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Under the AdS=CFT correspondence, asymptotically anti–de Sitter geometries with backreaction can be

viewed as conformal field theory states subject to a renormalization group (RG) flow from an ultraviolet

(UV) description toward an infrared (IR) sector. For black holes, however, the IR point is the horizon, so

one way to interpret the interior is as an analytic continuation to a “trans-IR” imaginary-energy regime.

In this paper, we demonstrate that this analytic continuation preserves some imprints of the UV physics,

particularly near its “end point” at the classical singularity. We focus on holographic phase transitions of

geometric objects in round black holes. We first assert the consistency of interpreting such black holes,

including their interiors, as RG flows by constructing a monotonic a function. We then explore how UV

phase transitions of entanglement entropy and scalar two-point functions, each of which are encoded by

bulk geometry under the holographic mapping, are related to the structure of the near-singularity geometry,

which is quantified by Kasner exponents. Using 2D holographic flows triggered by relevant scalar

deformations as test beds, we find that the 3D bulk’s near-singularity Kasner exponents can be viewed as

functions of the UV physics precisely when the deformation is nonzero.

DOI: 10.1103/PhysRevD.109.126018

I. INTRODUCTION

A renormalization group (RG) flow is a contour in

the space of quantum field theory (QFT) couplings that

describes the coarse graining of a high-energy (UV-

complete) theory to a low-energy (IR) description [1,2].

We integrate out all high-energy modes above some cutoff

energy to get an effective QFT. The flow itself consists of

all such effective theories and is thus parametrized by the

cutoff. Furthermore, both the IR and UV theories are

conformal-invariant fixed points of the flow and so are

conformal field theories (CFTs). Most importantly, the IR

theory may have “imprints” of the UV physics as remnants

of the integration procedure, even though the IR is mostly

insensitive to the UV. In other words, IR parameters may at

least, in part, be functions of UV parameters, with the

details depending on the specific flow dynamics.

A guiding principle of modern quantum gravity research

is the AdS=CFT correspondence [3] equating weakly

coupled “bulk” gravity on (dþ 1)-dimensional anti–de

Sitter (AdS) space to strongly coupled CFT physics on

the d-dimensional boundary of AdS space. AdS =CFT
describes a “holographic” class of RG flows [4]. The

energy cutoff is associated with the radial extra dimension

of the bulk theory, with the UV fixed point being the

boundary CFT. This RG flow essentially describes the

emergence of holographic bulk spacetime. The flow

dynamics are encoded by the gravitational theory [5–10],

which includes a bulk matter sector dual to some relevant

deformation of the UV theory.
1
As the bulk theory is

weakly coupled, it is a tractable setting to study imprints of

UV physics in the IR sector.

Gravitational theories typically feature black holes, and

these are dual to states of a canonical ensemble at fixed

temperature. For example, large AdS black holes are dual

to thermal CFT states [19–21]. From the perspective of

holographic RG flow, such a black hole with matter-

induced backreaction describes an RG flow from a UV

thermal state toward an IR fixed point associated with the

horizon. However, the classical geometry does not stop at

the horizon; there is also an interior region in which the

radial dimension is timelike, rather than spacelike. None-

theless, we may insist that the black hole interior is also part
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1
Other types of deformations (irrelevant, marginal) are pos-

sible to implement holographically, such as the TT̄ deforma-
tion [11–13]. However, these require introducing a finite bulk
cutoff by hand [14–18]. We focus on relevant deformations so as
to have geometric flows with both asymptotic UVand IR regions.
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of an RG flow. Wewould then claim that the interior corres-

ponds to a trans-IR part of the flow [22,23] defined as an

analytic continuation of the exterior RG flow to imaginary

energies. It is further natural to infer that the UV physics

leaves an imprint on the trans-IR regime. The goal of this

paper is to explore such imprints or, put another way, to

access the interior of the black hole from the UV theory.

We emphasize that the trans-IR picture is a working

interpretation rather than a firm, established statement.

In particular, it is not clear what the actual “points” along

this interior RG flow (reached by integrating out all real-

energy modes and integrating in “imaginary-energy”

modes) would represent in field-theoretic terms, although

some progress has been made by [24]. While we do not

directly tackle this issue in this paper, the study herein is

meant to provide some internal consistency to the trans-IR

perspective of the black hole interior as a coarse-graining

flow. To this end, we first build on previous work [23,25]

exploring the existence of monotonic “degree-of-freedom-

counting” functions.

Furthermore, we explore how phase transitions in the

UV are encoded by the trans-IR part of the flow. We focus

on the following two holographic phase transitions in black

holes with spherical horizons:

(1) the deviation of a boundary subregion’s entangle-

ment from the Araki-Leib bound [26] described by

the holographic entanglement plateaus of [27]; and

(2) the connected/disconnected phase transition of a

thermal two-point function of a heavy scalar oper-

ator OH corresponding to a transition of its holo-

graphic geodesic approximation [28,29].

The question of how UV phase transitions imprint upon the

interior geometry has been tackled in the planar holo-

graphic superconductor [30] in [31], which found that

approaching the condensate temperature from below coin-

cides with rapid, fractal-like fluctuations in the scaling

of space deep inside the black hole geometry. Indeed, one

may study the imprints of phase transitions on the trans-IR

regime across a wide variety of AdS/condensed matter

theory (CMT) models with specific matter content by

examining the evolution of black hole interiors [32–39].

However, we are interested in imprints arising from phase

transitions that are not contingent on having a particular

type of matter field. Any bulk theory that includes round

black holes as classical solutions will also accommodate

the above phase transitions.

Black hole solutions to Einstein gravity with no matter

have interior geometries described by finely tuned Kasner

cosmologies [40]. However, we find that turning on a scalar

deformation in the UV (and thus a matter field in the bulk)

changes the story and allows UV physics to imprint upon

the near-singularity geometry. Specifically, the deep-

interior Kasner cosmologies develop a nontrivial relation-

ship with parameters that characterize the above geometric

transitions.

We point out one subtlety; the specific mapping between

UV physics and the interior geometry is highly model

dependent (i.e., dependent on the dynamics of the flow),

rather than being universal. In fact, one can engineer

different potentials that give identical black hole exteriors

but drastically different interiors (so the UV physics would

be the same, while the Kasner cosmologies are not), and

vice versa. However, this is not an issue if one restricts to a

specific bulk theory, as we do.

A. Horizon topology and phase transitions

Throughout this paper, we restrict ourselves to back-

reacting AdS black holes of the form

ds2 ¼ l
2

r2

�

−e−χðrÞFðrÞdt2 þ dr2

FðrÞ þ l
2dΣ2

d−1;k

�

; ð1:1Þ

where t∈R and r > 0, with the conformal boundary being

at r ¼ 0. χ is a real function, and F has a simple root at

r ¼ rh (defining the horizon). dΣd−1;k is a unit line element

encoding the horizon topology. As in the pure gravity [41],

this line element is labeled by k ¼ f−1; 0; 1g, respectively
describing hyperbolic, planar, and spherical horizons,

dΣ2
d−1;k ¼

8

>

>

<

>

>

:

dH2
d−1; if k ¼ −1;

dx̂2d−1; if k ¼ 0;

dΩ2
d−1; if k ¼ 1:

ð1:2Þ

The planar case was first examined by [22], with an asso-

ciated monotonic a function having been identified in [23].

In this paper, we initiate the study of the spherical case.

The main underlying difference between the spherical

case and the others is that spheres are compact. Owing

to this, round black holes accommodate various phase

transitions of bulk geometric objects, which in turn are

interpreted as phase transitions of boundary CFT quantities.

In the other topological cases, the phase transitions in

which we are primarily interested either become much

simpler or go away.

B. A brief comment on the UV state

If we organize the CFT states into a canonical ensemble,

there are generically (in d > 2) three types of bulk states

at each temperature: a large black hole, a small black

hole, and a thermal gas of gravitons [19–21]. The small

black hole typically never dominates the canonical parti-

tion function and is even thermodynamically unstable,
2

2
This does not make small black holes unimportant. Indeed,

they are responsible for the peak of the bulk viscosity-to-entropy
ratio near the critical temperature in confining large-Nc gauge
theories [42,43].
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but the other two generally exchange dominance at a

Hawking-Page transition temperature [44]. Therefore,

while all of these states are thermal states, the large black

hole is the dominant thermal state only above the Hawking-

Page temperature.

Our focus in this paper is on the near-singularity

structure of black holes. From the holographic RG per-

spective, we should thus be careful to say that the interior is

only the trans-IR flow from the dominant UV thermal state

when we are looking at a large black hole on one side of an

assumed Hawking-Page transition. However, we can

always say that the interior represents a trans-IR flow from

some thermal state.

We do not study Hawking-Page transition in the presence

of matter. However, it should be possible to pin down where

this transition happens (cf. [45]). We leave this to

future work.

C. Outline

In Sec. II, we argue for the irreversibility of the flow from

the UVof a generic round black hole to its IR, as well as the

irreversibility of this flow’s trans-IR analytic continuation

toward the classical singularity. As in earlier AdS=CFT
literature [46–49], we assume the null energy condition to

construct a monotone that counts the degrees of freedom

along the flow. Our statements in this section are analogous

to those of the planar case [23].

In Sec. III, we elaborate on what specifically we mean by

“data” in the context of holographic RG flows triggered by

a minimal class of scalar deformations. While these flows

do not feature the types of phase transitions often seen in

AdS=CMT, they still support round black holes and allow

geometric phase transitions, so they are sufficient for our

purposes here. We will also show how the near-singularity

geometry is a function of the temperature only when a

deformation is turned on.

After establishing the basic machinery—the equations of

motion, the list of UV data, and the construction of “round”

Kasner universes [40] describing the near-singularity

geometry—we then discuss the entanglement plateaus

(Sec. IV) and the phase structure of the heavy thermal

(with respect to the black hole state) two-point function

(Sec. V) in these scalar flows and how they imprint upon

the near-singularity geometry.

II. HOLOGRAPHIC a THEOREM FOR ROUND

BLACK HOLES

In the framework of RG flows, it is natural to ask how to

count the degrees of freedom to quantify the idea of coarse

graining a theory. In principle, this should be described by a

function that decreases monotonically as we flow from the

UV to the IR, since flowing in this manner corresponds to

integrating out degrees of freedom [1,2]. A flow with such a

function is “irreversible.”

In general QFT, the seminal work on this front is

Zamolodchikov’s c theorem [50] stating that 2D RG flows

of unitary, Lorentz-invariant theories feature a monotonic c
function that coincides with the central charges at the

RG fixed points. Cardy’s conjectured extension to 4D [51]

(and any even number of dimensions, for that matter),

the a theorem, asserts the existence of an a function that

coincides with the A-type trace anomaly coefficients at the

fixed points. The a theorem in 4D has been proven for

nonholographic flows [52]. However, holographic flows

are nice in part because the a theorem can be extended to

and proven in any number of dimensions [47–49] assuming

reasonable energy constraints on the bulk matter, although

the field-theoretic interpretation of the odd-dimensional

holographic a function is not connected to an anomaly but

rather entanglement entropy.

If the black hole interior is to be interpreted as an

analytically continued RG flow, then the ability to count

degrees of freedom should extend to the trans-IR regime.

This has been done for flat black holes in Einstein gravity

[23,25]. Here, we construct the a function of a round black

hole in Einstein gravity. Our goal in this endeavor is to

perform a preliminary consistency check of interpretation

of the interior geometry as a coarse-graining flow, even

though “energy” is imaginary.

As a caveat, we note that such a monotone is a rather

coarse consistency check and its mere existence does not

address questions surrounding what it physically means to

flow along imaginary energies on the level of field theory.

We leave addressing this point to future work, for now

simply assuming that the existence of a monotone serves as

reasonable evidence for some RG-flow interpretation of the

interior.

