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Abstract

Consider two half-spaces H+
1 and H+

2 in Rd+1 whose bounding hyperplanes H1 and H2 are
orthogonal and pass through the origin. The intersection Sd

2,+ := Sd ∩ H+
1 ∩ H

+
2 is a spherical

convex subset of the d-dimensional unit sphere Sd, which contains a great subsphere of dimension
d − 2 and is called a spherical wedge. Choose n independent random points uniformly at random
on Sd

2,+ and consider the expected facet number of the spherical convex hull of these points. It is
shown that, up to terms of lower order, this expectation grows like a constant multiple of log n.
A similar behaviour is obtained for the expected facet number of a homogeneous Poisson point
process on Sd

2,+. The result is compared to the corresponding behaviour of classical Euclidean
random polytopes and of spherical random polytopes on a half-sphere.
Keywords. Convex hull, expected facet number, Poisson point process, random polytope, spher-
ical integral geometry, spherical stochastic geometry, spherical wedge.
MSC 2010. 52A22, 60D05.

1 Introduction
One of the classical ways to construct a random polytope is based on taking a fixed convex body
K ⊂ Rd and a sequence (Xi)i≥1 of independent random points uniformly distributed in K. For
n ≥ d+ 1 we denote by

Kn := [X1, . . . , Xn]

the convex hull of the random points X1, . . . , Xn. We may consider it as a random polytopal approx-
imation of the set K, which approaches K, as the number n of random points tends to infinity. There
are several interesting random variables connected to the random polytopes Kn, some of which can be
seen as a measure of the degree of approximation of K achieved by Kn, while others give information
on the combinatorial complexity of Kn. Usually one of the following notions is considered:

(i) the volume Vd(Kn) of Kn, and, more generally, the k-th intrinsic volume Vk(Kn) of Kn, k =
{0, 1, . . . , d},

(ii) the number fd−1(Kn) of facets, that is, the (d−1)-dimensional faces, of Kn, and, more generally,
the number fk(Kn) of k-dimensional faces of Kn, k = {0, 1, . . . , d− 1}.

From now on, we will concentrate on first-order properties of the combinatorial structure of Kn, more
precisely, on the expected number Efk(Kn) of k-dimensional faces of Kn. For further background
material on random polytopes we refer to the survey articles [3, 11, 15].
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It is well known that the asymptotic behavior of Efk(Kn), as n → ∞, depends on the geometry of
the underlying convex body K. Indeed, if K is of class C2

+, that is, if K has a boundary which is a
C2-submanifold of Rd with strictly positive Gaussian curvature κ(x) at every point x ∈ ∂K, then

Efk(Kn) = cd,kΩ(K)n
d−1
d+1 (1 + od(1)), (1.1)

as n → ∞, where cd,k is a constant only depending on d and on k and Ω(K) =
∫
∂K κ(x)1/(d+1) dx is

known to be the affine surface area of K, see e.g. [14, Theorem 4]. Here and in the following we use the
little-o notation for our error term, that is, by f(n) = o(g(n)) we mean that limn→∞ f(n)/g(n) = 0,
where we assume that g(n) > 0. An analogue of (1.1) in the spherical space was derived in [7] using
tools from [10].
On the other hand, if K = P is a d-dimensional polytope, then

Efk(Kn) = ĉd,kflag(P )(log n)d−1(1 + od(1)), (1.2)

as n→∞, where ĉd,k is another constant only depending on d and on k, while flag(P ) is the number
of flags of P , that is, the number of chains F0 ⊂ F1 ⊂ . . . ⊂ Fd−1, where for each i ∈ {0, 1, . . . , d− 1},
Fi is an i-dimensional face of P , see e.g. [14, Theorem 8]. On different levels of generality these results
can be found in [16] for d = 2, [4] for k ∈ {0, d− 1} and [14] for general d and k. See also [6, 17] for
a limit theorem similar to (1.2) in the context of (weighted) floating bodies.
Let us also mention another model, which is often considered together with Kn. Let ηγ be a Poisson
point process in Rd with intensity measure given by a constant multiple γ > 0 of the Lebesgue measure
restricted to some convex body K ⊂ Rd. We define the Poisson random polytope Kηγ as a convex
hull of the Poisson point process ηγ . We remark in this context that the expected number of points of
ηγ equals γVd(K), meaning that for a Poisson random polytope the quantity γVd(K) plays the same
role as the number n for the classical random polytopes described at the beginning.

To motivate our results, let us recall the following setup, which has been introduced in [5]. We assume
that (Xi)i≥1 is a sequence of independent random points uniformly distributed on the d-dimensional
upper halfsphere Sd+ := Sd ∩ {xd+1 ≥ 0} ⊂ Rd+1. For n ≥ d+ 1 we consider the spherical convex hull

K(s)
n := [X1, . . . , Xn]Sd

of the random points X1, . . . , Xn, which is defined as the intersection of their positive hull

pos(X1, . . . , Xn) := {λ1X1 + . . .+ λnXn : λ1, . . . , λn ≥ 0} ⊂ Rd+1

with the unit sphere Sd. This convex hull K(s)
n is a spherical random polytope that approximates the

half-sphere Sd+, as n→∞. Remarkably, the expected number of k-dimensional spherical faces of K(s)
n

does not grow to infinity with n → ∞ as it is the case for classical random polytopes in Rd. Instead
we have that, without any renormalization,

lim
n→∞

Efk(K(s)
n ) = c̃d,k, (1.3)

where c̃d,k is a constant only depending on d and k, see [5] for k ∈ {0, d−1} and [12] for general k. We
remark that after gnomonic projection with respect to the north pole of the interior of the half-sphere
Sd+, the spherical random polytope K(s)

n may be identified with the convex hull of random points in
Rd, having a so-called beta-prime distribution in Rd with parameter β = d+1

2 , where the probability
density of a beta-prime distribution on Rd with parameter β > d/2 is given by

f̃d,β(x) = c̃d,β(1 + ‖x‖2)−β , x ∈ Rd, c̃d,β := Γ(β)
π
d
2 Γ(β − d

2)
, (1.4)

see [12, 13].
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The half-sphere Sd+ can be seen as a spherical convex polytope with a single facet and no other boundary
structure, and similarly we want to think of Rd as a d-dimensional convex ‘unbounded polytope’ with a
single facet at infinity. Comparing the case of bounded polytopes in Rd with the ‘unbounded polytope’
we arrive at the following natural question: Are there models for random polytopes that interpolate
between the behaviour of (1.2) and (1.3)?
In order to answer this question we are focusing in this paper on the case k = d − 1 and on the
following construction, which generalizes the approach in [5, 12]. Given j ∈ {1, . . . , d} hyperplanes
H1, . . . ,Hj passing through the origin of Rd+1 and are otherwise in general position we define the set

Sdj,+ := Sd ∩H+
1 ∩ . . . ∩H

+
j ,

where H+
i denotes the positive halfspace, bounded by the hyperplane Hi, i ∈ {1, . . . , j}. Then Sdj,+ is

a d-dimensional spherical convex subset of Sd, which contains a great subsphere of dimension d − j,
and its shape is determined by the angles between H1, . . . ,Hj . Let further (Xi)i≥1 be independent
random points uniformly distributed on Sdj,+ and for n ≥ d+ 1 let K(s,j)

n be the spherical convex hull
of X1, . . . , Xn. Note that for j = 1, up to a rotation, Sd1,+ can be identified with Sd+ and the number
of facets of the spherical random polytope K(s,1)

n has the same distribution as that of K(s)
n studied in

[5, 12]. On the other hand, intersecting the unit sphere with d+ 1 halfspaces one can think of K(s,d)
n

after gnomonic projection as the convex hull of n independent random points, having a beta-prime
distribution with parameter β = d+1

2 restricted to the domain of a d-dimensional simplex in Rd. In
parallel to this model, to which we shall refer to as the binomial model, we also consider its analogue
for Poisson point processes, the so-called Poisson model. Namely, let ηγ be a Poisson point process
in Sd with intensity measure given by x 7→ γ1Sdj,+

(x). We define a spherical Poisson random polytope

K
(s,j)
ηγ as a spherical convex hull of ηγ .

