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1. Introduction

The question “Do linear problems have linear optimal algorithms?” was surveyed by [18]. He gave
the commonly accepted answer “usually but not always”. This question, central to the subject of
Optimal Recovery, is also one of the main concerns of the present article. We shall start by recalling
the meaning of this cryptic question and by introducing our notation, already employed in [6], which
is inspired by the field of Learning Theory. The concepts differ by names only from familiar concepts
traditionally encountered in the field of Information-Based Complexity (IBC), see e.g. [17]. We try to
draw parallels between the terminologies of these fields below.

Common to the two notational settings is the use of the letter f for the objects of interest, since
in both cases they are primarily thought of as functions, although they could be seen as arbitrary
elements from a prescribed normed space. Whereas we use the notation F for this normed space (and
H when it is a Hilbert space), F typically stands for a strict subset of the said normed space in IBC. We
too assume that our objects of interest live in a strict subset of F, but it is denoted by K and called
model set. The premise that f € K is referred to as a priori information, since it reflects some prior
scientific knowledge about realistic objects of interest. In addition, we have at our disposal some a
posteriori information in the form y; = A;(f), i=1,...,m, for some linear functionals A1, ..., Ay € F*.
Oftentimes, these linear functionals are point evaluations, giving rise, in IBC parlance, to the standard
information y; = f(x(), ..., ym = f(x"™). We call y € R™ the observation vector and notice that it
can be written as y = A f for some linear map A : F — R™, referred to as observation map. From the
available information, both a priori and a posteriori, the task is to recover (approximate, learn,...) the
object f in full or maybe just to estimate a quantity of interest Q f, where Q : F — Z is a linear map
from F into another normed space Z. Such a map Q is called the solution operator in IBC. Our task is
realized by way of a recovery map A : R™ — Z—we refrain from using the IBC term algorithm, since
computational feasibility is not a requirement at this point. The performance of this recovery map is
assessed by the (global) worst-case error defined as

Errq (A, A) = ;ullg 1Q(f) —AADIz.

We are interested in how small the latter can be, in other words in the intrinsic error—often labeled
radius of information in IBC—defined as

Erry (A):= inf Err A, A).
Q’K( ) ARM™—Z Q.x( )

Moreover, our quest is concerned with optimal recovery maps, i.e., recovery maps A%t : R™ — 7 that
achieve the above infimum. With the terminology settled, the initial question may now be phrased
as: “among all the possible optimal recovery maps, is there one which is linear?”. It is well known
that the answer is affirmative in two prototypical situations: (i) when the quantity of interest Q is a
linear functional and the model set X is symmetric and convex (this goes back to [22]) and (ii) when
F is a Hilbert space and the model set is a centered hyperellipsoid. Another situation allowing for
linear optimal recovery maps involves F = C(X), although the existence arguments rarely turn into
practical constructions, except in a handful of cases such as [7].

One contribution of the present article is to uncover yet another situation where optimality of
linear recovery maps occurs, precisely when the model set is the intersection of two centered hy-
perellipsoids. We do actually construct the linear optimal recovery map: it is given by constrained
regularization with parameters that are clearly determined. In fact, we determine the corresponding
radius of information simultaneously: it is the optimal value of a semidefinite program. The main the-
oretical tool is Polyak’s S-procedure, which elucidates exactly when a quadratic inequality (with no
linear terms) is a consequence of two quadratic inequalities (with no linear terms). This S-procedure
is in general not valid with more quadratic inequalities, explaining why our result pertains to the
intersection of two centered hyperellipsoids only. This foremost result is established in Section 2
and some implications are derived in subsequent sections. Specifically, Section 3 lists a few simple
consequences. One of them is the solution, in the so-called global Optimal Recovery setting, of the
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two-space problem, where the model set is based on approximability capabilities of two linear sub-
spaces. The other consequences concern two situations for which the observations are inaccurate:
first, when inaccuracies are bounded in ¢;, we retrieve—and extend to infinite dimensions—some ear-
lier results of ours; second, when some observations are exact while an ¢;-bound is available for
the inaccurate ones, we uncover an optimal recovery map built by constrained regularization, hence
linear. Section 4 presents a more intricate consequence of Section 2, namely the scenario of inaccu-
rate observations bounded in ¢1. There, the result is not as pleasing as hoped for, but it nonetheless
reveals, somewhat surprisingly, that linear recovery maps can be optimal in this scenario, too. The
caveat is that the result holds conditionally on a certain sufficient condition. This condition is close to
tautological, but it has the advantage of being computationally verifiable. Our numerical experiments
(outlined in the reproducible files accompanying this article) indicate that the condition is likely to
hold in case of small ¢1-inaccuracies.

2. Solution for the two-hyperellipsoid-intersection model set

From now on, the space F where the objects of interest live will be a Hilbert space (of possibly
infinite dimension), hence it shall be designated by H. There are other Hilbert spaces involved as
ranges of linear maps, such as the quantity of interest Q. We will use the notation | - || and (., )
indistinctly for all the associated Hilbert norms and inner products. Thus, the model set considered in
this section—an intersection of two centered hyperellipsoids—takes the form

K={feH:|Rfl <1and|Sfll <1} (1)

for some Hilbert-valued bounded linear maps R and S defined on H. We assume throughout that

ker(R) Nker(S) Nker(A) = {0}, (2)

for otherwise the worst-case error of any recovery map A, i.e.,

Errg (A, A) = HRSfUHpl Qf — AN (3)
Isfli<1

would be infinite for Q =1d, say. We also assume that A : H - R™ is surjective, for otherwise some
observations would be redundant. This allows us to define the pseudo-inverse of A as

AT=A*(AA")T:R™ > H.
2.1. Main result

The result stated below not only provides the value of the radius of information, i.e., of the minimal
worst-case error over all recovery maps, but it also identifies an optimal recovery map. The latter
involves the constrained regularization maps parametrized by a, b > 0 and defined as