A. a functions from the null energy condition

The trace anomaly was first realized holographically

by [53] in Einstein gravity,

Gμν −
dðd − 1Þ
2l2

gμν ¼ 0; ð2:1Þ

where l is the curvature radius. The trace anomaly co-

efficient a� goes as l
d−1, and in keeping with the

normalization conventions of [48,49], it is

a� ¼
πd=2

Γðd
2
Þld−1P

l
d−1: ð2:2Þ

For example, for d ¼ 2 (where lP ¼ 8πGN) we reproduce

the usual 2D trace anomaly coefficient with the Brown-

Henneaux central charge cBH ¼ 3l
2GN

[54],

a�jd¼2 ¼
l

8GN

¼ cBH
12

: ð2:3Þ
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Holographic a functions in Einstein gravity
3
can be con-

structed by using a� as a starting point [47]. Basically, we

take gravity sourced by matter such that there is a relevant

deformation at the boundary triggering an RG flow. The

bulk equation of motion is then

Gμν −
dðd − 1Þ

2l2
gμν ¼ l

d−1
P Tμν; ð2:4Þ

where lP is the Planck length and Tμν is the stress tensor.

We then impose a “radial” null energy condition on matter,
4

Tμνk
μkν ≥ 0; ð2:5Þ

where kμ is some null vector pointing at least partially in the

bulk radial direction orthogonal to the conformal boundary.

Given a domain-wall ansatz [47] for the spacetime line

element, such as

ds2 ¼ gijðρ; x⃗Þdxidxj þ dρ2; i; j ¼ 0;…; d − 1; ð2:6Þ

and that we assume to be asymptotically AdS space, the

inequality (2.5) is then used to prove the monotonicity of a

combination of metric functions that reduces to a� at the

conformal boundary.

We can also work in the reverse order by starting

with (2.5) on some metric and engineering a monotone

that coincides with the holographic trace anomaly coef-

ficient. This latter systematic approach is useful for con-

structing candidate a functions for spacetimes involving

multiple metric functions, as seen in [25].

Let us take this approach to construct a monotone for

spherically symmetric round black holes. The domain-wall

ansatz that foliates the bulk into cylindrical slices is

ds2 ¼ e2AðρÞ
h

−fðρÞ2dt2 þ l
2e2RðρÞdΩ2

d−1

i

þ dρ2: ð2:7Þ

Here, ðt;Ωd−1Þ parametrize the transverse R × Sd−1 slices,
and ρ > 0 is the radial coordinate. A, R, and f are metric

functions that for ρ ≫ l asymptote to

AðρÞ ∼ log cosh

�

ρ

l

�

; RðρÞ ∼ log tanh

�

ρ

l

�

;

fðρÞ ∼ 1: ð2:8Þ

This is the condition that the geometry is asymptotically

AdSdþ1 space near the conformal boundary, which we

recall as being the UV region. Additionally, we assume that

fðρÞ > 0 in the exterior.

By uniformly setting fðρÞ ¼ 1, we get a class of metrics

describing deformations of global AdS space. The warm-up

construction of a functions in such geometries is the subject

of Appendix A. In the main text, we instead focus on black

hole geometries, for which we take f to have a simple root

at ρ ¼ 0 [55]. This condition corresponds to the presence of

a black hole horizon with temperature

Th ¼
eAð0Þf0ð0Þ

2π
: ð2:9Þ

While ρ > 0 covers the exterior, the interior is charted by

analytically continuing the ρ and t coordinates as

ρ ¼ iκ; t ¼ tI − sgnðtIÞ
iγ

2Th

; ð2:10Þ

where κ > 0, tI ∈R, and γ ∈Zþ 1
2
[55].

We are now ready to implement the scheme for con-

structing holographic a functions from the radial null energy

condition, as discussed in [25]. Much of the technical details

are similar to those of the case without a black hole in

Appendix A. As we go into more detail there, we will be

sparse on the technical details in the main text in the interest

of brevity. Furthermore, we emphasize that the function

resulting from the scheme will be guaranteed to be a

monotone in the exterior but not the interior, so the proof

of monotonicity in the interior is left to Sec. II B.

First, we consider the null vector

kμ ¼ e−AðρÞδμt þ fðρÞδμρ: ð2:11Þ

This vector is regular everywhere. If we contract the outer

product of two such null vectors against the stress tensor

computed by plugging the domain-wall metric (2.7) into

the Einstein equations (2.4), we get

Tμνk
μkν ¼ ðd − 1Þ

l
d−1
P

�

A0ðρÞ þR0ðρÞ
�

2eRðρÞfðρÞ

×

�

d

dρ

�

e−RðρÞfðρÞ
A0ðρÞ þR0ðρÞ

��

: ð2:12Þ

The coefficients in front of the derivative factor are

manifestly positive in the exterior. Thus, if we define the

candidate a function

aðρÞ≡
�

e−RðρÞfðρÞ
A0ðρÞ þR0ðρÞ

�

d−1

; ð2:13Þ

then we have that a is monotonic (i.e., its ρ derivative is

positive) if

3
One can also work in higher-derivative theories—[48,49]

does Gauss-Bonnet, for example—but note that the trace
anomaly and the resulting a function change.

4
While one may impose the full null energy condition, taking it

to hold only for radially directed null vectors is sufficient.
Heuristically, this is because the radial direction is privileged
in the language of RG flow as the “direction of energy,” so only
radial null energy conditions may be interpreted as imposing
positivity “along the flow.”
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�

e−RðρÞfðρÞ
A0ðρÞ þR0ðρÞ

�

d−2

>
?
0: ð2:14Þ

It is sufficient to show that A0ðρÞ þR0ðρÞ > 0 for ρ > 0,

since both eR and f are positive on the exterior. Indeed, this

is always true given the asymptotic behavior of the metric

functions (2.8) and assuming their analyticity. The proper

argument, as utilized in [25] and Appendix A, involves a

proof by contradiction, in which we explicitly exploit

analyticity to show that

∃ ρ ¼ ρ� such that A0ðρ�Þ þR0ðρ�Þ ¼ 0

⇒ Tμνk
μkνj

ρ¼ρ�þϵ
< 0; ð2:15Þ

for some small ϵ > 0. In other words, we find an approxi-

mate expression for the null energy condition in an ϵ

neighborhood of a posited root ρ ¼ ρ� that is manifestly

negative.
5

So, (2.13) is a monotone in the exterior due to the null

energy condition. Noting that the physical a function

should coincide with the holographic trace anomaly coef-

ficient (2.2), we ultimately write it as

ahðρ; Sd−1Þ ¼
πd=2

Γðd
2
Þld−1P

�

e−RðρÞfðρÞ
A0ðρÞ þR0ðρÞ

�

d−1

: ð2:16Þ

The h subscript is to stress that this a function is defined

from geometries with horizons. The Sd−1 argument is to

emphasize that the dual CFT states are defined on the

(d − 1) sphere, as opposed to being on (d − 1)-dimensional

flat space like in [23].

B. Monotonicity in the interior

The domain-wall ansatz (2.7) is useful for constructing

a functions that are manifestly monotonic in black hole

exteriors. Additionally, the smooth radial extra dimension ρ

is cleanly identified with the energy scale. However, to

cover the black hole interior in these coordinates, we must

analytically continue ρ to imaginary values. This gives rise

to ambiguities when checking the monotonicity of our

proposed a function in the interior.

A workaround is to incorporate the factor of i into the

metric through a coordinate transformation of (2.7) to a

warped Schwarzschild coordinate frame,

ds2 ¼ l
2

r2

�

−e−χðrÞFðrÞdt2 þ dr2

FðrÞ þ l
2dΩ2

d−1

�

; ð2:17Þ

where r∈R, with r ¼ 0 being the conformal boundary and

r ¼ ∞ being the singularity. The metric functions χ, F are

analytic, and F has a simple root at r ¼ rh. We may

compute the horizon temperature in terms of these metric

functions to be
6

Th ¼
e−χðrhÞ=2jF0ðrhÞj

4π
: ð2:18Þ

The coordinate transformation ρ ¼ ρðrÞ that makes (2.7)

assume this form is

ρðrhÞ ¼ 0; dρ ¼ −
ldr

r
ffiffiffiffiffiffiffiffiffiffi

FðrÞ
p ; eAðρÞþRðρÞ ¼ l

r
;

fðρÞ
eRðρÞ ¼ e−χðrÞ=2

ffiffiffiffiffiffiffiffiffiffi

FðrÞ
p

: ð2:19Þ

In domain-wall coordinates, monotonicity along the full

flow is the statement that

Exterior :
dah

dρ
> 0; ð2:20Þ

Interior :
dah

dκ
< 0; ð2:21Þ

where we recall that κ ¼ −iρ by (2.10). We already know

that (2.16) satisfies the exterior condition (2.20), but

we need to also show that it satisfies the interior condi-

tion (2.21). We do so by computing the derivative along r
in (2.17) and employing the chain rule. So, the first step

is to use (2.19) on (2.16) to write the a function as a

function of r,

ahðr; Sd−1Þ ¼
πd=2

Γðd
2
Þld−1P

�

le−χðrÞ=2
�

d−1 ¼ a�e
−ðd−1ÞχðrÞ=2:

ð2:22Þ

Then, we may write

dah

dκ
¼ dρ

dκ

dr

dρ

dah

dr

¼ −
r
ffiffiffiffiffiffiffiffiffiffiffiffi

jFðrÞj
p

l

�ðd − 1Þχ0ðrÞ
2

a�e
−ðd−1ÞχðrÞ=2

�

¼ −

�ðd − 1Þr
ffiffiffiffiffiffiffiffiffiffiffiffi

jFðrÞj
p

2l
ahðr; Sd−1Þ

�

χ0ðrÞ: ð2:23Þ

In the last line, the factor in square brackets is manifestly

positive in the interior. Additionally, from the radial null

vector

kμ ¼ eχðrÞ=2δμt − FðrÞδμr ; ð2:24Þ
5
For the black hole, this approximation has a factor of f2

relative to the expression obtained from deformations of global
AdS space (A17). In the exterior, this factor is positive and thus
does not impact the argument.

6
Note that F0ðrhÞ < 0, so the temperature depends on its

absolute value.

IMPRINTS OF PHASE TRANSITIONS ON KASNER … PHYS. REV. D 109, 126018 (2024)

126018-5



the null energy condition implies that

Tμνk
μkν ¼ ðd − 1ÞFðrÞ2

2r
χ0ðrÞ > 0 ⇒ χ0ðrÞ > 0: ð2:25Þ

So, when analytically continued to the interior, the a
function (2.16) still decreases monotonically with κ, i.e.,

as we flow toward the singularity. In other words, mono-

tonicity is preserved both in the exterior and in the interior

of the round black hole.

C. Sanity checks of the a function

There are some simple sanity checks that we may

perform on the holographic a function to ensure consis-

tency with the interpretation of holographic RG flow. We

do these now.

1. Constant for vacuum solutions

As gravitational dynamics corresponds to RG flow

dynamics, a lack of backreaction due to matter should

correspond to a theory that does not flow away from the UV

at all. This can be checked holographically by plugging

the vacuum solution into our a function and seeing if it

uniformly evaluates to the holographic trace anomaly

coefficient (2.2).

For the round black hole a function, this is most simply

done in the r coordinate. There, we know the form of the

vacuum solution analytically,

χðrÞ ¼ 0; FðrÞ ¼ r2

l
2
þ 1 −

�

r

rh

�

d
�

r2h
l
2
þ 1

�

: ð2:26Þ

If we plug this into (2.22), we find that

ahðr; Sd−1Þ
	

	

	

χðrÞ¼0
¼ a�: ð2:27Þ

2. Stationary at the horizon

The horizon should correspond to an IR fixed point. This

means that the a function should be stationary when

evaluated at the horizon radius. This is again confirmed

rather simply in the r coordinate. While the r derivative,

dah

dr
¼ −

ðd − 1Þ
2

ahðr; Sd−1Þχ0ðrÞ; ð2:28Þ

is regular at the horizon (as χ is analytic), the derivative

along the flow is
dah
dρ
, so we write

dah

dρ
¼ dah

dr

dr

dρ
¼ ðd − 1Þr

2l
ahðr; Sd−1Þχ0ðrÞ

ffiffiffiffiffiffiffiffiffiffi

FðrÞ
p

⇒
dah

dρ

	

	

	

	

r¼rh

¼ 0: ð2:29Þ

III. SCALAR FLOWS AND DATA

In principle, one can write “initial data” characterizing the

beginning of an RG flow from a UV fixed point. Such data

consist of dimensionless combinations of scales coming

from both the fixed-point theory itself and the relevant

deformation that triggers the flow. Through flow’s dynamics,

these initial data will be related to the “final data” character-

izing the end of the flow (conventionally the IR). Our goal is

to connect UV data to trans-IR data extracted from the near-

singularity classical geometry, as in, for example, [22,31].

