )∥2 s.to S ′# f = S ′ y

]
(32)

(interpreted via continuity in case c♯ = 0 or d♯ = 0), then the linear map Q ◦ $c♯,d♯
provides an optimal 

recovery map.

Proof. With the change of optimization variables a = cε2 and b = dη2, the program (9) for #̃, Q̃ , R̃ , 
and S̃ becomes

minimize
c,d≥0

cε2 + dη2

s.to c∥R f ∥2 + d∥S ′′e∥2 ≥ ∥Q f ∥2 when f ∈ H, e ∈ ker(S ′) satisfy # f + e = 0.

The form of the program (31) is obtained by eliminating e ∈ Rm from the above via e = −# f and 
noticing that e ∈ ker(S ′) means that S ′# f = 0, i.e., f ∈ ker(S ′#). The constrained regularization map 
is now to be replaced by

y ∈Rm +→
[

argmin
f ∈H,e∈ker(S ′)

c♯∥R f ∥2 + d♯∥S ′′e∥2 s.to # f + e = y
]
.

The form of the program (32) is obtained by eliminating e ∈ Rm from the above via e = y − # f and 
noticing that e ∈ ker(S ′) means that S ′# f = S ′ y. !

11
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It is worth making this result more explicit for our motivating example where e ∈ Rm is decom-
posed as e = (e′, e′′) ∈ Rm′ × Rm′′

and we have S ′e = e′ , S ′′e = e′′ . The observation process on the 
object of interest f ∈ H satisfying ∥R f ∥ ≤ ε is itself decomposed as y′ = #′ f and y′′ = #′′ f + e′′ , 
where #′ : H → Rm′

, #′′ : H →Rm′′
are linear maps and where ∥e′′∥ ≤ η. In this case, a linear opti-

mal recovery map is obtained, maybe somewhat intuitively, via the constrained regularization

minimize
f ∈H

c♯∥R f ∥2 + d♯∥y′′ − #′′ f ∥2 s.to #′ f = y′.

Our more significant contribution consists in uncovering a principled way of selecting the parameters 
c♯, d♯ ≥ 0, namely as solutions to the program

minimize
c,d≥0

cε2 + dη2 s.to c∥R f ∥2 + d∥#′′ f ∥2 ≥ ∥Q f ∥2 for all f ∈ ker(#′).

4. One intricate consequence: recovery from ℓ1-inaccurate data

In this final section, we contemplate yet another scenario of optimal recovery from inaccurate 
data which borrows from the results of Section 2. The situation is more delicate than in Section 3, 
though, because the observation error is not modeled through an ℓ2-bound but an ℓ1-bound. Thus, 
the objects of interest f from a Hilbert space H are acquired via inaccurate linear observations of the 
form y = # f + e ∈Rm , where the model set for f and the uncertainty set for e are given relative to 
some parameter ε > 0 and η > 0 by

K = { f ∈ H : ∥R f ∥ ≤ ε}, (33)

E = {e ∈Rm : ∥e∥1 ≤ η}. (34)

Towards the goal of optimally estimating a Hilbert-valued linear quantity of interest Q : H → Z , the 
worst-case error of a recovery map $ :Rm → Z is defined as

ErrQ ,K,E (#,$) = sup
∥R f ∥≤ε
∥e∥1≤η

∥Q f − $(# f + e)∥. (35)

We will reveal that, conditionally on a checkable sufficient condition, the radius of information can 
still be computed and a constrained-regularization-based optimal recovery map—turning out, perhaps 
surprisingly, to be linear—can still be constructed efficiently. The sufficient condition is not vacuous: 
numerically, it even appears to hold whenever η is small enough. Unfortunately, we were not able to 
establish this fact theoretically.

4.1. Main result

The result presented below involves constrained regularization maps $( j)
c,d defined, for j = 1, . . . , m

and for c, d > 0, by

$
( j)
c,d : y ∈Rm +→

[
argmin

f ∈H
c∥R f ∥2 + d∥y − # f ∥2 s.to λi( f ) = yi for i ≠ j

]
∈ H, (36)

with the usual interpretation when c = 0 or d = 0. These constrained regularization maps are linear. 
Indeed, as a consequence of Lemma 16 in the appendix, they are given by

$
( j)
c,d = #† −

[
cR∗

N j
RN j + d#∗

N j
#N j

]−1
(cR∗

N j
R#†), N j =

⋂

i≠ j

ker(λi).