We conjecture that the models just described provide a family of examples where the behavior of the
expected facet number varies between (1.3) and (1.2) as j varies between 1 and d. More precisely,
we formulate the following conjecture, where in each case od(1) stands for a dimension-dependent
sequence which converges to zero, as n→∞.
Conjecture: For j ∈ {1, . . . , d} one has that

Efd−1(K(s,j)
n ) = cd,j (log n)j−1(1 + od(1)), as n→∞;

Efd−1(K(s,j)
ηγ ) = c̄d,j (log γ)j−1(1 + od(1)), as γ →∞,

where cd,j , c̄d,j are constants that depend only on d and j. In particular, the first-order asymptotic
expansion does not depend on the actual angles between H1, . . . ,Hj, assuming they are in general
position. We also conjecture that actually cd,j = c̄d,j and that the error terms od(1) depend on the
angles between the hyperplanes H1, . . . ,Hj.
In this article we prove a special case of this conjecture. Namely, we consider the case j = 2 and
assume that the angle α(H1, H2) between the hyperplanes H1 and H2 is a right angle. The resulting
set Sd2,+ is called a spherical wedge in this paper. Our main result is the following theorem.

Theorem 1.1. Let K = Sd2,+ and suppose that α(H1, H2) = π
2 . Then there exists a constant cd,2 > 0

only depending on the space dimension d such that

Efd−1(K(s,2)
n ) = cd,2 (log n) (1 + od(1)), as n→∞,

and

Efd−1(K(s,2)
ηγ ) = cd,2 (log γ) (1 + od(1)), as γ →∞.

We were not able to determine the constant cd,2 explicitly. However, we have that

cd,2 = 1
d

2d−1ωd−1Ad,
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Figure 1.1: The upper panel shows a random spherical polygon in the spherical wedge of dimension
two. The same random spherical polygon is shown in the lower panel after gnomonic projection in the
center of the spherical wedge.

where Ad is the constant defined by (4.3) below, whose value is not known. Moreover, for d = 2 we
can determine Ad explicitly, which leads to c2,2 = 4

3 , see Remark 4.3. This in turn yields that

Ef1(K(s,2)
n ) = 4

3(log n)(1 + od(1)), as n→∞,

for d = 2. This should be compared to the expected number of edges (or vertices) of a random polygon
K

(`)
n defined as the convex hull of n independent and uniform random points in a planar polygon with

` ≥ 3 edges. For this model it is known from [16, Satz 1] that

Ef1(K(`)
n ) = 2`

3 (log n)(1 + od(1)), as n→∞,

see also [4, Equation (1.6)] for an extension to higher dimensions. Thus, the leading-order asymptotic
behavior of the expected edge number of Ef1(K(s,2)

n ) is smaller than Ef1(K(`)
n ) for any ` ≥ 3 and

would be similar to a hypothetical 2-dimensional convex polygon with only ` = 2 edges. A similar
result holds for the Poisson model as well.
While random spherical polytopes in the upper half-sphere, as discussed above, have been studied in
[5] using tools from spherical integral geometry, it has turned out to be a fruitful idea to first apply
a gnomonic projection with respect to the center of the half-sphere. The investigation of random
spherical polytopes on half-spheres then turns into a study of a random polytope model in Euclidean
space in which the points are distributed according to a so-called beta-prime distribution (see [7, 12]).
In this paper we shall also use the gnomonic projection, this time with respect to the centre of the
spherical wedge, which maps the random spherical polytope we consider to a random polytope defined
in an bi-infinite strip in the Euclidean space, where the width of the strip is determined by the angle of
the spherical wedge. The generating points are then distributed according to a restricted beta-prime
distribution in Euclidean space, see Figure 1.1. However, and in contrast to the half-sphere model,
we were neither able to carry out the asymptotic analysis of the expected facet number entirely in
the spherical model, nor in the corresponding Euclidean model in the strip. Instead we shall switch
between both models and employ the tools developed in this paper and methods from both spherical
and Euclidean integral geometry.
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The remaining parts of this paper are structured as follows. In Section 2 we introduce some notation.
The proof of Theorem 1.1 is divided into four steps, which are the content of Sections 3–6. In the
appendix we derive some analytic estimates used in our main argument.

2 Preliminaries
By σd we denote the spherical Lebesgue measure on the d-dimensional unit sphere Sd, normalized in
such a way that

σd(Sd) = ωd+1 := 2π
d+1

2

Γ
(
d+1

2
) .

Given vectors x,y ∈ Rd+1 we denote by x · y their scalar product and by ‖x‖ the Euclidean norm of
vector x. Given a vector u ∈ Rd+1 \ {0} and a number t ≥ 0 we define a hyperplane

Ht(u) := {x ∈ Rd+1 : x · u = t}

in Rd+1. We define two closed halfspaces

Ht(u)+ := {x ∈ Rd+1 : x · u ≥ t} and Ht(u)− := {x ∈ Rd+1 : x · u ≤ t},

bounded by the hyperplane Ht(u). In case t = 0 we simplify our notation and just write H(u) :=
H0(u). Moreover, if the dependence of the normal vector is inessential, we will omit it and simply
write H, H+ and H−.
Given vectors v1, . . . ,vm ∈ Rd+1 we denote by span{v1, . . . ,vm} their linear span, which is the
smallest linear subspace, containing all of them. Denote by e1, . . . , ed+1 the standard orthonormal
basis of Rd+1. In what follows we will often identify span{e1, . . . , ek} with Rk. Given a linear m-
dimensional subspace M ⊂ Rk, m ≤ k we denote by projM : Rk 7→ M the orthogonal projection
operator onto M and by M⊥ the orthogonal complement of M .
Given a vector u ∈ Sd we denote by Sdu := {x ∈ Sd : x · u > 0}. The gnomonic projection operator
gdu : Sdu 7→ H(u) with respect to point u is defined by

gdu(v) = v
u · v − u. (2.1)

The inverse of the gnomonic projection (gdu)−1 : H(u) 7→ Sdu is given by

(gdu)−1(x) = x + u
‖x + u‖ , (2.2)

see [8, Section 4] for further background material about the gnomonic projection.

3 Proof of Theorem 1.1, Step 1: Reduction

We consider first the random polytope model K(s,2)
ηγ based on the Poisson point process ηγ . Applying

the multivariate Mecke formula for Poisson point processes [18, Corollary 3.2.3] we find that

Efd−1(K(s,2)
ηγ ) = 1

d!E
∑

(x1,...,xd)∈(ηγ)d6=

1{x1, . . . ,xd generate a facet of K(s,2)
ηγ }

= γd

d!

∫
Sd2,+
· · ·
∫
Sd2,+

P(x1, . . . ,xd generate a facet of K(s,2)
ηγ∪{x1,...,xd})σd(dx1) . . . σd(dxd),
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where the sum runs over all d-tuples of distinct points of ηγ . Next we apply the Blaschke–Petkantschin
formula from spherical integral geometry [5, Lemma 3.2], which states that∫

Sd
· · ·
∫
Sd
f(x1, . . . ,xd)σd(dx1) . . . σd(dxd) = ωd+1

2

∫
G(d+1,d)

[∫
Sd∩H

· · ·
∫
Sd∩H

f(x1, . . . ,xd)

× ∇d(x1, . . . ,xd)σd−1(dx1) . . . σd−1(dxd)] νd(dH),
(3.1)

where f : Sd → R is a Borel measurable function, G(d+1, d) is the Grassmannian of d-dimensional lin-
ear subspaces of Rd+1 endowed with rotation invariant Haar probability measure νd and∇d(x1, . . . ,xd)
is the Euclidean volume of the d-dimensional parallelotope spanned by x1, . . . ,xd. This formula is
a special case of more general kinematic formula obtained in [2] and can be easily derived from the
classical linear Blaschke–Petkantschin formula [18, Theorem 7.2.1].
By applying (3.1) and using the counting property of a Poisson point process we derive that

Efd−1(K(s,2)
ηγ ) = γdωd+1

2d!