Notably, while the Wilsonian framework always views

renormalization as a coarse-graining flow that leaves

imprints of UV physics on a (trans-)IR effective picture,

the details of such imprints are not universal. Beyond the

UV data, the dynamics of the RG flow equations are

important in determining the details of the imprints.

So, for concreteness, let us restrict to RG flows triggered

by a single-trace scalar deformation
R

ϕ0O, where ϕ0 is the

source and O is a relevant scalar operator in the CFT. Such

flows have a place in the literature as simple toy models of

holographic renormalization [56–58], and they are holo-

graphically realized by gravity coupled to a scalar Φ.

For further simplicity, we take Einstein gravity coupled

to a Klein-Gordon potential. This fully fixes the dynamics

of the RG flow, but we again reiterate that the mapping

from UV to trans-IR data will not be universal to all

holographic flows induced by a scalar (cf. [59]). In fact, we

can add additional terms to the potential that yield black

holes with identical interiors, but very different exteriors

(or vice versa).
7
Our action is

I½g;Φ� ¼ 1

2ld−1P

Z

ffiffiffiffiffiffi

−g
p �

Rþ dðd − 1Þ
l
2

−
1

2




∇αΦ∇α
Φþm2

Φ
2
�

�

: ð3:1Þ

The classical bulk equations of motion are thus

Gμν −
dðd − 1Þ
2l2

gμν ¼
1

2

�

∇μΦ∇νΦ

−
1

2
gμν



∇αΦ∇α
Φþm2

Φ
2
�

�

; ð3:2Þ

ð∇α∇
α −m2ÞΦ ¼ 0: ð3:3Þ

To more concretely study scalar flows, we use a radial

ansatz for Φ and the metric ansatz (2.17) (rewritten below),

ds2 ¼ l
2

r2

�

−e−χðrÞFðrÞdt2 þ dr2

FðrÞ þ l
2dΩ2

d−1

�

;

Φ ¼ ϕðrÞ: ð3:4Þ

7
We thank an anonymous referee for making this point.
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For solutions of this form, (3.2) and (3.3) reduce to three

independent ordinary differential equations,

ϕ00 þ
�

F0

F
−
d − 1

r
−
χ0

2

�

ϕ0 þ Δðd − ΔÞ
r2F

ϕ ¼ 0; ð3:5Þ

χ0 −
2F0

F
−
Δðd−ΔÞϕ2

ðd− 1ÞrF −
2d

rF
þ 2d

r
−
2ðd− 2Þr
l
2F

¼ 0; ð3:6Þ

χ0 −
r

d − 1
ðϕ0Þ2 ¼ 0: ð3:7Þ

The only difference from the equations of motion for a flat

topology is the last term in (3.6). This term reflects the

topology of the horizon in our metric ansatz.

A. UV data

First, we describe the initial UV data for these scalar

flows. The conformal dimension Δ of O is related to the

scalar mass m through the AdS=CFT dictionary [60,61] as

ðmlÞ2 ¼ ΔðΔ − dÞ; ð3:8Þ

so the deformation is only relevant (Δ < d) when m2 < 0.

However, for each m2 strictly above the Breitenlohner-

Freedman bound m2 > −
d2

4l2
[62], there are two possible

values of Δ,

Δ� ¼ d

2

 

1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 4l2

d2
m2

s

!

⇒ 0 < Δ− <
d

2
< Δþ < d:

ð3:9Þ

Each Δ corresponds to specific boundary conditions on

the scalar field [63]. In this paper, we will consider only

Δ ¼ Δþ > d
2
, as in [64] by two of the authors. For the radial

ansatz Φ ¼ ϕðrÞ, we can extract the source ϕ0 from the

near-boundary profile of ϕðrÞ [65],8

ϕðrÞ ¼ rd−Δðϕ0 þ � � �Þ þ rΔ
� hOi
2Δ − d

þ � � �
�

⇒ ϕ0

¼ lim
r→0

�

1

r

�

d−Δ

ϕðrÞ: ð3:10Þ

Thus, the source is the coefficient of the leading-order

term in the near-boundary expansion (with the Dirichlet

boundary condition). This contrasts with the choice

Δ ¼ Δ− for which the source term is next-to-leading

order
9

and is extracted by taking a derivative (the

Neumann boundary condition). Additionally, note the length

dimension of ϕ0 isΔ − d, since the scalar field itself must be

dimensionless in (3.1).

So, ϕ0 is a scale that inputs into the UV data, while Δ is

an additional dimensionless parameter. Furthermore, we

consider the UV fixed point to be a CFT at finite temper-

ature β−1 ¼ Th and on a spatial sphere of radius l. Thus,

there are three dimensionless parameters,

UV data :

�

β

l
;ϕ0l

d−Δ;Δ




: ð3:11Þ

As an aside, recall that flat topology arises in the large-

volume limit of a round black hole. Specifically, we take

β ≪ l with β and l kept finite, so the flows corresponding

to flat black holes do not have β

l
as UV data. The only finite

dimensionless parameters left are ϕ0β
d−Δ and Δ. Round

black holes thus accommodate a larger parameter space of

UV data.

Finally, note that the other metric functions χ and F may

also be expanded around r ¼ 0. Their behavior in this

regime is directly determined by that of ϕ through the

equations of motion. Specifically, we can plug (3.10) into

(3.5)–(3.7) to write

χðrÞ ¼ r2ðd−ΔÞ
�

d − Δ

2ðd − 1Þϕ
2
0 þ � � �

�

þ rd
�

2Δðd − ΔÞ
dðd − 1Þð2Δ − dÞϕ0hOi þ � � �

�

þ r2Δ
�

ΔhOi2
2ðd − 1Þð2Δ − dÞ2 þ � � �

�

; ð3:12Þ

FðrÞ¼1þ ðd−2Þ
ðd−ΔÞl2r

2þ Δϕ2
0

2ðd−1Þr
2ðd−ΔÞþ���: ð3:13Þ

As 2ðd − ΔÞ < d < 2Δ, the leading-order term in χ is

proportional to r2ðd−ΔÞ. To find the first two subleading

terms in F, we only plug in the lowest-order terms in ϕ

(∼rd−Δ) and χ (∼r2ðd−ΔÞ).

B. Trans-IR data

Now, let us briefly comment on the near-singularity

structure of black holes in the presence of matter so as to

pin down what sort of data would characterize the trans-IR

8
This power-law behavior of the scalar field may be obtained

by taking the r → 0 limit of (3.5), noting that χð0Þ ¼ 0 and
Fð0Þ ¼ 1 for asymptotically AdS geometries. This yields a
simple second-order ordinary differential equation (ODE).

9
To be more precise, when Δ ¼ Δ−, the source term is still the

coefficient of the rd−Δ term, but now it becomes subleading to
the one-point function term rΔ near the boundary. This is because

Δ− < d
2
. This choice corresponds to a Neumann boundary con-

dition on the scalar field, rather than a Dirichlet one [63,66].
For technical simplicity in the numerics, we only consider the
Dirichlet one, for which ϕ0 can be read from the leading-order
divergence of ϕðrÞ.
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end point. We again focus on scalar deformations (3.1), so

characterizing the trans-IR data amounts to understanding

free-scalar-induced backreaction on an AdS black hole

interior.

The classical evolution of the black hole interior (or

singular geometries) in the presence of matter is a deep

topic dating back decades to seminal work by Belinskii and

co-workers [67–69] and by Misner [70], with subsequent

rigorous treatments of the dynamics utilizing the “cosmo-

logical billiards” approach [71,72]. These methods are

good near the singularity. In more recent years, the focus

has shifted to numerical construction of the near-horizon

region [31] and even to analytic study of the full interior

[24,73]. Nonetheless, these different approaches are com-

plementary to one another [74].

In these studies, the general structure of the black hole

interior is a Kasner universe [40]. These geometries are

anisotropic spacetimes. The planar version takes the form

ds2Kasner ¼ −l2dτ2 þ
X

d

i¼1

τ2pidx2i : ð3:14Þ

The pi are called “Kasner exponents.” We use these as

trans-IR data. For a solution to the vacuum Einstein

equations, the Kasner exponents simultaneously satisfy

the constraints

X

d

i¼1

pi ¼ 1;
X

d

i¼1

p2
i ¼ 1: ð3:15Þ

Let us be more specific to our particular class of flows.

Scalar fields blow up logarithmically when near a spheri-

cally symmetric Schwarzschild singularity [75,76], so we

start with

ϕðrÞ ∼ cðd − 1Þ log
�

r

l

�

; r ≫ l; ð3:16Þ

where c is some constant. We may then use the equations of

motion (3.5) and (3.7) to write the other metric functions in

this r ≫ l regime,

χðrÞ ∼ c2ðd − 1Þ log
�

r

l

�

þ χ∞; FðrÞ ∼ −F∞

�

r

l

�

q

;

ð3:17Þ

where χ∞ and F∞ > 0 are integration constants and q is

shorthand for

q ¼ dþ c2
�

d − 1

2

�

: ð3:18Þ

Plugging these into our metric ansatz (3.4), we may apply

the coordinate transformation r → lτ−2=q to get (up to

rescalings of the t and τ coordinates)

ds2∼−l2dτ2þ τ2ptdt2þ
�

lq
ffiffiffiffiffiffiffi

F∞

p

2

�

2

τ2pΩdΩ2
d−1: ð3:19Þ

This is a round Kasner universe—see [77]. The Kasner

exponents are

pt ¼ 1 −
2ðd − 1Þ

q
; pΩ ¼ 2

q
: ð3:20Þ

At this stage, it is useful to write ϕ as a function of τ. This

allows us to identify yet another Kasner exponent pϕ,

ϕðτÞ ¼ −
ffiffiffi

2
p

log τpϕ ; pϕ ¼
2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðd− 1Þðq− dÞ
p

q
: ð3:21Þ

Thus, we have three distinct exponents that manifestly

satisfy two constraints,

pt þ ðd − 1ÞpΩ ¼ 1; p2
t þ ðd − 1Þp2

Ω
þ p2

ϕ ¼ 1;

ð3:22Þ

so the trans-IR data are described by just one Kasner

exponent, which we choose to be pt,

trans-IR data : fptg: ð3:23Þ

We go from three parameters in the UV data (3.11) to one

parameter, so the lossy nature of RG flow is manifest.

As an application, consider the vacuum solution for

which ϕ ¼ 0. Then we recover the same constraint as

(3.15). In this case, we may exactly solve for the Kasner

exponents,

ptjvac ¼ −1þ 2

d
; pΩjvac ¼

2

d
: ð3:24Þ

As a sanity check, observe that this is consistent with the

vacuum solution (2.26), which has a purely d-dependent
Kasner structure that is fixed independent of UV data.

Finally, we comment on the qualitative meaning of pt

to the structure of the black hole geometry. It (along with

the other Kasner exponents) conveys information about the

stability of the interior near the singularity. Specifically,

the singularity is located at τ → 0, so

pt > 0 ⇒ lim
τ→0

gtt → 0; pt < 0 ⇒ lim
τ→0

gtt → þ∞:

ð3:25Þ

In the former case, gtt decays exponentially. This decay as

we approach the singularity is viewed as the “collapse” of

the Einstein-Rosen bridge [31,78]. Meanwhile, in the latter

case, we would say that the interior geometry grows near

the singularity.
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C. From UV temperature to trans-IR exponent

A preliminary consistency test of our intuition is to

compute trans-IR data and demonstrate its functional

dependence on UV data in the presence of a relevant de-

formation. This should contrast with the vacuum case, for

which the Kasner exponents are fixed at (3.24).

To do this, we first numerically construct a large array of

black hole solutions to the equations of motion (3.5)–(3.7).

Doing so requires fixing the AdS radius; we set l ¼ 1. The

finer specifics of our construction procedure are discussed

in more detail in Appendix B, but at this stage we note that

d andΔ are fixed. With the solutions in hand, we then select

for metrics with specific preselected values of the defor-

mation parameter ϕ0 up to some small error, which we take

to be 0.5% throughout our numerics (or 0.005 for ϕ0 ¼ 0).