Agp:y €RM > [argmin allRFI?+b|SfI?> stoAf= y] €H, a,b>0, (4)
feH

Ago:yeR™ > [argmin ISfII> stoAf=yandRf = O] € ker(R), a>0, (5)
feH

Aop:yER™ > [argmin ||Rf||2 stoAf=yand Sf = 0] € ker(S), b > 0. (6)
feH

Although not obvious at first sight, the maps A, are linear. For instance, when a, b > 0, they indeed
take the form, with A/ := ker A denoting the null space of A and Rs, S standing for the restrictions
of R,S to NV,

Agp = At = [aR% Ry + DS Sar] ' (@R R +bS%S) AT, 7)

3
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where the invertibility of aR}\ R +bS},S s follows from (2)." It is also worth pointing out that

Id — AgpA = [aRi Ry + S Sac] ™ (aR% R +bS%S). 8)

The justification of both (7) and (8) can be found in the appendix. There, we also establish the con-
vergence of Ay p(y) to Ago(y) as b — 0 and of Ay p(y) to Agp(y) as a— 0, the convergence being
understood in the weak sense when dim(H) = oo.

Theorem 1. For the two-hyperellipsoid-intersection model set (1), the square of the radius of information of
the observation map A : H — R™ for the estimation of Q is given by the optimal value of the program

minli]moize a+b s.to a||Rh||2 +b||5h||2 > ||Qh||2 forallh € ker A. (9)
a,b>

Further, if az, by > 0 are minimizers of this program, then Q o Aq, p, is an optimal recovery map. In short,

2 ; 2
Errq (A, Q 0 Ag, p,)" = A:]léI"]TiZEer’K(A’ A)* =az +b;. (10)

The proof of this result is postponed for a short while. Before that, we address the question of
whether the optimization program (9) can be solved in practice. The answer is yes, at least when
H is finite-dimensional. Indeed, if (h1,...,h,) denotes a basis for N = ker A, representing h ¢ N as
h =31, xh; for xe R" allows us to reformulate the constraint a||Rh|? + b||Sh||> > ||Qh|? for all
heN as a(R'x,x) +b(S'x,x) > (Q'x, x) for all xc R", where R’,S’,Q" ¢ R™" are symmetric matrices
with entries

R'i.j = (R(hi), R(hj)), S'i.j = (S(hy), S(hj)), Qi j=(Q ), Q(h)). (11)

Thus, the program (9) is equivalent to the semidefinite program?

minimize a+b  sto aR +bS >Q.
a,b>0
Such a semidefinite program can be solved efficiently via a variety of solvers, e.g. the ones embedded
in the MATLAB-based modeling system CVX [10], although they (currently) all struggles when n is in
the thousands.

2.2. Justification

The proof of Theorem 1 is broken down into three small results which we find useful to isolate
as separate lemmas. The first lemma estimates the radius of information from below and the second
lemma is a key step for the third lemma, which estimates the radius of information from above using
constrained regularization maps. Here is the first lemma.

Lemma 2. The squared worst-case error of any recovery map A satisfies, with N := ker A,

Errq (A, A)? >1B:= sup ||Qh]|> (12)
he NN

and this lower bound LB can be reformulated as

LB= inf a+b  sto a||Rh|®+Db|Sh|®>=>||Qh|?> forallheN.

a,b>0

T In the infinite-dimensional setting, this assumption should in fact be strengthened to the existence of § > 0 such that
max{||Rh|, ||Sh||} > §||h|| for all h € ker A, see e.g. [21, Theorem 12.12].

2 Here and in other places, we use the standard notation M > 0 to signify that a matrix M is positive semidefinite. The same
notation is used for operators.
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Proof. We include the argument for the first part, even though it is very classical. It starts by con-
sidering any h € K N A and by noticing that both +h and —h belong to X N A before observing
that

Errq (A, A)° = sup | Qf — AA NI 2 max[|Q (Eh) — AO)I*

1 1
> SlQh- A0 + Sll-Qh- AO)? = QI+ 1A0))?
> | Qh|.

Finally, it finishes by taking the supremum over h € X NN to derive that Errg x (A, A)? >1B.
The argument for the second part begins by reformulating the lower bound as

LB=infy s.to||Qh||> <y whenever h € \ satisfies ||Rh||> <1 and ||Sh||> <1.
14

By the version of Polyak’s S-procedure recalled in the appendix and its extension to the inifinite-
dimensional case, the latter constraint is equivalent to>

there exist a, b > 0 such that | Qh||* — ¥ <a(||Rh||*> = 1) + b(|Sh||* — 1) forallh e .

The latter decouples as

there exista, b > 0 such that y >a+b and althII2 +b||Sh||2 > ||Qh||2 forallh e V.

Therefore, the lower bound takes the form

LB= inf y stoy>a+b and al|lRh||?> +b||Sh|> = |Qh|? forallh € \.
a,b>0

Since the minimal value that y can achieve under these constraints is a + b, this infimum indeed
reduces to the form of the lower bound announced in the statement of lemma. O

The second lemma is reminiscent of a result already obtained (with n =2) in [8, Lemma 13] for
Q =Id and in [9, Lemma 3] for an arbitrary linear quantity of interest Q, but the new proof presented
here is more transparent, as it avoids arguments involving semidefinite matrices. As such, it is valid
in infinite-dimensional Hilbert spaces, too.

Lemma 3. Let A be a linear subspace of H and let Ry, ..., R, be Hilbert-valued linear maps defined on H.
Suppose that cq, ..., cy > 0 satisfy

n
IQhI* < cillRih|*  forallhe N. (13)

i=1

Then, setting T = Y_i_; ¢;R} \-Ri: H — N and assuming that Tyr = Y i, ¢iR \Ri pr: N — N is invert-
ible, one has

HQT (Zc, R f,)H _ZC,HR AP forall fi..... faeH.

i=1

3 To verify the applicability of the S-procedure, note that h = 0 satisfies the strict feasibility condition (h € A/, ||Rh|? <1,
|Sh||? < 1) and that any a, b > 0 satisfy the positive definiteness condition (aR%3 R+ DS Sar > 0).