∫
G(d+1,d)

(∫
Sd2,+∩H

· · ·
∫
Sd2,+∩H

∇d(x1, . . . ,xd)σd−1(dx1) . . . σd−1(dxd)
)

×
(

exp(−γσd(Sd2,+ ∩H+)) + exp(−γσd(Sd2,+ ∩H−))
)
νd(dH)

= γd

2d!

∫
Sd

(∫
Sd2,+∩H(z)

· · ·
∫
Sd2,+∩H(z)

∇d(x1, . . . ,xd)σd−1(dx1) . . . σd−1(dxd)
)

×
(

exp(−γσd(Sd2,+ ∩H+(z))) + exp(−γσd(Sd2,+ ∩H+(−z)))
)
σd(dz),

where in the last step we used the fact that each unit normal vector z ∈ Sd determines a hyperplane
H ∈ G(d+ 1, d). We set

I1(z) :=
∫
Sd2,+∩H(z)

· · ·
∫
Sd2,+∩H(z)

∇d(x1, . . . ,xd)σd−1(dx1) . . . σd−1(dxd),

I2(z) := σd(Sd2,+ ∩H+(z)),

and write

Efd−1(K(s,2)
ηγ ) = γd

2d!

∫
Sd
I1(z)

(
exp(−γI2(z)) + exp(−γI2(−z))

)
σd(dz)

= γd

d!

∫
Sd
I1(z) exp(−γI2(z))σd(dz),

where we used the fact that antipodal mapping z 7→ −z is isometric on Sd and we have I1(−z) = I1(z).
As a next step we introduce spherical coordinates. For this we choose an orthonormal basis e1, . . . , ed+1
of Rd+1 in such a way, that H1 = H(ed+1) and H2 = H(ed). Then

Sd2,+ = Sd ∩H+(ed) ∩H+(ed+1) = {w ∈ Sd : wd ≥ 0, wd+1 ≥ 0},

and we consider spherical coordinates, which are described by the map

Z : [0, π)× [0, π)× Sd−2 → Sd

(φ, ψ,u) 7→ (sinφ)(sinψ)u− (cosφ)(sinψ)ed − (cosψ)ed+1,

where we identify Sd∩H(ed)∩H(ed+1) with Sd−2. Hence, for a Borel measureable function f : Sd → R,
we have that∫

Sd
f(z)σd(dz) =

∫
Sd−2

∫ π

0

∫ π

0
f(Z(φ, ψ,u)) (sinψ)d−1dψ (sinφ)d−2dφσd−2(du).

Now, due to the symmetry of the wedge Sd2,+ with respect to span{ed, ed+1}, we have that

I1(Z(φ, ψ,u)) = I1(Z(π − φ, π − ψ,u)),
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ψ

φ

H(z)

H1

H2

ed

u

φ

φ

ψ

ψ

H(z)

ed+1

z

Figure 3.1: A spherical wedge with opening angle π/2 together with the great hyperspheres induced
by H1, H2 and H(z) (left) and its orthogonal projection to the hyperplane e⊥d+1 (right).

and

I2(Z(φ, ψ,u)) = σd(Sd2,+)− I2(Z(π − φ, π − ψ,u)),

for φ ∈ [0, π), ψ ∈
[
0, π2 ). Thus, we may restrict ourselves to φ ∈ [0, π) and ψ ∈ [0, π2 ), see Figure 3.1.

Applying this transformation to the last representation for Efd−1(K(s,2)
ηγ ) yields

Efd−1(K(s,2)
ηγ ) = γd

d!

∫
Sd−2

∫ π

0

∫ π/2

0
I1(Z(φ, ψ,u))

×
(
exp

(
− γI2(Z(φ, ψ,u))

)
+ exp

(
− γ

[
σd(Sd2,+)− I2(Z(φ, ψ,u))

]))
× (sinφ)d−2(sinψ)d−1 dψ dφσd−2(du).

(3.2)

Finally, for φ, ψ ∈ [0, π/2) we may reflect with respect to the hyperplane H0 := span{ed + ed+1} +
(H(ed) ∩ H(ed+1)) and switch the role of the hyperplanes H1 = H(ed+1) and H2 = H(ed). This
operation is an isometry on Sd and maps (φ, ψ) ∈ [0, π/2) × [0, π/2) to (φ̃, ψ̃) ∈ [0, π/2) × [0, π/2),
where φ̃, ψ̃ are determined due to Napier’s rules for right spherical triangles by

tan φ̃ = (tanψ)(sinφ), tanφ = (tan ψ̃)(sin φ̃),

see Figure 3.2. The mapping G(φ̃, ψ̃) = (φ, ψ) does not change the value of I1 and I2, i.e., I1 ◦G = I1
and I2 ◦G = I2, for φ̃, ψ̃ ∈ [0, π/2). Furthermore, if tanψ > 1/ cosφ, then

tan ψ̃ = tanφ
tan φ̃

1
cos φ̃

= 1
(tanψ)(cosφ)

1
cos φ̃

<
1

cos φ̃
.

This condition arises from the observation that for the normal n0 = 1√
2(ed+1 − ed) of H0 the angle

α := α(φ, ψ) between Z(φ, ψ,u) and n0, i.e.,

cosα = z · n0 = 1√
2

(
(sinψ)(cosφ)− cosψ

)
,

satisfies α+ (α ◦G) = π and

α(φ, ψ) < π

2 ⇐⇒ tanψ > 1
cosφ.
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H1 = H(ed+1)

H2 = H(ed)

β

H0

φ

ψ

φ̃

ψ̃

ψ̃

u

ed

ed+1

ed+ed+1
‖ed+ed+1‖

α
π
4

Figure 3.2: The relation between (φ, ψ) and (φ̃, ψ̃) is derived by reflection about H0.

We calculate

| det∇G| = tan ψ̃√
1 + (tan ψ̃)2(sin φ̃)2

and

sinφ = (tan ψ̃)(sin φ̃)√
1 + (tan ψ̃)2(sin φ̃)2

, sinψ = (cos ψ̃)
√

1 + (tan ψ̃)2(sin φ̃)2.

Hence,

(sinφ)d−2(sinψ)d−1| det∇G| = (sin φ̃)d−2(sin ψ̃)d−1.

This yields∫ π/2

0

∫ π/2

0
I1 exp(−γI2)(sinφ)d−2(sinψ)d−1 dψ dφ

=
∫ π/2

0

∫ arctan(1/ cosφ)

0
I1 exp(−γI2)(sinφ)d−2(sinψ)d−1 dψ dφ

+
∫ π/2

0

∫ arctan(1/ cos φ̃)

0
(I1 ◦G) exp(−γ(I2 ◦G))(sin φ̃)d−2(sin ψ̃)d−1 dψ̃ dφ̃

= 2
∫ π/2

0

∫ arctan(1/ cosφ)

0
I1 exp(−γI2)(sinφ)d−2(sinψ)d−1 dψ dφ.

Since for all ε < 1/2, we have that

{(φ, ψ) ∈ [0, π/2)2 : tanψ ≤ 1/ cosφ} ⊂ [0, π/2)2 \
(
[0, ε)× [3π/8, π/2)

)
,

see Figure 3.3, together with (3.2) we conclude that for any such ε,

Efd−1(K(s,2)
ηγ ) ≥ 2

d!γ
d
∫
Sd−2

∫ ε

0

∫ ε

0
I1 exp(−γI2) (sinφ)d−2(sinψ)d−1 dψ dφσd−2(du) (3.3)
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φ

ψ

tanψ ≤ secφ

π
2

π
4

π
2

ε

3π
8

ε

0

Figure 3.3: The domain [0, π2 )2 with the two regions bounded by the condition tanψ = secφ.