12
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For each j = 1, . . . , m, fixing from now on an element u j ∈ H such that4 #u j = e j (e.g. u j = #†e j), 
we compute

lb′
j := min

c,d≥0
cε2 + dη2

s.to c∥R(h − θu j)∥2 + dθ2 ≥ ∥Q (h − θu j)∥2 for all h ∈ ker# and θ ∈ R (37)

and we let c j, d j ≥ 0 denote extremizers of this optimization program. In addition, we consider (and 
we shall compute some of) the quantities Mi, j defined for i, j = 1, . . . , m by

Mi, j := min
c,d≥0

cε2 + dη2

s.to c∥R(h − θui)∥2 + dθ2 ≥ ∥Q (h − θui) − Q $
( j)
c j ,d j

#h∥2 for all h ∈ H and θ ∈R.

The main result of this section can now be stated as follows.

Theorem 10. Aiming at estimating a Hilbert-valued linear map Q : H → Z from the observation map # :
H→Rm under the hyperellipsoid model set (33) and the ℓ1-uncertainty set (34), assume that

Mi,k ≤ Mk,k for all i = 1, . . . ,m, where k := argmax
j=1,...,m

lb′
j. (38)

Then the square of the radius of information is equal to lb′
k and the linear map Q ◦ $

(k)
ck,dk

:Rm → Z provides 
an optimal recovery map.

The proof of this result is given in the next subsection. Before getting there, we reiterate that the 
sufficient condition (38) seems to occur whenever η is small enough, as supported by the numerical 
experiments presented in the reproducible files accompanying this article.

4.2. Justification

Much like the proof of Theorem 1, the proof of Theorem 10 is divided into three separate lemmas: 
one which establishes lower bounds for the radius of information, one which indicates that each lower 
bound is achieved by an associated constrained regularization map, and one that establishes a key 
property of such constrained regularization maps. Finally, these three ingredients will be put together 
while incorporating the sufficient condition (38). Throughout the argument, it will be convenient 
to work with the linear maps ,, Q (1), . . . , Q (m) , R(1), . . . , R(m) , and S defined for g = (h, θ) in the 
extended Hilbert space H ×R via

,(g) = #h, Q ( j)(g) = Q (h − θu j), R( j)(g) = (1/ε)R(h − θu j), S(g) = (1/η)θ . (39)

Let us now state the first of our series of three lemmas.

Lemma 11. The squared global worst-case error of any recovery map $ satisfies

ErrQ ,K,E (#,$)2 ≥ max
j=1,...,m

lb j($) ≥ max
j=1,...,m

lb′
j,

where the lower bounds are expressed as

4 In this section, the notation e j does not represent the jth entry of the error vector, but the jth element of the canonical 
basis for Rm .

13



S. Foucart and C. Liao Journal of Complexity 83 (2024) 101841

lb j($) = sup
∥R f ∥≤ε
|θ |≤η

∥Q f − $(# f + θe j)∥2 (40)

= sup
∥R( j) g∥≤1
∥Sg∥≤1

∥Q ( j)g − $(,g)∥2, (41)

lb′
j = sup

∥R( j) g∥≤1
∥Sg∥≤1
g∈ker ,

∥Q ( j)g∥2 (42)

= inf
a,b≥0

a + b s.to a∥R( j)g∥2 + b∥Sg∥2 ≥ ∥Q ( j)g∥2 for all g ∈ ker,. (43)

Proof. For j = 1, . . . , m, noticing in (35) that the supremum over all e ∈ Rm satisfying ∥e∥1 ≤ η is 
larger than or equal to the supremum over all e = θe j with |θ | ≤ η leads to the lower bound on 
ErrQ ,K,E (#, $)2 expressed in (40). To arrive at (41), we make the change of variable h = f + θu j , so 
that

lb j($) = sup
∥R(h−θui)∥≤ε

|θ |≤η

∥Q (h − θui) − $(#h)∥2,

and (41) follows by setting g = (h, θ) ∈ H × R and taking the expressions (39) for ,, Q ( j) , R( j) , 
and S into account. At this point, it is apparent that lb j($) coincides with the worst-case error of 
$ for the estimation of Q ( j) g from ,g under the two-hyperellipsoid-intersection model assumption 
∥R( j) g∥ ≤ 1 and ∥Sg∥ ≤ 1. Thus, the further lower bound (42) and its reformulation (43) follow from 
an application of Lemma 2. !

