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Abstract

Consider two half-spaces H;" and H; in R%*! whose bounding hyperplanes H; and H, are
orthogonal and pass through the origin. The intersection S | := SN H;" N Hy is a spherical
convex subset of the d-dimensional unit sphere S%, which contains a great subsphere of dimension
d — 2 and is called a spherical wedge. Choose n independent random points uniformly at random
on Si .+ and consider the expected facet number of the spherical convex hull of these points. It is
shown that, up to terms of lower order, this expectation grows like a constant multiple of logn.
A similar behaviour is obtained for the expected facet number of a homogeneous Poisson point
process on Sg’ 4. The result is compared to the corresponding behaviour of classical Euclidean
random polytopes and of spherical random polytopes on a half-sphere.

Keywords. Convex hull, expected facet number, Poisson point process, random polytope, spher-
ical integral geometry, spherical stochastic geometry, spherical wedge.
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1 Introduction

One of the classical ways to construct a random polytope is based on taking a fixed convex body
K C R? and a sequence (X;);>1 of independent random points uniformly distributed in K. For
n > d+ 1 we denote by

K, =[X1,...,X,]

the convex hull of the random points X1, ..., X,,. We may consider it as a random polytopal approx-
imation of the set K, which approaches K, as the number n of random points tends to infinity. There
are several interesting random variables connected to the random polytopes K, some of which can be
seen as a measure of the degree of approximation of K achieved by K,,, while others give information
on the combinatorial complexity of K,,. Usually one of the following notions is considered:

(i) the volume Vy4(K,) of K,, and, more generally, the k-th intrinsic volume Vj(K) of K,, k =
{0,1,...,d},

(ii) the number fy_1(K,) of facets, that is, the (d— 1)-dimensional faces, of K, and, more generally,
the number fi(K,) of k-dimensional faces of K, k ={0,1,...,d —1}.

From now on, we will concentrate on first-order properties of the combinatorial structure of K,,, more
precisely, on the expected number Efy(K,) of k-dimensional faces of K,. For further background
material on random polytopes we refer to the survey articles [3, 11, 15].
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It is well known that the asymptotic behavior of Efi(K,), as n — oo, depends on the geometry of
the underlying convex body K. Indeed, if K is of class C?H that is, if K has a boundary which is a
C?-submanifold of R? with strictly positive Gaussian curvature x(z) at every point z € 0K, then

Efi(Kn) = capQ(K)n i (1 + og(1)), (1.1)

as n — oo, where cqy is a constant only depending on d and on k and Q(K) = [, &(x)"/@+) dz is
known to be the affine surface area of K, see e.g. [14, Theorem 4]. Here and in the following we use the
little-o notation for our error term, that is, by f(n) = o(g(n)) we mean that lim, .~ f(n)/g(n) =0,
where we assume that g(n) > 0. An analogue of (1.1) in the spherical space was derived in [7] using
tools from [10].

On the other hand, if K = P is a d-dimensional polytope, then

Efi(Kn) = éqxflag(P)(logn)* (1 + 04(1)), (1.2)

as n — 00, where ¢4, is another constant only depending on d and on k, while flag(P) is the number
of flags of P, that is, the number of chains Fy C F} C ... C Fy_1, where for each ¢ € {0,1,...,d — 1},
F; is an i-dimensional face of P, see e.g. [14, Theorem 8]. On different levels of generality these results
can be found in [16] for d = 2, [4] for k € {0,d — 1} and [14] for general d and k. See also [6, 17] for
a limit theorem similar to (1.2) in the context of (weighted) floating bodies.

Let us also mention another model, which is often considered together with K,. Let 1, be a Poisson
point process in R? with intensity measure given by a constant multiple v > 0 of the Lebesgue measure
restricted to some convex body K C R? We define the Poisson random polytope K as a convex
hull of the Poisson point process 7,. We remark in this context that the expected number of points of
1y equals vV;(K'), meaning that for a Poisson random polytope the quantity vV (K) plays the same
role as the number n for the classical random polytopes described at the beginning.

To motivate our results, let us recall the following setup, which has been introduced in [5]. We assume

that (X;)i>1 is a sequence of independent random points uniformly distributed on the d-dimensional

upper halfsphere S? := SN {2441 > 0} € R¥L. For n > d + 1 we consider the spherical convex hull
K@) = [X1,..., Xulsa

n

of the random points X1, ..., X,, which is defined as the intersection of their positive hull
pos(X1,..., Xn) == { X1 + ...+ M Xn: A, ..., A, > 0} € R

with the unit sphere S?. This convex hull K,(f) is a spherical random polytope that approximates the
half-sphere S¢, as n — oco. Remarkably, the expected number of k-dimensional spherical faces of Kr(f)
does not grow to infinity with n — oo as it is the case for classical random polytopes in R?. Instead
we have that, without any renormalization,

Jim Efi(K)) = éa, (1.3)
where ¢4, is a constant only depending on d and k, see [5] for k € {0,d—1} and [12] for general k. We
remark that after gnomonic projection with respect to the north pole of the interior of the half-sphere

Si, the spherical random polytope Kff) may be identified with the convex hull of random points in

R?, having a so-called beta-prime distribution in R¢ with parameter 8 = %, where the probability
density of a beta-prime distribution on R? with parameter 3 > d/2 is given by
~ . _ . T ﬁ
fap(x) =Cap(L+IxII)77,  zeRY Gpi= — ) N (1.4)
m2['(B—§)

see [12, 13].



The half-sphere Si can be seen as a spherical convex polytope with a single facet and no other boundary
structure, and similarly we want to think of R? as a d-dimensional convex ‘unbounded polytope’ with a
single facet at infinity. Comparing the case of bounded polytopes in R% with the ‘unbounded polytope’
we arrive at the following natural question: Are there models for random polytopes that interpolate
between the behaviour of (1.2) and (1.3)?

