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ABSTRACT: We study holographic renormalization group (RG) flows perturbed by a shock
wave in dimensions d > 2. The flows are obtained by deforming a holographic conformal field
theory with a relevant operator, altering the interior geometry from AdS-Schwarzschild to
a more general Kasner universe near the spacelike singularity. We introduce null matter in
the form of a shock wave into this geometry and scrutinize its impact on the near-horizon
and interior dynamics of the black hole. Using out-of-time-order correlators, we find that
the scrambling time increases as we increase the strength of the deformation, whereas the
butterfly velocity displays a non-monotonic behavior. We examine other observables that are
more sensitive to the black hole interior, such as the thermal a-function and the entanglement
velocity. Notably, the a-function experiences a discontinuous jump across the shock wave,
signaling an instantaneous loss of degrees of freedom due to the infalling matter. This jump
is interpreted as a ‘cosmological time skip’ which arises from an infinitely boosted length
contraction. The entanglement velocity exhibits similar dependence to the butterfly velocity
as we vary the strength of the deformation. Lastly, we extend our analyses to a model where
the interior geometry undergoes an infinite sequence of bouncing Kasner epochs.
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1 Introduction

Holographic duality holds considerable promise in unraveling the mysteries of the black
hole interior. Various avenues for exploring this enigmatic region through holographic
duality include delving into analytically continued correlation functions [1-3], entanglement
entropy [4-6], and computational complexity [7—10]. Among the most striking features within
the black hole interior are the inevitable spacetime singularities. Spacelike singularities,
a particular class of singularities where time seemingly ‘comes to an end’, pose distinct
conceptual challenges. Moreover, they underscore profound similarities with cosmological
solutions to Einstein’s equations, e.g. those featuring big-bang or big-crunch singularities.
Numerous endeavors have been undertaken to understand these singularities through the
lens of holography [1-3, 11-16].

One of the extensively examined black hole interiors in holography is that of the eternal
Schwarzschild-AdS black hole, crucial for characterizing the thermofield double (TFD) state
of the dual conformal field theory (CFT) [17]. While the exterior geometry of these black
holes is dynamically stable, it is well known that their interior is not. It has been established
that matter fields exhibit infinite growth as they approach a spacelike singularity, triggering
substantial backreaction [18-20]. Broadly speaking, the Schwarzschild singularity is precisely
fine-tuned within the spectrum of potential late-time behaviors of gravity, rendering it an
atypical late-time solution. Consequently, this inherent instability of the Schwarzschild
singularity necessitates careful consideration in any holographic exploration of the black
hole interior.

On general grounds, we expect typical black hole interiors to be inhomogeneous and
anisotropic. Even so, if we limit ourselves to geometries that retain the spacetime symmetries
of Schwarzschild-AdS, the Schwarzschild singularity is still highly fine-tuned. Motivated by
these conceptual challenges, the authors of [21] studied a class of black holes that result from



deforming the dual theory with a relevant operator and found the emergence of a more general
Kasner singularity as an endpoint of the interior’s evolution.! These are precisely the type of
singularities discovered by Belinsky-Khalatnikov-Lifshitz (BKL) in the early 70’s [18-20]. Our
main objective is to understand this generic class of geometries when additional null matter is
thrown into the black hole. The resulting shock wave geometries are dual to ‘quenched’ states
in the boundary CFT, which can be obtained by turning on an instantaneous perturbation
at a given boundary time. Indeed, understanding black hole geometries with shock waves
can provide a scope to analyze the nature of the spacetime singularity [3]. Particularly, by
examining specific observables we may uncover novel signatures of the singularity and gain
insights into how it is encoded in the boundary CFT.

This paper is structured as follows. In section 2, we begin with a brief overview of
holographic RG flows featuring Kasner interiors. Subsequently, in section 3, we study the
injection of null matter into the deformed background, representing a quenched state in the
dual theory. Holographically, the abrupt injection of matter manifests as a shock wave on top
of the black hole, sent from one of the boundaries and reaching the singularity. We characterize
the imprints of the shock wave on several field theory observables, such as four-point out-of-
time order correlators (OTOC), computed in the heavy-heavy-light-light limit, the thermal
a-function, and the entanglement velocity. Notably, in terms of the interior’s evolution, the
shock wave is shown to induce a ‘time skip’ which we understand as a purely relativistic
effect. In section 4 we explore a scenario wherein the interior of the black hole exhibits an
infinite sequence of bouncing Kasner epochs, akin to Misner’s mixmaster universe [41]. In this
case, depending on the energy of the shock wave, the cosmological evolution may abruptly
transition between epochs or even skip one or multiple epochs altogether. Finally, in section 5
we discuss our main conclusions and provide some interesting directions for future work.