5
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Proof. To ease notation, let h := Z?:l ciR;.kNRifi. Note that h belongs to N, and so does TX} h. In
view of (13), it is enough to prove that

n n
S GlRT I < e[ Rifi]) . (14)
i=1 i=1

The left-hand side of (14), which we denote by LHS for short, is manipulated as follows:

n

n n
LHS = "cil Rin Tx hII*> = Zc,»(R;ﬁNR,,NT;;h, ij]h> = < > R RN TR N, T;}h>
i=1 i=1 i=1
n

n
= <TNTX,1h, T;,1h> = <h, ijlh> = < > ciRf pRifi. ijlh> = Zc,-<R;ﬁNR,-f,», T;/1h>
i=1

i=1
n
= Z C,'<Rifi, RiTX/]h>.
i=1

From the general inequality (u, v) < (|Ju]|> + ||[v]|?)/2, we derive that

n n
Ci 2 2 1
s =35 ([« [rri) =5 e
i=1 i=1

which is just a rearrangement of the desired inequality (14). O

2 1
—LHS,
+ 2

'Rifi

The third and final lemma gives an upper bound for the squared worst-case error of the con-
strained regularization map Agp.

Lemma 4. Suppose that a, b > 0 satisfy

IQhI? <a|Rh|? +b|Sh|?> forallh e kerA.

Then one has

Errg xc(A, Q 0 Agp)® <a+b.

Proof. The squared worst-case error of the recovery map Q o Ay is

Errg (A, Q 0 Agp)? = ;“,lg 1Qf = QoAgp(ANI* = sup [QId— AgpA)f?

IRfI<1
ISfli<1
_ 2
= sup | Q[aR{ Ry +bSiSn] ™ (aRARS +bSkSS)|
IRfII=<1
ISfli=1

where we have made use of (8) with A" = ker A. Then, invoking Lemma 3 for n=2, Ry =R, R =S,
and f1 = fo = f, we obtain

Errg (A, Q 0 Agp)® < sup (allRfIZ+DbISfI?) <a+b,
IRfII<1
IISflI<1

which is the announced result. O

With this series of lemmas at hand, we are now ready to justify the main result of this section.

6
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Proof of Theorem 1. Let a;, b; > 0 be minimizers of the optimization program (9). On the one hand,
Lemma 2 guarantees that

inf  Errg (A, A)? > as + by 15
A:RM 7 Q”C( ) - ﬁ+ 1 ( )

On the other hand, by the feasibility of a; and by, we have ||Qh||? < ay|Rh||> + by||Sh||? for all h e
ker A. To deal with the possibility of a; or b, being zero, we consider, for any ¢ > 0, aég) =az+&>0

and b{" :=b; +& > 0 and notice that [|Qh|> < a”|Rh||> + b{”|Sh||? for all h € ker A. Lemma 4

then guarantees that Errg (A, Q 0 A ) y©)* < ag‘s) +b§£). It is now easy to see that taking (possibly
i b

weak) limits as € — 0 yields

Errg (A, Q OAan,bn)z <ag+ bs. (16)
The inequalities (15) and (16) together fully justify (10) and thus complete the proof. O

2.3. Side results

In this section, we put forward an interpretation of the radius of information that differs from the
minimal value of the program (9) and we shed light on the extremizer appearing in the expression of
the lower bound from (12)—which is now known to coincide with the squared radius of information.
Although these results are not used later, we include them here because they appear interesting
for their own sake. Both results call upon the largest eigenvalue, denoted by Amax, of self-adjoint
operators.

Proposition 5. For the two-hyperellipsoid-intersection model set (1), the radius of information of the obser-
vation map A : H — R™ for the estimation of Q is also given as the optimal value A of the program

minimize Amax (o101~ DR RN + TS SATTIQR),
7€V,

where N := ker A. Moreover, if T4 € (0, 1) represents a minimizer of the above program, then az := (1 —t)Ay
and by := T3\ are minimizers of (9).

Proof. The foremost observation consists in reformulating the constraint in (9) as

Amax(QAIaRARA- + bSE-SA11 Q) < 1. (17)

Indeed, the said constraint can be equivalently expressed in the form

aRi Ry +bSASn > Qi Qu
&= 1d > [aR} Ry + DS SAT V2 Q5 Qu[aR Ry + bSH Sa171/2
<= 1> Amax([aR}Rx +bSHSAT 2 Q R QulaRiRa + bSh Sarl™/?)
&= 12 Amax(Qu[aR} Ry +bSi S 171 Q).
Thus, the above-defined ay = (1 — 7:)A; and by = T34, are feasible for (9), since then

Amax(QulasRARA + b SH Al Q)

1
= A_n)tmax(QN[(l — )RRy + TS Sa T QR) = 1. (18)

It now remains to show that a + b > a; + by whenever a,b > 0 are feasible for (9). To see this, with
T=b/(a+b) and 1 — t =a/(a+ b), notice that
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Az < Amax(QAI(1 = DRY RN + TSR ST Q)
= (a+b) Amax(QA[aR} Ry + bSi SAT 1 Q%)
<(a+Db),

where (17) was used for the last inequality. The desired conclusion follows from A; =a; +bs. O

Proposition 6. Under the setting of Proposition 5, recall that

su}\z{thn2 tIRR|> <1, |ISh|* <1} =ai11J1fO{a +b:aR3 Ry +bSHSn = QhQa}. (19)
he 0>
Ifhy € N and ay, by > 0 are extremizers of the above two programs, then

(ii) (aﬁRj\/-RN' + bﬁSj\/S/\/)hﬁ = QX/QNh]j.