In order to answer this question we are focusing in this paper on the case ¥k = d — 1 and on the
following construction, which generalizes the approach in [5, 12]. Given j € {1,...,d} hyperplanes
Hy, ..., H; passing through the origin of R and are otherwise in general position we define the set

d ._Qd + +
s?, =S'nH{N...nH},

where H;" denotes the positive halfspace, bounded by the hyperplane H;, i € {1,...,5}. Then S}{ 4 is
a d-dimensional spherical convex subset of S%, which contains a great subsphere of dimension d — j,
and its shape is determined by the angles between Hi, ..., H;. Let further (X;);>1 be independent
random points uniformly distributed on S;-l’ L and forn > d+1 let Kq(@s’j ) be the spherical convex hull

of X1,...,X,. Note that for j = 1, up to a rotation, SfﬂL can be identified with S‘j_ and the number

of facets of the spherical random polytope Kff’l) has the same distribution as that of Kfls) studied in
[5, 12]. On the other hand, intersecting the unit sphere with d 4+ 1 halfspaces one can think of K}f’d)
after gnomonic projection as the convex hull of n independent random points, having a beta-prime
distribution with parameter g = % restricted to the domain of a d-dimensional simplex in R?%. In
parallel to this model, to which we shall refer to as the binomial model, we also consider its analogue
for Poisson point processes, the so-called Poisson model. Namely, let 1, be a Poisson point process

in S? with intensity measure given by '71S¢+(1')' We define a spherical Poisson random polytope
s

Kf;ij ) as a spherical convex hull of 7,.

We conjecture that the models just described provide a family of examples where the behavior of the
expected facet number varies between (1.3) and (1.2) as j varies between 1 and d. More precisely,
we formulate the following conjecture, where in each case 04(1) stands for a dimension-dependent
sequence which converges to zero, as n — oo.

Conjecture: For j € {1,...,d} one has that

Efa 1(KS9) = a5 (logn)i ™ (1 + 04(1),  asn — o0

Efa1(K$7) = ¢q;(logy)? ' (1+0a(1)),  asy — oo,
where cq j,Cq; are constants that depend only on d and j. In particular, the first-order asymptotic
expansion does not depend on the actual angles between Hiy,...,Hj, assuming they are in general

position. We also conjecture that actually cq; = ¢q; and that the error terms oq(1) depend on the
angles between the hyperplanes Hy, ..., H;.

In this article we prove a special case of this conjecture. Namely, we consider the case j = 2 and
assume that the angle a(H7, Hy) between the hyperplanes H; and Hj is a right angle. The resulting
set Si 4 is called a spherical wedge in this paper. Our main result is the following theorem.

™

Theorem 1.1. Let K = Sg{+ and suppose that a(Hy, Hy) = 5. Then there exists a constant cgp > 0
only depending on the space dimension d such that

Efa-1(K?) = cq2 (logn) (1 + 04(1)), as n — 0o,

n

and

Efa1(K{$?) = caz (logv) (1+0a(1)),  asy — oo.

We were not able to determine the constant cqo explicitly. However, we have that

1 4
Cio = g2d Ywi1Aq,



Figure 1.1: The upper panel shows a random spherical polygon in the spherical wedge of dimension
two. The same random spherical polygon is shown in the lower panel after gnomonic projection in the
center of the spherical wedge.

where A is the constant defined by (4.3) below, whose value is not known. Moreover, for d = 2 we
can determine Ay explicitly, which leads to cp 2 = %, see Remark 4.3. This in turn yields that

B (KS?) = S(logn)(1+04(1)), a5 oo,

for d = 2. This should be compared to the expected number of edges (or vertices) of a random polygon

Ky(f) defined as the convex hull of n independent and uniform random points in a planar polygon with
¢ > 3 edges. For this model it is known from [16, Satz 1] that

EA(KY) = 2 (ogn)(1+0a(1)),  asn oo,

see also [4, Equation (1.6)] for an extension to higher dimensions. Thus, the leading-order asymptotic

behavior of the expected edge number of E fl(K,(f’Q)) is smaller than Ef; (Kr(f)) for any ¢ > 3 and
would be similar to a hypothetical 2-dimensional convex polygon with only ¢ = 2 edges. A similar
result holds for the Poisson model as well.

While random spherical polytopes in the upper half-sphere, as discussed above, have been studied in
[5] using tools from spherical integral geometry, it has turned out to be a fruitful idea to first apply
a gnomonic projection with respect to the center of the half-sphere. The investigation of random
spherical polytopes on half-spheres then turns into a study of a random polytope model in Euclidean
space in which the points are distributed according to a so-called beta-prime distribution (see [7, 12]).
In this paper we shall also use the gnomonic projection, this time with respect to the centre of the
spherical wedge, which maps the random spherical polytope we consider to a random polytope defined
in an bi-infinite strip in the Euclidean space, where the width of the strip is determined by the angle of
the spherical wedge. The generating points are then distributed according to a restricted beta-prime
distribution in Euclidean space, see Figure 1.1. However, and in contrast to the half-sphere model,
we were neither able to carry out the asymptotic analysis of the expected facet number entirely in
the spherical model, nor in the corresponding Euclidean model in the strip. Instead we shall switch
between both models and employ the tools developed in this paper and methods from both spherical
and Euclidean integral geometry.



The remaining parts of this paper are structured as follows. In Section 2 we introduce some notation.
The proof of Theorem 1.1 is divided into four steps, which are the content of Sections 3-6. In the
appendix we derive some analytic estimates used in our main argument.

2 Preliminaries

By o4 we denote the spherical Lebesgue measure on the d-dimensional unit sphere S%, normalized in
such a way that

da+1
2n7 2

r(Gr)

O’d(Sd) = Wd+1 =

Given vectors x,y € R we denote by x - y their scalar product and by [|x|| the Euclidean norm of
vector x. Given a vector u € R¥1\ {0} and a number ¢ > 0 we define a hyperplane

Hi(u) :={xecR": x . u=t}
in R, We define two closed halfspaces
H(w?" = {xeR™: x.u>t} and Hi(u)” :={x e R x.u<t},

bounded by the hyperplane H¢(u). In case ¢ = 0 we simplify our notation and just write H(u) :=
Hy(u). Moreover, if the dependence of the normal vector is inessential, we will omit it and simply
write H, H' and H.