The lemma below, although not used explicitly later, gives us an idea of the coveted optimal recov-
ery map by looking at the case of equality in lb j($) ≥ lb′

j . For the latter, note that the expression (43)
is seen to coincide with the expression (37) by making the change of optimization variables a = cε2, 
b = dη2.

Lemma 12. For each j = 1, . . . , m, if $( j)
c j ,d j

is the constrained regularization map defined in (36) and its 
parameters c j, d j ≥ 0 are extremizers of the expression (37) for lb′

j , then

lb j(Q ◦ $
( j)
c j ,d j

) = lb′
j.

Proof. According to the results of Section 2, we know that equality in lb j($) ≥ lb′
j occurs for $♭ =

Q ( j) ◦ $ j,a j ,b j , where a j, b j > 0 are extremizers of the program

minimize
a,b≥0

a + b s.to a∥R( j) g∥2 + b∥Sg∥2 ≥ ∥Q ( j)g∥2 for all g ∈ ker,

and where the recovery map $ j,a j ,b j :Rm → H ×R is defined, for y ∈Rm , by

$ j,a j ,b j (y) =
[

argmin
g∈H×R

a j∥R( j)g∥2 + b j∥Sg∥2 s.to ,g = y
]
.

It now remains to verify that $♭ agrees with Q ◦ $
( j)
c j ,d j

. First, according to the expressions (39) for 
,, Q ( j) , R( j) , and S , and in view of the relations a = cε2 and b = dη2, it is easily seen that a j = c jε2

and b j = d jη2. Then, writing $ j,a j ,b j (y) = (h♭, θ♭) with h♭ ∈ H and θ♭ ∈R, we see that

(h♭, θ♭) =
[

argmin
(h,θ)∈H×R

c j∥R(h − θu j)∥2 + d jθ
2 s.to #h = y

]
,

14
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and consequently, making the change f = h − θu j , we deduce that

(h♭ − θ♭u j, θ♭) =
[

argmin
( f ,θ)∈H×R

c j∥R f ∥2 + d jθ
2 s.to # f + θe j = y

]
.

Since the constraint # f + θe j = y decomposes as λ j( f ) + θ = y j and λi( f ) = yi for i ̸= j, we obtain, 
after eliminating θ ,

h♭ − θ♭u j =
[

argmin
f ∈H

c j∥R f ∥2 + d j(y j − λ j( f ))2 s.to λi( f ) = yi for i ≠ j
]

= $
( j)
c j ,d j

(y),

where that last equality is simply the definition of $( j)
c j ,d j

. The remaining justification is settled by 

remarking that $♭(y) = Q ( j)($ j,a j ,b j (y)) = Q ( j)((h♭, θ♭)) = Q (h♭ − θ♭u j) = Q ($
( j)
c j ,d j

(y)). !

The third lemma is a step towards the determination of the worst-case error of the constrained 
regularization map $( j)

c j ,d j
.

Lemma 13. For each j = 1, . . . , m, one has

sup
∥R f ∥≤ε
|θ |≤η

∥Q f − Q $
( j)
c j ,d j

(# f + θe j)∥2 = lb′
j.

Proof. Setting g = ( f + θu j, θ) ∈ H ×R, the quantity under consideration becomes

sup
∥R( j) g∥≤1
∥Sg∥≤1

∥Q ( j)g − Q $
( j)
c j ,d j

(,g)∥2 = sup
∥R( j) g∥≤1
∥Sg∥≤1

∥Q ( j)g − Q ( j)$ j,a j ,b j (,g)∥2,

where we have borrowed from the previous proof the observation that Q ◦ $
( j)
c j ,d j

= Q ( j) ◦ $ j,a j ,b j

with a j = c jε2 and b j = d jη2. Thus, our quantity appears to be the worst-case error of Q ( j) ◦ $ j,a j ,b j

for the estimation of Q ( j) g from ,g given that ∥R( j) g∥ ≤ 1 and ∥Sg∥ ≤ 1. We know from the results 
of Section 2 that the latter is equal to a j + b j = c jε2 + d jη2, i.e., to lb′

j , as announced. !