and

Efd−1(K(s,2)
ηγ )

≤ 2
d!γ

d
∫
Sd−2

∫ ε

0

∫ ε

0
I1 exp(−γI2) (sinφ)d−2(sinψ)d−1 dψ dφσd−2(du)

+ 2
d!γ

d
∫
Sd−2

∫ ε

0

∫ 3π/8

ε
I1 exp(−γI2) (sinφ)d−2(sinψ)d−1 dψ dφσd−2(du)

+ 2
d!γ

d
∫
Sd−2

∫ π

ε

∫ π/2

0
I1 exp(−γI2) (sinφ)d−2(sinψ)d−1 dψ dφσd−2(du)

+ 1
d!γ

d
∫
Sd−2

∫ π

0

∫ π/2

0
I1 exp(−γ[σd(Sd2,+)− I2]) (sinφ)d−2(sinψ)d−1 dψ dφσd−2(du). (3.4)

In order to proceed we need to derive estimates for I1(Z(φ, ψ,u)) and I2(Z(φ, ψ,u)) for φ ∈ (0, π),
ψ ∈ (0, π/2) and u ∈ Sd−2. This is the purpose of Step 2 presented in the next section.

4 Proof of Theorem 1.1, Step 2: Estimates for I1 and I2

4.1 Estimate for I1

Let us start with the analysis of I1(Z(φ, ψ,u)). First of all we will prove, that Sd2,+∩H(z) is a spherical
wedge.

Lemma 4.1 (The Shape of Sd2,+ ∩H(z)). The spherical convex set Sd2,+ ∩H(z) is a spherical wedge
of dimension d − 1 with an opening angle β(z) ∈ [0, π]. Moreover for any φ ∈ [0, π],ψ ∈ [0, π2 ] and
u ∈ Sd−2 we have for β(Z(φ, ψ,u)) = β, that

sin β = sinφ√
(cosψ)2 + (sinφ)2(sinψ)2 and cosβ = (cosφ)(cosψ)√

(cosψ)2 + (sinφ)2(sinψ)2 (4.1)

and therefore
tan β = tanφ

cosψ .

Furthermore, if ε ∈ (0, 1
2) then

tan β = (1 +O(ε))φ for all φ, ψ ∈ (0, ε). (4.2)

Proof. In order to prove this statement we may consider the positive hull of Sd2,+∩H(z) in Rd+1 which
yields a d-dimensional cone C with a lineality space L = H(ed+1) ∩H(ed) ∩H(z) of dimension d− 2

9



ed+1

edu

y1

y2

β
projL⊥C

Figure 4.1: Illustration of the 2-dimensional wedge projL⊥C.

if z is in general position and in this case projL⊥C = L⊥ ∩ C is a proper 2-dimensional cone with
opening angle β := β(z). To prove (4.1), we choose the parametrization z = Z(φ, ψ,u) as introduced
in Section 3. We first note that L = H(ed+1) ∩H(ed) ∩H(z) = H(ed+1) ∩H(ed) ∩H(u),

H(z) ∩ Sd2,+ = {y ∈ Sd : y · ed+1 ≥ 0,y · ed ≥ 0,y · z = 0}

and
y · z = 0 ⇐⇒ (sinφ)(sinψ)(y · u) = (cosψ)(y · ed+1) + (cosφ)(sinψ)(y · ed).

Thus, the 2-dimensional wedge projL⊥C ⊂ L⊥ = span{ed+1, ed,u} is spanned by the two vectors

y1 = (sinφ)(sinψ)ed+1 + (cosψ)u and y2 = (sinφ)ed + (cosφ)u,

see Figure 4.1. Thus,

sin β = ‖y1 × y2‖
‖y1‖‖y2‖

= sinφ√
(cosψ)2 + (sinφ)2(sinψ)2

and

cosβ = y1 · y2
‖y1‖‖y2‖

= (cosφ)(cosψ)√
(cosψ)2 + (sinφ)2(sinψ)2

for all φ ∈ [0, π] and ψ ∈ [0, π2 ], proving (4.1).
Now, if ε ∈ (0, 1

2), then

φ ≤ tan β = tanφ
cosψ ≤

1 + ε

1− εφ ≤ (1 + 4ε)φ for all φ, ψ ∈ (0, ε).

Thus, tan β = (1 +O(ε))φ, which proves (4.2).

We are now ready to formulate the result for I1(Z(φ, ψ,u)).

Lemma 4.2. For any φ ∈ [0, π), ψ ∈ [0, π2 ) and u ∈ Sd−2 we have that

I1(Z(φ, ψ,u)) ≤
(
ωd
2

)d
.

Furthermore, for any φ ∈ [0, π), ψ ∈ [0, π2 ) and u ∈ Sd−2 we have

I1(Z(φ, ψ,u)) ≤ Ad
2

(
ωd+1
4π

)d (
2 tan β(Z(φ, ψ,u))

2

)d+1
,

10



and, if ε ∈ (0, 1
2), then

I1(Z(φ, ψ,u)) = (1 +Od(ε))
Ad
2

(
ωd+1
4π

)d
φd+1, ∀φ, ψ ∈ (0, ε).

Here, the constant Ad is given by

Ad := E∇d((U1,Z1, 1), . . . , (Ud,Zd, 1)) (4.3)

with random variables U1, . . . , Ud uniformly distributed on [−1, 1] and random vectors Z1, . . . ,Zd dis-
tributed according to a beta-prime distribution on Rd−2 with parameter d+1

2 and probability density
function f̃d−2, d+1

2
as in (1.4) in such a way that U1, . . . , Ud,Z1, . . . ,Zd are independent.

Proof. As it was shown in Lemma 4.1, W (φ, ψ,u) := H(Z(φ, ψ,u)) ∩ Sd2,+ is a (d − 1)-dimensional
spherical wedge with an opening angle β := β(Z(φ, ψ,u)). We recall, that

I1 := I1(Z(φ, ψ,u)) =
∫
W (φ,ψ,u)

· · ·
∫
W (φ,ψ,u)

∇d(x1, . . . ,xd)σd−1(dx1) . . . σd−1(dxd).

Since the volume of the parallelotope W 0
d = {

∑d
i=1 λixi : (λ1, . . . , λd) ∈ [0, 1]d} is bounded by the

product of its side lengths we conclude that ∇d(x1, . . . ,xd) = vold(W 0
d ) ≤

∏d
i=1 ‖xi‖ = 1, which yields

I1 ≤ σd−1(W (φ, ψ,u))d ≤ (ωd/2)d.

This settles the first inequality.
For the next step we consider the gnomonic projection gd−1

p with respect to the center of symmetry
p ∈ Sd of the spherical wedge W (φ, ψ,u). After applying a corresponding rotation we obtain, that
the image of the set W (φ, ψ,u) under the gnomonic projection gd−1

p is [− tan β
2 , tan β

2 ]× Rd−2, which
is in particular independent of u since β is independent of u (see Lemma 4.1). Thus, by definition of
the inverse gnomonic projection (2.2) and by [9, Proposition 4.2] we have

I1 =
∫
([− tan β

2 ,tan β
2 ]×Rd−2)d

∇d

(
y1 + p√
1 + ‖y1‖2

, . . . ,
yd + p√
1 + ‖yd‖2

)
d∏
i=1

dyi
(1 + ‖yi‖2)

d
2

=
∫
([− tan β

2 ,tan β
2 ]×Rd−2)d

∇d(y1 + p, . . . ,yd + p)
d∏
i=1

dyi
(1 + ‖yi‖2)

d+1
2
.