Given vectors vi,...,v,, € R we denote by span{vy,...,v,,} their linear span, which is the
smallest linear subspace, containing all of them. Denote by eq,...,e411 the standard orthonormal
basis of R4T!. In what follows we will often identify span{ey,...,e;} with R¥. Given a linear m-

dimensional subspace M C RF, m < k we denote by proj,, : R¥ — M the orthogonal projection
operator onto M and by M= the orthogonal complement of M.

Given a vector u € S we denote by S& := {x € S?: x - u > 0}. The gnomonic projection operator
g S% s H(u) with respect to point u is defined by

gﬁ(v) =uv u. (2.1)

-1

The inverse of the gnomonic projection (g¢)~! : H(u) +— S% is given by

X+ u

=l x) = ——— .
(60709 = 1l (2:2)

see [8, Section 4] for further background material about the gnomonic projection.

3 Proof of Theorem 1.1, Step 1: Reduction
We consider first the random polytope model Kq(ﬁ’z) based on the Poisson point process 7,. Applying
the multivariate Mecke formula for Poisson point processes [18, Corollary 3.2.3] we find that

Efq_ 1( (s, 2)) d'E Z 1{x1,...,x4 generate a facet of K(S 2)}
x17 7xd)€ 7]7)7&

= /d / P(xy,...,x4 generate a facet of K2 )oq(dxy)...oq(dxy),
Sg

nyU{z1,...,xq}



where the sum runs over all d-tuples of distinct points of 7. Next we apply the Blaschke-Petkantschin
formula from spherical integral geometry [5, Lemma 3.2], which states that
Wd+1
X1,...,Xq)0gq(dx1)...04(dxq) = —— / / X1,...,X
Lo [ s xa) autdxa) . outdxn) = 24 SPRY WY B (R
X Va(x1,...,%xq)0g-1(dx1) ... 04-1(dxq)] v4(dH),

where f : S — R is a Borel measurable function, G(d+1, d) is the Grassmannian of d-dimensional lin-
ear subspaces of R4T! endowed with rotation invariant Haar probability measure v4 and Vg(x1, ..., Xg)
is the Euclidean volume of the d-dimensional parallelotope spanned by Xi,...,x4. This formula is
a special case of more general kinematic formula obtained in [2] and can be easily derived from the
classical linear Blaschke-Petkantschin formula [18, Theorem 7.2.1].

By applying (3.1) and using the counting property of a Poisson point process we derive that

dw
Efdfl(Ké?QU = Ld,ﬂ/ (/ / Va(x1, ..., Xaq) Udl(dxl)---Udl(dXd)>
2d! Jo@rid) \Jsg nH Js¢ nH

X (exp(—yad(Sg’Jr NHY)) + exp(—’yad(Sg’Jr NHY)))va(dH)
d

:L/ (/ / _— RS )
2d! Jsd s¢ ,NH(z) 5, H(2) d(X1,...,%Xq) 0g—1(dx1) ... 0q_1(dxq)
x (exp(—oa(SE, NH* (2))) + exp(—y0a(S, N H (~2)))) 0u(dz),

where in the last step we used the fact that each unit normal vector z € S¢ determines a hyperplane
H e G(d+1,d). We set

n():= [ - Va(x1, -+, Xa) 01 (dx1) . . 041 (dxa),
s¢ LNH(z) SgﬂLHH(z)

Iy(z) = 04(S5 y N H*(2)),

and write
d
Efo(E$?) = o /S L(2)((exp(—112(2)) + exp(—y12(—2)) ) 0a(dz)
vd'
- /S i(2) exp(—71(2)) 0g(dz),

where we used the fact that antipodal mapping z +— —z is isometric on S and we have I (—z) = I;(z).
As a next step we introduce spherical coordinates. For this we choose an orthonormal basis eq, ..., €441
of R in such a way, that H; = H(eg.1) and Hy = H(eg). Then

Sg}+ =S'NH (eq) N H (eqy1) = {w € S%: wyg > 0,wqy1 > 0},
and we consider spherical coordinates, which are described by the map

Z:[0,7) x [0,7) x $T72% - §4
(¢, 9, u) — (sin ¢)(sinyp)u — (cos @) (sin)ey — (cosh)egqi1,

where we identify SN H (eq) N H (eq1) with S¥2. Hence, for a Borel measureable function f : S — R,
we have that

/g (2)0a(dz) = /S » /O /0 F(Z(6,,)) (sin )~ o) (sin ) 2dg 0y _s(du).
Now, due to the symmetry of the wedge S% 4 with respect to span{egy, e411}, we have that

Il(Z((ﬁ?w?u)) = Il(Z(ﬂ- - ¢77T - ¢7u))7



Figure 3.1: A spherical wedge with opening angle 7/2 together with the great hyperspheres induced
by Hi, Hy and H(z) (left) and its orthogonal projection to the hyperplane eg, | (right).

and

I(Z(¢,%,0)) = 04(S3 ;) — I2(Z(7m — ¢, 7 — 1, 1)),

for ¢ € [0,7), ¢ € [0,%). Thus, we may restrict ourselves to ¢ € [0,7) and ¢ € [0, §), see Figure 3.1.
Applying this transformation to the last representation for E fd,l(Kf{z 2) ) yields

Bk =20 [ [ [ nes)

3.2

< (exp( = Y(Z(6, W) + exp( — 1[0a(S5..) - o(Z(8, v, w))])) )

x (sin ¢)472(sin )41 dp dp oq_o(du).
Finally, for ¢, € [0,7/2) we may reflect with respect to the hyperplane Hy := span{ej + €441} +
(H(eq) N H(eqy1)) and switch the role of the hyperplanes Hy = H(eqy1) and Hy = H(egy). This
operation is an isometry on S? and maps (¢, ) € [0,7/2) x [0,7/2) to (¢,¥) € [0,7/2) x [0,7/2),
where ¢, 1 are determined due to Napier’s rules for right spherical triangles by

tan ¢ = (tan ) (sin @), tan ¢ = (tan ¢)(sin @),
see Figure 3.2. The mapping G(g, J) = (¢, 1) does not change the value of I} and Is, i.e., [0 G = I3
and Iy o G = Iy, for ¢, € [0,7/2). Furthermore, if tant > 1/ cos ¢, then

tang 1 1 1 1

tan1p = tangcos¢  (tant))(cos @) cos ¢ ) cos ¢

This condition arises from the observation that for the normal ng = %(ed_i_l — eg4) of Hy the angle
a = ¢, 1) between Z(¢, 1, u) and ny, i.e.,

cosa = z-ng = %((sinzﬂ)(cos o) — cosw),

satisfies a + (v o G) = m and

s 1
a(¢,1/1)<§ — tan¢>cos¢.

