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Under the AdS/CFT correspondence, asymptotically anti—de Sitter geometries with backreaction can be
viewed as conformal field theory states subject to a renormalization group (RG) flow from an ultraviolet
(UV) description toward an infrared (IR) sector. For black holes, however, the IR point is the horizon, so
one way to interpret the interior is as an analytic continuation to a “trans-IR” imaginary-energy regime.
In this paper, we demonstrate that this analytic continuation preserves some imprints of the UV physics,
particularly near its “end point” at the classical singularity. We focus on holographic phase transitions of
geometric objects in round black holes. We first assert the consistency of interpreting such black holes,
including their interiors, as RG flows by constructing a monotonic a function. We then explore how UV
phase transitions of entanglement entropy and scalar two-point functions, each of which are encoded by
bulk geometry under the holographic mapping, are related to the structure of the near-singularity geometry,
which is quantified by Kasner exponents. Using 2D holographic flows triggered by relevant scalar
deformations as test beds, we find that the 3D bulk’s near-singularity Kasner exponents can be viewed as

functions of the UV physics precisely when the deformation is nonzero.
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I. INTRODUCTION

A renormalization group (RG) flow is a contour in
the space of quantum field theory (QFT) couplings that
describes the coarse graining of a high-energy (UV-
complete) theory to a low-energy (IR) description [1,2].
We integrate out all high-energy modes above some cutoff
energy to get an effective QFT. The flow itself consists of
all such effective theories and is thus parametrized by the
cutoff. Furthermore, both the IR and UV theories are
conformal-invariant fixed points of the flow and so are
conformal field theories (CFTs). Most importantly, the IR
theory may have “imprints” of the UV physics as remnants
of the integration procedure, even though the IR is mostly
insensitive to the UV. In other words, IR parameters may at
least, in part, be functions of UV parameters, with the
details depending on the specific flow dynamics.

A guiding principle of modern quantum gravity research
is the AdS/CFT correspondence [3] equating weakly
coupled “bulk” gravity on (d + 1)-dimensional anti—de
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Sitter (AdS) space to strongly coupled CFT physics on
the d-dimensional boundary of AdS space. AdS /CFT
describes a “holographic” class of RG flows [4]. The
energy cutoff is associated with the radial extra dimension
of the bulk theory, with the UV fixed point being the
boundary CFT. This RG flow essentially describes the
emergence of holographic bulk spacetime. The flow
dynamics are encoded by the gravitational theory [5-10],
which includes a bulk matter sector dual to some relevant
deformation of the UV theory. As the bulk theory is
weakly coupled, it is a tractable setting to study imprints of
UV physics in the IR sector.

Gravitational theories typically feature black holes, and
these are dual to states of a canonical ensemble at fixed
temperature. For example, large AdS black holes are dual
to thermal CFT states [19-21]. From the perspective of
holographic RG flow, such a black hole with matter-
induced backreaction describes an RG flow from a UV
thermal state toward an IR fixed point associated with the
horizon. However, the classical geometry does not stop at
the horizon; there is also an interior region in which the
radial dimension is timelike, rather than spacelike. None-
theless, we may insist that the black hole interior is also part

'Other types of deformations (irrelevant, marginal) are pos-
sible to implement holographically, such as the 7T deforma-
tion [11-13]. However, these require introducing a finite bulk
cutoff by hand [14—-18]. We focus on relevant deformations so as
to have geometric flows with both asymptotic UV and IR regions.
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of an RG flow. We would then claim that the interior corres-
ponds to a trans-IR part of the flow [22,23] defined as an
analytic continuation of the exterior RG flow to imaginary
energies. It is further natural to infer that the UV physics
leaves an imprint on the trans-IR regime. The goal of this
paper is to explore such imprints or, put another way, to
access the interior of the black hole from the UV theory.

We emphasize that the trans-IR picture is a working
interpretation rather than a firm, established statement.
In particular, it is not clear what the actual “points” along
this interior RG flow (reached by integrating out all real-
energy modes and integrating in “imaginary-energy”
modes) would represent in field-theoretic terms, although
some progress has been made by [24]. While we do not
directly tackle this issue in this paper, the study herein is
meant to provide some internal consistency to the trans-IR
perspective of the black hole interior as a coarse-graining
flow. To this end, we first build on previous work [23,25]
exploring the existence of monotonic “degree-of-freedom-
counting” functions.

Furthermore, we explore how phase transitions in the
UV are encoded by the trans-IR part of the flow. We focus
on the following two holographic phase transitions in black
holes with spherical horizons:

(1) the deviation of a boundary subregion’s entangle-
ment from the Araki-Leib bound [26] described by
the holographic entanglement plateaus of [27]; and

(2) the connected/disconnected phase transition of a
thermal two-point function of a heavy scalar oper-
ator Oy corresponding to a transition of its holo-
graphic geodesic approximation [28,29].

The question of how UV phase transitions imprint upon the
interior geometry has been tackled in the planar holo-
graphic superconductor [30] in [31], which found that
approaching the condensate temperature from below coin-
cides with rapid, fractal-like fluctuations in the scaling
of space deep inside the black hole geometry. Indeed, one
may study the imprints of phase transitions on the trans-IR
regime across a wide variety of AdS/condensed matter
theory (CMT) models with specific matter content by
examining the evolution of black hole interiors [32-39].
However, we are interested in imprints arising from phase
transitions that are not contingent on having a particular
type of matter field. Any bulk theory that includes round
black holes as classical solutions will also accommodate
the above phase transitions.

Black hole solutions to Einstein gravity with no matter
have interior geometries described by finely tuned Kasner
cosmologies [40]. However, we find that turning on a scalar
deformation in the UV (and thus a matter field in the bulk)
changes the story and allows UV physics to imprint upon
the near-singularity geometry. Specifically, the deep-
interior Kasner cosmologies develop a nontrivial relation-
ship with parameters that characterize the above geometric
transitions.

We point out one subtlety; the specific mapping between
UV physics and the interior geometry is highly model
dependent (i.e., dependent on the dynamics of the flow),
rather than being universal. In fact, one can engineer
different potentials that give identical black hole exteriors
but drastically different interiors (so the UV physics would
be the same, while the Kasner cosmologies are not), and
vice versa. However, this is not an issue if one restricts to a
specific bulk theory, as we do.

A. Horizon topology and phase transitions

Throughout this paper, we restrict ourselves to back-
reacting AdS black holes of the form

fz
dS2 = >

d 2
—e*F(r)df* + .

2 22
F(r>+f d d—1k |°

(1.1)

I%

where # € R and r > 0, with the conformal boundary being
at r = 0. y is a real function, and F has a simple root at
r = ry, (defining the horizon). dX,_, ; is a unit line element
encoding the horizon topology. As in the pure gravity [41],
this line element is labeled by k = {—1,0, 1}, respectively
describing hyperbolic, planar, and spherical horizons,

dH2_,, if k=1,
dz2_,, if k=0,
dQ2 . ifk=1.

ds? = (1.2)

The planar case was first examined by [22], with an asso-
ciated monotonic a function having been identified in [23].
In this paper, we initiate the study of the spherical case.

The main underlying difference between the spherical
case and the others is that spheres are compact. Owing
to this, round black holes accommodate various phase
transitions of bulk geometric objects, which in turn are
interpreted as phase transitions of boundary CFT quantities.
In the other topological cases, the phase transitions in
which we are primarily interested either become much
simpler or go away.

B. A brief comment on the UV state

If we organize the CFT states into a canonical ensemble,
there are generically (in d > 2) three types of bulk states
at each temperature: a large black hole, a small black
hole, and a thermal gas of gravitons [19-21]. The small
black hole typically never dominates the canonical parti-
tion function and is even thermodynamically unstable,’

>This does not make small black holes unimportant. Indeed,
they are responsible for the peak of the bulk viscosity-to-entropy
ratio near the critical temperature in confining large-N,. gauge
theories [42,43].
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but the other two generally exchange dominance at a
Hawking-Page transition temperature [44]. Therefore,
while all of these states are thermal states, the large black
hole is the dominant thermal state only above the Hawking-
Page temperature.

Our focus in this paper is on the near-singularity
structure of black holes. From the holographic RG per-
spective, we should thus be careful to say that the interior is
only the trans-IR flow from the dominant UV thermal state
when we are looking at a large black hole on one side of an
assumed Hawking-Page transition. However, we can
always say that the interior represents a trans-IR flow from
some thermal state.

We do not study Hawking-Page transition in the presence
of matter. However, it should be possible to pin down where
this transition happens (cf. [45]). We leave this to
future work.

C. Outline

In Sec. II, we argue for the irreversibility of the flow from
the UV of a generic round black hole to its IR, as well as the
irreversibility of this flow’s trans-IR analytic continuation
toward the classical singularity. As in earlier AdS/CFT
literature [46—49], we assume the null energy condition to
construct a monotone that counts the degrees of freedom
along the flow. Our statements in this section are analogous
to those of the planar case [23].

In Sec. III, we elaborate on what specifically we mean by
“data” in the context of holographic RG flows triggered by
a minimal class of scalar deformations. While these flows
do not feature the types of phase transitions often seen in
AdS/CMT, they still support round black holes and allow
geometric phase transitions, so they are sufficient for our
purposes here. We will also show how the near-singularity
geometry is a function of the temperature only when a
deformation is turned on.

After establishing the basic machinery—the equations of
motion, the list of UV data, and the construction of “round”
Kasner universes [40] describing the near-singularity
geometry—we then discuss the entanglement plateaus
(Sec. IV) and the phase structure of the heavy thermal
(with respect to the black hole state) two-point function
(Sec. V) in these scalar flows and how they imprint upon
the near-singularity geometry.

II. HOLOGRAPHIC ¢ THEOREM FOR ROUND
BLACK HOLES

In the framework of RG flows, it is natural to ask how to
count the degrees of freedom to quantify the idea of coarse
graining a theory. In principle, this should be described by a
function that decreases monotonically as we flow from the
UV to the IR, since flowing in this manner corresponds to
integrating out degrees of freedom [1,2]. A flow with such a
function is “irreversible.”