This is done prior to subsequent calculations to save on

computational resources.

For d ¼ 2, each temperature only furnishes a single

black hole geometry—a deformed static Banados-

Teitelboim-Zanelli (BTZ) black hole [79,80]. However, it

is well known that for d > 2 bulk spatial dimensions there

are two branches of black hole solutions (in terms of the

horizon radius rh) for each β—large black holes and small

black holes. This is not only true in vacuum but also with a

deformation turned on. We illustrate this point in Fig. 1.

As a bonus, the d ¼ 3 plot also exemplifies how d > 2

theories include a maximal β or minimal temperature (the

“spinodal” point) beyond which there are no black hole

solutions.

In our coordinates (3.4), the conformal boundary is at

r ¼ 0. Thus, if there are two solutions at some temperature,

the large black hole corresponds to the smaller value of rh,
while the small black hole corresponds to the large value.

Although there is this ambiguity in the bulk geometry, we

emphasize that the small black hole is thermodynamically

unstable. Nonetheless, we may view it as some subdomi-

nant (in the canonical ensemble) thermal state with its own

trans-IR flow.

With that in mind, for each of these families of black

holes, we also plot pt as a function of the inverse temper-

ature in Fig. 2. For both d ¼ 2 and d ¼ 3, we see that the

vacuum Kasner exponent ptjvac ¼ −1þ 2
d
(3.24) are repro-

duced by our numerics. With a deformation turned on,

however, pt develops a nontrivial relationship with β.

For d ¼ 2, we get a fairly consistent functional structure

(at least for low ϕ0, but we expect it to hold for larger ϕ0).

pt apparently increases from the vacuum value of 0 for

small β until reaching a maximum value dependent on ϕ0

and then decreases. We may even posit that the value of β at

this maximum decreases with ϕ0.

Meanwhile, for d ¼ 3, the presence of two black holes

for each β manifests branching in Fig. 2(b). More specifi-

cally, we observe that the small black holes have Kasner

exponents much closer to the vacuum value than those of

the large black holes. In other words, the small black holes

are the lower branch of Fig. 2(b), while the large black

holes exhibit a similar behavior to those of d ¼ 2 with a

spinodal point present. One way to interpret this is to say

that small black holes have “more” near-singularity geom-

etry, since as per (3.25) gtt would blow up more for small

black holes.

So to summarize, deformations of the UV turn on

nontrivial relationships between UV and trans-IR data.

In particular, the near-singularity geometry is no longer

completely specified by d. We now want to describe such

relationships in terms of other parameters of the UV CFT

(a) (b)

FIG. 1. Plots of the horizon radius rh versus inverse temperature β with l ¼ 1 and for both (a) d ¼ 2, Δ ¼ 3
2
and (b) d ¼ 3, Δ ¼ 2. We

plot these points for various different values of the deformation parameter ϕ0 � 0.5%. For d ¼ 2, we observe a one-to-one linear

relationship, indicating that each temperature corresponds to just a single black hole in the bulk. For d ¼ 3, however, there are two

solutions for each β—a large black hole (the lower branches) and a small black hole (the upper branches). As a sanity check, we note the

ϕ0 ≈ 0 numerical points are consistent with known analytic expressions for rh, which are
β

2π
for d ¼ 2 and 2π

β
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð2π
β
Þ2 − 3

q

(respectively,

the small and large branches) for d ¼ 3.
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that are directly connected to phase transitions of holo-

graphic quantities.

IV. IMPRINTS OF ENTANGLEMENT PLATEAUS

One phase transition unique to the round black hole

concerns holographic entanglement entropy as computed

by the Ryu-Takayanagi (RT) prescription [81,82], which

we now summarize. First, consider a bulk codimension-two

surface Γ which is “homologous” to R (Γ ∼R), by which

we mean that there exists a codimension-one bulk region Σ

for which

∂Σ ¼ R ∪ Γ; ∂R ¼ ∂Γ: ð4:1Þ

Then, to leading order in a small (in units of AdS radius)

GN expansion, the entanglement entropy of a boundary

intervalR on a fixed-time slice is proportional to the area of

the smallest such Γ,

SðRÞ ¼ min ext
Γ∼R

�

AreaðΓÞ
4GN

�

: ð4:2Þ

The minimal-area extremal surface is called the RT surface.

In simple cases, like pure AdS or the planar AdS-

Schwarzschild black hole, the RT surface is connected

if R is connected. However, this need not be the case in

the round black hole (as also appreciated in other work

[83–85]). For example, when R constitutes a sufficiently

large connected subregion of the boundary in a higher-

dimensional (d > 2) round AdS black hole, one does not

even have connected homologous extremal surfaces as

candidates for the RT surface in the first place [27]. The

relevant feature of a round black hole is that any bulk region

Σ bounded by a sufficiently large R and some extremal

connected surface always includes the horizon, so it must

be included as a separate connected component of the RT

surface.
10

Indeed, allowing for disconnected Γ is the only

way to have the RT prescription be continuous with the

Bekenstein–Hawking formula [86,87] in the limit whereR

is the full boundary, for which the RT surface should only

be the horizon.

As a generic adaptation of the RT prescription to round

black holes, [27] starts by considering two separate classes

of codimension-two surfaces homologous toR—those that

are connected and those that are disconnected and include

the horizon. See Fig. 3 for a visual representation. Then,

computing the entanglement entropy amounts to finding

the minimum-area extremal surface
11
among both classes,

(a) (b)

FIG. 2. Plots of the Kasner exponent pt versus inverse temperature β with l ¼ 1 and for both (a) d ¼ 2, Δ ¼ 3
2
and (b) d ¼ 3, Δ ¼ 2.

We again plot these points for various different values of the deformation parameter ϕ0 � 0.5%. For both, the ϕ0 ≈ 0 values of pt are

only fixed by the dimension (3.24) and thus, respectively, are 0 and −
1
3
. For ϕ0 ≉ 0, the d ¼ 2 plot is a well-defined function, whereas

the d ¼ 3 plot is branched. In the latter, the upper branch corresponds to large black holes, while the lower branch corresponds to small

black holes.

FIG. 3. A fixed-time slice of the round black hole, with the RT

candidates corresponding to a boundary region R. Generically,

the true minimal RT surface may either be connected (ΓC) or

disconnected (ΓD). Note that ΓD itself has two connected

components—a piece Γ̄D that wraps around the black hole

horizon and the horizon itself.

10
Note that the horizon is a topologically closed surface and

thus has an empty boundary, so it can be included in Γ without
breaking the homology condition (4.1).

11
If one of these classes does not include any extrema (like the

d > 2 round AdS black holes [27]), then extrema must exist
solely the other class.
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SðRÞ ¼min

�

AreaðΓCÞ
4GN

;
AreaðΓDÞ

4GN

�

¼min ðSC; S̄D þ SBHÞ:

ð4:3Þ

In the equation above, ΓC denotes a generic extremal

surface that is both connected and homologous to R. The

area of this surface is directly related to SC. Meanwhile, ΓD

is the extremal surface that is disconnected and homolo-

gous to R. It helps to break the resulting entropy into two

terms, each corresponding to a connected component of ΓD.

The first term S̄D is computed by the connected component

Γ̄D ⊂ ΓD, which is anchored to the conformal boundary and

wraps around the horizon. The second term SBH is the

Bekenstein–Hawking entropy of the horizon itself.

That there are two competing candidates in the round

black hole allows for a first-order phase transition as

described in [27]. First, recall that if the full system is in

a pure state, then the entanglement entropy of any sub-

region R and its complement Rc must match. For mixed

states, we may quantify the “deviation” from this purity as

δSR ¼ SðRÞ − SðRcÞ: ð4:4Þ

By the Araki-Lieb inequality (cf. Theorem 2c of [26]),

jδSRj ≤ SðR ∪ RcÞ ¼ SBH; ð4:5Þ

where the entropy of the full boundary system is equated to

the Bekenstein–Hawking entropy. Saturation of the Araki-

Lieb inequality corresponds to a canonical factorization

of the full boundary degrees of freedom, with any of the

resulting factors carrying all of the microscopic entangle-

ment entropy (cf. Theorem III.2 of [88]).

We may analyze the deviation from purity on the left-

hand side of (4.5) as we tune the “size” (we make this more

precise below) of R from 0 to half of the full boundary

interval.
12
In doing so, we find that for small R there is a

window of interval sizes for which SR and SRc are,

respectively, computed by ΓC and ΓC ∪ Γh, where Γh is

the horizon. For R near half of the boundary, however,

there is another window of interval sizes for which both

entropies are computed by corresponding connected phases

(ΓC and Γ̄D, respectively). According to (4.3), these two

windows are, respectively, described by

SC ≤ S̄D − SBH ⇒ jδSRj ¼ SBH; ð4:6Þ

S̄D − SBH < SC ≤ S̄D ⇒ 0 ≤ jδSRj < SBH: ð4:7Þ

If we plot jδSRj as a function of interval size, we observe a
so-called entanglement “plateau” [27]. The fall from the

plateau corresponds to loss of saturation of the Araki-Lieb

inequality.

We aim to understand how this phase transition imprints

upon the trans-IR Kasner exponents. To do so, we takeR to

be a round “cap” [with SOðd − 1Þ symmetry] in the boun-

dary whose size is controlled by a single angular para-

meter θR. The transition is found to occur at a particular

θR ¼ θk. With a scalar deformation in the UV, we find that

this transition point can be viewed as UV data in lieu of the

CFT temperature parameter β

l
in the list (3.11). With that in

mind, we plot θk against the Kasner exponent pt at fixed

values of the deformation parameter ϕ0l
d−Δ.

As a matter of practicality, we focus on the d ¼ 2 case

for which the extremal surfaces can be computed from

a first-order ODE. The higher-dimensional cases are, in

principle, possible to analyze, but they require numerically

solving second-order ODEs. We discuss the basic machi-

nery of general d ≥ 2 in Appendix C, leaving the higher-

dimensional problem open for future work.

Essentially, we will find that a finite, nonzero deforma-

tion induces a nontrivial relationship between pt and θk.

The takeaway is that a deformation allows entanglement

structure in the UV to imprint upon the trans-IR data (at

least in the low-dimensional case of d ¼ 2). We find that

this effect is numerically small.

A. Ryu-Takayanagi in deformations

of the BTZ black hole

We compute entanglement plateaus for deformations of

the round BTZ black hole in d ¼ 2, which is described by

the metric (fixing the curvature radius as l ¼ 1)

ds2 ¼ 1

r2

�

−e−χðrÞFðrÞdt2 þ dr2

FðrÞ þ dθ2
�

; ð4:8Þ

with t∈R, r > 0, and θ ∼ θ þ 2π. Recall that we assume F
to have a simple root at r ¼ rh, defined as the black hole

horizon. Furthermore, it is convenient to take the funda-

mental domain θ∈ ð−π; π�, with R at fixed time being

parametrized as θ∈ ½−θR; θR� for some 0 < θR < π
2
.
13
Our

goal will be to find the value θR ¼ θk at which the Araki-

Lieb inequality switches between being saturated and

holding strictly.

To compute the extremal surfaces, we first use the metric

to write the area functional of a surface θ ¼ θðrÞ at fixed t
(omitting bounds of integration for now)

A ¼
Z

dr

r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

FðrÞ þ θ0ðrÞ2
s

: ð4:9Þ
12
Because we are comparing the entropy of R against that of

its complement, takingR to be half of the boundary is the same as
considering the extremal case R ¼ Rc. Thus, by the Z2 sym-
metry that exchanges the roles ofR andRc, considering intervals
R that are more than half of the full boundary is redundant.

13
Recall that we are only considering R up to half of the full

boundary.
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We then use the Euler-Lagrange equation to obtain the

equation of motion for the extremal surfaces,

θ0ðrÞ2 ¼ r2

FðrÞðr2� − r2Þ : ð4:10Þ

Here, r� < rh is a bulk constant of motion characterizing

the turnaround point of the extremal surface, i.e., dr
dθ
jr¼r�

¼
1

θ0ðr�Þ ¼ 0 and r∈ ½0; r��. By integrating (4.10), we can relate
this r� parameter to θR.