Proof. Setting Txr :=a;R3\ R 4 b:Sh Sar, we already know from (18) that AmaX(QNTX[] Q) =1
In view of ||Rhs|| <1, Shs|l <1, ||Qhs|> = a; + by, and writing g; := T}\fzh;, we observe that

g2l = (Tarhs, he) = ((@zRA Rar + by Sk SAhz, he) = ag | Rhy |1 + by [|Shy |12
g a by =11QhN? = 1QN TN P gel? = (TR 2 QA QTR D gs, &2)

—-1/2 —-1/2 _
5 rmax (T2 Qi QN TR ) llgz 1% = max (QA TR Q) gz 1 = llge 12

Since the left-hand and right-hand sides are identical, equality must hold throughout. In particu-
lar, equality in (1) implies (i). As for equality in (2), it imposes that g, is an eigenvector associated
with the eigenvalue Amax(Txfl/z QJ*\/QNTX/—]/Z) =1, meaning that (Tj:/l/2 QJ*\/QNTX;/Z)gﬁ =g, ie,
QA Qarhy = Tachy, which is (ii). O

Remark. The result of Proposition 6 is, in a sense, a characterization of the equality between the
supremum and the infimum in (19). Indeed, the argument can easily be turned around: given mini-
mizers ag, by > 0, if we can find hy € N satisfying (i) and (ii), then the supremum equals the infimum
(it is always “at most” by the trivial part of the S-procedure and it is “at least” thanks to the ex-
istence of hy). Such an approach was used, in essence, to determine explicit solutions of specific
differential-equation-inspired Optimal Recovery problems featuring two quadratics constraints but
without invoking Polyak’s S-procedure, see [13,23]. The same circle of ideas extends to the intersec-
tion of n > 2 hyperellipsoids. Indeed, leaving the details to the reader, we state the loose equivalence
between the equality

heN (ST

n
sup {1 QhI*: [Rih|* <1.i=1,....n} = inf>0{2ci: CRY R = QR Qv
n— :l
and, with cf, e, c,’?, > 0 denoting minimizers of the latter, the existence of hy € N such that

n
IRihs =1, i=1,...,n, and (Zc?R;NRW> hy = Q% Quhs.
i=1
This gives us a practical way of deciding whether Theorem 1 extends to n > 2 hyperellipsoids: after
solving a semidefinite program, construct a candidate hy by solving an eigenvalue problem and test if
the ||R;hz|| are all equal. As observed numerically, this occurs in some situations, but certainly not in
all, in particular not when the R; are orthogonal projectors (as in the multispace problem described

8
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below). The moral is that this article deals with the intersection of n =2 hyperellipsoids not only
because the strategy based on Polyak’s S-procedure does not apply to n > 2, but also because the
natural extension is not valid for n > 2.

3. Three easy consequences

The two-hyperellisoid-intersection framework has direct implications for optimal recovery from
(partially) inaccurate data, to be discussed later, and even more directly for optimal recovery from
accurate data under the two-space approximability model, to be elucidated right now.

3.1. The two-space problem

A model set based on approximability by a linear subspace V of F with parameter ¢ > 0, namely

K={f eF:dist(f,V) <¢e},

gained traction after the work of [2]. When F is a Hilbert space, these authors completely solved
the full recovery (Q =1Id) problem even in the local setting—the present article deals solely with the
global setting. They also raised the question of the multispace problem, a particular case of which
being the two-space problem where

K ={f €H:dist(f, V) <eanddist(f, W) <n}. (20)

For the multispace problem, they proposed two iterative algorithms which, in the limit, produce
model- and data-consistent objects. As such, these algorithms yield worst-case errors that are near-
optimal by a factor at most two.

The two-space problem—in fact, even the multispace problem—in an arbitrary normed space F
was solved in [5] but only when the quantity of interest Q is a linear functional. For more general
linear maps Q, but when F is a Hilbert space, the two-space problem is a special case of our two-
hyperellipsoid-intersection problem. Indeed, the model set (20) is an instantiation of the model set
(1) with R and S being scaled versions of the orthogonal projectors onto the orthogonal complements
of V and W, precisely R = (1/¢)Py. and S = (1/n)Pyy . Thus, Theorem 1 applies directly and we
arrive, through the change of optimization variables a = ce? and b = dn?, at the result stated below
for completeness.

Theorem 7. For the two-space model set (20), the square of the radius of information of the observation map
A : H— R™ for the estimation of Q is given by the optimal value of the program

minimize ce? +dn?  sto  c|PyLh||> +d||Pyoh|? > |Qh|? forallh e kerA. (21)

c,d>0

Further, if ¢4, d; > 0 are minimizers of this program and if A, 4, is the map defined for y € R™ by
Besa, () = [argmin ;1 Py fI7 + dy Py SIP sto A =]
eH

(and interpreted via continuity in case c; = 0 or dy = 0), then the linear map Q o A, 4, provides an optimal
recovery map.

3.2. Recovery from €,-inaccurate data

Suppose now that the observations made on the objects of interest f € KC are not accurate any-
more, but rather of the form y = A f + e with an error vector e € R™ belonging to some uncertainty
set £. We then need to adjust the notion of worst-case error of a recovery map A : R™ — Z and thus
define the quantity
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Errg k,e(A, A) = ?ullz 1Qf — A(Af +e)l. (22)
ec&

As already remarked in [16], this setting can formally be reduced to the setting of accurate data. When
Q is a linear functional, the existence of a linear optimal recovery map follows for data perturbation
not only bounded in ¢;, see e.g. [12,19,4].