(4.4)

Further applying the change of variables

yi + p =
(

tan(β/2)ui, zi, 1
)
, 1 ≤ i ≤ d,

and recalling (1.4) we obtain

I1 =
(

tan β2

)d+1 ∫
([−1,1]×Rd−2)d

∇d
(
(u1, z1, 1), . . . , (ud, zd, 1)

) d∏
i=1

dui dzi
(1 + (tan β

2 )2u2
i + ‖zi‖2)

d+1
2

≤
(

tan β2

)d+1
2d c̃−d

d−2, d+1
2

∫
([−1,1]×Rd−2)d

∇d
(
(u1, z1, 1), . . . , (ud, zd, 1)

) d∏
i=1

dui
2 f̃d−2, d+1

2
(zi)dzi

= Ad
2

(
ωd+1
4π

)d (
2 tan β2

)d+1
,

where we used the fact that

c̃d−2, d+1
2

=
Γ(d+1

2 )
π
d−2

2 Γ
(
d+1

2 −
d−2

2

) =
2Γ
(
d+1

2

)
π
d−1

2
= 4π
ωd+1

.
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In particular, for ε ∈ (0, 1
2) this yields, by Lemma 4.1 and the fact that 2 tan(β/2) ≤ tan β for all

β ∈ [0, π/2], that

I1 ≤
Ad
2

(
ωd+1
4π

)d (tanφ
cosψ

)d+1
≤ Ad

2

(
ωd+1
4π

)d
((1 + 4ε)φ)d+1 = (1 +Od(ε))

Ad
2

(
ωd+1
4π

)d
φd+1,

for all φ, ψ ∈ (0, ε).
To conclude the lower bound we just note that by Lemma 4.1,

1
(1 + (tan β

2 )2u2
i + ‖zi‖2)

d+1
2
≥ 1

(1 + ‖zi‖2 + (tan β
2 )2)

d+1
2
≥ 1−Od(ε)

(1 + ‖zi‖2)
d+1

2
,

which yields, by (4.2), that

I1 ≥ (1−Od(ε))
Ad
2

(
ωd+1
4π

)d (
2 tan β2

)d+1
= (1−Od(ε))

Ad
2

(
ωd+1
4π

)d
φd+1,

for all φ, ψ ∈ (0, ε).

Remark 4.3. We were not able to determine explicitly the value of the constant Ad in (4.3) for d > 2.
However, for d = 2 we have that

A2 =
∫ 1

−1

∫ 1

−1
|x− y| dx2

dy

2 = 2
3 .

4.2 Estimate for I2

We continue with investigating I2(Z(φ, ψ,u)).

Lemma 4.4. For any φ ∈ [0, π), ψ ∈
[
0, π2

)
and u ∈ Sd−2 we have

I2(Z(φ, ψ,u)) = ωd+1
4π (ψ − arcsin(cosφ sinψ)).

Moreover, there exists ε0 > 0 such that for all ε ∈ (0, ε0) we have

I2(Z(φ, ψ,u)) = (1 +O(ε))ωd+1
8π φ2ψ, for all φ, ψ ∈ (0, ε), (4.5)

and

I2(Z(φ, ψ,u)) ≥ ωd+1
2π3 φ

2ψ, for all φ ∈ (0, π), ψ ∈ (0, π/2). (4.6)

Proof. We will start with the case d = 2. In this situation Sd ∩H(e3) ∩H(e2) = {±e1} and, thus,

Z(φ, ψ) := Z(φ, ψ, e1) = (sinφ)(sinψ)e1 − (cosφ)(sinψ)e2 − (cosψ)e3,

which describes the usual spherical coordinates in R3. Further,

I2(Z(φ, ψ)) = σ2(S2
2,+ ∩H+(Z(φ, ψ))),

where S2
2,+ ∩ H+(Z(φ, ψ)) is a spherical triangle with angles π

2 , ψ and arccos(cosφ sinψ). Then by
Girard’s theorem about the area of a spherical triangle we conclude

σ2(Sd2,+ ∩H+(Z(φ, ψ))) = ψ + arccos(cosφ sinψ) + π

2 − π = ψ − arcsin(cosφ sinψ). (4.7)

Let us now consider the case d ≥ 3. First of all we note that for z ∈ Sd given by

I2(z) = σd(Sd2,+ ∩H+(z)) =
∫
Sd

1(x ∈ Sd2,+ ∩H+(z))σd(dx).

12



Due to invariance of the spherical Lebesgue measure with respect to rotations and for convenience, we
apply a rotation ρd to the wedge Sd2,+ so that the normal vector to the hyperplane H1 is 1√

2(ed+1−ed)
and the normal vector to the hyperplane H2 is 1√

2(ed+1 + ed). We keep the notation Sd+ = {x ∈
Sd : xd+1 ≥ 0} and let z′ = ρd(z). Consider a gnomonic projection gdpd with respect to the north pole
pd := (0, 0, . . . , 1) of the sphere Sd

gdpd :

 Sd+ → Rd,
(x1, . . . , xd, xd+1) 7→

(
x1
xd+1

, . . . , xd
xd+1

)
,

where we identify span{e1, . . . , ed} with Rd. Under gdpd the half great hyperspheres H1∩Sd+ andH2∩Sd+
are mapped onto the hyperplanes L1(u1), L1(u2) ⊂ Rd with the normal vectors u1 = (0, . . . , 0, 1) and
u2 = (0, . . . , 0,−1), respectively, and the distance one to the origin. Analogously, the half great
hypersphere H(z′) ∩ Sd+ is mapped onto the hyperplane L(w) with normal vector

w =

− z′1√
1− (z′d+1)2

, . . . ,− z′d√
1− (z′d+1)2


and the distance z′d+1√

1−(z′
d+1)2 to the origin. Thus, by [9, Proposition 4.2] we have that

σd(Sd2,+ ∩H+(z))
σd(Sd+)

= c̃d, d+1
2

∫
Rd

1(y ∈ L1(u1)− ∩ L1(u2)− ∩ L(w)+)(1 + ‖y‖2)−
d+1

2 dy.

Next, we use the fact that the beta-prime density f̃d, d+1
2

is invariant with respect to rotations and we
consider a rotation θ : Rd 7→ Rd, such that

θu1 = u1, θu2 = u2, θw = (0, . . . , 0, td−1, td).

Since θ leaves the dth coordinate axis and the hyperplanes L1(u1), L1(u2) unchanged, we have that

wd = (θw)d = td = −z′d/
√

1− (z′d+1)2.

On the other hand ‖w‖ = ‖θw‖ = 1, and so

(θw)d−1 = td−1 = −

√√√√1− (z′d+1)2 − (z′d)2

1− (z′d+1)2 .

Thus, applying the change of variables y = θ−1ỹ we arrive at

σd(Sd2,+ ∩H+(z))
σd(Sd+)

= c̃d, d+1
2

∫
Rd

1(ỹ ∈ L1(u1)− ∩ L1(u2)− ∩ L(θw)+)(1 + ‖ỹ‖2)−
d+1

2 dỹ.

Now, we use another crucial property of the beta-prime distribution, which says that under orthogonal
projection projM : Rd 7→M onto a k-dimensional linear subspaceM the beta-prime distribution on Rd
with density f̃d,β maps to a beta-prime distribution on M with density f̃k,β− d−k2

. Strictly speaking, if
a random vector X on Rd has density function f̃d,β , then the projected random vector IM (projM (X))
has density f̃k,β− d−k2

, where IM : M 7→ span{e1, . . . , ek} is an isometry such that IM (projM (0)) = 0
(see [13, Lemma 3.1]). We consider the projection projE onto the 2-dimensional linear subspace
E := {y ∈ Rd : y1 = . . . = yd−2 = 0}, which we identify with R2. Under this projection we have

projE(L1(u1)) = {(sd−1, sd) ∈ R2 : sd = 1},
projE(L1(u2)) = {(sd−1, sd) ∈ R2 : sd = −1},

projE(L(θw)) =
{

(sd−1, sd) ∈ R2 : − sd−1
√

1− (z′d+1)2 − (z′d)2 − sdz′d = z′d+1

}
,
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and

σd(Sd2,+ ∩H+(z))
σd(Sd+)

= c̃2, 32

∫
R2

1((sd−1, sd) ∈ projE(L1(u1))− ∩ projE(L1(u2))− ∩ πE(L(θw))+)

× (1 + s2
d−1 + s2

d)−
3
2dsd−1dsd.