We now have the necessary expressions to compute the

areas of the RT candidates for both R and Rc. Before we

proceed, we reiterate that ΓC denotes the connected

extremal surface homologous to R, while the homologous

disconnected extremal surface ΓD decomposes into con-

nected components Γ̄D ∪ Γh, where Γh is the horizon and

∂Γ̄D ¼ ∂R. We observe that the connected phase for the

entropy of the complement Rc is then computed by the

connected component Γ̄D, and the disconnected phase is

computed by the union ΓC ∪ Γh. So at this stage, we simply

need to compute the end points and areas of ΓC and Γ̄D in

terms of their turnaround points.

1. Computing ΓC

We first relate the turnaround point rc� of ΓC to θR. To

start, note that ΓC represents a surface that does not wrap

around the black hole horizon relative to R (Fig. 3).

Therefore, the θðrÞ > 0 branch has the negative root of

(4.10) as its derivative, so we write

θðrc�Þ − θð0Þ ¼ −

Z

rc�

0

dr
ffiffiffiffiffiffiffiffiffiffi

FðrÞ
p

r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2c� − r2
p : ð4:11Þ

By the symmetry of our parametrization, θðrc�Þ ¼ 0.

Additionally, θð0Þ ¼ θR. As such, we have

θR ¼
Z

rc�

0

dr
ffiffiffiffiffiffiffiffiffiffi

FðrÞ
p

r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2c� − r2
p : ð4:12Þ

Furthermore, the area of ΓC may be written by plugging

(4.10) directly into (4.9),

AreaðΓCÞ ¼ 2

Z

rc�

0

dr
ffiffiffiffiffiffiffiffiffiffi

FðrÞ
p

rc�=r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2c� − r2
p : ð4:13Þ

2. Computing Γ̄D

We now relate the turnaround point rd� of Γ̄D to θR.

As shown in Fig. 3, this surface wraps around the black

hole horizon relative to R. As such, the derivative of the

θðrÞ > 0 branch is the positive root of (4.10), so

θðrd�Þ − θð0Þ ¼
Z

rd�

0

dr
ffiffiffiffiffiffiffiffiffiffi

FðrÞ
p

r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2d� − r2
p : ð4:14Þ

This time, we have that θðrd�Þ ¼ π and θð0Þ ¼ θR. Hence,

θR ¼ π −

Z

rd�

0

dr
ffiffiffiffiffiffiffiffiffiffi

FðrÞ
p

r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2d� − r2
p : ð4:15Þ

However, the area of Γ̄D takes the same form as that of ΓC,

AreaðΓDÞ ¼ 2

Z

rd�

0

dr
ffiffiffiffiffiffiffiffiffiffi

FðrÞ
p

rd�=r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2d� − r2
p : ð4:16Þ

3. Applying Ryu-Takayanagi

For a fixed R (and Rc), we can, in principle, use the

simultaneous constraints (4.12) and (4.15) to solve for the

turnaround points rc� and rd� in terms of the interval size

parameter θR. With those in hand, we can then plug the

expressions (4.13) and (4.16) into the holographic pre-

scriptions for the entanglement entropies of R and Rc to

evaluate the entropies,

SðRÞ ¼ 1

4GN

min

�

AreaðΓCÞ;AreaðΓ̄DÞ þ
2π

rh

�

; ð4:17Þ

SðRcÞ ¼ 1

4GN

min

�

AreaðΓCÞ þ
2π

rh
;AreaðΓ̄DÞ

�

: ð4:18Þ

The 2π
rh

term is the horizon area in the d ¼ 2 round black

hole and notably does not depend on the deformation. With

these equations, we may compute the absolute difference

of entropies jδSRj ¼ jSðRÞ − SðRcÞj explicitly. By scan-

ning over θR, we can plot jδSRj as a function of interval

size, and it is in such plots that we identify entanglement

plateaus.

That being said, we know that the transition in entropy

occurs between the windows (4.6) and (4.7), i.e.,

θR ¼ θk ⇔ SC ¼ S̄D − SBH ⇔
2π

rh

¼ AreaðΓ̄DÞ − AreaðΓCÞ: ð4:19Þ

This along with (4.12) and (4.15) completely constrain the

transition point and can be used to find the transition value

θR ¼ θk without needing to plot jδSRj.

B. Plateau kinks versus Kasner exponents

Given some solution to the equations of motion with

horizon radius r ¼ rh, we reiterate that the respective

turnaround points rc� and rd� of ΓC and Γ̄D at the transition

angle θR ¼ θk are fixed by the following system of

constraints:

θk ¼
Z

rc�

0

dr
ffiffiffiffiffiffiffiffiffiffi

FðrÞ
p

r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2c� − r2
p ; ð4:20Þ
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θk ¼ π −

Z

rd�

0

dr
ffiffiffiffiffiffiffiffiffiffi

FðrÞ
p

r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2d� − r2
p ; ð4:21Þ

π

rh
¼
Z

rd�

0

dr
ffiffiffiffiffiffiffiffiffiffi

FðrÞ
p

rd�=r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2d� − r2
p −

Z

rc�

0

dr
ffiffiffiffiffiffiffiffiffiffi

FðrÞ
p

rc�=r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2c� − r2
p :

ð4:22Þ

To use these constraints, we first obtain a large number of

numerical solutions to the equations of motion (3.5)–(3.7).

We then scan for fixed values of the deformation parameter

ϕ0 (with some prescribed uncertainty) and, for this subset

of solutions, numerically solve the above constraints. After

post hoc validation that the numerical output indeed solves

these constraints, we are left with the desired values of θk.

We can then check whether θk is a monotonic function of β,

thereby allowing us to substitute the latter for the former in

the UV data without issue. We then plot the Kasner

exponent pt against θk.

Before discussing the numerics, however, we note that

the case of the (undeformed) BTZ black hole can be

understood analytically. We do so both as a warm-up

and to have a consistency test in hand for our numerics.

1. Undeformed BTZ black hole

Let us review the case of the BTZ black hole in pure

gravity, also analyzed by [27]. As it turns out, the interval

size corresponding to the plateau of the BTZ can be

computed analytically. First, recall that

FBTZðrÞ ¼ 1 −
r2

r2h
: ð4:23Þ

This can be used to compute both rc� and rd� as functions
of θR,

rBTZc� ¼ rh tanh

�

θR

rh

�

; ð4:24Þ

rBTZd� ¼ rh tanh

�

π − θR

rh

�

: ð4:25Þ

Now, we want to compute the interval size θR ≡ θBTZk

defining the kink of the plateau.
14
Recalling (4.6) and (4.7),

this is found by setting

AreaðΓ̄DÞ − AreaðΓCÞ ¼
2π

rh
: ð4:26Þ

For the BTZ geometry, we can compute each of these areas,

and thus θBTZk , analytically. First, define a regulator surface

r ¼ ϵ. The regulated areas are then

AreaðΓCÞregBTZ ¼ −2 log

�

ϵ

2rh

�

þ log

�

r2c�
r2h − r2c�

�

; ð4:27Þ

AreaðΓ̄DÞregBTZ ¼ −2 log

�

ϵ

2rh

�

þ log

�

r2d�
r2h − r2d�

�

: ð4:28Þ

The UV divergences manifestly cancel when we take the

difference, so the constraint (4.26) is well defined and

yields the following relation:

θBTZk ¼ π

2
−
rh

2
log cosh

�

π

rh

�

: ð4:29Þ

The horizon temperature (2.18) of the BTZ black hole is

Th ¼ 1
2πrh

, so we may write the kink angle as a monotonic

function of the inverse CFT temperature β ¼ T−1
h ,

θBTZk ¼ π

2

�

1 −
β

2π2
log cosh

�

2π2

β

��

: ð4:30Þ

So the value of θBTZk depends on the temperature (or size

through β ∼ rh) of the black hole. For high-temperature

(β → 0) and low-temperature (β → ∞) BTZ black holes,

lim
β→0

θBTZk ¼ 0; lim
β→∞

θBTZk ¼ π

2
: ð4:31Þ

In other words, for large black holes rh ≪ 1 there is

effectively no range for which the Araki-Lieb inequality

is saturated, whereas for small black holes rh ≫ 1 the

Araki-Lieb inequality is effectively always saturated.

However, we may also consider intermediate regimes at

which the transition happens at finite interval size, as shown

in Fig. 4.

Finally, we emphasize that the Kasner exponent for any

black hole solution to the vacuum equations of motion is

given by a temperature-independent constant. For BTZ

black hole,

pBTZ
t ¼ 0: ð4:32Þ

This can be seen by taking d ¼ 2 in (3.24). The kinks thus

constitute a line at 0 in the parameter space ðθk;ϕ0; ptÞ on
the ϕ0 ¼ 0 slice (at zero deformation parameter). In other

words, the entanglement plateau transition does not imprint

upon the interior geometry of the BTZ black hole in the

absence of matter.

14
Note that we may also use the interval size at which the RT

surface of R changes phase, which is computed by [27].
However, this is redundant. The phase transition in the surface
for R occurs in the domain where it is more than half of the
boundary system, and it precisely coincides with where the kink
develops if we instead analyze the entanglement plateau of the
complementary interval Rc.
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2. Finite deformations

For the BTZ black hole, there is no relationship between

θk (viewed as UV data) and the constant pt (the trans-IR

data). Our goal now is to see whether this changes for finite

values of the deformation parameter (in l ¼ 1 units). This

requires numerics.
15
To summarize our results, we plot both

θk versus β and pt versus θk from points obtained via our

numerical approach for a variety of deformations in Fig. 5.

As validation, we first plot the points for ϕ0 ≤ 0.005.

These points should and do generally follow the analytic

relations above, namely, (4.30) for θk versus β and a flat

line at 0 for pt versus θk. Subsequently, we then plot points

for finite values of ϕ0, namely, ϕ0 ¼ 5.000� 0.025,

10.00� 0.05, 50.00� 0.25, 100.0� 0.5, and 200:� 1—

allowing for errors of 0.5% in our scan over deformation

parameters.

Just as for the undeformed BTZ black hole, θk mono-

tonically increases in β, so we can swap θk for the temper-

ature in the UV data. Interestingly, while we certainly

observe a dependence of this curve on ϕ0, it appears to

be very small. However, the relationship between pt and θk
is much more subtle. Qualitatively, the plot appears stable

against the �0.5% error in ϕ0. Thus, the numerics suggest

that, for finite, fixed deformations, θk has a numerically

weak but nontrivial relationship with pt. This is in contrast to

no deformation being turned on (ϕ0 ≈ 0), in which case pt is

completely independent of θk. The ϕ0 ≈ 5 plot, in particular,

suggests that the Kasner exponent peaks at some value of θk.

The higher values of ϕ0 are consistent with this behavior,

assuming that their peaks appear at smaller values of θk.

These plots reflect how the UV entanglement plateau

transition imprints upon the trans-IR data. Physically, both

large and small values of θk appear to induce smaller values

of pt within the range of our numerics. Thus, there is a

particular black hole with maximal pt whose plateau occurs

at an intermediate value of θk. As per the interpretation of

positive pt discussed in Sec. III B, the interior geometry of

this dual black hole has a maximally fast collapse relative to

other states.

V. THERMAL TWO-POINT FUNCTIONS

AND THE INTERIOR

Another entry of the holographic dictionary involving

classical geometry is “geodesic approximation” of correla-

tion functions. In this section, we restrict our attention to

scalar correlation functions, so we assume the presence of

a second bulk scalar field Φ̃ dual to some CFToperator Õ in

the boundary theory with conformal dimension Δ̃. Further-

more, for simplicity we assume that this scalar field is not

coupled to anything, so it does not generate any gravitational

backreaction. Wewill eventually take Δ̃ to be large (meaning

that Õ will be irrelevant), so the presence of Φ̃ stands in

contrast to the scalar Φ in (3.1) whose backreaction effects

correspond to RG flow from the UV to the trans-IR.

The basic idea of geodesic approximation comes from

seminal work equating the scalar propagator of a holo-

graphic CFT to a path integral over worldlines in the

bulk [28,29]. Specifically, taking two boundary points x̂1
and x̂2, the Euclidean scalar propagator is

Gðx̂1; x̂2Þ ¼
Z

x̂1↔x̂2

DPe−Δ̃L½P�: ð5:1Þ

Here, P is a generic bulk path connecting the boundary

points, and L½P� is a length functional. Given a particular

bulk geometry, the left-hand side is equivalent to the

Euclidean two-point function of Õ in the corresponding

CFT state.