In this subsection, both the model set and uncertainty set are hyperellipsoids, i.e.,

K={feH:|Rfl =&}, (23)
E={ecR™:|Se| <n} (24)

In this situation, the problem at hand reduces to the two-hyperellipsoid-intersection problem with
accurate data. Indeed, considering the compound variable f = f e) belonglng to the extended Hilbert
space H:=H x R™, let us introduce linear maps A, Q, R, and S defined on H by

A(f.e)=Af+e, Q(f.©)=Qf. R((f.e)=(1/e)Rf, S((f.e)=(1/n)Se. (25)

The worst-case error (22) of the recovery map A is then expressed as

Errg x.e(A, A)= sup 1Qf—AMANI,

IRfI<1

ISFI<1
i.e., exactly as in (3). Exploiting this analogy, Theorem 1 yields the result stated below. Note that it
is not entirely new. Indeed, the fact that regularization produces a (linear) optimal recovery map was
already recognized in [14], see also [15]. However, a recipe for selecting the regularization parameters
was not given there, except on a specific example. Such a recipe was uncovered in [8] with Q =
R being an orthogonal projector, and S =1Id, and later in [9] with arbitrary Q and R but still with
S =1Id. The extension to S # Id is minor—more pertinent is the fact that the result is now valid in
infinite dimensions (although solving (26) in practice would then be a challenge).

Theorem 8. For the hyperellipsoidal model and uncertainty sets (23) and (24), the square of the radius of
information of the observation map A : H — R™ for the estimation of Q is given by the optimal value of the
program

minimize ce? +dn?>  sto  c||[RfIZ+d|SAf|?> = Qf|* forall f €H. (26)

c,d>0

Further, if c;, dy > 0 are minimizers of this program and if A, 4, is the map defined for y € R™ by
Acs, () = [argmin  IRFI? + 150y = AP @7)
€eH

(and interpret@d via COntinuity incasec: =0ord; = O), then the linear map Q o AC d prOVideS an Optlmal
# # #.dy
recovery map.

Proof. With the change of optimization variables a = cg? and b = dn?, the program (9) for A, Q, R,
and S becomes

minimize ce? + dn?
c,d>0

s.to c||[Rf||> +d||Se||> > ||Qf||> when f € H,e e R™ satisfy Af +e=0
Eliminating e € R™ from the above yields the program (26). As for the constrained regularization map
Aq, b, from (4), it is to be replaced by
yERM > [ argmin cs|[Rf | +d:||Sel® stoAf+e= y].
feH,eeRm

Again, eliminating e € R™ from the above leads to (27). O

10
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3.3. Recovery for mixed accurate and ¢;-inaccurate data

In some situations, parts of the observations on the objects of interest f € K can be made ac-
curately, while other parts are subject to errors. Such a situation occurs e.g. when learning the
parameters of partial differential equations (using kernel methods, say) from example solutions that
can be perfectly evaluated at points on the boundary of the domain but imprecisely at points inside
the domain, see e.g. [1,11]. To cover this possibility, we can decompose the error vector e € R™ as
e=(e/,e") e R™ x R™ with e’ =0 and |le”|| < 1. More generally, we shall assume that S’e =0 and
IS”e|l <n for some Hilbert-valued linear maps S’, S” defined on R™. We shall therefore consider
model and uncertainty sets of the form

K={heH:|Rf|| <s}, (28)
E={eecker(S):||S"e|| <n}. (29)

This time working with the different extended space EI = H x ker(S’), we still introduce linear maps
A, Q, R, and S defined on the compound variable f = (f,e) € H almost as in (25), but with one
slight modification for S, namely

A((f.en=Af+e, QU(f.eN=Qf, R((f.e)=(1/&)Rf, S((f,e)=(1/nS"e. (30)

The worst-case error (22) of a recovery map for this mixed error scenario is still identifiable with the
worst-case error (3) for the two-hyperellipsoid-intersection scenario, so we can once more leverage
Theorem 1 to derive the following result.

Theorem 9. For the model set (28) and the mixed-uncertainty set (29), the square of the radius of information
of the observation map A : H — R™ for the estimation of Q is given by the optimal value of the program

minimoizecez-i—dnz sto c|RFIZ+dIS"AfI> = 1Qf)> forall f eker(S'A).  (31)

c,d>

Further, if ¢4, d; > 0 are minimizers of this program and if A, 4, is the map defined for y € R™ by
Ac. g, (¥) = [ar;gmin CARFI? +d|1S"(y — Af)|? stoS'Af= S’y] (32)
eH

(interpreted via continuity in case c; = 0 or d; = 0), then the linear map Q o A, 4, provides an optimal
recovery map.

Proof. With the change of optimization variables a = ce? and b = dn?2, the program (9) for A, Q, R,
and S becomes

minimize ce? + dn?
c,d>0
s.to c||[Rf||> +d||S"e||®> = ||Qf|I*> when f € H,e € ker(S') satisfy A f +e =0.
The form of the program (31) is obtained by eliminating e € R™ from the above via e = —A f and

noticing that e € ker(S’) means that S’Af =0, i.e., f € ker(S’A). The constrained regularization map
is now to be replaced by

yeR™ > [ argmin  c;|Rf|? +ds]|S"e]?> stoAf +e= y].
feH ecker(S’)

The form of the program (32) is obtained by eliminating e € R™ from the above via e=y — A f and
noticing that e € ker(S’) means that S’Af=S"y. O

11
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It is worth making this result more explicit for our motivating example where e € R™ is decom-
posed as e = (¢/,e”) € R™ x R™ and we have S’e = ¢/, S”e = ¢”. The observation process on the
object of interest f € H satisfying |Rf| < ¢ is itself decomposed as y' = A'f and y" = A"f +¢€’,
where A’: H— R™, A”: H— R™" are linear maps and where |¢”| < n. In this case, a linear opti-
mal recovery map is obtained, maybe somewhat intuitively, via the constrained regularization

mirflimize CGIRFI? +dg|ly” — A"fII> stoA f=y.
eH

Our more significant contribution consists in uncovering a principled way of selecting the parameters
cy, dy > 0, namely as solutions to the program

minimize ce? +dn? s.to c|[Rf|>+d||A” f|I> > ||Qf||? forall f € ker(A').

c,d>0
4. One intricate consequence: recovery from £1-inaccurate data

In this final section, we contemplate yet another scenario of optimal recovery from inaccurate
data which borrows from the results of Section 2. The situation is more delicate than in Section 3,
though, because the observation error is not modeled through an ¢;-bound but an ¢1-bound. Thus,
the objects of interest f from a Hilbert space H are acquired via inaccurate linear observations of the
form y = A f +e € R™, where the model set for f and the uncertainty set for e are given relative to
some parameter & >0 and 1 > 0 by