In general QFT, the seminal work on this front is
Zamolodchikov’s ¢ theorem [50] stating that 2D RG flows
of unitary, Lorentz-invariant theories feature a monotonic ¢
function that coincides with the central charges at the
RG fixed points. Cardy’s conjectured extension to 4D [51]
(and any even number of dimensions, for that matter),
the a theorem, asserts the existence of an a function that
coincides with the A-type trace anomaly coefficients at the
fixed points. The a theorem in 4D has been proven for
nonholographic flows [52]. However, holographic flows
are nice in part because the a theorem can be extended to
and proven in any number of dimensions [47-49] assuming
reasonable energy constraints on the bulk matter, although
the field-theoretic interpretation of the odd-dimensional
holographic a function is not connected to an anomaly but
rather entanglement entropy.

If the black hole interior is to be interpreted as an
analytically continued RG flow, then the ability to count
degrees of freedom should extend to the trans-IR regime.
This has been done for flat black holes in Einstein gravity
[23,25]. Here, we construct the a function of a round black
hole in Einstein gravity. Our goal in this endeavor is to
perform a preliminary consistency check of interpretation
of the interior geometry as a coarse-graining flow, even
though “energy” is imaginary.

As a caveat, we note that such a monotone is a rather
coarse consistency check and its mere existence does not
address questions surrounding what it physically means to
flow along imaginary energies on the level of field theory.
We leave addressing this point to future work, for now
simply assuming that the existence of a monotone serves as
reasonable evidence for some RG-flow interpretation of the
interior.

A. a functions from the null energy condition

The trace anomaly was first realized holographically
by [53] in Einstein gravity,

d(d—1)
G;w _2—fzg;w = O,

(2.1)
where ¢ is the curvature radius. The trace anomaly co-
efficient a, goes as 97!, and in keeping with the
normalization conventions of [48,49], it is

dj2

£t (2.2)

T
Ay = 7N od=1
r§es!

For example, for d = 2 (where /p = 82Gy) we reproduce
the usual 2D trace anomaly coefficient with the Brown-
Henneaux central charge cgy = % [541],

4 . CBH

L 2.
a*|d72 8GN 12 ( 3)
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Holographic a functions in Einstein gravity3 can be con-
structed by using a, as a starting point [47]. Basically, we
take gravity sourced by matter such that there is a relevant
deformation at the boundary triggering an RG flow. The
bulk equation of motion is then

o _dd-1)

w 79}4» = fg_lT,m

(2.4)

where ¢p is the Planck length and 7', is the stress tensor.
We then impose a “radial” null energy condition on matter,’
T, k'K >0, (2.5)
where k* is some null vector pointing at least partially in the
bulk radial direction orthogonal to the conformal boundary.
Given a domain-wall ansatz [47] for the spacetime line
element, such as
ds* = g;j(p. X)dx'dx) +dp*, i,j=0,...d-1, (2.6)
and that we assume to be asymptotically AdS space, the
inequality (2.5) is then used to prove the monotonicity of a
combination of metric functions that reduces to a, at the
conformal boundary.

We can also work in the reverse order by starting
with (2.5) on some metric and engineering a monotone
that coincides with the holographic trace anomaly coef-
ficient. This latter systematic approach is useful for con-
structing candidate a functions for spacetimes involving
multiple metric functions, as seen in [25].

Let us take this approach to construct a monotone for
spherically symmetric round black holes. The domain-wall
ansatz that foliates the bulk into cylindrical slices is

ds? = ¥\ ) [—f(p)za't2 + L”zezR(/’)dei_l} +dp*.  (2.7)

Here, (¢,Q,_,) parametrize the transverse R x S~ slices,
and p > 0 is the radial coordinate. A, 'R, and f are metric
functions that for p > ¢ asymptote to

A(p) ~ log cosh ('Z) , R(p) ~ logtanh (';) ,

flp) ~ 1. (2.8)

30ne can also work in higher-derivative theories—[48,49]
does Gauss-Bonnet, for example—but note that the trace
anomaly and the resulting a function change.

‘While one may impose the full null energy condition, taking it
to hold only for radially directed null vectors is sufficient.
Heuristically, this is because the radial direction is privileged
in the language of RG flow as the “direction of energy,” so only
radial null energy conditions may be interpreted as imposing
positivity “along the flow.”

This is the condition that the geometry is asymptotically
AdS,,; space near the conformal boundary, which we
recall as being the UV region. Additionally, we assume that
f(p) > 0 in the exterior.

By uniformly setting f(p) = 1, we get a class of metrics
describing deformations of global AdS space. The warm-up
construction of a functions in such geometries is the subject
of Appendix A. In the main text, we instead focus on black
hole geometries, for which we take f to have a simple root
at p = 0 [55]. This condition corresponds to the presence of
a black hole horizon with temperature

A(O)/O
, _e0r0)

- (2.9)

While p > 0 covers the exterior, the interior is charted by
analytically continuing the p and ¢ coordinates as

t = t; — sgn(ty) 1 (2.10)

p =ik, o7,
where k > 0, 1 €R, and yeZ —|—% [55].
We are now ready to implement the scheme for con-
structing holographic a functions from the radial null energy
condition, as discussed in [25]. Much of the technical details
are similar to those of the case without a black hole in
Appendix A. As we go into more detail there, we will be
sparse on the technical details in the main text in the interest
of brevity. Furthermore, we emphasize that the function
resulting from the scheme will be guaranteed to be a
monotone in the exterior but not the interior, so the proof
of monotonicity in the interior is left to Sec. II B.
First, we consider the null vector
k= e A0 + f(p)d,. (2.11)
This vector is regular everywhere. If we contract the outer
product of two such null vectors against the stress tensor
computed by plugging the domain-wall metric (2.7) into
the Einstein equations (2.4), we get

D ) + RGP 1)

(d [ e R0 f(p) D
XN\ — =7 |-
dp [A'(p) + R'(p)

The coefficients in front of the derivative factor are

manifestly positive in the exterior. Thus, if we define the
candidate a function

T, ki =

(2.12)

e R f(p) 14
)] , (2.13)

alp) = [A/<p> TR

then we have that a is monotonic (i.e., its p derivative is
positive) if
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—R(p)
[Aeif(p) (2.14)

d-2 9
)+ R/<p>] -0

It is sufficient to show that A’(p) + R'(p) > 0 for p > 0,
since both e™ and f are positive on the exterior. Indeed, this
is always true given the asymptotic behavior of the metric
functions (2.8) and assuming their analyticity. The proper
argument, as utilized in [25] and Appendix A, involves a
proof by contradiction, in which we explicitly exploit
analyticity to show that

3 p=p, suchthat A'(p,) + R (p,) =0

= T, kK| <0, (2.15)

p=p.te
for some small ¢ > 0. In other words, we find an approxi-
mate expression for the null energy condition in an e
neighborhood of a posited root p = p, that is manifestly
negative.

So, (2.13) is a monotone in the exterior due to the null
energy condition. Noting that the physical a function
should coincide with the holographic trace anomaly coef-
ficient (2.2), we ultimately write it as

gy _ 7P [ e S (p)
ah(p’Sd 1) _F(%)fg_l |:A/(,0) +R/(p

The h subscript is to stress that this a function is defined
from geometries with horizons. The S~ argument is to
emphasize that the dual CFT states are defined on the
(d — 1) sphere, as opposed to being on (d — 1)-dimensional
flat space like in [23].

)r_l. (2.16)

B. Monotonicity in the interior

The domain-wall ansatz (2.7) is useful for constructing
a functions that are manifestly monotonic in black hole
exteriors. Additionally, the smooth radial extra dimension p
is cleanly identified with the energy scale. However, to
cover the black hole interior in these coordinates, we must
analytically continue p to imaginary values. This gives rise
to ambiguities when checking the monotonicity of our
proposed a function in the interior.

A workaround is to incorporate the factor of i into the
metric through a coordinate transformation of (2.7) to a
warped Schwarzschild coordinate frame,

2 dr?

2 - 2 2 102
ds’ =— | —e 2 F(r)dt +W+ £2d |, (2.17)
where r € R, with r = 0 being the conformal boundary and
r = oo being the singularity. The metric functions y, F are

°For the black hole, this approximation has a factor of f2
relative to the expression obtained from deformations of global
AdS space (A17). In the exterior, this factor is positive and thus
does not impact the argument.

analytic, and F has a simple root at r = r,. We may
compute the horizon temperature in terms of these metric
functions to be®

e (1)

T, —
h 47

. (2.18)

The coordinate transformation p = p(r) that makes (2.7)
assume this form is

£dr
14 = 0, d = — s eA(f))+R(/)) = — .
p(ry) p JEO) .
féﬁ)) — 2\ /F(r) (2.19)
e

In domain-wall coordinates, monotonicity along the full
flow is the statement that

dah
Exterior : — > 0, 2.20
xterior 0 (2.20)
Interior : " < 0 (2.21)
nterior : —— :
dx ’

where we recall that k = —ip by (2.10). We already know
that (2.16) satisfies the exterior condition (2.20), but
we need to also show that it satisfies the interior condi-
tion (2.21). We do so by computing the derivative along r
in (2.17) and employing the chain rule. So, the first step
is to use (2.19) on (2.16) to write the a function as a
function of r,

(7 §170) = o (6281 = g la-t
an(r; 87" = =——— |Le*\VV/2 |7 = a, e\ HAZ,
r§eg!
(2.22)
Then, we may write
da, dpdrday
dc  dxdp dr
d—1)r\/|F
=[O 5oy, 229)

In the last line, the factor in square brackets is manifestly
positive in the interior. Additionally, from the radial null
vector

k= exN28 — F(r)d), (2.24)

®Note that F'(ry) <0, so the temperature depends on its
absolute value.
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the null energy condition implies that

(d—1)F(r)?

T, kkV =
w 2r

Y(r)>0=4(r)>0. (2.25)
So, when analytically continued to the interior, the a
function (2.16) still decreases monotonically with «, i.e.,
as we flow toward the singularity. In other words, mono-
tonicity is preserved both in the exterior and in the interior
of the round black hole.

C. Sanity checks of the a function

There are some simple sanity checks that we may
perform on the holographic @ function to ensure consis-
tency with the interpretation of holographic RG flow. We
do these now.

1. Constant for vacuum solutions

As gravitational dynamics corresponds to RG flow
dynamics, a lack of backreaction due to matter should
correspond to a theory that does not flow away from the UV
at all. This can be checked holographically by plugging
the vacuum solution into our a function and seeing if it
uniformly evaluates to the holographic trace anomaly
coefficient (2.2).