Now, we take the limit Δ̃ → ∞ by taking the bulk scalar

mass to be large in units of AdS radius. Hereafter, we

denote this large conformal dimension as ΔH and the

corresponding operator as OH. The path integral in (5.1)

may then be evaluated using saddle-point approximation.

This picks out minima of the length functional—in other

words, geodesics,

hOHðx̂1ÞOHðx̂2Þi ∼
X

geodesics

e−ΔHL: ð5:2Þ

We can actually go a bit further when working strictly in

the ΔH → ∞ limit. The sum above is dominated by the

minimum-length saddle, and so among the different geo-

desics there is one in particular that actually determines the

two-point function,

hOHðx̂1ÞOHðx̂2Þi ∼ exp

�

−ΔH

�

min
geodesics

L

��

: ð5:3Þ

FIG. 4. Exact entanglement plateaus for the BTZ black hole

(with l ¼ 1) for inverse temperatures β ¼ π (blue), β ¼ 2π (red),

and β ¼ 4π (green). The kinks in each plot are the points at which

the phase of δSR (computed via the RT prescription and with

4GN ¼ 1) changes. These, respectively, occur at θR ≈ 0.055π,

θR ≈ 0.110π, and θR ≈ 0.207π.

15
Note that the conformal dimension Δ is another piece of UV

data, but for our purposes we fix Δ ¼ 3
2
.
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With that said, we examine the geodesics in one-sided

round black holes. This is equivalent to computing heavy

thermal two-point functions. We emphasize that the study

of geodesics to glean insight into thermal correlation

functions in CFT is not new [89] and has been recently

revitalized [90,91].

Our goal is to examine the phase structure of these heavy

thermal two-point functions on compact spatial slices. In

particular, we consider a CFT thermal state on Sd−1 and

note that two operator insertions will always be collinear.

Thus, the picture looks similar to Fig. 3, with two different

connected geodesics being among the possible dominant

phases of the two-point function. If either dominates the

geodesic approximation, then we have a connected two-

point function. In addition, there is a third candidate—a

disconnected pair of geodesics, each of which is anchored

to one of the insertions and hits the horizon. This third

candidate represents the disconnected part of the two-point

function (the product of the heavy thermal one-point

functions [90]). The three geodesics that contribute to

the thermal two-point function are shown in Fig. 6.

Just as in our exploration of the entanglement plateaus

(Sec. IV), the discussion in this paper will be focused

on d ¼ 2. We do so for simplicity, but note that, unlike

codimension-two entanglement surfaces, geodesics are

always strictly 1D regardless of the number of spatial

dimensions. The main differences in higher dimensions

are the metric functions and the space of gravitational

solutions.
16

Therefore, we focus on d ¼ 2 to simplify

the picture, leaving these additional complications to

future work.

One of the useful simplifications of working in d ¼ 2 is

that geodesics are also codimension-two, so we can and

will employ many of the same equations as in Sec. IV. We

will also present the story in a similar manner. This time,

however, we will find a connected/disconnected phase

transition of the heavy thermal two-point function and

show how its characteristic parameter imprints upon the

near-singularity geometry.

We also note that the story here has a similar flavor to the

story of holographic confinement/deconfinement phase

transitions (cf. [92,93]). However, while we are employing

similar geometrical structures (lines), the phase transition

we examine is different.

(a) (b)

FIG. 5. The plots of (a) θk versus β and (b) pt versus θk for a variety of scalar deformations characterized by the values of ϕ0. As our

numerics do not find solutions for fixed ϕ0 outright, we compute these points while allowing for a 0.5% margin of error in the values of

ϕ0. As a sanity check, we numerically compute parameters from solutions with ϕ0 ≤ 0.005 (close to 0) and find that they indeed

replicate the analytic results of the undeformed BTZ black hole. The relationship between θk and β appears insensitive to the

deformation and shows strong matching to the analytic result for ϕ ¼ 0 (4.30). However, pt develops a nontrivial relationship with θk
when ϕ0 ≉ 0, in contrast to pt being uniformly 0 when ϕ0 ≈ 0.

FIG. 6. A fixed-time slice of the round black hole (in Lor-

entzian signature), with the two connected geodesics (C1 and C2)

and the disconnected geodesic (D) that contribute to the heavy

thermal two-point function hOHOHi. The shortest geodesic in

this black hole background dominates the Euclidean scalar two-

point function computed in a thermal state. As we are actually

computing this two-point function in Euclidean signature, the

disconnected geodesic ends at the horizon.

16
In higher dimensions, we have both small and large black

holes of different horizon radii but at equal temperatures.
Furthermore, there is a strict upper bound on β for the regime
in which there exist black hole solutions.
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A. Geodesic transition in deformations

of the BTZ black hole

We reiterate that the general d ¼ 2metric (setting l ¼ 1)

describing deformations of the round BTZ black hole is

ds2 ¼ 1

r2

�

−e−χðrÞFðrÞdt2 þ dr2

FðrÞ þ dθ2
�

: ð5:4Þ

Without loss of generality, we consider boundary insertions

on the same time slice—one at θ ¼ θO and the other at

θ ¼ −θO, where θO ∈ ð0; πÞ denotes half of the angular

separation between the insertions. This is precisely how we

defined the entanglement subregion in Sec. IV. The two-

point function is

hOHðx̂1ÞOHðx̂2Þi ¼ hOHðθOÞOHð−θOÞi: ð5:5Þ

1. Lengths of different phases

Now recall that the entanglement surfaces of d ¼ 2 are

precisely geodesics. Thus, the generic expressions for the

geodesic lengths are obtained from rebranding (4.12) and

(4.13) and (4.15) and (4.16),

LC1 ¼ 2

Z

rc1�

0

dr
ffiffiffiffiffiffiffiffiffiffi

FðrÞ
p

rc1�=r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2c1� − r2
p ;

θO ¼
Z

rc1�

0

dr
ffiffiffiffiffiffiffiffiffiffi

FðrÞ
p

r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2c1� − r2
p ; ð5:6Þ

LC2 ¼ 2

Z

rc2�

0

dr
ffiffiffiffiffiffiffiffiffiffi

FðrÞ
p

rc2�=r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2c2� − r2
p ;

θO ¼ π −

Z

rc2�

0

dr
ffiffiffiffiffiffiffiffiffiffi

FðrÞ
p

r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2c2� − r2
p : ð5:7Þ

Here we use C1 to represent the connected geodesic that

does not go around the horizon. Meanwhile, C2 denotes the

connected geodesic that wraps the horizon.

We must also consider the disconnected term—that is,

the product of thermal one-point functions. In Euclidean

signature, this is computed by a pair of geodesics for which

θ0ðrÞ ¼ 0 and that both reach the horizon [90]. The total

length of these geodesics is

LD ¼ 2

Z

rh

0

dr

r
ffiffiffiffiffiffiffiffiffiffi

FðrÞ
p : ð5:8Þ

2. Renormalized lengths

The lengths above diverge at the conformal boundary. To

renormalize them, we use −LD as a local counterterm,

which of course means that the renormalized disconnected

geodesic length Lren
D is set to 0. Noting that rh > rc1�; rc2�,

we can write the renormalized connected geodesic lengths

as sums of manifestly finite integrals,

Lren
C1 ¼ 2

Z

rc1�

0

dr

r
ffiffiffiffiffiffiffiffiffiffi

FðrÞ
p

rc1� −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2c1� − r2
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2c1� − r2
p − 2

Z

rh

rc1�

dr

r
ffiffiffiffiffiffiffiffiffiffi

FðrÞ
p ;

ð5:9Þ

Lren
C2 ¼ 2

Z

rc2�

0

dr

r
ffiffiffiffiffiffiffiffiffiffi

FðrÞ
p

rc2� −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2c2� − r2
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2c2� − r2
p − 2

Z

rh

rc2�

dr

r
ffiffiffiffiffiffiffiffiffiffi

FðrÞ
p :

ð5:10Þ

This approach is rather friendly for our numerics, since the

explicit form of the blackening function FðrÞ is unknown
and the integrals cannot be evaluated analytically. How-

ever, when simply considering the BTZ black hole, we may

alternatively introduce a cutoff at r ¼ ϵ and regulate the

bare integrals (5.6)–(5.8).

B. Transition angles versus Kasner exponents

We now have the necessary equations to study the phase

structure of the heavy thermal two-point correlator. We will

discuss the numerical results shortly, but first we address

the case of the undeformed BTZ black hole so as to obtain

some analytic results.

1. Undeformed BTZ black hole

Recall the blackening function of the BTZ black hole

with no backreaction is

FBTZðrÞ ¼ 1 −
r2

r2h
: ð5:11Þ

We already have the equations for the “regulated” (with

some cutoff at r ¼ ϵ) connected geodesic lengths; they are

read from (4.27) and (4.28) as

L
reg
C1;BTZ ¼ −2 log

�

ϵ

2rh

�

þ log

�

r2c1�
r2h − r2c1�

�

; ð5:12Þ

L
reg
C2;BTZ ¼ −2 log

�

ϵ

2rh

�

þ log

�

r2c2�
r2h − r2c2�

�

; ð5:13Þ

where rc1� is identified with (4.24), while rc2� is identified
with (4.25) (swapping θR for θO). Furthermore, the

regulated disconnected geodesic length is straightforward

to calculate. It is simply

L
reg
D;BTZ ¼ log

 

rh þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2h − ϵ2
p

rh −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2h − ϵ2
p

!

¼ −2 log

�

ϵ

2rh

�

þOðϵÞ:

ð5:14Þ

Hence, the renormalized lengths in terms of θO are
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Lren
C1;BTZ ¼ 2 log sinh

�

θO

rh

�

; ð5:15Þ

Lren
C2;BTZ ¼ 2 log sinh

�

π − θO

rh

�

; ð5:16Þ

Lren
D;BTZ ¼ 0: ð5:17Þ

First, note that the connected geodesics match when θO ¼ π
2

and are symmetric around this point. This is true regardless

of the temperature. Furthermore, they exchange dominance

at this point,

θO <
π

2
⇒ LC1;BTZ < LC2;BTZ; ð5:18Þ

θO >
π

2
⇒ LC1;BTZ > LC2;BTZ: ð5:19Þ

This is a first-order (continuous and not smooth) transition,

but it may or may not be relevant to leading order in

geodesic approximation. To make this statement more

precise, we focus on the θO < π
2
regime. We observe that

the dominant connected geodesic (C1) negatively diverges

as θO → 0þ, but reaches a finite value at π
2
. This value may

be positive or negative depending on the horizon radius rh.
Specifically,

Lren
C1;BTZ

�

θO ¼ π

2

�

¼ 2 log sinh

�

π

2rh

�

×

(

> 0 if rh <
π

2 logð1þ
ffiffi

2
p

Þ ;

< 0 if rh >
π

2 logð1þ
ffiffi

2
p

Þ :
ð5:20Þ

This means that if the black hole is big enough (small rh),
then the connected geodesic C1 becomes larger than the

disconnected geodesic D before θO ¼ π
2
. We thus get a

connected/disconnected phase transition. However, if the

black hole is small, then this transition does not happen at

leading order in the geodesic approximation.

Let us write the transition as a function of the inverse

temperature β ¼ 2πrh. The connected/disconnected tran-

sition occurs at the point where

Lren
C1;BTZ ¼ 0 ⇒ θO ¼ θBTZCD ≡ rh logð1þ

ffiffiffi

2
p

Þ

¼ β

2π
logð1þ

ffiffiffi

2
p

Þ; ð5:21Þ

where θBTZCD is used to denote the transition angle for a

particular BTZ black hole. However, the occurrence of this

transition is restricted to the range

θBTZCD <
π

2
⇔ β <

π2

logð1þ
ffiffiffi

2
p

Þ
≈ 3.56π: ð5:22Þ

With the above relation in mind, we plot the renormalized

geodesic lengths for three values of β in Fig. 7 so as to

depict the phase structure of the heavy thermal two-point

function.

Just as for the entanglement plateau transition, this

connected/disconnected transition does not imprint upon

the near-singularity geometry of the BTZ black hole; the

Kasner exponent is fixed at 0 regardless of the value of

θBTZCD . We now explore how this changes when backreaction

effects are turned on.