K={feH:|Rfll<¢} (33)
E={eeR™: el <n}. (34)

Towards the goal of optimally estimating a Hilbert-valued linear quantity of interest Q : H — Z, the
worst-case error of a recovery map A : R™ — Z is defined as

Errq xe(A, A) = SfUP 1Qf —AAf +e)l. (35)
IRfll<e
lelli=<n

We will reveal that, conditionally on a checkable sufficient condition, the radius of information can
still be computed and a constrained-regularization-based optimal recovery map—turning out, perhaps
surprisingly, to be linear—can still be constructed efficiently. The sufficient condition is not vacuous:
numerically, it even appears to hold whenever 7 is small enough. Unfortunately, we were not able to
establish this fact theoretically.

4.1. Main result

The result presented below involves constrained regularization maps Ag()j defined, for j=1,...,m
and for c¢,d > 0, by

AU}y eR™ e [argmin RFIZ +dlly = AfI? sto4i(f) = yiforij| € H, (36)
’ feH

with the usual interpretation when ¢ =0 or d = 0. These constrained regularization maps are linear.
Indeed, as a consequence of Lemma 16 in the appendix, they are given by

i -1
AD) = AT - [cR, Ry +dAR, An;] ™ (R, RAT).,  Nj=[ker(n).
i#]

12
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For each j=1,...,m, fixing from now on an element u; € H such that* Auj=ej (eg uj= ATej),
we compute

b’ := min ce® + dn?
J c,d>0 n

stocl|R(h—6uj)|* +do? > | Q (h — Ou;)||* forallh € ker A and 6 € R (37)

and we let cj,d; > 0 denote extremizers of this optimization program. In addition, we consider (and
we shall compute some of) the quantities M; j defined for i, j=1,...,m by

M; = rr‘}ir})csz +dn?
c,a=
s.to c|[R(h — 0up) |12 +d6% > || Q (h — Ou;) — QAg?dehnz forallh € Hand 6 € R.

The main result of this section can now be stated as follows.

Theorem 10. Aiming at estimating a Hilbert-valued linear map Q : H — Z from the observation map A :
H — R™ under the hyperellipsoid model set (33) and the £1-uncertainty set (34), assume that

Mix <My foralli=1,...,m, where k := argmax lb}. (38)
j=1,...m

Then the square of the radius of information is equal to 1bj, and the linear map Q o Agf)dk :R™ — Z provides

an optimal recovery map.

The proof of this result is given in the next subsection. Before getting there, we reiterate that the
sufficient condition (38) seems to occur whenever 7 is small enough, as supported by the numerical
experiments presented in the reproducible files accompanying this article.

4.2. Justification

Much like the proof of Theorem 1, the proof of Theorem 10 is divided into three separate lemmas:
one which establishes lower bounds for the radius of information, one which indicates that each lower
bound is achieved by an associated constrained regularization map, and one that establishes a key
property of such constrained regularization maps. Finally, these three ingredients will be put together
while incorporating the sufficient condition (38). Throughout the argument, it will be convenient
to work with the linear maps I', QW ..., Q™ RM . R™ and S defined for g = (h,6) in the
extended Hilbert space H x R via

rg)=Ah, QUV(g)=Qh—06uj, RV =(/e)Rh—0uj), Sg=A/mo. (39)

Let us now state the first of our series of three lemmas.

Lemma 11. The squared global worst-case error of any recovery map A satisfies

..........

where the lower bounds are expressed as

4 In this section, the notation e;j does not represent the jth entry of the error vector, but the jth element of the canonical
basis for R™.

13
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Ibj(A)= sup [[Qf —A(Af +0e)|? (40)
IRfli<e
101=n
= sup [QYVg— ATy (41)
IRV gl <1
Isgli=1
Ib;= sup [|QVg|? (42)
IRDgl<1
ISgl=1
geker
= iglfo a+b sto a|RDg|?+b|Sg|> > 1QPVg|? forall g € kerT. (43)
a,b>
Proof. For j=1,...,m, noticing in (35) that the supremum over all e € R™ satisfying |e|; <7 is

larger than or equal to the supremum over all e = fe; with |#| <7 leads to the lower bound on
Errg 1, (A, A)? expressed in (40). To arrive at (41), we make the change of variable h = f + fuj, so
that

bj(A)=sup  [[Q(h—6u;) — A(AL)|?,
||R(h|;‘9ui)||§8
<n

and (41) follows by setting g = (h,0) € H x R and taking the expressions (39) for I', Q ), RU),
and S into account. At this point, it is apparent that Ib;(A) coincides with the worst-case error of
A for the estimation of Q Wg from I'g under the two-hyperellipsoid-intersection model assumption
IRDg|l <1 and ||Sg|| < 1. Thus, the further lower bound (42) and its reformulation (43) follow from
an application of Lemma 2. O

The lemma below, although not used explicitly later, gives us an idea of the coveted optimal recov-
ery map by looking at the case of equality in Ibj(A) > lb;-. For the latter, note that the expression (43)

is seen to coincide with the expression (37) by making the change of optimization variables a = ce?,
b =dn?.

Lemma 12. For each j=1,...,m, if Ag)dj is the constrained regularization map defined in (36) and its

parameters c;j, d; > 0 are extremizers of the expression (37) for Ib’;, then

Ib;(Q oAgfdj)zlb/j.