7



Figure 3.2: The relation between (¢,1) and (gg, 12) is derived by reflection about Hy.

We calculate

|det VG| = tan~¢ —
V1 + (tan §)2(sin 6)?
and -~
sin¢ = (tan w)gsm ¢) — siny) = (cos 1)) \/1 + (tan )2 (sin ¢)2.
V1 + (tan §)2(sin 6)?
Hence,

(sin ¢)%2(sin 1)4!| det VG| = (sin ¢)? 2 (sin ).
This yields
w/2 pw/2
/0 /0 I exp(—yI2) (sin @) 2(sin )4 dyp dop
w/2 parctan(1l/ cos ¢)
= / / I exp(—v12)(sin ¢)42(sin 1) dep dp
0 0 B
w/2 parctan(1l/ cos ¢) - ~ -~ ~
+ /0 /0 (I1 o G) exp(—(I2 o G))(sin ¢)d_2(sin w)d_l dy do
=2 /ﬁ/2 /arctan(l/cos ? I exp(—yIz)(sin ¢)42(sin 1)1 dep dep.
0 0

Since for all € < 1/2, we have that

{(¢,9) € [0,7/2)% : tantp < 1/ cos )} C [0,7/2)2 \ ([0,5) X [37r/8,7r/2)),

see Figure 3.3, together with (3.2) we conclude that for any such e,

Efd,l(Kf]i’Q)) > %fﬂ /Sdi2 /OE /06 I exp(—1I2) (sin )4~ 2(sin ¢)4 "1 dyp dg o4_o(du)



Y

B

tan ¢ < sec ¢

5 0

Figure 3.3: The domain [0, %)2 with the two regions bounded by the condition tany = sec ¢.

and
Efa-1(K?)

= %Vd /SH /OE /08 I exp(—vI2) (sin )™ *(sin )" dyp dg o2 (du)
s 2t [ B (s g2yt g dgg s(an)
s 2t [ hesp(m) (sing)2(sin )t dpag oy s(au)
vt [ 0”/211 exp(—1loa(S3,) — B]) (sin )1 2(sin)! dp dg ogo(du).  (3.4)

In order to proceed we need to derive estimates for I1(Z(¢,1,u)) and I2(Z($,,u)) for ¢ € (0,7),
Y € (0,7/2) and u € S¥2. This is the purpose of Step 2 presented in the next section.

4 Proof of Theorem 1.1, Step 2: Estimates for /1 and I,

4.1 Estimate for [;

Let us start with the analysis of I1(Z(¢, ¥, u)). First of all we will prove, that Sg} +NH(z) is a spherical
wedge.

Lemma 4.1 (The Shape of S‘217+ N H(z)). The spherical convex set Sg# N H(z) is a spherical wedge

™

of dimension d — 1 with an opening angle B(z) € [0,n]. Moreover for any ¢ € [0,7],¢ € [0,3] and
u € S%2 we have for B(Z(p,v,n)) = 3, that

e s e B e
and therefore
tan g = 8
Furthermore, if € € (0,3) then
tanf=(1+0()d  for all .4 € (0,¢). (4.2)

Proof. In order to prove this statement we may consider the positive hull of Sg, +NH(z)in R+ which
yields a d-dimensional cone C' with a lineality space L = H(eyy1) N H(ey) N H(z) of dimension d — 2



€d+1 Y1

proj;. C

€4
y2

Figure 4.1: Illustration of the 2-dimensional wedge proj;.C.

if z is in general position and in this case proj,+1C = L+ N C is a proper 2-dimensional cone with
opening angle 3 := 3(z). To prove (4.1), we choose the parametrization z = Z(¢, 1, u) as introduced
in Section 3. We first note that L = H(eg+1) N H(eq) N H(z) = H(eq41) N H(eq) N H(u),

H(z)ﬂSgﬂr:{yESd:y-edHZO,y-edZO,y'z:O}

and
y z=0 <= (sing)(sin¢)(y-u) = (cosy)(y - edt1) + (cos ¢)(sin¢))(y - eq).
Thus, the 2-dimensional wedge proj; 1 C C L+ = span{egi1,€q,u} is spanned by the two vectors

yi = (sin@)(sinp)esss + (cosp)u  and  ys = (sing)ey + (cos P)u,

see Figure 4.1. Thus,

sinf8 = ly1 > yall _ sin ¢
[y1lllyz]l V/(cos )2 + (sin ¢)2(sin v))2
and
cos 3 = yi-y2 _ (cos ¢)(cos9)

Iyalllly2ll — V/(cos)? + (sin ¢)*(sin ¢))2

for all ¢ € [0,7] and ¢ € [0, 5], proving (4.1).
Now, if € € (0, 3), then

1
p<tanf=00 1TC (1) forall 6,0 € (0,0).
costp) — 1—¢
Thus, tan 5 = (1 + O(e))¢, which proves (4.2). O

We are now ready to formulate the result for I1(Z(¢, 1, u)).