Considering the gnomonic projection g2
p2 of the two-dimensional half-sphere S2

+ with respect to the
north pole p2 := (0, 0, 1) we note that the integral above describes the spherical area of the spherical
triangle S2 ∩ H̃+

1 ∩ H̃
+
2 ∩ H(v′)+, where H̃1 and H̃2 are 2-dimensional linear subspaces in R3 with

normal vectors 1√
2(e3 − e2) and 1√

2(e3 + e2), respectively, and v′ = (
√

1− (z′d)2 − (z′d+1)2, z′d, z
′
d+1).

Finally we consider a rotation ρ3 in R3 which is defined as an image of the restriction of rotation ρd on
the linear subspace span{ed+1, ed, ed−1} under the isometry I : span{ed+1, ed, ed−1} 7→ R3 satisfying
I(ed+1) = e3 and I(ed) = e2. Since the last two coordinates of the vectors z′ and v′ are identical, the
last two coordinates of the vectors z = ρ−1

d (z′) and v := ρ−1
3 (v′) are identical as well. From this we

finally conclude that

σd(Sd2,+ ∩H+(z)) =
σd(Sd+)
σ2(S2

+)
σ2(S2

2,+ ∩H+(v)),

which has already been computed at the beginning of the proof (see (4.7)) and depends only on the
last two coordinates zd+1, zd of the vector z. Thus,

I2(Z(φ, ψ,u)) = ωd+1
4π (ψ − arcsin(cosφ sinψ)). (4.8)

In order to prove the second statement of the lemma we consider the function

f(φ, ψ) := ψ − arcsin(cosφ sinψ)
ψφ2 , φ ∈ (0, π], ψ ∈ (0, π/2].

In Appendix A we show that there exists ε > 0 such that

1
2 − ε ≤ f(φ, ψ) ≤ 1

2 + ε, for all φ, ψ ∈ (0, ε), (4.9)

and that f has the absolute minimum 2/π2, which is achieved along the edge φ = π in the rectangle
(φ, ψ) ∈ [0, π]× [0, π2 ]. This yields (4.5) and (4.6).

5 Proof of Theorem 1.1, Step 3: Conclusion for the Poisson model

We are now ready to finish the proof of Theorem 1.1 for the Poisson model K(s,2)
ηγ . Before we continue

let us summarize the bounds obtained in Lemmas 4.2 and 4.4 in the form we will apply them. There
exist 0 < ε0 < 1/2 and constants cd, Cd, θd,Θd > 0, such that for all u ∈ Sd−2 and ε ∈ (0, ε0) we have
that

φ, ψ ∈
(
0, ε
)

: Bd(1− θdε)φd+1 ≤ I1(Z(φ, ψ,u)) ≤ Bd(1 + Θdε)φd+1,

bd(1− θdε)φ2ψ ≤ I2(Z(φ, ψ,u)) ≤ bd(1 + Θdε)φ2ψ,

where
bd = ωd+1

8π and Bd = Ad
2

(
ωd+1
4π

)d
,

and

φ ∈
(
0, ε
)
, ψ ∈

[
ε, 3π/8

)
: I1(Z(φ, ψ,u)) ≤ Cdφd+1, I2(Z(φ, ψ,u)) ≥ cdφ2ε,

φ ∈
[
ε, π

)
, ψ ∈

(
0, π/2

)
: I1(Z(φ, ψ,u)) ≤ Cd, I2(Z(φ, ψ,u)) ≥ cdε2ψ.
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Note that we used Lemma 4.1 to derive that

2 tan β2 ≤
2 sin β

1 + cosβ ≤
2φ

cos(3π/8) ≤ 6φ for all φ ∈ (0, ε), ψ ∈ [ε, 3π/8).

Proceeding with Estimate (3.3) we find that

Efd−1(K(s,2)
ηγ ) ≥ 2

d!γ
d
∫
Sd−2

∫ ε

0

∫ ε

0
(sinφ)d−2(sinψ)d−1I1(Z(φ, ψ,u))

× exp(−γI2(Z(φ, ψ,u))) dψ dφσd−2(du)

≥ (1− θdε)
2ωd−1Bd

d! γd
∫ ε

0

∫ ε

0
(sinφ)d−2(sinψ)d−1φd+1e−γbd(1+Θdε)φ2ψ dψ dφ.

Using the bound sin x ≥ (1− ε)x, which is valid for x ∈
[
0, ε
)
, we arrive at

Efd−1(K(s,2)
ηγ ) ≥ (1−Od(ε))

2ωd−1Bd
d! γd

∫ ε

0

∫ ε

0
φ2d−1ψd−1e−γbd(1+Θdε)φ2ψ dψ dφ

= (1−Od(ε))
ωd−1Bd
d! γd

∫ ε2

0

∫ ε

0
sd−1td−1e−γbd(1+Θdε)st dt ds

= (1−Od(ε))
ωd−1Bd
d!bdd

∫ γbd(1+Θdε)ε2

0
sd−1

∫ ε

0
td−1e−st dt ds. (5.1)

For the upper bound we first note that

σd(Sd2,+)− I2(Z(φ, ψ,u)) = ωd+1
4π

(
π − ψ + arcsin(cos(φ) sin(ψ))

)
≥ ωd+1

4π
1
3

(
(π2 − ψ) + (π − φ)

)
= ωd+1

4π
1
3
(
ψ̃ + φ̃

)
,

(5.2)

for all φ ∈ (0, π) and ψ ∈ (0, π/2) and with φ̃ = π − φ and ψ̃ = π/2 − ψ, see Appendix A.2 for the
proof of the inequality. Using this on (3.4) and applying the estimate sin x ≤ x, which holds for all
x ∈

[
0, π

]
, we find that

Efd−1(K(s,2)
ηγ ) ≤ (1 +Od(ε))

2ωd−1Bd
d! γd

∫ ε

0

∫ ε

0
φ2d−1ψd−1e−γbd(1−θdε)φ2ψ dψ dφ

+ 2ωd−1Cd
d! γd

∫ ε

0

∫ 3π/8

ε
φ2d−1e−γcdφ

2ε dψ dφ

+ 2ωd−1Cd
d! γd

∫ π

ε

∫ π/2

0
ψd−1e−γcdε

2ψ dψ dφ

+ ωd−1Cd
d! γd

∫ π

0

∫ π/2

0
φd−2 exp

(
−γωd+1

12π (φ+ ψ)
)

dψ dφ

=: J1 + J2 + J3 + J4.

(5.3)

Let us consider each of the terms J1, J2, J3, J4 separately. For J1 we get

J1 = (1 +Od(ε))
ωd−1Bd
d!bdd

∫ γbd(1−θdε)ε2

0
sd−1

∫ ε

0
td−1e−st dt ds.

Next, for J2 one has that

J2 ≤
3πωd−1Cd

4d!

∫ ε

0
φ2d−1γde−γcdε φ

2 dφ

= 3πωd−1Cd
4d!εdcdd

∫ γcdε
3

0
sd−1e−s ds ≤ 3πωd−1Cd

4d!εdcdd
Γ(d),
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and similarly

J3 ≤
2πωd−1Cd

d!

∫ π/2

0
ψd−1γde−γcdε

2 ψ dψ

= 2πωd−1Cd
d!ε2dcdd

∫ cdπε
2γ/2

0
td−1e−tdt ≤ 2πωd−1Cd

d!ε2dcdd
Γ(d).

Finally, for J4 we find that

J4 = ωd−1Cd
d!