Proof. According to the results of Section 2, we know that equality in Ibj(A) > lb/j occurs for A, =
QY 0 Aj g p;, Where aj,bj > 0 are extremizers of the program

minimize a + b sto al|RYg|? +b|SgI?>=1QPg|? forall g € kerl"

a,b>0
and where the recovery map Ajq; p; :R™ — H x R is defined, for y ¢ R™, by

Ajay, () = [argmin a;IRVg|? + by Sg|> sto Tg=y].
geHxR

It now remains to verify that A, agrees with Q o Ag)dj. First, according to the expressions (39) for

I, QY, RY, and S, and in view of the relations a = ce? and b =dn?, it is easily seen that a; = c;&?
and b; :djnz. Then, writing Ajajb;(¥)= (hy, 6,) with h, € H and 6, € R, we see that

(hy,6) = | argmin_c;[R(h = 6up|® +d;6? sto Ah=y],
(h,0)eHxR

14
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and consequently, making the change f =h —6uj, we deduce that

(hb—Qbuj,Gb)=[argmin lelRf||2+dj02 s.toAf—i—@ej:y].
(f.0)eHxR

Since the constraint A f 4-6e; =y decomposes as A;(f) +6 =y; and A;(f) = y; for i # j, we obtain,
after eliminating 6,

hy — Ohuuj = [ar%min CIIRFIZ +dj(yj—1j(f)? stori(f)=yi fori;ﬁj]
A(])d] (y)
where that last equality is simply the definition of Ag?dj. The remaining justification is settled by

remarking that A, (y) = QP (A a,0,(9) = V(5. 6,)) = Q(hs = 6u) = (AL (1), O

The third lemma is a step towards the determination of the worst-case error of the constrained
regularization map Ag_)dj.

Lemma 13. Foreach j=1,...,m, one has
sup [1Qf —QAD, (Af +0ep|? =1b],
IRfll<e
101=<n

Proof. Setting g = (f +60u;,0) € H x R, the quantity under consideration becomes

sup 1QVg— QA TP = sup 1QVg— QA 4,97,
IRV g[<1 IRV gl <1
ISgli<1 Isgli<1

where we have borrowed from the previous proof the observation that Q o Ag)dj =QWoA j.aj.bj
with aj = cje? and bj =d;n?. Thus, our quantity appears to be the worst-case error of Q ) o Ajajb

for the estimation of Q g from I'g given that [R¥g| <1 and ||Sg| < 1. We know from the results
of Section 2 that the latter is equal to aj +b; =cje? +djn? ie. to Ib}, as announced. O

Having these three lemmas at our disposal, we now turn to the justification of the main result of
this section.

Proof of Theorem 10. According to Lemma 11, there holds

inf  Err A, A2 > 10,
A:RM 7 Q,)C,S( ) =Tk

where we recall that the index k is obtained as the maximizer of 1b’;

; over all j=1,...,m. In order to
prove our result, we have to show that this infimum is actually achieved for the linear recovery map
Qo Ai’;) dy- To this end, we notice that the linearity of Q o Ag;) dy guarantees that

k k
Errg k.e(A, Q 0 AL )= sup 1Qf — QAL (Af+e)l?

IRfll<e
llelli=n
k
= max sup Qf — QAY, (Af +6e)]?
i=1,coam |Rf|<e

101<n
= max  sup  |Q(h—6u)— QA% An|2.

. ‘ ,d
i=1,...m || R(h—6u;)|<e -
101=<n

15
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It has become familiar, relying on Polyak’s S-procedure, to transform the latter supremum into
inf ce? +dn?
c,d>0
s.to ¢||R(h — 0uy)||? +do? > ||Q (h — Ou;) — QAE’;)dkAhHZ forallh € Hand 0 € R,

which we recognize as the quantity M; . Now, calling upon the sufficient condition (38), we derive
that

k
Errg.x.e(A, Q o Agk?dk)z = max Mix =M= Iby,,

where the last step was due to Lemma 13. This equality completes the proof. O

4.3. Side result

When the sufficient condition (38) fails, it is not anymore guaranteed that the linear map Q OAS,:) dy
provides an optimal recovery map. Regardless, we can always solve a semidefinite program to obtain
a linear recovery map with minimal worst-case error, according to the result stated below with the
notation introduced in (39).

Proposition 14. The squared worst-case error of a linear recovery maps A" : R™ — Z can be computed as
the optimal value of a semidefinite program, namely as

i , Id | QW —alinp T
Err A, AlIM2 — min s.to [ . — =0
Q.k.&( ) min Y [(@D —ATT)* | qRO'RO 1 ;5% | =
a1,b1 ..... am,bsz
and a;+b; <y foralli=1,...,m. (44)

This quantity can further be minimized over all linear maps A" : R™ — Z, yielding a linear recovery map
with smallest worst-case error.

Proof. For a linear recovery map A" : R™ — 7, we have

Errg k.e(A, A2 = max sup [Qf — A"™(Af +6ep)|? (45)
i=1,m|Rf | <e
61<n
= inf y sto sup ||Qf — AIMAf +0e))? < yforalli=1,...,m.
yeR IRflI<e
|01<n

Note that the above i-dependent suprema can also be expressed as

sup  [Q(h—6u) —AMARIP= sup QPg— Al"rg)?

IR(h—0uy)|<e IR g]<1
|01=n ISgl<1
= il?f0 ai+b; sto al|[RPg|?+biISgl?>11Q Vg — Al"'rg|® forallge H x R
aj,bi>
= inf ai+bi sfto aiRDRD 4 b;5*s = (@D — AlMr)y*(Q @ — Ali).
aj,bi=

Therefore, the i-dependent constraint in (45) is equivalent to the existence of aj, b; > 0 such that
ai+bi <y and G;RO*RD 4 b;5*S = (Q D — Alin[y*(Q O — AlN[) As such, we arrive at
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Errg xc.e(A, Alin)2 = inf 14
yeR
ai,bq,..., am,bm>0
sto GiRD'RD 4 b;s*s = (Q® — Aliry*(Q @ — Alinr)

and a; +b; <y foralli=1,...,m.
Using Schur complements, the above i-dependent semidefinite constraints can each be rephrased as
Id | Q(l) _ Alil’lr
- T —— >
L(Q® —aAlrp)y* | g;RD*RD 4 b;5*s |

07

leading to Errg i e(A, AlM)2 being expressed as in (44). We finally note that the linear dependence
on All" of the constraints in (44) allows us to further view the minimization of Errg kg (A, Ali)?
over all linear maps Al" as a semidefinite program. O

We should remark that, even when 7 is small and the sufficient condition (38) holds, the linear
recovery map with smallest worst-case error obtained by semidefinite programming may differ from
the optimal recovery map Q o Ai’;) d illustrating the nonuniqueness of optimal recovery maps. More-
over, when 7 is not small, our numerical experiments (available from the reproducible files) suggest

that Q o AE’:)dk may not be optimal among linear recovery maps anymore.
Appendix
In this appendix, we provide justifications for a few facts not fully explained in the main text.