Lemma 4.2. For any ¢ € [0,7), ¢ € [0, %) and u € S*~2 we have that

1(Z(6, ) < (“;)d

Furthermore, for any ¢ € [0,7), ¢ € [0,5) and u € S%2 we have

h(2(6.0.w) < 5 (“’j:)d <2tan W)M,

10



and, if € € (0, %), then

d
N2 0w) = 1+ 04N (ZE2) 61, vo.ve 0.2,

Here, the constant Aq is given by
Aqg =EVy((U1,241,1),...,(Ug,2Zg4,1)) (4.3)

with random variables Uy, ..., Uy uniformly distributed on [—1,1] and random vectors Z, ..., Zq dis-
tributed according to a beta-prime distribution on RY™2 with parameter % and probability density

function fd72 at1 as in (1.4) in such a way that Uy, ..., Uq,Z1,...,Z4 are independent.
2

Proof. As it was shown in Lemma 4.1, W (¢, 9, u) := H(Z(¢p,¢,u)) N 2+ is a (d — 1)-dimensional
spherical wedge with an opening angle 3 := 5(Z(¢,,u)). We recall, that

Il = Il(Z(¢,¢, u)) = /W(d)d, " e /W((;sw ) Vd(Xl, e ,Xd) del(dxl) e Ud,l(dxd).

Since the volume of the parallelotope W9 = {3"%, Aix; : (A1,...,Aq) € [0,1]4} is bounded by the
product of its side lengths we conclude that Vg(x1,...,%4) = volg(W9) < TI%, ||xi]| = 1, which yields

I < oa1(W(g,,u))" < (wg/2)"

This settles the first inequality.

For the next step we consider the gnomonic projection gg_l with respect to the center of symmetry
p € S of the spherical wedge W (¢,1,u). After applying a corresponding rotation we obtain, that
the image of the set W (¢, 1, u) under the gnomonic projection gg_ s [~ tan g ,tan ] x R%2 which
is in particular independent of u since 3 is independent of u (see Lemma 4.1). Thus by deﬁmtlon of

the inverse gnomonic projection (2.2) and by [9, Proposition 4.2] we have

112/ 2 ( yi+p Yi+ P )ﬁ dy;
([ftang,tanﬁ]XRd 2 Vv1+ Hy1 ‘2’ ’ Vv1+ Hde2 i=1 (1 + ”yl||2)% (4 4)
dy; '
= Vily1r+p,---,¥a+p P —T
/ tanf tan'B]de*2)d ( )g (1 + HyZH2>%

Further applying the change of variables
Y1+p:(tan(/8/2)u17ZZ71)a 1§Z§d>
and recalling (1.4) we obtain

5>d+1 d du; dz;
L = (tan / Vd((U1,Z1, 1),...,(uq, 24,1
2 ([=1,1] xRd—2)d 1;[ 14 (tan )2u2 + HZ1H2)%

BN i du;
< (tan 2) 2 cd727% /([—1,1]de2)d Va((ui,z1,1),..., (ug,24,1)) H 5 fd 2,451 (zi)dz;

i=1
:& (wd+1>d Qtanﬂ)(H*l
2 47 2 ’

where we used the fact that

d+1
: reh () an
C 5 d+l = = = — = .
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In particular, for € € (0,3) this yields, by Lemma 4.1 and the fact that 2tan(3/2) < tan g for all
B € [0,7/2], that

s 0 () (Y A (0) 1 gyt < 14 0,00 (42 g,

for all ¢, € (0,¢).
To conclude the lower bound we just note that by Lemma 4.1,

1 1 1= 0ule) _
> T >

dr1 = EESY d
(1+ (tan §)%? + |lzi2) 7 (14 [zl + (tan §)2) 2 (1+ |1zi]|?)

which yields, by (4.2), that

L>(1— Od(s))% (“Z’:)d <2 tan 5>d+1 —(1— Od(e))% (ﬁ)dw*l,

for all ¢, € (0,¢). O

Remark 4.3. We were not able to determine explicitly the value of the constant Ag in (4.3) ford > 2.

However, for d = 2 we have that
dx d 2
b [ [ a2

4.2 Estimate for I,
We continue with investigating I»(Z (¢, ¢, u)).

Lemma 4.4. For any ¢ € [0,7), ¢ € [0,3) and u € S4=2 we have

Iy (Z(¢,9,u)) = WZ;l (1 — arcsin(cos ¢ sin))).

Moreover, there exists eg > 0 such that for all € € (0,e9) we have

1(Z(6,0,0) = (1+0E)“E26™,  for all 6,1 € (0,2), (4.5)
and
1(Z(¢,,w) = S5, for all ¢ € (0,m), 4 € (0,7/2). (4.6)

Proof. We will start with the case d = 2. In this situation S N H(e3) N H(ez) = {+e;} and, thus,
Z(9, ) = Z(,1,e1) = (sin@)(sinp)er — (cos ¢)(sin¢)ez — (cost)es,
which describes the usual spherical coordinates in R3. Further,
(Z(9,9)) = 02(S3,4. N H(Z(6,4)),

where S% L NHY(Z(¢,v)) is a spherical triangle with angles %, ¢ and arccos(cos ¢ sint). Then by
Girard’s theorem about the area of a spherical triangle we conclude

02(8‘2174_ NHY(Z(¢,v))) = 1 + arccos(cos ¢ sinvp) + g — 7 = 1) — arcsin(cos ¢ sin ). (4.7)

Let us now consider the case d > 3. First of all we note that for z € S given by

I(z) = 04(S¢, N H (2) / 1(x € SL, N H* (2)) 04(dx).