Having these three lemmas at our disposal, we now turn to the justification of the main result of 
this section.

Proof of Theorem 10. According to Lemma 11, there holds

inf
$:Rm→Z

ErrQ ,K,E (#,$)2 ≥ lb′
k,

where we recall that the index k is obtained as the maximizer of lb′
j over all j = 1, . . . , m. In order to 

prove our result, we have to show that this infimum is actually achieved for the linear recovery map 
Q ◦ $

(k)
ck,dk

. To this end, we notice that the linearity of Q ◦ $
(k)
ck,dk

guarantees that

ErrQ ,K,E (#, Q ◦ $
(k)
ck,dk

)2 = sup
∥R f ∥≤ε
∥e∥1≤η

∥Q f − Q $
(k)
ck,dk

(# f + e)∥2

= max
i=1,...,m

sup
∥R f ∥≤ε
|θ |≤η

∥Q f − Q $
(k)
ck,dk

(# f + θei)∥2

= max
i=1,...,m

sup
∥R(h−θui)∥≤ε

|θ |≤η

∥Q (h − θui) − Q $
(k)
ck,dk

#h∥2.
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It has become familiar, relying on Polyak’s S-procedure, to transform the latter supremum into

inf
c,d≥0

cε2 + dη2

s.to c∥R(h − θui)∥2 + dθ2 ≥ ∥Q (h − θui) − Q $
(k)
ck,dk

#h∥2 for all h ∈ H and θ ∈R,

which we recognize as the quantity Mi,k . Now, calling upon the sufficient condition (38), we derive 
that

ErrQ ,K,E (#, Q ◦ $
(k)
ck,dk

)2 = max
i=1,...,m

Mi,k = Mk,k = lb′
k,

where the last step was due to Lemma 13. This equality completes the proof. !

4.3. Side result

When the sufficient condition (38) fails, it is not anymore guaranteed that the linear map Q ◦$
(k)
ck,dk

provides an optimal recovery map. Regardless, we can always solve a semidefinite program to obtain 
a linear recovery map with minimal worst-case error, according to the result stated below with the 
notation introduced in (39).

Proposition 14. The squared worst-case error of a linear recovery maps $lin : Rm → Z can be computed as 
the optimal value of a semidefinite program, namely as

ErrQ ,K,E (#,$lin)2 = min
γ ∈R

a1,b1,...,am,bm≥0

γ s.to
[

Id Q (i) − $lin,

(Q (i) − $lin,)∗ ai R(i)∗R(i) + bi S∗S

]
≽ 0

and ai + bi ≤ γ for all i = 1, . . . ,m. (44)

This quantity can further be minimized over all linear maps $lin : Rm → Z , yielding a linear recovery map 
with smallest worst-case error.

Proof. For a linear recovery map $lin :Rm → Z , we have

ErrQ ,K,E (#,$lin)2 = max
i=1,...,m

sup
∥R f ∥≤ε
|θ |≤η

∥Q f − $lin(# f + θei)∥2 (45)

= inf
γ ∈R

γ s.to sup
∥R f ∥≤ε
|θ |≤η

∥Q f − $lin(# f + θei)∥2 ≤ γ for all i = 1, . . . ,m.

Note that the above i-dependent suprema can also be expressed as

sup
∥R(h−θui)∥≤ε

|θ |≤η

∥Q (h − θui) − $lin#h∥2 = sup
∥R(i) g∥≤1
∥Sg∥≤1

∥Q (i)g − $lin,g∥2

= inf
ai ,bi≥0

ai + bi s.to ai∥R(i)g∥2 + bi∥Sg∥2 ≥ ∥Q (i)g − $lin,g∥2 for all g ∈ H ×R

= inf
ai ,bi≥0

ai + bi s.to ai R(i)∗R(i) + bi S∗ S ≽ (Q (i) − $lin,)∗(Q (i) − $lin,).