Polyak’s S-procedure Given quadratic functions qo,q1,...,qn, the statement go(x) < 0 whenever
q1(x) <0,...,gn(x) <0 holds if there exists aj,...,a, > 0 such that qo < aiq1 + ---anqn. The fol-
lowing result, paraphrased from [20, Theorem 4.1] establishes that this sufficient condition is also
necessary when n =2 and the g;’s contain no linear terms.

Theorem 15. Suppose that N > 3 and that quadratic functions qo,q1,q2 on RN take the form qi(x) =
(Aix, X) + «; for symmetric matrices Ao, A1, Az € RN*N and scalars oo, o1, o3 € R. Then

[qo(x) <0 whenever q1(x) <0and q2(x) <0] < [thereexista,az >0:qo <ai1q1+aqz],

provided g1 (X) < 0 and g, (X) < 0 for some X € RN (strict feasibility) and b1 A1 + by A > 0 for some by, by €
R (positive definiteness).

As established in [3, Proposition 5.2], such a result remains valid when RN is replaced by an
arbitrary Hilbert space H—even of infinite dimension—and the A;’s are self-adjoint bounded linear
operators on H. This generalized version is the one called upon in the main text.

Constrained regularization The goal here is to justify the identities (7) and (8), which are conse-
quences of the general observation below.

Lemma 16.Let A: H — H' and B : H — H” be two bounded linear maps between Hilbert spaces. Assume
that there exists § > 0 such that ||Az|| > §||z|| for all z € B :=ker(B), so that AzAp : B — B is invertible,
where A : B — H’ denotes the restriction of A to 3. Givena € H and b € H”, the solution x* € H to

minimize ||Ax — a|? sto Bx=b
xeH
can be expressed, for any x such that Bx = b, as
X =%—[A5As] Az(AR —a).

17
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Proof. Writing the optimization variable x € H as x =X — z with z € B and the minimizer x* as
x* =X — z% with z% € B, we see that z* is solution to

minimize ||AX —a — Az||2.
zeB
This solution is characterized by the orthogonality condition (AX—a— Az*, Az) =0 for all z € B, which

is equivalent to A% (AX—a— Az") =0, or to A ApZz* = A%(AX —a). Left-multiplying by [A*BAB]A to
obtain z* and substltutmg into x* =% — z* ylelds the announced result. O

It follows as a consequence that, if Ry,..., R, are Hilbert-valued bounded linear maps defined
on H such that there exists § > 0 with max{||Rz|, ..., |[Rnz|l} = 8|/z|| for all ze N :=ker(A)° and if
C1,...,Cp >0, then, for any y € R™,

n
Acyen(¥) = [arglenHin D cillRix|® sto Ax= y] (46)

i=1
n -1 n
:ATy— [ZCiR;k»NRi’N:I (ZCI’R;F,NRI')AT.V'
i=1 i=1
To arrive at this identity, which reduces to (7) when n =2, it suffices to apply Lemma 16 with

- JER ]
A= : ., a=0, B=A, b=y, x=Aly.
| VCnRn |

Furthermore, if y = Ax for some x € H, taking X = x instead of X = ATy leads, after rearrangement, to

The latter reduces to (8) when n = 2.

Finally, we want to justify the statement made in Section 2 that A, ,(y) converges weakly to
Ago0(y) as b — 0 for any fixed y € R™. We shall do so under the working assumption that there
exists § > 0 such that max{||Rz||, ||Sz||} > 8||z|| for all ze N =ker(A).6 Supposing without loss of
generality that a =1, we thus want to establish that

Xp 1= argmin [||R><||2 +Db|Sx|* sto Ax= y]
xeH

—\0 X0 := argmin [||Sx||2 stoAx=y, Rx= O] .

b— xeH

If this was not the case, there would exist v € H, ¢ > 0, and a sequence (by)kx>1 decreasing to
zero such that [(xp, — xo, v)| > € for each k > 1. Now, from the optimality property of x,, we have
IR, 12 + bkl Sxp, 1 < IRx0I? + by || Sxo 12, which yields, in view of Rxg =0,

2 2 2 2
[ RXp, 17 < bilI Sxoll and  [[Sxp, [I” < ISxoll*.

Thanks to our working assumption, it follows that the sequence (xp, — xo)k>1 of elements in N is
bounded, and then so is the sequence (xp, )k>1. As such, it possesses a subsequence weakly converging
to some X € H, say. We still write (xp,)i>1 for this subsequence and we note that |(X — xp, v)| > €.

5 This assumption simply reduces to ker(R1) N...Nker(R;) Nker(A) = {0} when H is finite dimensional.
6 This assumption reduces to ker(R) Nker(S) Nker(A) = {0} when H is finite dimensional.

18



S. Foucart and C. Liao Journal of Complexity 83 (2024) 101841

Next, in view of Ax, =y for all k> 1, we derive that AX=y from x;, — X. From there, we also obtain
Rxp, — RX and SXp, — SX, and in turn ||RX| < lim inf||Rxp, || =0 and ISX]| < lim inf || Sxp, | = ISxoll.
These facts imply that X is also a minimizer for the program defining xg, so that X = xo by uniqueness
of the minimizer. This is of course incompatible with |(X — xg, v)| > & and provides the required
contradiction.
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