For the round black hole a function, this is most simply
done in the r coordinate. There, we know the form of the
vacuum solution analytically,

2(r) = 0,F(r) = ;7224— 1- (71)0167% + 1>. (2.26)

If we plug this into (2.22), we find that

ay(r; S1) =a,. (2.27)

x(r)=0

2. Stationary at the horizon

The horizon should correspond to an IR fixed point. This
means that the a function should be stationary when
evaluated at the horizon radius. This is again confirmed
rather simply in the r coordinate. While the r derivative,

day __(d-1)

.Qd—1\,/
o (s (),

(2.28)

is regular at the horizon (as y is analytic), the derivative

a

along the flow is dd—p“, SO we write

day, daydr (d—1)r

— — . Qd-1y,,/ F
g~ drdp 2z “nSTWVED)
dah
o 2.29
ap |-, (2:29)

ITII. SCALAR FLOWS AND DATA

In principle, one can write “initial data” characterizing the
beginning of an RG flow from a UV fixed point. Such data
consist of dimensionless combinations of scales coming
from both the fixed-point theory itself and the relevant
deformation that triggers the flow. Through flow’s dynamics,
these initial data will be related to the “final data” character-
izing the end of the flow (conventionally the IR). Our goal is
to connect UV data to trans-IR data extracted from the near-
singularity classical geometry, as in, for example, [22,31].

Notably, while the Wilsonian framework always views
renormalization as a coarse-graining flow that leaves
imprints of UV physics on a (trans-)IR effective picture,
the details of such imprints are not universal. Beyond the
UV data, the dynamics of the RG flow equations are
important in determining the details of the imprints.

So, for concreteness, let us restrict to RG flows triggered
by a single-trace scalar deformation f ¢oO, where ¢ is the
source and O is a relevant scalar operator in the CFT. Such
flows have a place in the literature as simple toy models of
holographic renormalization [56-58], and they are holo-
graphically realized by gravity coupled to a scalar ®.

For further simplicity, we take Einstein gravity coupled
to a Klein-Gordon potential. This fully fixes the dynamics
of the RG flow, but we again reiterate that the mapping
from UV to trans-IR data will not be universal to all
holographic flows induced by a scalar (cf. [59]). In fact, we
can add additional terms to the potential that yield black
holes with identical interiors, but very different exteriors
(or vice Versa).7 Our action is

Ilg, ®] :%g_l/%—g{k+%

- % (V, 2V + m2cb2)] . (3.1)

The classical bulk equations of motion are thus

o _dd-1)

1
u Z—fzglw = 5 |:VM(DVD¢)

1
=5 % (V, oV + m2q>2)] . (32)

(V, V% — m?)® = 0. (3.3)

To more concretely study scalar flows, we use a radial
ansatz for @ and the metric ansatz (2.17) (rewritten below),

2 o dr?
ds* = | 2 F(r)di? —l—m—&— fzdﬂﬁ_l],
D = ¢(r). (3.4)

"We thank an anonymous referee for making this point.
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For solutions of this form, (3.2) and (3.3) reduce to three
independent ordinary differential equations,

s (F d=1 2\ Ad-b)
¢+<7‘T‘5>¢ T ¢=0 B9
, 2F A(d—A)¢?* 2d 2d 2(d-2)r

R T L)
/ r / _

¥ = @7 =0, (3.7)

The only difference from the equations of motion for a flat
topology is the last term in (3.6). This term reflects the
topology of the horizon in our metric ansatz.

A. UV data

First, we describe the initial UV data for these scalar
flows. The conformal dimension A of O is related to the
scalar mass m through the AdS/CFT dictionary [60,61] as

(mz/”)2 =A(A-d), (3.8)

so the deformation is only relevant (A < d) when m? < 0.
However, for each m? strictly above the Breitenlohner-

Freedman bound m? > —% [62], there are two possible
values of A,

d 472 d
Ai—§<li“1+7m2> :O<A_<§<A+<d.

(3.9)

Each A corresponds to specific boundary conditions on
the scalar field [63]. In this paper, we will consider only
A=A, > %’, as in [64] by two of the authors. For the radial
ansatz ® = ¢(r), we can extract the source ¢, from the
near-boundary profile of ¢(r) [65],°

(0)
20 —d

§) =+

/1A
= 12%(?) Pr).

Thus, the source is the coefficient of the leading-order
term in the near-boundary expansion (with the Dirichlet
boundary condition). This contrasts with the choice
A = A_ for which the source term is next-to-leading

+) :>¢0

(3.10)

¥This power-law behavior of the scalar field may be obtained
by taking the r — 0 limit of (3.5), noting that y(0) =0 and
F(0) =1 for asymptotically AdS geometries. This yields a
simple second-order ordinary differential equation (ODE).

order’” and is extracted by taking a derivative (the
Neumann boundary condition). Additionally, note the length
dimension of ¢, is A — d, since the scalar field itself must be
dimensionless in (3.1).

So, ¢, is a scale that inputs into the UV data, while A is
an additional dimensionless parameter. Furthermore, we
consider the UV fixed point to be a CFT at finite temper-
ature f~! = T}, and on a spatial sphere of radius #. Thus,
there are three dimensionless parameters,

UV data : {é,qﬁof‘i‘A, A}. (3.11)
As an aside, recall that flat topology arises in the large-
volume limit of a round black hole. Specifically, we take
p < ¢ with  and ¢ kept finite, so the flows corresponding

to flat black holes do not have /—; as UV data. The only finite

dimensionless parameters left are ¢,$?* and A. Round
black holes thus accommodate a larger parameter space of
UV data.

Finally, note that the other metric functions y and F' may
also be expanded around r = 0. Their behavior in this
regime is directly determined by that of ¢ through the
equations of motion. Specifically, we can plug (3.10) into
(3.5)—(3.7) to write

2 =P T
a Lz(dz—A gc)l(;AA )— g) Pl - }
A [2(d_?)<gz_d)2+..}, (3.12)
F(r)=1+ (@=2) o A5 -y, (3.13)

(d=N)2 " 2(d—-1)

As 2(d— A) < d < 2A, the leading-order term in y is
proportional to 2(=4). To find the first two subleading
terms in F, we only plug in the lowest-order terms in ¢
(~r?=2) and y (~r2d=2),

B. Trans-IR data

Now, let us briefly comment on the near-singularity
structure of black holes in the presence of matter so as to
pin down what sort of data would characterize the trans-IR

°To be more precise, when A = A_, the source term is still the
coefficient of the r?~2 term, but now it becomes subleading to
the one-point function term 7 near the boundary. This is because
A_< ‘2—1 This choice corresponds to a Neumann boundary con-
dition on the scalar field, rather than a Dirichlet one [63,66].
For technical simplicity in the numerics, we only consider the
Dirichlet one, for which ¢, can be read from the leading-order
divergence of ¢(r).
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end point. We again focus on scalar deformations (3.1), so
characterizing the trans-IR data amounts to understanding
free-scalar-induced backreaction on an AdS black hole
interior.

The classical evolution of the black hole interior (or
singular geometries) in the presence of matter is a deep
topic dating back decades to seminal work by Belinskii and
co-workers [67-69] and by Misner [70], with subsequent
rigorous treatments of the dynamics utilizing the “cosmo-
logical billiards” approach [71,72]. These methods are
good near the singularity. In more recent years, the focus
has shifted to numerical construction of the near-horizon
region [31] and even to analytic study of the full interior
[24,73]. Nonetheless, these different approaches are com-
plementary to one another [74].

In these studies, the general structure of the black hole
interior is a Kasner universe [40]. These geometries are
anisotropic spacetimes. The planar version takes the form

d
2 — 22 2p; 742
ASiasner = —C°d7° + g Pidx;.
i=1

(3.14)

The p; are called “Kasner exponents.” We use these as
trans-IR data. For a solution to the vacuum Einstein
equations, the Kasner exponents simultaneously satisfy
the constraints

(3.15)

d
i=1

i=1

Let us be more specific to our particular class of flows.
Scalar fields blow up logarithmically when near a spheri-
cally symmetric Schwarzschild singularity [75,76], so we
start with

¢(r) ~c(d- 1)10g<;), r>¢,  (3.16)

where ¢ is some constant. We may then use the equations of
motion (3.5) and (3.7) to write the other metric functions in
this r > ¢ regime,

r

w0~ = 1oe(F) tam A~ -Fa(5)
(3.17)

where y,, and F,, > 0 are integration constants and ¢ is

shorthand for
d-1
=d 2 ——).
q +c< 2 )

Plugging these into our metric ansatz (3.4), we may apply
the coordinate transformation r — £772/9 to get (up to
rescalings of the ¢ and 7 coordinates)

(3.18)

£gVF2\2
ds? ~—£2de® +2Pdi® + (%) 2r2dQ2 . (3.19)

This is a round Kasner universe—see [77]. The Kasner
exponents are

2(d -1
g Ad=1)

p (3.20)

2
Po=—-
q

At this stage, it is useful to write ¢ as a function of z. This
allows us to identify yet another Kasner exponent p,,

2y/(d=1)(g—=4d)
. :

¢(r) = —V2logers, p,= (3.21)

Thus, we have three distinct exponents that manifestly
satisfy two constraints,

pi+(d=1)po=1.  pI+(d=1)ps+pj=1,

(3.22)

so the trans-IR data are described by just one Kasner
exponent, which we choose to be p,,
trans-IR data : {p,}. (3.23)
We go from three parameters in the UV data (3.11) to one
parameter, so the lossy nature of RG flow is manifest.
As an application, consider the vacuum solution for
which ¢ = 0. Then we recover the same constraint as

(3.15). In this case, we may exactly solve for the Kasner
exponents,

2 2
pt‘vac =-1 +2’ pQ|vac = 2 (324)

As a sanity check, observe that this is consistent with the
vacuum solution (2.26), which has a purely d-dependent
Kasner structure that is fixed independent of UV data.

Finally, we comment on the qualitative meaning of p,
to the structure of the black hole geometry. It (along with
the other Kasner exponents) conveys information about the
stability of the interior near the singularity. Specifically,
the singularity is located at 7 — 0, so

p,>0= lin&gn - 0, p,<0= linag,, — 400.