Therefore, the i-dependent constraint in (45) is equivalent to the existence of ai, bi ≥ 0 such that 
ai + bi ≤ γ and ai R(i)∗R(i) + bi S∗ S ≽ (Q (i) − $lin,)∗(Q (i) − $lin,). As such, we arrive at

16
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ErrQ ,K,E (#,$lin)2 = inf
γ ∈R

a1,b1,...,am,bm≥0

γ

s.to ai R(i)∗R(i) + bi S∗ S ≽ (Q (i) − $lin,)∗(Q (i) − $lin,)

and ai + bi ≤ γ for all i = 1, . . . ,m.

Using Schur complements, the above i-dependent semidefinite constraints can each be rephrased as
[

Id Q (i) − $lin,

(Q (i) − $lin,)∗ ai R(i)∗R(i) + bi S∗ S

]
≽ 0,

leading to ErrQ ,K,E (#, $lin)2 being expressed as in (44). We finally note that the linear dependence 
on $lin of the constraints in (44) allows us to further view the minimization of ErrQ ,K,E (#, $lin)2

over all linear maps $lin as a semidefinite program. !

We should remark that, even when η is small and the sufficient condition (38) holds, the linear 
recovery map with smallest worst-case error obtained by semidefinite programming may differ from 
the optimal recovery map Q ◦ $

(k)
ck,dk

, illustrating the nonuniqueness of optimal recovery maps. More-
over, when η is not small, our numerical experiments (available from the reproducible files) suggest 
that Q ◦ $

(k)
ck,dk

may not be optimal among linear recovery maps anymore.

Appendix

In this appendix, we provide justifications for a few facts not fully explained in the main text.

Polyak’s S-procedure Given quadratic functions q0, q1, . . . , qn , the statement q0(x) ≤ 0 whenever 
q1(x) ≤ 0, . . . , qn(x) ≤ 0 holds if there exists a1, . . . , an ≥ 0 such that q0 ≤ a1q1 + · · ·anqn . The fol-
lowing result, paraphrased from [20, Theorem 4.1] establishes that this sufficient condition is also 
necessary when n = 2 and the qi ’s contain no linear terms.

Theorem 15. Suppose that N ≥ 3 and that quadratic functions q0, q1, q2 on RN take the form qi(x) =
⟨Ai x, x⟩ + αi for symmetric matrices A0, A1, A2 ∈RN×N and scalars α0, α1, α2 ∈R. Then

[q0(x) ≤ 0 whenever q1(x) ≤ 0 and q2(x) ≤ 0] ⇐⇒ [there exist a1,a2 ≥ 0 : q0 ≤ a1q1 +a2q2],
provided q1(̃x) < 0 and q2(̃x) < 0 for some ̃x ∈RN (strict feasibility) and b1 A1 + b2 A2 ≻ 0 for some b1, b2 ∈
R (positive definiteness).

As established in [3, Proposition 5.2], such a result remains valid when RN is replaced by an 
arbitrary Hilbert space H—even of infinite dimension—and the Ai ’s are self-adjoint bounded linear 
operators on H . This generalized version is the one called upon in the main text.

Constrained regularization The goal here is to justify the identities (7) and (8), which are conse-
quences of the general observation below.

Lemma 16. Let A : H → H ′ and B : H → H ′′ be two bounded linear maps between Hilbert spaces. Assume 
that there exists δ > 0 such that ∥Az∥ ≥ δ∥z∥ for all z ∈ B := ker(B), so that A∗

B AB : B → B is invertible, 
where AB : B → H ′ denotes the restriction of A to B. Given a ∈ H ′ and b ∈ H ′′ , the solution x♯ ∈ H to

minimize
x∈H

∥Ax − a∥2 s.to Bx = b

can be expressed, for any x such that Bx = b, as

x♯ = x −
[

A∗
B AB

]−1
A∗

B(Ax − a).

17
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Proof. Writing the optimization variable x ∈ H as x = x − z with z ∈ B and the minimizer x♯ as 
x♯ = x − z♯ with z♯ ∈ B, we see that z♯ is solution to

minimize
z∈B

∥Ax − a − Az∥2.