( 12π
ωd+1

)d(∫ γ
ωd+1
12π

0
sd−2e−s ds

)(∫ γ
ωd+1
12π

0
e−t dt

)

≤ ωd−1Cd
d!

( 12π
ωd+1

)d
Γ(d− 1).

Thus,
lim sup
γ→∞

J2 + J3 + J4
log γ = 0,

and finally setting
G(α, γ) :=

∫ αγ

0
sd−1

∫ ε

0
td−1e−st dt ds

we find that limγ→∞G(α, γ) =∞ for any α > 0. Using L’Hospital’s rule we conclude that

lim
γ→∞

G(α, γ)
log γ = lim

γ→∞
α (αγ)d−1 ∫ ε

0 t
d−1e−αγ t dt

1/γ = lim
γ→∞

∫ αγε

0
zd−1e−z dz = (d− 1)!

Combining all obtained bounds together with (5.1) and (5.3) yields

lim inf
γ→∞

Efd−1(K(s,2)
ηγ )

log γ ≥ (1−Od(ε))ωd−1
Bd
dbdd

,

and

lim sup
γ→∞

Efd−1(K(s,2)
ηγ )

log γ ≤ (1 +Od(ε))ωd−1
Bd
dbdd

.

Since this is true for arbitrarily small ε ∈ (0, ε0) we finally derive that

Efd−1(K(s,2)
ηγ ) = 2d−1Adωd−1

d
(log γ)(1 + od(1)), as γ →∞.

This concludes the proof of Theorem 1.1 for the Poisson model.

6 Proof of Theorem 1.1, Step 4: Conclusion for the binomial model

Let us now consider the binomial model K(s,2)
n . We have that

Efd−1(K(s,2)
n ) = 1

d!E
∑

1≤i1<...<id≤n
1{xi1 , . . . ,xid generate a facet of K(s,2)

n }

=
(
n

d

)∫
Sd2,+
· · ·
∫
Sd2,+

P(x1, . . . ,xd generate a facet of K(s,2)
n ) σd(dx1)

σd(Sd2,+)
. . .

σd(dxd)
σd(Sd2,+)

,
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and by applying the spherical Blaschke-Petkantschin formula as in in Step 1 in Section 3, we see that

Efd−1(K(s,2)
n ) = ωd+1

2σd(Sd2,+)d

(
n

d

)∫
G(d+1,d)

×
[∫

Sd2,+∩H
· · ·
∫
Sd2,+∩H

∇d(x1, . . . ,xd)σd−1(dx1) . . . σd−1(dxd)
]

×

(σd(Sd2,+ ∩H+)
σd(Sd2,+)

)n−d
+
(
σd(Sd2,+ ∩H−)

σd(Sd2,+)

)n−d νd(dH)

= 1
σd(Sd2,+)d

(
n

d

)∫
Sd
I1(z)

(
1− I2(z)

σd(Sd2,+)

)n−d
σd(dz).

Using the same parametrization as before we conclude further that

Efd−1(K(s,2)
n ) = 1

σd(Sd2,+)d

(
n

d

)∫
Sd−2

∫ π

0

∫ π/2

0
I1(Z(φ, ψ,u))

×

(1− I2(Z(φ, ψ,u))
σd(Sd2,+)

)n−d
+
(
I2(Z(φ, ψ,u))
σd(Sd2,+)

)n−d
× (sinφ)d−2(sinψ)d−1 dψ dφσd−2(du).

With the same bounds on I1 and I2 as developed in Step 2 in Section 4 we obtain

Efd−1(K(s,2)
n ) ≥ (1−Od(ε))ωd−1Bd

2
σd(Sd2,+)d

(
n

d

)∫ ε

0

∫ ε

0
φ2d−1ψd−1

(
1− (1 + Θε)bd

σd(Sd2,+)
φ2ψ

)n−d
dψ dφ

≥ (1−Od(ε))ωd−1
Bd
d!bdd

d!
nd

(
n

d

)∫ n
(1+Θε)bd
σd(Sd2,+)

ε2

0

∫ ε

0
sd−1td−1

(
1− st

n

)n−d
dt ds.

We note that
lim
n→∞

d!
nd

(
n

d

)
= 1,

and define
H(α, n) :=

∫ nα

0

∫ ε

0
sd−1td−1

(
1− st

n

)n−d
dt ds.

Then
lim
n→∞

H(α, n)
log n = (d− 1)!,

see, for example, [1, Lem. on p. 296]. Thus,

lim inf
n→∞

Efd−1(K(s,2)
n )

log n ≥ (1−Od(ε))ωd−1
Bd
dbdd

.

The upper bound

lim sup
n→∞

Efd−1(K(s,2)
n )

log n ≤ (1 +Od(ε))ωd−1
Bd
dbdd

,

can be obtained in a similar fashion. Finally we conclude that

Efd−1(K(s,2)
n ) = 2d−1Adωd−1

d
(log n)(1 + od(1)), as n→∞.

This finishes the proof of Theorem 1.1.
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A Analytic Estimates

A.1 Estimate for Step 2

We aim to show that there exists ε > 0 such that
1
2 − ε ≤

x− arcsin(sin(x) cos(y))
xy2 ≤ 1

2 + ε for all x, y ∈ (0, ε).

To prove that this is indeed the case we first recall that for z ∈ (−1, 1) we have

arcsin z =
∞∑
k=0

(2k − 1)!!
(2k)!!

z2k+1

2k + 1 = z + 1
6z

3 + 3
40z

5 + 5
112z

7 + ...

and for x, y ∈ R we find

sin(x) cos(y) = sin(x+ y) + sin(x− y)
2 = 1

2

∞∑
k=0

(−1)k

(2k + 1)!

2k+1∑
m=0

(
2k + 1
m

)
x2k+1−mym(1 + (−1)m)

=
∞∑
k=0

(−1)k

(2k + 1)!

k∑
m=0

(
2k + 1

2m

)
x2(k−m)+1y2m

= sin(x)− xy2
∞∑
k=0

(−1)k

(2k + 3)!

k∑
m=0

(
2k + 3
2m+ 2

)
x2(k−m)y2m

= sin(x)− xy2

2 (1 +G(x, y)),

where

G(x, y) = −2
∞∑
k=0

(−1)k

(2k + 5)!

k+1∑
m=0

(
2k + 5
2m+ 2

)
x2(k+1−m)y2m = −2x2 + y2

12 + o(‖(x, y)‖2) = o(‖(x, y)‖),

as (x, y)→ 0. Thus,

arcsin(sin(x) cos(y))

=
∞∑
k=0

(2k − 1)!!
(2k)!!

1
2k + 1

2k+1∑
m=0

(
2k + 1
m

)
sin(x)2k+1−m

(
−xy

2

2 (1 +G)
)m

= arcsin(sin(x)) +
∞∑
k=0

(2k − 1)!!
(2k)!!

1
2k + 1

2k+1∑
m=1

(
2k + 1
m

)
sin(x)2k+1−m

(
−xy

2

2 (1 +G)
)m

= x− xy2

2 (1 +G)
(

1 +
∞∑
k=0

(2k + 1)!!
(2k + 2)!!

1
2k + 3

2k+3∑
m=0

(
2k + 3
m+ 1

)
sin(x)2k+2−m

(
−xy

2

2 (1 +G)
)m)

= x− xy2

2 (1 + o(‖(x, y)‖)).

So, for
f(x, y) := x− arcsin(sin(x) cos(y))

xy2 = 1
2 + o(‖(x, y)‖) as x, y → 0,

the total derivative of f at (x, y) = (0, 0) exists and is given by

df(0, 0) = lim
(x,y)→(0,0)

f(x, y)− 1
2

‖(x, y)‖ = 0.

In particular this implies that there exists ε > 0 such that
1
2 − ε ≤ f(x, y) ≤ 1

2 + ε for all x, y ∈ (0, ε).
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Next, we show that
f(x, y) ≥ 2

π2 for all x ∈ [0, π/2] and y ∈ [0, π].