12



Due to invariance of the spherical Lebesgue measure with respect to rotations and for convenience, we
apply a rotation pg to the wedge Sg  so that the normal vector to the hyperplane H; is %(ed+1 —eq)

and the normal vector to the hyperplane Hs is %(edﬂ + e4). We keep the notation Si ={x €

S?: 2441 > 0} and let 2’ = pg(z). Consider a gnomonic projection gg , With respect to the north pole
pa := (0,0,...,1) of the sphere S%

d d
gd ‘ S¢ — R,
Pa * (1'1,...,:L‘d,$d+1) — (Il .. L4 ),

Td+1’ """ Td41

where we identify span{ey, ..., ey} with RZ. Under gg , the half great hyperspheres H ﬂSi and Ho ﬂSi
are mapped onto the hyperplanes Li(u;), L1(uz) C R? with the normal vectors u; = (0,...,0,1) and
up = (0,...,0,—1), respectively, and the distance one to the origin. Analogously, the half great
hypersphere H(z') N Si is mapped onto the hyperplane L(w) with normal vector

( \/ 1- (Z(Ii+1)2 V31— (Zél—i-l)Q)

to the origin. Thus, by [9, Proposition 4.2] we have that

!
“d+1

v 1_(Z;+1)2
O—d(Sg,Jr NH*(z))

oa(S4)

and the distance

d
= Cgap [ 1y € Liwn)” 0 Laua)” N L(w) )1+ ly]?)~ " dy.

Next, we use the fact that the beta-prime density f:i 441 1s invariant with respect to rotations and we
v 2

consider a rotation 6 : R — R¢, such that
0111 =up, 9112:112, QWZ(O,...,O,td_l,td).
Since 6 leaves the dth coordinate axis and the hyperplanes Lj(u;), L1 (uz) unchanged, we have that

wg = (0W)q = tg = —2q/\/1 — (2441)*

On the other hand ||w|| = ||fw]|| = 1, and so

1= (2451)° — (23)?
1- (Z&H)Q

(OW)a—1 = ta—1 = —\l
Thus, applying the change of variables y = §~'y we arrive at

S¢ . nHT

’ z =Cydan 1(y € Li(u1)” NLi(uz)” NL(OW)")(1+ ||y _%S’.

ad( 2+ (z)) ’ I I L(Ow) ™ 2 +d
O'd(Si) 2 JRd

Now, we use another crucial property of the beta-prime distribution, which says that under orthogonal

projection projyy : R? — M onto a k-dimensional linear subspace M the beta-prime distribution on R?

with density f4 5 maps to a beta-prime distribution on M with density f, g_d=k- Strictly speaking, if
’ 2

a random vector X on R? has density function fvd’g, then the projected random vector Ips(proj,, (X))
has density fkﬁ_%, where Ips : M +— span{ey,...,e;} is an isometry such that I/ (proj,,(0)) =0
(see [13, Lemma 3.1]). We consider the projection projp onto the 2-dimensional linear subspace
E:={ycR% y; =...=y4_5 =0}, which we identify with R?. Under this projection we have
projp(L1(uy)) = {(sq_1,54) € R?*: 84 = 1},
prOjE(Ll(UQ)) = {(Sdfl, Sd) S R?: Sq4 = —1},

projp(L(6w)) = { (s4-1,50) € R?: = sq-1/1 = (2l41) = () = 802 = 2l |
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and

Ud(S%Jr N H"(z))
oa(S%)

=0Co2 /R2 1((sd-1,5a) € projp(L1(u1))” Nprojg(Li(uz))” Nmp(L(Ow))")
X (1 + 8371 + 83)7%dsd,1dsd.

Considering the gnomonic projection gf, of the two-dimensional half-sphere 82 with respect to the
north pole ps := (0,0,1) we note that the integral above describes the Spherlcal area of the spherical

triangle S? N H n H + N H(v')*, where H, and Hy are 2-dimensional linear subspaces in R? with

normal vectors %(eg — e2) and %(83 + e3), respectively, and v/ = \/1 —(2)? = (212 20 241)-

Finally we consider a rotation ps in R? which is defined as an image of the restriction of rotation pg on
the linear subspace span{eqy1,e4,€q_1} under the isometry I : span{eg,1,eq,e4_1} — R3 satisfying
I(eq+1) = e3 and I(ey) = ey. Since the last two coordinates of the vectors z’ and v’ are identical, the
last two coordinates of the vectors z = p;'(2z') and v := p3'(v') are identical as well. From this we
finally conclude that

04(S)
72(S%)

which has already been computed at the beginning of the proof (see (4.7)) and depends only on the
last two coordinates z4y1, 24 of the vector z. Thus,

044, N H*(2)) =

02(S3. N H*(v)),

IL(Z(¢,,u)) = wz;l (1 — arcsin(cos ¢ sin))). (4.8)

In order to prove the second statement of the lemma we consider the function

1 — arcsin(cos ¢ sin )
P2 7
In Appendix A we show that there exists ¢ > 0 such that

f(¢71/}) = ¢€(0,7T],¢E(0,7r/2].

Soe<fow)< i te  forallgue(0e) (4.9)

and that f has the absolute minimum 2/72, which is achieved along the edge ¢ = 7 in the rectangle
(¢,1) € [0,7] x [0,5]. This yields (4.5) and (4.6). O

5 Proof of Theorem 1.1, Step 3: Conclusion for the Poisson model
We are now ready to finish the proof of Theorem 1.1 for the Poisson model KT(If{’Q).
let us summarize the bounds obtained in Lemmas 4.2 and 4.4 in the form we will apply them. There
exist 0 < g9 < 1/2 and constants ¢y, Cy, 04,04 > 0, such that for all u € S¥~2 and ¢ € (0,9) we have
that

Before we continue

¢, € (0,6) 1 Ba(l —0ae)¢™™ < Ii(Z (¢, 1)) < By(1 + Oge)pp™,
ba(1 — 042)¢*Y < In(Z(¢, ¥, ) < ba(l + Oge) e,

where A 4
_ Wd41 _ A4 [(Wd+1
ba = 8 and Bd_Z( 4 ) ’
and
¢ € (0,€),9 € [e,3n/8) : L(Z(¢,9,1)) < Cap™, I(Z(¢,9,0)) > cad’e,

¢ € le,m),ve(0,7/2): I1(Z(¢,9,u)) < Cy, I(Z(p, ¢, 1)) > cqe®a).