This solution is characterized by the orthogonality condition ⟨Ax−a − Az♯, Az⟩ = 0 for all z ∈ B, which 
is equivalent to A∗

B(Ax − a − Az♯) = 0, or to A∗
B ABz♯ = A∗

B(Ax − a). Left-multiplying by 
[

A∗
B AB

]−1 to 
obtain z♯ and substituting into x♯ = x − z♯ yields the announced result. !

It follows as a consequence that, if R1, . . . , Rn are Hilbert-valued bounded linear maps defined 
on H such that there exists δ > 0 with max{∥R1z∥, . . . , ∥Rnz∥} ≥ δ∥z∥ for all z ∈ N := ker(#)5 and if 
c1, . . . , cn > 0, then, for any y ∈Rm ,

$c1,...,cn (y) :=
[

argmin
x∈H

n∑

i=1

ci∥Rix∥2 s.to #x = y
]

(46)

= #† y −
[ n∑

i=1

ci R∗
i,N Ri,N

]−1( n∑

i=1

ci R∗
i,N Ri

)
#† y.

To arrive at this identity, which reduces to (7) when n = 2, it suffices to apply Lemma 16 with

A =

⎡

⎢⎣

√
c1 R1
...√

cn Rn

⎤

⎥⎦ , a = 0, B = #, b = y, x = #† y.

Furthermore, if y = #x for some x ∈ H , taking x = x instead of x = #† y leads, after rearrangement, to

x − $c1,...,cn#x =
[ n∑

i=1

ci R∗
i,N Ri,N

]−1( n∑

i=1

ci R∗
i,N Ri

)
x.

The latter reduces to (8) when n = 2.
Finally, we want to justify the statement made in Section 2 that $a,b(y) converges weakly to 

$a,0(y) as b → 0 for any fixed y ∈ Rm . We shall do so under the working assumption that there 
exists δ > 0 such that max{∥Rz∥, ∥Sz∥} ≥ δ∥z∥ for all z ∈ N = ker(#).6 Supposing without loss of 
generality that a = 1, we thus want to establish that

xb := argmin
x∈H

[
∥Rx∥2 + b∥Sx∥2 s.to #x = y

]

⇀
b→0

x0 := argmin
x∈H

[
∥Sx∥2 s.to #x = y, Rx = 0

]
.

If this was not the case, there would exist v ∈ H , ε > 0, and a sequence (bk)k≥1 decreasing to 
zero such that |⟨xbk − x0, v⟩| ≥ ε for each k ≥ 1. Now, from the optimality property of xbk , we have 
∥Rxbk ∥2 + bk∥Sxbk ∥2 ≤ ∥Rx0∥2 + bk∥Sx0∥2, which yields, in view of Rx0 = 0,

∥Rxbk∥2 ≤ bk∥Sx0∥2 and ∥Sxbk ∥2 ≤ ∥Sx0∥2.

Thanks to our working assumption, it follows that the sequence (xbk − x0)k≥1 of elements in N is 
bounded, and then so is the sequence (xbk )k≥1. As such, it possesses a subsequence weakly converging 
to some x̃ ∈ H , say. We still write (xbk )k≥1 for this subsequence and we note that |⟨̃x − x0, v⟩| ≥ ε. 

5 This assumption simply reduces to ker(R1) ∩ . . . ∩ ker(Rn) ∩ ker(#) = {0} when H is finite dimensional.
6 This assumption reduces to ker(R) ∩ ker(S) ∩ ker(#) = {0} when H is finite dimensional.
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Next, in view of #xk = y for all k ≥ 1, we derive that #̃x = y from xbk ⇀ x̃. From there, we also obtain 
Rxbk ⇀ Rx̃ and Sxbk ⇀ S̃x, and in turn ∥Rx̃∥ ≤ lim inf ∥Rxbk ∥ = 0 and ∥ S̃x∥ ≤ lim inf∥Sxbk ∥ = ∥Sx0∥. 
These facts imply that ̃x is also a minimizer for the program defining x0, so that ̃x = x0 by uniqueness 
of the minimizer. This is of course incompatible with |⟨̃x − x0, v⟩| ≥ ε and provides the required 
contradiction.
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