(3.25)

In the former case, g,, decays exponentially. This decay as
we approach the singularity is viewed as the “collapse” of
the Einstein-Rosen bridge [31,78]. Meanwhile, in the latter
case, we would say that the interior geometry grows near
the singularity.
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FIG. 1. Plots of the horizon radius ry, versus inverse temperature f with # = 1 and for both (a) d = 2, A = % and (b)d =3,A =2. We
plot these points for various different values of the deformation parameter ¢pq + 0.5%. For d = 2, we observe a one-to-one linear
relationship, indicating that each temperature corresponds to just a single black hole in the bulk. For d = 3, however, there are two
solutions for each f—a large black hole (the lower branches) and a small black hole (the upper branches). As a sanity check, we note the

¢o ~ 0 numerical points are consistent with known analytic expressions for ry,, which are % ford = 2 and zﬁ—" + (2/),—”)2 — 3 (respectively,

the small and large branches) for d = 3.

C. From UV temperature to trans-IR exponent

A preliminary consistency test of our intuition is to
compute trans-IR data and demonstrate its functional
dependence on UV data in the presence of a relevant de-
formation. This should contrast with the vacuum case, for
which the Kasner exponents are fixed at (3.24).

To do this, we first numerically construct a large array of
black hole solutions to the equations of motion (3.5)—(3.7).
Doing so requires fixing the AdS radius; we set £ = 1. The
finer specifics of our construction procedure are discussed
in more detail in Appendix B, but at this stage we note that
d and A are fixed. With the solutions in hand, we then select
for metrics with specific preselected values of the defor-
mation parameter ¢y up to some small error, which we take
to be 0.5% throughout our numerics (or 0.005 for ¢, = 0).
This is done prior to subsequent calculations to save on
computational resources.

For d =2, each temperature only furnishes a single
black hole geometry—a deformed static Banados-
Teitelboim-Zanelli (BTZ) black hole [79,80]. However, it
is well known that for d > 2 bulk spatial dimensions there
are two branches of black hole solutions (in terms of the
horizon radius r,) for each f—Ilarge black holes and small
black holes. This is not only true in vacuum but also with a
deformation turned on. We illustrate this point in Fig. 1.
As a bonus, the d = 3 plot also exemplifies how d > 2
theories include a maximal f# or minimal temperature (the
“spinodal” point) beyond which there are no black hole
solutions.

In our coordinates (3.4), the conformal boundary is at
r = 0. Thus, if there are two solutions at some temperature,
the large black hole corresponds to the smaller value of ry,
while the small black hole corresponds to the large value.

Although there is this ambiguity in the bulk geometry, we
emphasize that the small black hole is thermodynamically
unstable. Nonetheless, we may view it as some subdomi-
nant (in the canonical ensemble) thermal state with its own
trans-IR flow.

With that in mind, for each of these families of black
holes, we also plot p, as a function of the inverse temper-
ature in Fig. 2. For both d = 2 and d = 3, we see that the
vacuum Kasner exponent p,|,,. = —1 + 2 (3.24) are repro-
duced by our numerics. With a deformation turned on,
however, p, develops a nontrivial relationship with f.

For d = 2, we get a fairly consistent functional structure
(at least for low ¢, but we expect it to hold for larger ¢).
p, apparently increases from the vacuum value of O for
small f until reaching a maximum value dependent on ¢,
and then decreases. We may even posit that the value of f at
this maximum decreases with ¢,.

Meanwhile, for d = 3, the presence of two black holes
for each f manifests branching in Fig. 2(b). More specifi-
cally, we observe that the small black holes have Kasner
exponents much closer to the vacuum value than those of
the large black holes. In other words, the small black holes
are the lower branch of Fig. 2(b), while the large black
holes exhibit a similar behavior to those of d =2 with a
spinodal point present. One way to interpret this is to say
that small black holes have “more” near-singularity geom-
etry, since as per (3.25) g,, would blow up more for small
black holes.

So to summarize, deformations of the UV turn on
nontrivial relationships between UV and trans-IR data.
In particular, the near-singularity geometry is no longer
completely specified by d. We now want to describe such
relationships in terms of other parameters of the UV CFT
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FIG. 2. Plots of the Kasner exponent p, versus inverse temperature # with £ = 1 and for both (a) d = 2, A = % and (b)d =3, A =2.
We again plot these points for various different values of the deformation parameter ¢, + 0.5%. For both, the ¢, ~ 0 values of p, are
only fixed by the dimension (3.24) and thus, respectively, are 0 and — % For ¢y # 0, the d = 2 plot is a well-defined function, whereas
the d = 3 plot is branched. In the latter, the upper branch corresponds to large black holes, while the lower branch corresponds to small

black holes.

that are directly connected to phase transitions of holo-
graphic quantities.

IV. IMPRINTS OF ENTANGLEMENT PLATEAUS

One phase transition unique to the round black hole
concerns holographic entanglement entropy as computed
by the Ryu-Takayanagi (RT) prescription [81,82], which
we now summarize. First, consider a bulk codimension-two
surface I which is “homologous” to R (I' ~ R), by which
we mean that there exists a codimension-one bulk region X
for which

0X=RUT, OR =dI. (4.1)
Then, to leading order in a small (in units of AdS radius)
Gy expansion, the entanglement entropy of a boundary
interval R on a fixed-time slice is proportional to the area of
the smallest such I,

S(R) = min ext [A%g)} .

(4.2)
The minimal-area extremal surface is called the RT surface.

In simple cases, like pure AdS or the planar AdS-
Schwarzschild black hole, the RT surface is connected
if R is connected. However, this need not be the case in
the round black hole (as also appreciated in other work
[83-85]). For example, when R constitutes a sufficiently
large connected subregion of the boundary in a higher-
dimensional (d > 2) round AdS black hole, one does not
even have connected homologous extremal surfaces as
candidates for the RT surface in the first place [27]. The
relevant feature of a round black hole is that any bulk region
2 bounded by a sufficiently large 'R and some extremal
connected surface always includes the horizon, so it must

Q R

FIG. 3. A fixed-time slice of the round black hole, with the RT
candidates corresponding to a boundary region R. Generically,
the true minimal RT surface may either be connected (I'c) or
disconnected (I'p). Note that I itself has two connected
components—a piece ['p that wraps around the black hole
horizon and the horizon itself.

be included as a separate connected component of the RT
surface.'” Indeed, allowing for disconnected I' is the only
way to have the RT prescription be continuous with the
Bekenstein—-Hawking formula [86,87] in the limit where R
is the full boundary, for which the RT surface should only
be the horizon.

As a generic adaptation of the RT prescription to round
black holes, [27] starts by considering two separate classes
of codimension-two surfaces homologous to R—those that
are connected and those that are disconnected and include
the horizon. See Fig. 3 for a visual representation. Then,
computing the entanglement entropy amounts to finding
the minimum-area extremal surface'' among both classes,

""Note that the horizon is a topologically closed surface and
thus has an empty boundary, so it can be included in I" without
breaking the homology condition (4.1).

If one of these classes does not include any extrema (like the
d > 2 round AdS black holes [27]), then extrema must exist
solely the other class.
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S(R) = min Area(I'¢) ,Area(FD)
4Gy

4GN = min (SC’SD+SBH)'

(4.3)

In the equation above, I'c denotes a generic extremal
surface that is both connected and homologous to R. The
area of this surface is directly related to Sc. Meanwhile, I'p
is the extremal surface that is disconnected and homolo-
gous to R. It helps to break the resulting entropy into two
terms, each corresponding to a connected component of [p,.
The first term Sp, is computed by the connected component
I'p € I'p, which is anchored to the conformal boundary and
wraps around the horizon. The second term Sgy is the
Bekenstein—Hawking entropy of the horizon itself.

That there are two competing candidates in the round
black hole allows for a first-order phase transition as
described in [27]. First, recall that if the full system is in
a pure state, then the entanglement entropy of any sub-
region R and its complement R¢ must match. For mixed
states, we may quantify the “deviation” from this purity as

5Sg = S(R) — S(RC). (4.4)

By the Araki-Lieb inequality (cf. Theorem 2c of [26]),

[6SR| < S(R U R®) = Sgy, (4.5)
where the entropy of the full boundary system is equated to
the Bekenstein—Hawking entropy. Saturation of the Araki-
Lieb inequality corresponds to a canonical factorization
of the full boundary degrees of freedom, with any of the
resulting factors carrying all of the microscopic entangle-
ment entropy (cf. Theorem II1.2 of [88]).

We may analyze the deviation from purity on the left-
hand side of (4.5) as we tune the ““size” (we make this more
precise below) of R from 0 to half of the full boundary
interval.'” In doing so, we find that for small R there is a
window of interval sizes for which Sz and Sg. are,
respectively, computed by I'c and I'c U I, where I, is
the horizon. For R near half of the boundary, however,
there is another window of interval sizes for which both
entropies are computed by corresponding connected phases
(T and T'p, respectively). According to (4.3), these two
windows are, respectively, described by

Sc < Sp — Sgu = |6Sg| = Sgm, (4.6)

S'D — SBH < SC < SD =0 < |5S7€| < SBH' (47)

"’Because we are comparing the entropy of R against that of
its complement, taking R to be half of the boundary is the same as
considering the extremal case R = R°. Thus, by the Z, sym-
metry that exchanges the roles of R and R¢, considering intervals
‘R that are more than half of the full boundary is redundant.

If we plot |6SR | as a function of interval size, we observe a
so-called entanglement “plateau” [27]. The fall from the
plateau corresponds to loss of saturation of the Araki-Lieb
inequality.

We aim to understand how this phase transition imprints
upon the trans-IR Kasner exponents. To do so, we take R to
be a round “cap” [with SO(d — 1) symmetry] in the boun-
dary whose size is controlled by a single angular para-
meter 0. The transition is found to occur at a particular
0r = 0,. With a scalar deformation in the UV, we find that
this transition point can be viewed as UV data in lieu of the
CFT temperature parameter é in the list (3.11). With that in
mind, we plot 6, against the Kasner exponent p, at fixed
values of the deformation parameter ¢,Z9 2.

As a matter of practicality, we focus on the d = 2 case
for which the extremal surfaces can be computed from
a first-order ODE. The higher-dimensional cases are, in
principle, possible to analyze, but they require numerically
solving second-order ODEs. We discuss the basic machi-
nery of general d > 2 in Appendix C, leaving the higher-
dimensional problem open for future work.

Essentially, we will find that a finite, nonzero deforma-
tion induces a nontrivial relationship between p, and 6.
The takeaway is that a deformation allows entanglement
structure in the UV to imprint upon the trans-IR data (at
least in the low-dimensional case of d = 2). We find that
this effect is numerically small.