14



Note that we used Lemma 4.1 to derive that

ﬁ 2sin 8 2¢
2tan — < <
2 1 + cos 8 ~ cos(3m/8)

< 6¢ forall ¢ € (0,¢), ¢ € [e,37/8).
Proceeding with Estimate (3.3) we find that
2 A 2. _
Efa(KE®) = 290 [ [ (sing)®2(sing) 1 (2(0, v, w)
dl Jsi-2Jo Jo

X exp(_fyl2(Z(¢> ¥, u))) dypdgog—2 (du)
(1-— gdg)%d(gille,yd /E /E(Sm ¢)d72(sin w)d71¢d+1677bd(1+®d5)¢2w dep dg.
: 0 Jo

v

Using the bound sinz > (1 — )z, which is valid for € [0,¢), we arrive at

€ €
Efa 1(KE2) > (1 - Ogfe)) 201Bd / / 24-1yd=1,=0a(1+042)8* 41 4

d!

= (1f0d(€))Wd 154 d/ / d=1yd=1=7ba(14+Oas)st 41 4
.B Yba(1+0 4¢)e?

— (1= Oy(e)) 1d d/ o sdfl/ #9415t dt ds. (5.1)
d\wg  Jo 0

For the upper bound we first note that

0a(84 1) — L(Z(6, 1, w)) = L4 (w —  + arcsin(cos(@) sin(v))

U (G -w+ - 9) = L2 (5 +9),

for all ¢ € (0,7) and ¢ € (0,7/2) and with ¢ = 7 — ¢ and ¥ = 7/2 — 1, see Appendix A.2 for the
proof of the inequality. Using this on (3.4) and applying the estimate sinz < z, which holds for all
€ [0, 7], we find that

(5.2)

v

20418 5 €
Efy1(K 82)) <1+ Od(E))de,ld'Yd/O /O $2A14pd=1g=ba(1=009)% o),
4 M’Yd /6 /37r/8 ¢2d*16*70d¢2€ dy do
d! 0 Je
+ Mfyd /7r /Tr/2 wd—le—’cha2¢ dy dg (5.3)

w/2
+ St [T 12 e (1252 (6 44 ) dwds
T
=: J1+J2+J3+J4.

Let us consider each of the terms Jy, Js, Js, J4 separately. For J; we get

.B ybg(1—04¢)e? €
Jp = (1+Od(€))wd ! d/ sdil/ t3temst dt ds.
0

dlvd 0
Next, for Jo one has that
37de Cd _
J2 < 4d'1 / (Z)Qd 1 d ~veqe H? d(b
3 1Oy [reas’ 3 _1C
— 77Tw'd dldd / Sd_le_s dS < 771-0‘}'(1 dlddr(d)a
4dle?cG  Jo 4dlec
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and similarly

IN

2mwq_1C, /2 _ _ 2
Js ccll!ld/o i Ldereas® b gy

_ 27wq1Cq / W2 gy iy < 2wa-1Ca (d)
dle2dcd  Jo T dledcd )

,ywdtrl
2¢7s ds) (/ Tt dt)
0

Finally, for J4 we find that

d
Wi— 1Cd 75 o
Jy =
wd+1 0

<wd 1Cd<12ﬂ)1_‘

- d! w,

Thus,
. Jo+ J3 + Jy
limsup —— =0,
Y00 logy

and finally setting

G(Oé — “ d—1 8td*l —st dtd
) = ; s ; e s

we find that lim,_,., G(c,7) = oo for any o > 0. Using L’Hospital’s rule we conclude that
G(a,7) a(ay)®! J5ti et dt aye

lim = lim = lim 27 le™*dz = (d — 1)
y=oo  logy Y00 1/5 y=oo Jo

Combining all obtained bounds together with (5.1) and (5.3) yields

o Bfo (K8 By
hvnl)lorolf T >(1- Od(E))Wdfldib?
and
. Efdfl(K?g&Q)) By
| —— 0 2 (140 .
121%13 log < (I+ Oafe))wa 1db(di

Since this is true for arbitrarily small ¢ € (0,e9) we finally derive that

2d 1Adwd 1

Efor(Kp?) = ——

(logv)(1 + 04(1)), as vy — oo.

This concludes the proof of Theorem 1.1 for the Poisson model.

6 Proof of Theorem 1.1, Step 4: Conclusion for the binomial model

Let us now consider the binomial model K, (s, 2) We have that

1
Efs1(K®?)) = ZE Z 1{x;,,...,X;, generate a facet of K(*?}

|
d! 1<i1<...<q<n

n oq(dxy
= P(x1,... te a facet of K(%?)
<d> /Sd /d (x1,...,%Xq generate a facet of K**) Ud(Sg,Jr) Ud(Sg,Jr)?

~—

oq(dxq)
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and by applying the spherical Blaschke-Petkantschin formula as in in Step 1 in Section 3, we see that

EfK(s,m:L”/
fa—1(K>7) 204(53 )4 \d) Jotaria)
v / / Vai(xi,...,Xq) 0q-1(dx1) ... 04-1(dxyq)
Sg7+mH Sg#ﬂH
Sd mH+ n—d Sd ﬂHﬁ nd
| (A (YT
Ud(S2,+) Ud(SQ,+)

B 1 n , _ DI(z) n_dg ,
—gd<S§{+>d<d> Sdh<><l Jd(%)) A(d2).

Using the same parametrization as before we conclude further that

Efs1(K$?) = Sng d( )/sd 2/ /W/2 Z(¢, 1, u))

 BZ@w)\" (B4,
[(1 74(54 ) ) *( 0al4.,) ) ]
x (sin ¢)4 2 (sin )1 dep dep oq_o(du).