FIG. 7. The geodesic lengths for the BTZ black hole (with l ¼ 1) for inverse temperatures β ¼ π (blue), β ¼ 2π (red), and β ¼ 4π

(green). For each temperature, the solid lines follow the minimal length dominating the geodesic approximation of the heavy thermal

two-point function. Dashed curves are the lengths of subleading connected geodesics. For the blue and red curves, (5.22) is satisfied, so

there is a transition between connected and disconnected phases. However, the green curve does not exhibit such a transition because

there is always a connected geodesic with negative renormalized length that dominates the disconnected geodesic.
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2. Finite deformations

We again look at what happens when ϕ0 ≉ 0 using

numerics. The procedure is the same as for the entangle-

ment plateaus; we first construct a large set of solutions and

then filter them out to take only those that are within 0.5%

of the target value of ϕ0. As a calibration check, we also

confirm that the numerics of the solutions for which ϕ0 ≈ 0

reproduce the analytic relationship (5.21) between θCD and

β, along with the upper bound (5.22).

The resulting plots are shown in Fig. 8. Interestingly, our

numerics suggest that the linear relationship between θCD
and β found in the undeformed case is completely insensi-

tive to ϕ0. The deformed geometries appear to give the

same exact line, implying that θCD is a well-defined UV

datum. As such, the relationship between pt and θCD is

qualitatively similar to the one shown in Fig. 2 between pt

and β; pt exhibits an apparent maximum in β when ϕ0 ≉ 0.

This imprint is numerically much stronger than what we

had seen from the entanglement plateau transition. Mathe-

matically, this is because here we have a linear relationship

between θCD and β, whereas the critical size θk exhibits

something akin to a logistic growth with β [Fig. 5(a)].

Nonetheless, the qualitative story is similar; for each ϕ0,

there is a particular intermediate value of θCD at which the

interior geometry of the black hole has a maximally fast

collapse due to the Kasner exponent being peaked. The

difference is that the peak is much more obvious in the

relationship between pt and θCD than in Fig. 5(b).

VI. DISCUSSION

This paper is guided by the claim that the interior of

a black hole can be viewed as an analytically continued

RG flow. This is a working assumption that comes out

of attempting to synthesize the holographic RG flow

perspective on the emergence of spacetime with the

existence of a change in the radial extra dimension’s

signature from spacelike to timelike at the horizon. In

previous work, two of the authors had supplemented this

claim in the cases of flat isotropic [23] and anisotropic [25]

black holes by constructing a monotone from the null

energy condition. In Sec. II, we have performed the ana-

logous construction in the round black hole as a motivation

for its analysis.

We have used the round black hole deformed by a scalar

as a model system for how parameters characterizing UV

phase transitions relate to the Kasner singularity, which is

viewed as the end point of the trans-IR flow. Specifically,

we focused on Einstein gravity with a Klein-Gordon scalar,

as in [22], because the mapping (or imprints) of UV to

trans-IR data is not universal and requires specifying a

model.
17
Broadly, we were motivated by similar work [31]

in the holographic superconductor.

In the present work, we have focused on phase transi-

tions holographically dual to transitions in bulk geo-

metrical structures—namely, those of entanglement surfaces

(Sec. IV) and geodesics (Sec. V). The transitions themselves

do not depend on the specific matter content of the bulk

theory. Our results show that the parameters characterizing

both phase transitions develop a nontrivial relationship with

the Kasner exponent—characterizing the singularity—only

when a deformation is turned on. This contrasts with the

story in black holes solutions without matter, for which the

Kasner singularity is only dependent on the number of

spacetime dimensions and no UV physics.

(a) (b)

FIG. 8. The plots of (a) θCD versus β and (b) pt versus θCD for a variety of scalar deformations characterized by the values of ϕ0, with

θCD restricted to ð0; π
2
Þ. We again compute these points while allowing for a 0.5% margin of error in the values of ϕ0 (or a maximal error

of 0.005 for ϕ0 ≈ 0). (a) We see the analytic result of the undeformed BTZ black hole reproduced by the ϕ0 ≈ 0 points. We also observe

that the relationship between θCD and β appears insensitive to the deformation. (b) Thus, pt develops a nontrivial relationship with θCD
when ϕ0 ≉ 0, which is the same shape as the pt versus β plot of Fig. 2(a).

17
One can engineer black holes that have a similar exterior to

the Klein-Gordon solutions up to exponentially suppressed terms,
but a drastically different interior, but this requires modifying the
potential. We thank an anonymous referee for pointing this out.
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VII. FUTURE DIRECTIONS

There are several ways to proceed from here. We list

some of these follow-up ideas below.

A. The Hawking-Page transition

In this paper, we consider a CFT at finite temperature

with states on a spatial (d − 1) sphere organized in a

canonical ensemble. The dual states in the bulk are either

black holes or thermal gases of gravitons in AdSdþ1 space.

The ensemble of gravitational states is known to exhibit a

Hawking-Page transition [44] at some fixed temperature,

which with no matter present is [19]

βHP ¼
2π

d − 1
: ð7:1Þ

Specifically, the partition function is dominated by the state

dual to the bulk saddle with the smallest on-shell action.

The leading-order thermal state at temperature β is typically

the large black hole when β < βHP and the thermal gas

when β > βHP.

A very early entry in the AdS=CFT dictionary [19] is the

statement that this Hawking-Page transition corresponds to

a confinement/deconfinement phase transition on the level

of the free energy of the dual CFT or gauge theory. One

can also add matter to the bulk picture (cf. [45,57]), and

furthermore, the transition seems to not exist for flat or

hyperbolic horizon topologies [41,94]. In other words, the

Hawking-Page transition is also characteristic to the round

black hole, just like the transitions we consider.

It would be interesting to understand how the Hawking-

Page transition imprints upon the near-singularity Kasner

geometry. However, this would require understanding the

phase structure of the canonical ensemble. While the

relative stability of the hairy versus hairless phases have

been studied (cf. [95]), we propose fixing the source ϕ0

rather than treating it as a variable. The resulting phase

diagram would include a Hawking-Page transition scale

βHP and, when d > 2, a spinodal scale βsp above which

no black holes exist. Once these scales are known for a

particular ϕ0, one may then construct plots of pt versus β as

in Fig. 2 to say what happens to the near-singularity Kasner

geometry as the temperature approaches either scale.
18

B. Higher dimensions

In studying the imprints of the entanglement plateau

transition on the trans-IR data, we focused on black holes in

d ¼ 2 because they are much more tractable in comparison

to the higher-dimensional (d > 2) case. We did the same

for the connected/disconnected transition of the thermal

two-point function. However, the d ¼ 2 scalar-deformed

black holes typically have positive Kasner exponents,

indicating collapsing Einstein-Rosen bridges, whereas

d > 2 scalar-deformed black holes have negative Kasner

exponents. In other words, the d > 2 case is both more

generic and involves more “stable” Einstein-Rosen bridges

when compared to d ¼ 2.

It would be satisfying to test our core assertion that UV

physics imprints nontrivially upon trans-IR geometry in the

more generic case. It is somewhat reasonable to expect that

the story of the thermal two-point function does not change

much, since the geometric objects being considered are

always geodesics. However, it is possible that our assertion

may fail for the entanglement plateau transition in d > 2.

As entanglement in AdS=CFT is not a probe of the singu-

larity due to the existence of extremal surface barriers [96],

such an expectation would be valid.

Nonetheless, actually checking the higher-dimensional

case would require a more sophisticated numerical approach

than what has been done here, particularly if we were to

study the entanglement plateaus for scalar-deformed black

holes. One idea is to construct the higher-dimensional black

holes numerically and then apply mean curvature flow to

compute entanglement surfaces for boundary caps, as was

done in [27] for AdS black holes without matter.

C. UV physics and singularity dynamics

As mentioned in the main text (Sec. III B), the story of

the classical near-singularity geometry of black holes in

general relativity is old. There have been many models in

the literature put forth as ways to think about features of

such geometry. One of the seminal models goes under the

name of cosmological billiards [71,72] and provides a

simple perspective on dynamics near the singularity. There

has also been another model [73] utilizing a superexpo-

nential scalar potential to exercise control over Kasner

“oscillations” in which pt flips between different values all

the way to the singularity. It would be interesting to connect

UV physics to these pictures of the trans-IR regime.
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d > 2 case—the small and large black holes’ values for pt

approach one another. We emphasize that this is completely
expected because the spinodal point is where the two types of
black holes become geometrically identical.
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APPENDIX A: HOLOGRAPHIC a THEOREM

FOR GLOBAL AdS DEFORMATIONS

Asymptotically AdSdþ1 spacetimes with planar boun-

dary and without a horizon, i.e., those corresponding to

zero-temperature states, can be written in the form

ds2 ¼ e2AðρÞ



−dt2 þ dx⃗2d−1
�

þ dρ2; ðA1Þ

where ðt; x⃗d−1Þ∈R
d and ρ∈R, with ρ ¼ ∞ being the

conformal boundary and ρ ¼ −∞ being the Poincaré

horizon. A is a real function controlling the backreaction,

and empty AdS space with radius l itself corresponds to

AðρÞ ¼ ρ

l
. We take the geometry to be asymptotically AdS

space with radius l,

AðρÞ ∼ ρ

l
; ρ → ∞: ðA2Þ

Recalling [47], the holographic a function of such space-

times constructed from the holographic trace anomaly

coefficient ∼ld−1 [53] and the null energy condition is
19

aðρ;Rd−1Þ ¼ πd=2

Γðd
2
Þld−1P

�

1

A0ðρÞ

�

d−1

: ðA3Þ

Our goal here is to construct the analogous function for a

cylindrical boundary topology. These constitute deforma-

tions of global AdSdþ1 space and describe RG flows of

states

on the spatial sphere Sd−1. More concretely, consider the

domain-wall ansatz

ds2 ¼ e2AðρÞ
h

−dt2 þ α2e2RðρÞdΩ2
d−1

i

þ dρ2; ðA4Þ

where t∈R, Ωd−1 is the line element of a (d − 1) sphere,

and ρ ≥ 0. While ρ ¼ ∞ is still the conformal boundary,

ρ ¼ 0 is the central axis of the AdS cylinder.
20
α is a (for

now) free length scale describing the radius of the boundary

Sd−1, and R is a real function determining the radius of

each fixed-ρ slice. We get empty AdSdþ1 space with

curvature radius l if

AðρÞ ¼ logcosh

�

ρ

l

�

; RðρÞ ¼ log tanh

�

ρ

l

�

; α¼ l:

ðA5Þ

Thus, bulk deformations of empty AdSdþ1 space with

radius l must still have functions A, R and length scale α

which match these profiles asymptotically. This assertion

fixes α in the entire geometry to be l. Furthermore, at

ρ →∞ the metric becomes

ds2 ∼
e2ρ=l

4




−dt2 þ l
2dΩ2

d−1

�

; ðA6Þ

so the UV CFT lives on a cylinder imbued with the flat

metric and of radius l.

With all of that in mind, we are now ready to demonstrate

that the natural holographic a-function condition is

aðρ; Sd−1Þ ¼ πd=2

Γðd
2
Þld−1P

�

e−RðρÞ

A0ðρÞ þR0ðρÞ

�

d−1

: ðA7Þ

We first focus on how the ρ dependence in this expression

is derived and shown to be monotonic from the null energy

condition. We then confirm that (A7) properly reduces to

the holographic trace anomaly coefficient in the UV.