A. Ryu-Takayanagi in deformations
of the BTZ black hole

We compute entanglement plateaus for deformations of
the round BTZ black hole in d = 2, which is described by
the metric (fixing the curvature radius as £ = 1)

2 - ,  dr 2
ds*> = = |—e#OF(r)di* + ——+ do?|,

r F(r) (4.8)

withr€R, r > 0, and § ~ 0 + 2x. Recall that we assume F
to have a simple root at r = ry, defined as the black hole
horizon. Furthermore, it is convenient to take the funda-
mental domain 6 € (—z, z], with R at fixed time being
parametrized as 0 € [-0, 0] for some 0 < O < %‘13 Our
goal will be to find the value 6 = 6, at which the Araki-
Lieb inequality switches between being saturated and
holding strictly.

To compute the extremal surfaces, we first use the metric
to write the area functional of a surface 6 = 6(r) at fixed ¢
(omitting bounds of integration for now)

dr | 1 .

PRecall that we are only considering R up to half of the full
boundary.

(4.9)
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We then use the Euler-Lagrange equation to obtain the
equation of motion for the extremal surfaces,

’,.2

IOr = FE Ay

(4.10)

Here, r, < ry, is a bulk constant of motion characterizing

the turnaround point of the extremal surface, i.e., % ly=r. =

ﬁ = 0and r €0, r,]. By integrating (4.10), we can relate

this r, parameter to Og,.

We now have the necessary expressions to compute the
areas of the RT candidates for both ‘R and R¢. Before we
proceed, we reiterate that I'c denotes the connected
extremal surface homologous to R, while the homologous
disconnected extremal surface I', decomposes into con-
nected components I'y U I, where T, is the horizon and
o', = 0R. We observe that the connected phase for the
entropy of the complement R¢ is then computed by the
connected component I'p, and the disconnected phase is
computed by the union I'c U I'},. So at this stage, we simply
need to compute the end points and areas of I'c and I'p in
terms of their turnaround points.

1. Computing T'¢

We first relate the turnaround point 7., of I'c to 0. To
start, note that I'c represents a surface that does not wrap
around the black hole horizon relative to R (Fig. 3).
Therefore, the 0(r) > 0 branch has the negative root of
(4.10) as its derivative, so we write

O(re, (4.11)

ree dr r
00 == |

By the symmetry of our parametrization, 6(r.,) = 0.
Additionally, 8(0) = 05. As such, we have

(4.12)

ree dr r
O0r = )
R /) VEr) /12 =1

Furthermore, the area of I'c may be written by plugging
(4.10) directly into (4.9),

rC>:< d *
Area(l¢) =2 4 Feo/ T

(4.13)

2. Computing T

We now relate the turnaround point ryq, of I'p to 0.
As shown in Fig. 3, this surface wraps around the black
hole horizon relative to R. As such, the derivative of the
0(r) > 0 branch is the positive root of (4.10), so

O(rys (4.14)

radr r
R S

This time, we have that 0(ry,) = 7 and 8(0) = 6. Hence,

O =1 — (4.15)

/ racdr r
0 \/F(r)\/rﬁ*—rz'
However, the area of I', takes the same form as that of I'¢,

raedr Fau /T

Area(Tp) =2 (4.16)

3. Applying Ryu-Takayanagi

For a fixed R (and R¢), we can, in principle, use the
simultaneous constraints (4.12) and (4.15) to solve for the
turnaround points r., and rg, in terms of the interval size
parameter f5. With those in hand, we can then plug the
expressions (4.13) and (4.16) into the holographic pre-
scriptions for the entanglement entropies of ‘R and R¢ to
evaluate the entropies,

1 _ 2
S(R) = mmin {Area(l“c), Area(I'p) + r—ﬂ . (4.17)

1 2 _
S(R¢) = mmin [Area(rc) + r—: . Area(FD)} . (4.18)

The 3—: term is the horizon area in the d = 2 round black

hole and notably does not depend on the deformation. With
these equations, we may compute the absolute difference
of entropies |6Sr| = |S(R) — S(R¢)| explicitly. By scan-
ning over O, we can plot |55z | as a function of interval
size, and it is in such plots that we identify entanglement
plateaus.

That being said, we know that the transition in entropy
occurs between the windows (4.6) and (4.7), i.e.,

- 2
O0r = 0, © S¢ = Sp — Spy & —
Th
= Area(I'p) — Area(T'¢). (4.19)
This along with (4.12) and (4.15) completely constrain the
transition point and can be used to find the transition value
0z = 6, without needing to plot |5Sx|.

B. Plateau kinks versus Kasner exponents

Given some solution to the equations of motion with
horizon radius r = r,, we reiterate that the respective
turnaround points ., and ry, of I'c and I’ at the transition
angle 0p =0, are fixed by the following system of
constraints:

(4.20)

e dr r
O, = :
kA\Mm%qz
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0 /rd* dr r (4.21)
=7 - . .
e dr Tay/T e dr T/ T
(4.22)

To use these constraints, we first obtain a large number of
numerical solutions to the equations of motion (3.5)—(3.7).
We then scan for fixed values of the deformation parameter
¢o (with some prescribed uncertainty) and, for this subset
of solutions, numerically solve the above constraints. After
post hoc validation that the numerical output indeed solves
these constraints, we are left with the desired values of 6.
We can then check whether 6, is a monotonic function of /3,
thereby allowing us to substitute the latter for the former in
the UV data without issue. We then plot the Kasner
exponent p, against 0.

Before discussing the numerics, however, we note that
the case of the (undeformed) BTZ black hole can be
understood analytically. We do so both as a warm-up
and to have a consistency test in hand for our numerics.

1. Undeformed BTZ black hole

Let us review the case of the BTZ black hole in pure
gravity, also analyzed by [27]. As it turns out, the interval
size corresponding to the plateau of the BTZ can be
computed analytically. First, recall that

72

FBTZ(r> —1__

= (4.23)

This can be used to compute both r., and ry, as functions

ofHR,
Or
rB1Z — py tanh( >
"'

ﬂ'—'QR
'y ’
Now, we want to compute the interval size O =

defining the kink of the plateau Recalhng (4.6) and (4 7),
this is found by setting

(4.24)

B2 =, tanh( (4.25)

QBTZ

“Note that we may also use the interval size at which the RT
surface of R changes phase, which is computed by [27].
However, this is redundant. The phase transition in the surface
for R occurs in the domain where it is more than half of the
boundary system, and it precisely coincides with where the kink
develops if we instead analyze the entanglement plateau of the
complementary interval R€.

2
— Area(I'c) = =
Th

Area(Tp) (4.26)

For the BTZ geometry, we can compute each of these areas,
and thus 6217, analytically. First, define a regulator surface
r = €. The regulated areas are then

2

Area(To)SE, = 2log( )+10g< r*2>, (4.27)

h rc*

€ 2
~2log(=—) +1 &), (4.28
o) oelz) o

The UV divergences manifestly cancel when we take the
difference, so the constraint (4.26) is well defined and
yields the following relation:

T o T
OB = 5~ 5 logcosh <V_h> :

The horizon temperature (2.18) of the BTZ black hole is
T, = so we may write the kink angle as a monotonic

function of the inverse CFT temperature g = 75,

Area (')t =

(4.29)

2ﬂr’

[P i
OBTZ — 3 [1 - 2_7;210g cosh (7” . (4.30)

So the value of O21Z depends on the temperature (or size
through f ~ ry,) of the black hole. For high-temperature
(f — 0) and low-temperature (# — co) BTZ black holes,
;i_I)%HETZ =0, ﬂl:rg OBTZ = = (4.31)
In other words, for large black holes r, <1 there is
effectively no range for which the Araki-Lieb inequality
is saturated, whereas for small black holes r, > 1 the
Araki-Lieb inequality is effectively always saturated.
However, we may also consider intermediate regimes at
which the transition happens at finite interval size, as shown
in Fig. 4.
Finally, we emphasize that the Kasner exponent for any
black hole solution to the vacuum equations of motion is

given by a temperature-independent constant. For BTZ
black hole,

BTZ _ ()

pr (4.32)

This can be seen by taking d = 2 in (3.24). The kinks thus
constitute a line at 0 in the parameter space (6y, ¢, p;) on
the ¢po = O slice (at zero deformation parameter). In other
words, the entanglement plateau transition does not imprint
upon the interior geometry of the BTZ black hole in the
absence of matter.
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FIG. 4. Exact entanglement plateaus for the BTZ black hole
(with # = 1) for inverse temperatures § = z (blue), f = 2z (red),
and f# = 4z (green). The kinks in each plot are the points at which
the phase of 6S% (computed via the RT prescription and with
4Gy = 1) changes. These, respectively, occur at 6 ~ 0.0557,
0z ~0.1107z, and O =~ 0.207x.

2. Finite deformations

For the BTZ black hole, there is no relationship between
Oy (viewed as UV data) and the constant p, (the trans-IR
data). Our goal now is to see whether this changes for finite
values of the deformation parameter (in £ = 1 units). This
requires numerics."” To summarize our results, we plot both
0, versus f and p, versus 6 from points obtained via our
numerical approach for a variety of deformations in Fig. 5.

As validation, we first plot the points for ¢, < 0.005.
These points should and do generally follow the analytic
relations above, namely, (4.30) for 6, versus f and a flat
line at O for p, versus . Subsequently, we then plot points
for finite values of ¢y, namely, ¢, = 5.000 4 0.025,
10.00 £ 0.05, 50.00 = 0.25, 100.0 £ 0.5, and 200. + 1—
allowing for errors of 0.5% in our scan over deformation
parameters.

Just as for the undeformed BTZ black hole, ¢, mono-
tonically increases in /5, so we can swap 0, for the temper-
ature in the UV data. Interestingly, while we certainly
observe a dependence of this curve on ¢, it appears to
be very small. However, the relationship between p, and 6
is much more subtle. Qualitatively, the plot appears stable
against the +0.5% error in ¢y. Thus, the numerics suggest
that, for finite, fixed deformations, 6, has a numerically
weak but nontrivial relationship with p,. This is in contrast to
no deformation being turned on (¢ = 0), in which case p, is
completely independent of 0,.. The ¢, =~ 5 plot, in particular,
suggests that the Kasner exponent peaks at some value of 0.
The higher values of ¢, are consistent with this behavior,
assuming that their peaks appear at smaller values of 6.