With the same bounds on I; and Is as developed in Step 2 in Section 4 we obtain

e re n—d
Efd_l(KT(Lsﬂ)) > (1 - Od(s))wd—lead(;g)d (Z) /0 /0¢2d_11/}d_1<1 . (1 + 65)bd¢2¢> dw d¢
,+

Ud(Sg,+)

By odl () nifoacz . s\ n—d
a & oq(s5 1) d—1;d-1
> (1- 1= 472+ t 1—— tds.
> (1= Oa(e))wa iy <d>/0 /O 5 < n) dtds
d' [n
n&ﬂ;@w@ =1

na e t n—d
= / / gd—1yd=1 (1 — 8) dt ds.
0 0 n

lim H(o,n)

n—oo  logn

We note that

and define

Then

see, for example, [1, Lem. on p. 296]. Thus,

L Efa (KSY) By
hnnl)géf W > (1 - Od(E))Wdfldibg-
The upper bound
. Efy 1 (K2 By
1 — 7 (1 {1 —
MmN = ogn = (L OaE)wa g,

can be obtained in a similar fashion. Finally we conclude that

sy = 27 Awa
d

This finishes the proof of Theorem 1.1. O

Efs 1 (K. (logm)(1 + 04(1)), as n — 0o.
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A Analytic Estimates

A.1 Estimate for Step 2

We aim to show that there exists € > 0 such that

1 . < T — arcsm(sn;(m) cos(y)) < 1 L for all 2,y € (0,¢).
2 Ty 2

To prove that this is indeed the case we first recall that for z € (—1,1) we have

00 (2]6—1)” 22k+1

arcsin z = E

k=0

1o, 35, 5 4
@l ahr1 = tet Tt it T

and for z,y € R we find

sin(z) cos(y) =

T
= sin(z) — %(1 + G(x,y))
where
o k k+1 2 2
_ 2k +5 2(k+1—m), 2m __ M 2\

as (z,y) — 0. Thus,

arcsin(sin(x) cos(y))

X @2k-nr 1 R 2k 1) T m
=> k) 2k+1 Z( m >Sm(x)2k+1 (_2(1+G)>

k=0

2k+1

. _ 00 2%+1
51n(a; + y) + sm(x — y) % Z ( 1) k z"': <2k + 1) 2k+1—mym(1 +(-1)™)

o(ll (@, w1,

2k -1 2% + 1 2 "
= arcsin(sin(z)) + Z oyl zk 1 2 ( T:Lr ) sin(z)?k+1=m (—xg(l + G))
m=1

2 m
(1+G)> )

k+1)! 1 %2 2k 43 ohia zy
_ g 1 1 : +2—-m [ _ I
- +6) ( +Z 2k+2”2k+3z R e 2
xy
== (1t ol
So, for
x — arcsin(sin(x) cos(y 1
Flay) = bint)eostw) L o(lwu)l)  as .y -0
Ty 2
the total derivative of f at (x,y) = (0,0) exists and is given by

df(0,0) = lim —0.

(@)—=00) |(z,y)|l

In particular this implies that there exists € > 0 such that

1 1
§—€§f(.1‘,y)§§+€ for all x,y € (0,¢).
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Next, we show that
2
f(z,y) > — forallz €[0,7/2] and y € [0, 7].
T

Let us fix yo € (0,7) and consider function g,,(x) := f(z,yo). It is clear, that for yo = m/2 we have
Gyo(x) = 4/7* for any = € (0,7/2). In the next step we will show, that for yo € (0,7/2) function
Gyo () is strictly increasing and for yo € (7/2,7) function gy, (z) is strictly decreasing on the interval
z € (0,7/2).

Let us start with the case yo € (0,7/2). Consider the derivative

1 ( x cos(x) cos(yo)
7 (V= mt ety

It is clear, that g,,(z) is strictly increasing on the interval = € (0,7/2) if and only if gy (z) > 0 on
this interval, which is equivalent to

gy () = — aresin(sin(z) cos(yo)) )

x cos(z) cos(yo)
/1 — sin(z)2 cos(yo)?

Consider a change of variables s := sin(z) € (0, 1), to := cos(yo) € (0,1). Then the inequality above is

equivalent to
toarcsin(s)V'1 — s2 < arcsin(stg)y/1 — s2t3. (A1)

Denote by r(z) := arcsin(z)v1 — 22 and by q(tg) := r(tos) — tor(s). Then (A.1) is equivalent to
q(to) > 0 for ty € (0,1). It is easy to verify that ¢(0) = ¢(1) = 0 and

< arcsin(sin(x) cos(yo)).

q"(to) = s*r" (tps) < 0, s,to € (0,1),

since 7(z) is strictly concave on the interval (0,1). This finishes the proof of the first statement.
In the case yy € (7/2,7) we apply the change of variables g := m — yg € (0, 7) and note that

gg,/o (ZC) = _glgo (.I') < 07

as follows from the previous calculations. Thus,

s 4
inf = mi inf  f(0 inf o), =),
me(O,w/gl),ye(o,w) f(z,y) = min (ye(lg}ﬂ/Q) f(0,y), y€(171'n/2,7r) f(2 Y)s 7r2>

We calculate

. . . ] 1 — COS(y) 1
f f0,y)= inf 1 Sl T E D2
ye(lg,lw/mf( Y= it lim fa,y) e T 2
and
T 2 2
inf 5 = inf -
vl TGV = o =

which implies that f(x,y) > 2/7? in the rectangle (z,y) € [0,7/2] x [0, 7].
A.2 Proof of (5.2) in Step 3

We show that

7 — x + arcsin(sin(z) cos(y)) > = ((7/2 — z) + (7 — y)) for all z € (0,7/2),y € (0, 7).

W
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Using the qualities sin x = cos(7w/2 — x), cosy = — cos(m — y), arcsin(—z) = — arcsin  and making a
change of variables © = 7/2 — x and y = m — y we see, that the above inequality is equivalent to

1
x + m/2 — arcsin(cos(z) cos(y)) > §($ +v), for all x € (0,7/2),y € (0, 7).

We use the estimate 7/2 — arcsin z > /1 — 2z for z € [~1,1], and cos z < 1 — 22/5 for all z € [0, 7], to
find that

x + /2 — arcsin(cos(z) cos(y)) > = + \/1 —(1—22/5)(1 —y?/5)

1
=z+ g\/5(x2 +y?) — 2%y > xT—i-y’ for all z € (0,7/2),y € (0,7),

where the last inequality is an exercise.
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