1. Construction for round slices without horizon

Our first step is to reverse engineer an a function from

the radial null energy condition. In Einstein gravity, this

takes the form

Tμνk
μkν ≥ 0; l

d−1
P Tμν ¼ Gμν −

dðd − 1Þ
l
2

gμν;

kμ ¼ e−AðρÞδμt þ δ
μ
ρ: ðA8Þ

We use the scheme outlined in [25]—namely, to write the

contraction of this stress tensor in the form

Tμνk
μkν ¼ CðρÞ d

dρ
½aðρÞ1=ðd−1Þ� −KðρÞ2; ðA9Þ

for some positive function C and real functions a and K. If

we can do so and also prove that

aðρÞðd−2Þ=ðd−1Þ > 0; ðA10Þ

then the null energy condition (A8) ensures that aðρÞ
monotonically increases as ρ increases. Indeed, we find that

the schematic relation (A9) is satisfied with

CðρÞ ¼ ðd − 1Þ
l
d−1
P

eRðρÞ�A0ðρÞ þR0ðρÞ
�

2;

KðρÞ ¼ 0; aðρÞ ¼
�

e−RðρÞ

A0ðρÞ þR0ðρÞ

�

d−1

: ðA11Þ

Furthermore, (A10) is true if

A0ðρÞ þR0ðρÞ > 0: ðA12Þ

19
Note that we put the topology of the boundary spatial slice in

the function’s argument. In this appendix, we do so to distinguish
the a function for a flat slicing from that of a round slicing.

20
There is no Poincaré horizon in the AdS cylinder.
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We can indeed show this to be the case by using the null

energy condition and doing a proof by contradiction. Speci-

fically, we may assume that there exists a ρ ¼ ρ� at which
A0 þR0 vanishes and above which A0 þR0 is positive.

Such a point may generally exist because A0 þR0 asymp-

totes to a positive number l−1 by (A5). Thus, we may write

this sum and its derivative as Taylor series of the form

A0ðρÞ þR0ðρÞ ¼ c�ðρ − ρ�Þp� þO½ðρ − ρ�Þp�þ1�;
ðA13Þ

A00ðρÞ þR00ðρÞ ¼ c�p�ðρ − ρ�Þp�−1 þO½ðρ − ρ�Þp� �;
ðA14Þ

where c� > 0 and p� ≥ 1. Thus, for some small ϵ > 0, we

may approximate the left-hand sides as

A0ðρ� þ ϵÞ þR0ðρ� þ ϵÞ ≈ c�ϵ
p� ; ðA15Þ

A00ðρ� þ ϵÞ þR00ðρ� þ ϵÞ ≈ c�p�ϵ
p�−1: ðA16Þ

Now we may approximate A0ðρ� þ ϵÞ and A00ðρ� þ ϵÞ. This
allows us to write the contraction of the stress tensor (A9) to

leading order in small ϵ,

Tμνk
μkνj

ρ¼ρ�þϵ
≈ −ðd − 1Þc�p�ϵ

p�−1: ðA17Þ

The punch line is that this expression is manifestly negative

as we approach ρ ¼ ρ� from above, in contradiction with

the null energy condition. This completes the argument, so

we may say that (A12) holds. This, in turn, means that

aðρÞ ¼
�

e−RðρÞ

A0ðρÞ þR0ðρÞ

�

d−1

ðA18Þ

monotonically increases with ρ. For a black hole, the

analogous candidate looks similar up to a blackening factor

in the numerator [cf. (2.13)].

2. Validation in the UV

There is one small test of our proposed a function that we
need to perform for validation; we must ensure that (A7)

reduces to the usual holographic trace anomaly coefficient

at the conformal boundary. This just amounts to plugging

(A5) into (A18) (which works asymptotically) to write

�

e−RðρÞ

A0ðρÞ þR0ðρÞ

�

d−1

∼ l
d−1; ρ → ∞: ðA19Þ

Substituting this into the ρ-dependent factor in (A7)

produces the correct coefficient.

APPENDIX B: CONSTRUCTING SCALAR-ADS

FLOWS

In this appendix, we discuss the general numerical

procedure by which we construct scalar-induced flows in

AdS gravity (setting the curvature scale l ¼ 1). We solve

for classically backreacting black holes of the form

ds2 ¼ 1

r2

�

−e−χðrÞFðrÞdt2 þ dr2

FðrÞ þ dΩ2
d−1

�

; Φ¼ ϕðrÞ;

ðB1Þ

for which the Einsteinþ scalar equations of motion (3.2)

and (3.3) take the form

ϕ00 þ
�

F0

F
−
d − 1

r
−
χ0

2

�

ϕ0 þ Δðd − ΔÞ
r2F

ϕ ¼ 0; ðB2Þ

χ0 −
2F0

F
−
Δðd−ΔÞϕ2

ðd− 1ÞrF −
2d

rF
þ 2d

r
−
2ðd− 2Þr

F
¼ 0; ðB3Þ

χ0 −
r

d − 1
ðϕ0Þ2 ¼ 0: ðB4Þ

The equations of motion are highly nonlinear, which is why

we resort to numerics in the first place. We specifically

solve for the metric functions using a shooting method, just

as was done for the planar Lorentzian black hole [22,64].

To construct our black hole solutions, we shoot from a

finite radius taken to be the horizon by setting the black-

ening function to 0. More specifically, at some r ¼ rh, we
expand each of the metric functions fF; χ;ϕg as

FðrÞ ¼ F
ð0Þ
h þ F

ð1Þ
h ðr − rhÞ þO½ðr − rhÞ2�; ðB5Þ

χðrÞ ¼ χ
ð0Þ
h þ χ

ð1Þ
h ðr − rhÞ þO½ðr − rhÞ2�; ðB6Þ

ϕðrÞ ¼ ϕ
ð0Þ
h þ ϕ

ð1Þ
h ðr − rhÞ þO½ðr − rhÞ2�: ðB7Þ

The equations of motion (B2)–(B4) [multiplying the first

two by FðrÞ] can then be expanded around r ¼ rh,

2

6

6

4

2ϕ
ð2Þ
h F

ð0Þ
h þ Δðd−ΔÞ

r2
h

ϕ
ð0Þ
h

þ
�

F
ð1Þ
h −

d−1
rh

F
ð0Þ
h −

χ
ð1Þ
h
F
ð0Þ
h

2

�

ϕ
ð1Þ
h

3

7

7

5

ðr − rhÞ0

þOðr − rhÞ ¼ 0; ðB8Þ
2

6

4

−
Δðd−ΔÞ
ðd−1Þrh ðϕ

ð0Þ
h Þ2 þ F

ð0Þ
h

�

χ
ð1Þ
h þ 2d

rh

�

−2F
ð1Þ
h

�

1þ d

rhF
ð1Þ
h

þ ðd−2Þrh
F
ð1Þ
h

�

3

7

5
ðr − rhÞ0

þOðr − rhÞ ¼ 0; ðB9Þ
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�

χ
ð1Þ
h −

rh

d − 1

�

ϕ
ð1Þ
h

�

2

�

ðr − rhÞ0 þOðr − rhÞ ¼ 0: ðB10Þ

At zeroth order, there are six parameters fϕð0Þ
h ;ϕ

ð1Þ
h ;

ϕ
ð2Þ
h ; F

ð0Þ
h ; F

ð1Þ
h ; χ

ð1Þ
h g and three constraints. As we go up

order by order simultaneously in all three equations of

motion, we obtain additional parameters, but a matching

number of constraints. Distinct solutions are thus specified

by three free parameters in the aforementioned list of six.

Note that we have glossed over one of the coefficients

χ
ð0Þ
h . This is not constrained by the equations of motion, so

χ can only be solved up to an overall constant. However, we

have the physical requirement that the metric be asymp-

totically AdS space as r → 0. Thus, the constant term of χ

is that for which χð0Þ ¼ 0. In our numerics, however, we

first set

χ
ð0Þ
h ¼ 0; ðB11Þ

and then shift the output function by a constant in order to

achieve χð0Þ ¼ 0.

Now, we discuss the particular solutions of physical

interest. As we are assuming the geometry to be a black

hole, we solve for the solutions with

F
ð0Þ
h ¼ 0: ðB12Þ

This makes ϕ
ð2Þ
h drop out of the zeroth-order constraints,

and more generally ϕ
ð2þiÞ
h drops out of the ith-order

constraints. Thus, the black hole solutions are specified

by one free parameter. We take this to be F
ð1Þ
h . The other

constrained lowest-order parameters are

χ
ð1Þ
h ¼ −

2ðd − ΔÞΔ
r2hF

ð1Þ
h

T 1
d




rh;F
ð1Þ
h

�

; ðB13Þ

ϕ
ð0Þ
h ¼ ∓

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

−
2rhF

ð1Þ
h ðd − 1Þ

ðd − ΔÞΔ T 1
d




rh;F
ð1Þ
h

�

s

; ðB14Þ

ϕ
ð1Þ
h ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

−
2ðd − 1Þðd − ΔÞΔ

r3hF
ð1Þ
h

T 1
d




rh;F
ð1Þ
h

�

s

; ðB15Þ

where we have defined something that we will call the

“topological factor” from (B9),

T k
d




rh;F
ð1Þ
h

�

¼ 1þ d

rhF
ð1Þ
h

þ kðd − 2Þrh
F
ð1Þ
h

: ðB16Þ

This factor captures the topological dependence of the

metric functions. Recall that k labels the spatial topology of
the horizon (1.2). For k ¼ 1 (spherical topology), we obtain

the equations above. For k ¼ 0 (planar topology), we get

the equations used in [22,64].

With these coefficients in hand, we perform a “two-

sided” shooting. First, we fix a value for rh. As we assume

the scalar ϕ to be real while F
ð1Þ
h < 0, we require that the

topological factor be non-negative based on the expressions

(B14) and (B15). This implies

F
ð1Þ
h ≤ −

d

rh
− ðd − 2Þrh: ðB17Þ

For fixed rh, we also fix an array of values for F
ð1Þ
h

consistent with this bound. Note the value of F
ð1Þ
h saturating

this bound corresponds to a black hole solving the vacuum

equations of motion (with ϕ ¼ 0), whereas other values of

F
ð1Þ
h label backreacting solutions.

Given some rh and F
ð1Þ
h , we set initial values for the

fields fF; χ;ϕg at both r ¼ rh − ϵ and r ¼ rh þ ϵ, where ϵ

may be freely chosen so long as ϵ ≪ rh. Since ϵ is small,

we can approximate the fields by truncating the series

(B5)–(B7) at linear order in ϵ. We then compute the

asymptotic value of χ and subtract this number in order

to have AdS asymptotics, namely, χð0Þ ¼ 0.

We take this approach over a large range of rh and F
ð1Þ
h .

This yields a matrix of solutions. We then extract matrices

consisting of two different pieces of data: the horizon

temperature Th (2.18) and the boundary deformation

ϕ0 (3.10). From here, we have the flexibility to filter out

solutions that do not match some sort of selection criterion.

For instance, we may only want the solutions for which

ϕ0 ≈ 100 (up to a prescribed uncertainty). This signifi-

cantly lessens the required computation times for more

resource-intensive tasks.

APPENDIX C: THE ENTROPY FUNCTIONAL

FOR CAPS

Let us briefly set the stage for a possible higher-

dimensional (d > 2) extension to our exploration of entan-

glement plateaus in scalar flows. We also point out the

mathematical reason why d ¼ 2 is simple; the punch line is

that the area functional has a “constant of motion” at d ¼ 2.

We pick a parametrization of the Sd−1 directions in the

black hole ansatz such that the metric takes the form

ds2 ¼ l
2

r2

"

−e−χðrÞFðrÞdt2 þ dr2

FðrÞ þ l
2dθ21

þ l
2
X

d−1

i¼2

 

Y

i−1

j¼1

sin2θj

!

dθ2i

#

: ðC1Þ

We identify θ1 as a polar angle (θ1 ∼ θ1 þ 2π). A capR on

the boundary r ¼ 0 is then defined as
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t ¼ constant; θ1 ∈ ½−θR; θR�; ðC2Þ

for some 0 < θR < π
2
. To compute the RT surface for such a

cap, we may define a codimension-two surface on some

fixed-t Cauchy slice by θ1 ¼ θ1ðrÞ. From the metric (C1),

the area functional along this surface is

A ¼ l
d−1

Z

dr

rd−1
½sin θ1ðrÞ�d−2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

FðrÞ þ θ01ðrÞ2
s

: ðC3Þ

If d ¼ 2, then the ½sin θ1ðrÞ�d−2 factor in the integrand is

simply 1, so the partial derivative of the integrand with

respect to θ1 is simply 0. Applying the Euler-Lagrange

equations thus yields a first-order differential equation, and

each extremal surface with boundary conditions (C2) is

labeled by a single parameter. However, for d > 2, we get a

second-order differential equation. While solvable, this also

yields a two-parameter family of extremal surfaces, so

computing the minimal-area surface is much more difficult.
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