These plots reflect how the UV entanglement plateau
transition imprints upon the trans-IR data. Physically, both

"Note that the conformal dimension A is another piece of UV
data, but for our purposes we fix A = %

large and small values of 6 appear to induce smaller values
of p, within the range of our numerics. Thus, there is a
particular black hole with maximal p, whose plateau occurs
at an intermediate value of 6. As per the interpretation of
positive p, discussed in Sec. III B, the interior geometry of
this dual black hole has a maximally fast collapse relative to
other states.

V. THERMAL TWO-POINT FUNCTIONS
AND THE INTERIOR

Another entry of the holographic dictionary involving
classical geometry is “geodesic approximation” of correla-
tion functions. In this section, we restrict our attention to
scalar correlation functions, so we assume the presence of
a second bulk scalar field @ dual to some CFT operator Oin
the boundary theory with conformal dimension A. Further-
more, for simplicity we assume that this scalar field is not
coupled to anything, so it does not generate any gravitational
backreaction. We will eventually take A to be large (meaning
that @ will be irrelevant), so the presence of @ stands in
contrast to the scalar @ in (3.1) whose backreaction effects
correspond to RG flow from the UV to the trans-IR.

The basic idea of geodesic approximation comes from
seminal work equating the scalar propagator of a holo-
graphic CFT to a path integral over worldlines in the
bulk [28,29]. Specifically, taking two boundary points %,
and X,, the Euclidean scalar propagator is

G(%1.%,) = / DPeALIP, (5.1)
XXy
Here, P is a generic bulk path connecting the boundary
points, and L[P] is a length functional. Given a particular
bulk geometry, the left-hand side is equivalent to the
Euclidean two-point function of @ in the corresponding
CFT state.

Now, we take the limit A — oo by taking the bulk scalar
mass to be large in units of AdS radius. Hereafter, we
denote this large conformal dimension as Ay and the
corresponding operator as Oy. The path integral in (5.1)
may then be evaluated using saddle-point approximation.
This picks out minima of the length functional—in other
words, geodesics,

(On(%1)Ox(%2)) ~ Z e~tnl,

geodesics

(5.2)

We can actually go a bit further when working strictly in
the Ay — oo limit. The sum above is dominated by the
minimum-length saddle, and so among the different geo-
desics there is one in particular that actually determines the
two-point function,

<OH()?1)OH(562)>~exp[—AH< min L)] (5.3)

geodesics
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The plots of (a) 6 versus f and (b) p, versus 6 for a variety of scalar deformations characterized by the values of ¢. As our

numerics do not find solutions for fixed ¢, outright, we compute these points while allowing for a 0.5% margin of error in the values of
¢o- As a sanity check, we numerically compute parameters from solutions with ¢y < 0.005 (close to 0) and find that they indeed
replicate the analytic results of the undeformed BTZ black hole. The relationship between 6, and f appears insensitive to the
deformation and shows strong matching to the analytic result for ¢» = 0 (4.30). However, p, develops a nontrivial relationship with 6y

when ¢y % 0, in contrast to p, being uniformly 0 when ¢, ~ 0.

With that said, we examine the geodesics in one-sided
round black holes. This is equivalent to computing heavy
thermal two-point functions. We emphasize that the study
of geodesics to glean insight into thermal correlation
functions in CFT is not new [89] and has been recently
revitalized [90,91].

Our goal is to examine the phase structure of these heavy
thermal two-point functions on compact spatial slices. In
particular, we consider a CFT thermal state on S%~!' and
note that two operator insertions will always be collinear.
Thus, the picture looks similar to Fig. 3, with two different
connected geodesics being among the possible dominant
phases of the two-point function. If either dominates the
geodesic approximation, then we have a connected two-
point function. In addition, there is a third candidate—a
disconnected pair of geodesics, each of which is anchored
to one of the insertions and hits the horizon. This third
candidate represents the disconnected part of the two-point
function (the product of the heavy thermal one-point
functions [90]). The three geodesics that contribute to
the thermal two-point function are shown in Fig. 6.

Just as in our exploration of the entanglement plateaus
(Sec. 1V), the discussion in this paper will be focused
on d = 2. We do so for simplicity, but note that, unlike
codimension-two entanglement surfaces, geodesics are
always strictly 1D regardless of the number of spatial
dimensions. The main differences in higher dimensions
are the metric functions and the space of gravitational
solutions.'® Therefore, we focus on d =2 to simplify

In higher dimensions, we have both small and large black
holes of different horizon radii but at equal temperatures.
Furthermore, there is a strict upper bound on f for the regime
in which there exist black hole solutions.

the picture, leaving these additional complications to
future work.

One of the useful simplifications of working in d = 2 is
that geodesics are also codimension-two, so we can and
will employ many of the same equations as in Sec. IV. We
will also present the story in a similar manner. This time,
however, we will find a connected/disconnected phase
transition of the heavy thermal two-point function and
show how its characteristic parameter imprints upon the
near-singularity geometry.

We also note that the story here has a similar flavor to the
story of holographic confinement/deconfinement phase
transitions (cf. [92,93]). However, while we are employing
similar geometrical structures (lines), the phase transition
we examine is different.

\

On

FIG. 6. A fixed-time slice of the round black hole (in Lor-
entzian signature), with the two connected geodesics (C1 and C2)
and the disconnected geodesic (D) that contribute to the heavy
thermal two-point function (OyOy). The shortest geodesic in
this black hole background dominates the Euclidean scalar two-
point function computed in a thermal state. As we are actually
computing this two-point function in Euclidean signature, the
disconnected geodesic ends at the horizon.
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A. Geodesic transition in deformations
of the BTZ black hole

We reiterate that the general d = 2 metric (setting £ = 1)
describing deformations of the round BTZ black hole is

2
—e2NF 2 2] .
2 |¢ (r)dt +F(r) + do

Without loss of generality, we consider boundary insertions
on the same time slice—one at @ = 6 and the other at
0 = -0y, where 0y € (0, 7) denotes half of the angular
separation between the insertions. This is precisely how we
defined the entanglement subregion in Sec. IV. The two-
point function is

(On(%1)Ou(%2)) = (On(00)Ou(-b0))-

d
ds? = — a (5.4)

(5.5)

1. Lengths of different phases

Now recall that the entanglement surfaces of d = 2 are
precisely geodesics. Thus, the generic expressions for the
geodesic lengths are obtained from rebranding (4.12) and
(4.13) and (4.15) and (4.16),

Telx dr Fcl*/l"

Telx dr r
o F(r) i, =

Tedsx dr FCQ*/I’

Loy =2 ,

e dr r

Here we use C1 to represent the connected geodesic that
does not go around the horizon. Meanwhile, C2 denotes the
connected geodesic that wraps the horizon.

We must also consider the disconnected term—that is,
the product of thermal one-point functions. In Euclidean
signature, this is computed by a pair of geodesics for which
0'(r) = 0 and that both reach the horizon [90]. The total
length of these geodesics is

" dr
LD — 2/ .
0o rF(r)

2. Renormalized lengths

Lep =

902

0o =7 — (5.7)

(5.8)

The lengths above diverge at the conformal boundary. To
renormalize them, we use —Lp as a local counterterm,
which of course means that the renormalized disconnected
geodesic length L{S" is set to 0. Noting that ry, > 7.y, res.
we can write the renormalized connected geodesic lengths

as sums of manifestly finite integrals,
Lren:z/rc]* dr rcl*_m_z Th di‘
Cl1 > >
0 r\/F(}") \/rcl*_r F(I")
(5.

T / dr _ro.—\/rg.—r _, [n dr
= 0 r\/F(r) \/rgz* —r? rea, TA/F (1)

(5.10)

’

)

Telx r

Ne]

This approach is rather friendly for our numerics, since the
explicit form of the blackening function F(r) is unknown
and the integrals cannot be evaluated analytically. How-
ever, when simply considering the BTZ black hole, we may
alternatively introduce a cutoff at r = ¢ and regulate the
bare integrals (5.6)—(5.8).

B. Transition angles versus Kasner exponents

We now have the necessary equations to study the phase
structure of the heavy thermal two-point correlator. We will
discuss the numerical results shortly, but first we address
the case of the undeformed BTZ black hole so as to obtain
some analytic results.

1. Undeformed BTZ black hole
Recall the blackening function of the BTZ black hole
with no backreaction is

r2

Fgrz(r) =1-=.
A

(5.11)
We already have the equations for the “regulated” (with
some cutoff at r = €) connected geodesic lengths; they are
read from (4.27) and (4.28) as

re; € rg %
LC%,BTZ =-2 IOg <2}"; > + IOg <I"2—12> s (5 12)

h— Telx

2
€ re,
Lcypr, = —2log <—2rh> + log <4rﬁ = r§2*>’ (5.13)

where r;, is identified with (4.24), while r,, is identified
with (4.25) (swapping 6p for 6,). Furthermore, the
regulated disconnected geodesic length is straightforward
to calculate. It is simply

> 2
e g [ VITE) o) 4 0fe).
BTz = \/rﬁ—iez 2ry

(5.14)

Hence, the renormalized lengths in terms of 6 are
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The geodesic lengths for the BTZ black hole (with # = 1) for inverse temperatures f§ = z (blue), f = 2z (red), and f = 4n

(green). For each temperature, the solid lines follow the minimal length dominating the geodesic approximation of the heavy thermal
two-point function. Dashed curves are the lengths of subleading connected geodesics. For the blue and red curves, (5.22) is satisfied, so
there is a transition between connected and disconnected phases. However, the green curve does not exhibit such a transition because
there is always a connected geodesic with negative renormalized length that dominates the disconnected geodesic.

0
LghnZ::Zkgsmh<7§), (5.15)

—0
Lg;BTzzzzlogsnﬂ1<” nlo), (5.16)
L, = 0. (5.17)

First, note that the connected geodesics match when 0 = 7
and are symmetric around this point. This is true regardless
of the temperature. Furthermore, they exchange dominance
at this point,

T

0o < 5 = Lciprz < Leaprzs (5.18)
T

0o > 5 = Lciprz > Leaprz: (5.19)

This is a first-order (continuous and not smooth) transition,
but it may or may not be relevant to leading order in
geodesic approximation. To make this statement more
precise, we focus on the 0y < 7 regime. We observe that
the dominant connected geodesic (C1) negatively diverges
as 0o — 0%, but reaches a finite value at 5. This value may
be positive or negative depending on the horizon radius ry,.
Specifically,

r . 7
L& gz (90 = 2> = 2logsinh (2Fh>

{>0 ifrh<m, (520)
<0 if”'h>m.