Let us fix y0 ∈ (0, π) and consider function gy0(x) := f(x, y0). It is clear, that for y0 = π/2 we have
gy0(x) = 4/π2 for any x ∈ (0, π/2). In the next step we will show, that for y0 ∈ (0, π/2) function
gy0(x) is strictly increasing and for y0 ∈ (π/2, π) function gy0(x) is strictly decreasing on the interval
x ∈ (0, π/2).
Let us start with the case y0 ∈ (0, π/2). Consider the derivative

g′y0(x) = − 1
x2y2

0

( x cos(x) cos(y0)√
1− sin(x)2 cos(y0)2 − arcsin(sin(x) cos(y0))

)
.

It is clear, that gy0(x) is strictly increasing on the interval x ∈ (0, π/2) if and only if g′y0(x) > 0 on
this interval, which is equivalent to

x cos(x) cos(y0)√
1− sin(x)2 cos(y0)2 < arcsin(sin(x) cos(y0)).

Consider a change of variables s := sin(x) ∈ (0, 1), t0 := cos(y0) ∈ (0, 1). Then the inequality above is
equivalent to

t0 arcsin(s)
√

1− s2 < arcsin(st0)
√

1− s2t20. (A.1)

Denote by r(z) := arcsin(z)
√

1− z2 and by q(t0) := r(t0s) − t0r(s). Then (A.1) is equivalent to
q(t0) > 0 for t0 ∈ (0, 1). It is easy to verify that q(0) = q(1) = 0 and

q′′(t0) = s2r′′(t0s) < 0, s, t0 ∈ (0, 1),

since r(z) is strictly concave on the interval (0, 1). This finishes the proof of the first statement.
In the case y0 ∈ (π/2, π) we apply the change of variables ỹ0 := π − y0 ∈ (0, π) and note that

g′y0(x) = −g′ỹ0(x) < 0,

as follows from the previous calculations. Thus,

inf
x∈(0,π/2),y∈(0,π)

f(x, y) = min
(

inf
y∈(0,π/2)

f(0, y), inf
y∈(π/2,π)

f
(π

2 , y
)
,

4
π2

)
.

We calculate

inf
y∈(0,π/2)

f(0, y) = inf
y∈(0,π/2)

lim
x→0

f(x, y) = inf
y∈(0,π/2)

1− cos(y)
y2 ≥ 1

2 ,

and

inf
y∈(π/2,π)

f
(π

2 , y
)

= inf
y∈(π/2,π)

2
yπ

= 2
π2 ,

which implies that f(x, y) ≥ 2/π2 in the rectangle (x, y) ∈ [0, π/2]× [0, π].

A.2 Proof of (5.2) in Step 3

We show that

π − x+ arcsin(sin(x) cos(y)) ≥ 1
3 ((π/2− x) + (π − y)) for all x ∈ (0, π/2), y ∈ (0, π).
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Using the qualities sin x = cos(π/2− x), cos y = − cos(π − y), arcsin(−x) = − arcsin x and making a
change of variables x = π/2− x and y = π − y we see, that the above inequality is equivalent to

x+ π/2− arcsin(cos(x) cos(y)) ≥ 1
3(x+ y), for all x ∈ (0, π/2), y ∈ (0, π).

We use the estimate π/2− arcsin z ≥
√

1− z for z ∈ [−1, 1], and cos z ≤ 1− z2/5 for all z ∈ [0, π], to
find that

x+ π/2− arcsin(cos(x) cos(y)) ≥ x+
√

1− (1− x2/5)(1− y2/5)

= x+ 1
5

√
5(x2 + y2)− x2y2 ≥ x+ y

3 , for all x ∈ (0, π/2), y ∈ (0, π),

where the last inequality is an exercise.

Acknowledgement

The authors started this project within a working group that formed during the workshop New Per-
spectives and Computational Challenges in High Dimensions at the Mathematisches Forschungsinsti-
tut Oberwolfach (MFO) and continued to work during the virtual Trimester Program The Interplay
between High Dimensional Geometry and Probability at the Hausdorff Research Institute for Mathem-
atics (HIM). All support is gratefully acknowledged.
CT has also been supported by the DFG priority program SPP 2265 Random Geometric Systems. AG
was supported by the DFG under Germany’s Excellence Strategy EXC 2044 – 390685587, Mathemat-
ics Münster: Dynamics - Geometry - Structure. EMW is supported by NSF grant DMS-2103482 and
by Simons Fellowship 678608.

References
[1] F. Affentranger and J. A. Wieacker, On the convex hull of uniform random points in a simple

d-polytope, Discrete Comput. Geom. 6 (1991), 291–305.

[2] E. Arbeiter and M. Zähle, Kinematic relations for Hausdorff moment measures in spherical spaces,
Math. Nachr. 153 (1991), 333–348.

[3] I. Bárány, Random polytopes, convex bodies, and approximation In Stochastic Geometry, 77–118,
Lecture Notes in Math. 1892, Springer (2007).

[4] I. Bárány, C. Buchta, Random polytopes in a convex polytope, independence of shape, and con-
centration of vertices, Math. Ann. 297 (1993), 467–497.

[5] I. Bárány, D. Hug, M. Reitzner, R. Schneider, Random points in halfspheres, Random Structures
Algorithms 50 (2017), 3–22.

[6] F. Besau, C. Schütt, E. M. Werner, Flag numbers and floating bodies, Adv. Math. 338 (2018),
912–952.

[7] F. Besau, M. Ludwig, E. M. Werner, Weighted floating bodies and polytopal approximation, Trans.
Amer. Math. Soc. 370 (2018), 7129–7148.

[8] F. Besau, F. Schuster, Binary operations in spherical convex geometry, Indiana Univ. Math. J.
65 (2016), 1263–1288.

[9] F. Besau, E. M. Werner, The spherical convex floating body, Adv. Math. 301 (2016), 867–901.

[10] K. J. Böröczky, F. Fodor, D. Hug, The mean width of random polytopes circumscribed around a
convex body, J. Lond. Math. Soc. 81 (2010), 499–523.

20



[11] D. Hug, Random polytopes, In Stochastic Geometry, Spatial Statistics and Random Fields, 205–
238, Lecture Notes in Math. 2068, Springer (2013).

[12] Z. Kabluchko, A. Marynych, D. Temesvari, C. Thäle, Cones generated by random points on half-
spheres and convex hulls of Poisson point processes, Probab. Theory Relat. Fields 175 (2019),
1021–1061.

[13] Z. Kabluchko, C. Thäle, D. Zaporozhets, Beta polytopes and Poisson polyhedra: f -vectors and
angles, Adv. Math. 374 (2020), article 107333.

[14] M. Reitzner, The combinatorial structure of random polytopes, Adv. Math. 191 (2005), 178–208.

[15] M. Reitzner, Random polytopes, In New Perspectives in Stochastic Geometry, 45–76, Oxford
University Press (2010).

[16] A. Rényi, R. Sulanke, Über die konvexe Hülle von n zufällig gewählten Punkten, Z. Wahrschein-
lichkeitstheor. Verw. Geb. 2 (1963), 75–84.

[17] C. Schütt, The convex floating body and polyhedral approximation, Israel J. Math. 73 (1991),
65–77.

[18] R. Schneider, W. Weil, Stochastic and Integral Geometry, Springer (2008).

21


	1 Introduction
	2 Preliminaries
	3 Proof of Theorem 1.1, Step 1: Reduction
	4 Proof of Theorem 1.1, Step 2: Estimates for I1 and I2
	4.1 Estimate for I1
	4.2 Estimate for I2

	5 Proof of Theorem 1.1, Step 3: Conclusion for the Poisson model
	6 Proof of Theorem 1.1, Step 4: Conclusion for the binomial model
	A Analytic Estimates
	A.1 Estimate for Step 2
	A.2 Proof of (5.2) in Step 3