This means that if the black hole is big enough (small ry,),
then the connected geodesic C1 becomes larger than the
disconnected geodesic D before 0p = 7. We thus get a
connected/disconnected phase transition. However, if the
black hole is small, then this transition does not happen at
leading order in the geodesic approximation.

Let us write the transition as a function of the inverse
temperature f = 2zr,. The connected/disconnected tran-
sition occurs at the point where

LE g1, = 0= 00 = 0317 = rylog(1 + V2)

:%mghmﬁx (5.21)

where 0217 is used to denote the transition angle for a

particular BTZ black hole. However, the occurrence of this
transition is restricted to the range

”2

B <Zop<—"  ~3561.

5 e =75 (5.22)

With the above relation in mind, we plot the renormalized
geodesic lengths for three values of # in Fig. 7 so as to
depict the phase structure of the heavy thermal two-point
function.

Just as for the entanglement plateau transition, this
connected/disconnected transition does not imprint upon
the near-singularity geometry of the BTZ black hole; the
Kasner exponent is fixed at 0 regardless of the value of
08L7. We now explore how this changes when backreaction
effects are turned on.
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The plots of (a) Ocp versus B and (b) p, versus Ocp for a variety of scalar deformations characterized by the values of ¢, with

Ocp restricted to (0,%). We again compute these points while allowing for a 0.5% margin of error in the values of ¢ (or a maximal error
of 0.005 for ¢y = 0). (a) We see the analytic result of the undeformed BTZ black hole reproduced by the ¢, ~ 0 points. We also observe
that the relationship between 6, and f appears insensitive to the deformation. (b) Thus, p, develops a nontrivial relationship with Ocp
when ¢y % 0, which is the same shape as the p, versus f plot of Fig. 2(a).

2. Finite deformations

We again look at what happens when ¢ % 0 using
numerics. The procedure is the same as for the entangle-
ment plateaus; we first construct a large set of solutions and
then filter them out to take only those that are within 0.5%
of the target value of ¢,. As a calibration check, we also
confirm that the numerics of the solutions for which ¢y ~ 0
reproduce the analytic relationship (5.21) between 6cp and
p, along with the upper bound (5.22).

The resulting plots are shown in Fig. 8. Interestingly, our
numerics suggest that the linear relationship between O,
and f found in the undeformed case is completely insensi-
tive to ¢y. The deformed geometries appear to give the
same exact line, implying that fcp is a well-defined UV
datum. As such, the relationship between p, and Ocp is
qualitatively similar to the one shown in Fig. 2 between p,
and f; p, exhibits an apparent maximum in  when ¢ % 0.

This imprint is numerically much stronger than what we
had seen from the entanglement plateau transition. Mathe-
matically, this is because here we have a linear relationship
between Ocp and f, whereas the critical size 6 exhibits
something akin to a logistic growth with g [Fig. 5(a)].
Nonetheless, the qualitative story is similar; for each ¢,
there is a particular intermediate value of cp at which the
interior geometry of the black hole has a maximally fast
collapse due to the Kasner exponent being peaked. The
difference is that the peak is much more obvious in the
relationship between p, and Ocp than in Fig. 5(b).

VI. DISCUSSION

This paper is guided by the claim that the interior of
a black hole can be viewed as an analytically continued
RG flow. This is a working assumption that comes out
of attempting to synthesize the holographic RG flow

perspective on the emergence of spacetime with the
existence of a change in the radial extra dimension’s
signature from spacelike to timelike at the horizon. In
previous work, two of the authors had supplemented this
claim in the cases of flat isotropic [23] and anisotropic [25]
black holes by constructing a monotone from the null
energy condition. In Sec. II, we have performed the ana-
logous construction in the round black hole as a motivation
for its analysis.

We have used the round black hole deformed by a scalar
as a model system for how parameters characterizing UV
phase transitions relate to the Kasner singularity, which is
viewed as the end point of the trans-IR flow. Specifically,
we focused on Einstein gravity with a Klein-Gordon scalar,
as in [22], because the mapping (or imprints) of UV to
trans-IR data is not universal and requires specifying a
model."’ Broadly, we were motivated by similar work [31]
in the holographic superconductor.

In the present work, we have focused on phase transi-
tions holographically dual to transitions in bulk geo-
metrical structures—namely, those of entanglement surfaces
(Sec. IV) and geodesics (Sec. V). The transitions themselves
do not depend on the specific matter content of the bulk
theory. Our results show that the parameters characterizing
both phase transitions develop a nontrivial relationship with
the Kasner exponent—characterizing the singularity—only
when a deformation is turned on. This contrasts with the
story in black holes solutions without matter, for which the
Kasner singularity is only dependent on the number of
spacetime dimensions and no UV physics.

"One can engineer black holes that have a similar exterior to
the Klein-Gordon solutions up to exponentially suppressed terms,
but a drastically different interior, but this requires modifying the
potential. We thank an anonymous referee for pointing this out.
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VII. FUTURE DIRECTIONS

There are several ways to proceed from here. We list
some of these follow-up ideas below.

A. The Hawking-Page transition

In this paper, we consider a CFT at finite temperature
with states on a spatial (d — 1) sphere organized in a
canonical ensemble. The dual states in the bulk are either
black holes or thermal gases of gravitons in AdS,, | space.
The ensemble of gravitational states is known to exhibit a
Hawking-Page transition [44] at some fixed temperature,
which with no matter present is [19]

2

R (7.1)

ﬁHP =

Specifically, the partition function is dominated by the state
dual to the bulk saddle with the smallest on-shell action.
The leading-order thermal state at temperature /3 is typically
the large black hole when f < fyp and the thermal gas
when f > fByp.

A very early entry in the AdS/CFT dictionary [19] is the
statement that this Hawking-Page transition corresponds to
a confinement/deconfinement phase transition on the level
of the free energy of the dual CFT or gauge theory. One
can also add matter to the bulk picture (cf. [45,57]), and
furthermore, the transition seems to not exist for flat or
hyperbolic horizon topologies [41,94]. In other words, the
Hawking-Page transition is also characteristic to the round
black hole, just like the transitions we consider.

It would be interesting to understand how the Hawking-
Page transition imprints upon the near-singularity Kasner
geometry. However, this would require understanding the
phase structure of the canonical ensemble. While the
relative stability of the hairy versus hairless phases have
been studied (cf. [95]), we propose fixing the source ¢
rather than treating it as a variable. The resulting phase
diagram would include a Hawking-Page transition scale
Pup and, when d > 2, a spinodal scale f;, above which
no black holes exist. Once these scales are known for a
particular ¢, one may then construct plots of p, versus S as
in Fig. 2 to say what happens to the near-singularity Kasner
geometry as the temperature approaches either scale.'

B. Higher dimensions

In studying the imprints of the entanglement plateau
transition on the trans-IR data, we focused on black holes in
d = 2 because they are much more tractable in comparison
to the higher-dimensional (d > 2) case. We did the same

"We can already say what happens at the spinodal scale in the
d > 2 case—the small and large black holes’ values for p,
approach one another. We emphasize that this is completely
expected because the spinodal point is where the two types of
black holes become geometrically identical.

for the connected/disconnected transition of the thermal
two-point function. However, the d = 2 scalar-deformed
black holes typically have positive Kasner exponents,
indicating collapsing FEinstein-Rosen bridges, whereas
d > 2 scalar-deformed black holes have negative Kasner
exponents. In other words, the d > 2 case is both more
generic and involves more “stable” Einstein-Rosen bridges
when compared to d = 2.

It would be satisfying to test our core assertion that UV
physics imprints nontrivially upon trans-IR geometry in the
more generic case. It is somewhat reasonable to expect that
the story of the thermal two-point function does not change
much, since the geometric objects being considered are
always geodesics. However, it is possible that our assertion
may fail for the entanglement plateau transition in d > 2.
As entanglement in AdS/CFT is not a probe of the singu-
larity due to the existence of extremal surface barriers [96],
such an expectation would be valid.

Nonetheless, actually checking the higher-dimensional
case would require a more sophisticated numerical approach
than what has been done here, particularly if we were to
study the entanglement plateaus for scalar-deformed black
holes. One idea is to construct the higher-dimensional black
holes numerically and then apply mean curvature flow to
compute entanglement surfaces for boundary caps, as was
done in [27] for AdS black holes without matter.

C. UV physics and singularity dynamics

As mentioned in the main text (Sec. III B), the story of
the classical near-singularity geometry of black holes in
general relativity is old. There have been many models in
the literature put forth as ways to think about features of
such geometry. One of the seminal models goes under the
name of cosmological billiards [71,72] and provides a
simple perspective on dynamics near the singularity. There
has also been another model [73] utilizing a superexpo-
nential scalar potential to exercise control over Kasner
“oscillations” in which p;, flips between different values all
the way to the singularity. It would be interesting to connect
UV physics to these pictures of the trans-IR regime.
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APPENDIX A: HOLOGRAPHIC ¢ THEOREM
FOR GLOBAL AdS DEFORMATIONS

Asymptotically AdS,,; spacetimes with planar boun-
dary and without a horizon, i.e., those corresponding to
zero-temperature states, can be written in the form

ds? = ¢*AP) (—dt2 + d)_c%_l) + dp?, (A1)
where (1,X,_,) €R? and p€R, with p = co being the
conformal boundary and p = —oo being the Poincaré
horizon. A is a real function controlling the backreaction,
and empty AdS space with radius ¢ itself corresponds to
A(p) = 5. We take the geometry to be asymptotically AdS
space with radius 7,

Ap)~L. po o

, A2
" (A2)
Recalling [47], the holographic a function of such space-
times constructed from the holographic trace anomaly
coefficient ~#4~! [53] and the null energy condition is'’

a(p; R = (A3)

Our goal here is to construct the analogous function for a
cylindrical boundary topology. These constitute deforma-
tions of global AdS,, space and describe RG flows of
states
on the spatial sphere S¢~!. More concretely, consider the
domain-wall ansatz

ds? = ¢2AP) {—dtz + azem(/’)dﬂﬁ_,} 4 dpz’ (A4)
where 1t € R, Q,_; is the line element of a (d — 1) sphere,
and p > 0. While p = oo is still the conformal boundary,
p = 0 is the central axis of the AdS cylinder.20 a is a (for
now) free length scale describing the radius of the boundary
§9=1,and R is a real function determining the radius of

each fixed-p slice. We get empty AdS,,; space with
curvature radius 7 if

A(p) = log cosh (g) 5 R(p) == log tanh (g) s a==7,.

(AS)

Note that we put the topology of the boundary spatial slice in
the function’s argument. In this appendix, we do so to distinguish
the a function for a flat slicing from that of a round slicing.

“There is no Poincaré horizon in the AdS cylinder.

Thus, bulk deformations of empty AdS,,; space with
radius ¢ must still have functions A, R and length scale «
which match these profiles asymptotically. This assertion
fixes a in the entire geometry to be £. Furthermore, at
p — oo the metric becomes

eZ/)/f
ds* ~ o (—dr*> + 2dQ7_,). (A6)
so the UV CFT lives on a cylinder imbued with the flat
metric and of radius 7.
With all of that in mind, we are now ready to demonstrate
that the natural holographic a-function condition is

reee {A’(p) +R/(p):|d_l' (A7)

a(p; $1) =

We first focus on how the p dependence in this expression
is derived and shown to be monotonic from the null energy
condition. We then confirm that (A7) properly reduces to
the holographic trace anomaly coefficient in the UV.

1. Construction for round slices without horizon

Our first step is to reverse engineer an a function from
the radial null energy condition. In Einstein gravity, this
takes the form

. d(d—1)
26 T = G == G

k= e A0)§) + 8.

T, ki > 0,
(A8)

We use the scheme outlined in [25]—namely, to write the
contraction of this stress tensor in the form

T, k'k = C(p) dip [a(p)/ D] = K(p)2,  (A9)

for some positive function C and real functions a and . If

we can do so and also prove that
a(p)ld=2/ld=1) > 0, (A10)

then the null energy condition (A8) ensures that a(p)

monotonically increases as p increases. Indeed, we find that
the schematic relation (A9) is satisfied with

Clp) = (dfd;_ll) R [A(p) + R/ (p)]?,
e~ R(p) d-1
K(p) =0,a(p) = {m} . (Al1)
Furthermore, (A10) is true if
A(p)+ R (p) > 0. (A12)
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We can indeed show this to be the case by using the null
energy condition and doing a proof by contradiction. Speci-
fically, we may assume that there exists a p = p, at which
A’ + R’ vanishes and above which A’ + R’ is positive.
Such a point may generally exist because A’ + R’ asymp-
totes to a positive number #~! by (A5). Thus, we may write
this sum and its derivative as Taylor series of the form

A'(p) + R'(p) = c.lp = p. )" + Ollp = p. )7,
(A13)

A"(p) +R"(p) = c.p.(p = p. )"~ + Ollp = p.)P].
(A14)

where ¢, > 0 and p, > 1. Thus, for some small ¢ > 0, we
may approximate the left-hand sides as

Al(p, +¢€) + R (p, +e€) = c.el, (A15)

A'(p, +€)+R"(p. +¢€)=c,p.e’t. (A16)
Now we may approximate A’(p, + €) and A”(p, + ¢). This
allows us to write the contraction of the stress tensor (A9) to
leading order in small €,

T ke, ~—(d- 1)c,p.eP!.

(A17)
The punch line is that this expression is manifestly negative
as we approach p = p, from above, in contradiction with
the null energy condition. This completes the argument, so
we may say that (A12) holds. This, in turn, means that

e_R</1)

d-1
ap) = |———=— AlS8

0=l w) A
monotonically increases with p. For a black hole, the
analogous candidate looks similar up to a blackening factor
in the numerator [cf. (2.13)].

2. Validation in the UV

There is one small test of our proposed a function that we
need to perform for validation; we must ensure that (A7)
reduces to the usual holographic trace anomaly coefficient
at the conformal boundary. This just amounts to plugging
(A5) into (A18) (which works asymptotically) to write

o-R()  d-1
)] ~ A p — 0. (A19)

LW

Substituting this into the p-dependent factor in (A7)
produces the correct coefficient.

APPENDIX B: CONSTRUCTING SCALAR-ADS
FLOWS

In this appendix, we discuss the general numerical
procedure by which we construct scalar-induced flows in
AdS gravity (setting the curvature scale £ = 1). We solve
for classically backreacting black holes of the form
dr?

2
ds* = 5 20

[—e‘ﬂf(’)F(r)dl‘2 +
.

v | o=l
B1)

for which the Einstein + scalar equations of motion (3.2)
and (3.3) take the form

, F'od-1 y\, Ad-4),

v (F ) e @
, 2F A(d—A)¢2 2d 2d 2(d—2)r_
X_F_W_FJFT_T_O’ (B3)
/ r /

)(—d_l(¢)2—0 (B4)

The equations of motion are highly nonlinear, which is why
we resort to numerics in the first place. We specifically
solve for the metric functions using a shooting method, just
as was done for the planar Lorentzian black hole [22,64].
To construct our black hole solutions, we shoot from a
finite radius taken to be the horizon by setting the black-
ening function to 0. More specifically, at some r = r;,, we
expand each of the metric functions {F,y, ¢} as

F(r)=FY + F"(r—r) + 0[(r—r)¥, (BS)
() =2 + 0 (r=n) + 0l(r—=r)?,  (B6)
o(r) = + oV (r =)+ O[(r= ). (B7)

The equations of motion (B2)—(B4) [multiplying the first
two by F(r)] can then be expanded around r = ry,

2¢£12)F}(10) + A(d-A) 4,)510)

2
"

+<Ffll) — LR —w%ﬁl) (r =)’

+0(r—nr,) =0, -
e R )]

‘2F£])(1 + i+ W;;zrh) (r—r)
+0(r—n) =0, (B9)
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A= (W) =+ otr-m) 0. ®10

At zeroth order, there are six parameters {qﬁk(lo),qﬁl(]l),

¢£2),F}(10),Fél), )(1(11)} and three constraints. As we go up
order by order simultaneously in all three equations of
motion, we obtain additional parameters, but a matching
number of constraints. Distinct solutions are thus specified
by three free parameters in the aforementioned list of six.

Note that we have glossed over one of the coefficients
)(fl()). This is not constrained by the equations of motion, so
x can only be solved up to an overall constant. However, we
have the physical requirement that the metric be asymp-
totically AdS space as r — 0. Thus, the constant term of y
is that for which y(0) = 0. In our numerics, however, we

first set
(B11)

and then shift the output function by a constant in order to
achieve y(0) = 0.

Now, we discuss the particular solutions of physical
interest. As we are assuming the geometry to be a black
hole, we solve for the solutions with

Fl% = o. (B12)

This makes qf) drop out of the zeroth-order constraints,
and more generally ¢l(12+i) drops out of the ith-order

constraints. Thus, the black hole solutions are specified

by one free parameter. We take this to be F 1(1”. The other
constrained lowest-order parameters are

| 2(d - A)A |
Zﬁl):_ 2 () Tclz’(rh;Ffl))’ (B13)
mFy
(1)
0 2ryF (d—l) 1
¢}(1> = :F\/_ (dh_ A)A Tii(rh;Flg))’ (B14)
2(d—1)(d - A)A
PV =+ _2A )(1 ) Th(r; FV),  (B15)
r3F(>
hf'h

where we have defined something that we will call the
“topological factor” from (B9),

d  k(d=2)r,

+
P FY

Th(r FV) =1+ (B16)

This factor captures the topological dependence of the
metric functions. Recall that & labels the spatial topology of
the horizon (1.2). For k = 1 (spherical topology), we obtain

the equations above. For k = 0 (planar topology), we get
the equations used in [22,64].

With these coefficients in hand, we perform a “two-
sided” shooting. First, we fix a value for r,. As we assume

the scalar ¢ to be real while F k(ll) < 0, we require that the
topological factor be non-negative based on the expressions
(B14) and (B15). This implies

d
FV <2 _(a=2)n,.

. (B17)

For fixed r,, we also fix an array of values for Fl(l])

consistent with this bound. Note the value of F 5‘1) saturating

this bound corresponds to a black hole solving the vacuum
equations of motion (with ¢p = 0), whereas other values of

F 511) label backreacting solutions.

Given some r, and F l(ll), we set initial values for the
fields {F,y,¢} at both r = r, — € and r = r, + €, where €
may be freely chosen so long as ¢ <« r,. Since € is small,
we can approximate the fields by truncating the series
(B5)—-(B7) at linear order in e. We then compute the
asymptotic value of y and subtract this number in order
to have AdS asymptotics, namely, y(0) = 0.

We take this approach over a large range of r}, and F/ ](11>.
This yields a matrix of solutions. We then extract matrices
consisting of two different pieces of data: the horizon
temperature 7}, (2.18) and the boundary deformation
¢o (3.10). From here, we have the flexibility to filter out
solutions that do not match some sort of selection criterion.
For instance, we may only want the solutions for which
¢o~ 100 (up to a prescribed uncertainty). This signifi-
cantly lessens the required computation times for more
resource-intensive tasks.

APPENDIX C: THE ENTROPY FUNCTIONAL
FOR CAPS

Let us briefly set the stage for a possible higher-
dimensional (d > 2) extension to our exploration of entan-
glement plateaus in scalar flows. We also point out the
mathematical reason why d = 2 is simple; the punch line is
that the area functional has a “constant of motion” at d = 2.

We pick a parametrization of the S¢~! directions in the
black hole ansatz such that the metric takes the form

i dr?
ds’> == [—e 2 F(r)df* + ) + £2d6?

p
d-1 [i-1

+2> (H sin29j> dQ%] :
i=2 \Jj=1

We identify 6, as a polar angle (¢; ~ 6; + 27). A cap R on
the boundary r = 0 is then defined as

(C1)
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t = constant, 0, € -6, 0], (C2)

for some 0 < 0 < 7. To compute the RT surface for such a
cap, we may define a codimension-two surface on some

fixed-r Cauchy slice by 8; = 6,(r). From the metric (C1),
the area functional along this surface is

A= ¢! / %[Sinel(r)]d‘z L0

F(r) (C3)

If d = 2, then the [sin @, (r)]*2 factor in the integrand is
simply 1, so the partial derivative of the integrand with
respect to @, is simply 0. Applying the Euler-Lagrange
equations thus yields a first-order differential equation, and
each extremal surface with boundary conditions (C2) is
labeled by a single parameter. However, for d > 2, we get a
second-order differential equation. While solvable, this also
yields a two-parameter family of extremal surfaces, so
computing the minimal-area surface is much more difficult.
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