2 Kasner interiors and holographic RG flows: a review

Let us start this section by reviewing the holographic RG flows proposed in [21] and generalized
to arbitrary dimensions in [27]. We take (d + 1)-dimensional Einstein gravity (d > 2) with
negative cosmological constant A = —d(d — 1)/2 (setting the AdS radius to unity L = 1),
coupled to a scalar field ¢ with potential V' (¢). We consider the minimal case of a free massive
scalar field, in which the potential is V' (¢) = %mquz. The corresponding action is given by,
_ Wédﬂ/ddﬂxﬂ (R rd(d—1) - %v%vaqs - V(¢>)> . (2.1)

The bulk equations of motion (EOM) are the usual Einstein’s equations coupled to the
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scalar field stress-energy tensor, and the Klein-Gordon equation,

d(d2_1)g“” - i 2Vu6Vut = g (V6Vad +m’¢?)] | (2.2)

(O-m*p=0, (2.3)

Guv —

where G, is the Einstein tensor. We choose a particular ansatz for the metric,

ds* = iz [—f(r)eX(r)alt2 +
T

dr?
fr)

1See also [22—40] for more recent developments on Kasner interiors in the context of holography.

+d7?| (2.4)




where t € R, 7 > 0, and ¥ € R%!. The conformal boundary is located at » = 0 while
the singularity is at » = oo. The function f(r) is known as the blackening factor, having
a simple root at the black hole horizon r = r,,. Furthermore, we consider a profile for the
scalar field depending only on the radial coordinate, ¢ = ¢(r). The dual scalar operator
O corresponds to a homogeneous boundary deformation which, according to the AdS/CFT
dictionary, has conformal dimension A satisfying

m? = A(A —d). (2.5)

Plugging the ansatz into the EOM we obtain,

" f/ d—1 X/ / A(d_A) _
¢+<f_r_2)¢+r2f 6=0, (2.6)
,2f Ald-A)¢* 2d  2d
R A A =0
X = = (¢)* =0. (2.8)

The metric in (2.4) must be continuous and regular at the horizon. To emphasize this
point, it is convenient to switch to infalling Eddington-Finkelstein coordinates in which
the metric takes the form,

ds?® = %2 [— F(r)e XM du? 4 27X/ 24y, dr + dfﬂ : (2.9)
Note that AdS-Schwarzschild is the vacuum solution with no backreaction from ¢. This
solution corresponds to f(r) =1 — (r/ry)?% x(r) = 0 and ¢(r) = 0. The scalar field deforms
slightly the exterior geometry but induces a large backreaction in the interior geometry, where
¢(r) grows without bound. In particular, it leads to geometry that takes the form of a more
general Kasner universe near the spacelike singularity. See figure 1 for an illustration.

We now describe the behavior of the radial profiles and the corresponding asymptotic
data at near the UV boundary (r — 0) and the IR singularity (r — oco). Moreover, we discuss
how the bulk represents an RG flow which interpolates from one to the other, allowing us
to treat the near-singularity data as emergent from the near boundary data. We briefly
explain how to obtain these numerically.

The solutions are obtained by a shooting method, where the radial functions are integrated
from the horizon r = 7 to both the boundary » — 0 and the singularity » — oco. By assuming
regularity at the horizon, we can expand ¢, f, and x as follows,

o(r) = én + ¢, (r — i) + O[(r — rp)?], (2.10)
f(r) = fh(r =) + O[(r —rn)?, (2.11)
X(r) = xn + Xh(r — ) + O[(r — rp)?]. (2.12)

The subscript h denotes the values of the fields at the horizon. Plugging these expansions
into the equations of motion (2.6)—(2.8) and taking the limit r» — rp, we find the following
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Figure 1. Deformed AdS-Schwarzschild solution at finite temperature T'. The scalar field drastically
alters the interior geometry from AdS-Schwarzschild to a more general Kasner universe near the

spacelike singularity.

constraints on the series coefficients,

0= B2 me + rafhoh (213)
_ 2
oz—A(Cld_Al)é’l—%dJrrhf,’l), (2.14)
o Th(ﬁb;l)Q /
ofﬁ—xh. (2.15)

Solving these equations we obtain,

B ivV2vd —1\/d+ firn

on =F NCET) ;

iiﬂ\/d — 14 /d; J‘;}’Lrh«/A(d —A) |
R'h

_2(d+ fra) [A(d = A)]

!
Xn = 12,.3 .
hTh

(2.16)

/

(2.17)

(2.18)

Despite having a solution for these coefficients, we have the freedom to set a scale by fixing
f7, numerically as long as it remains negative. This scale will later set the temperature of
the black hole. We can further set x;, = 0. This is a gauge choice that fixes a normalization
of the time coordinate and it is allowed because a shift in the x field does not affect the
equations of motion. Then, for each value of 7, and taking some comparatively small § > 0,
we can integrate the radial functions either from r» = rp — § (outside of the horizon) to
the boundary or from r = r, 4+ § (inside of the horizon) to the singularity. To solve these
equations numerically, we need to specify boundary conditions. Let us first explain the
near-boundary data, and then we will explain the near-singularity data. We can generically



consider the near-boundary (r — 0) mode expansion of a scalar field in AdS4.1 to be,
B(r) ~ ¢_rB + gyt (2.19)

where Ay are the two roots of (2.5),
1
As =3 (d + V2 + 4m2) . (2.20)

Further, from the mass-dimension relation (2.5), one can check that the dual operator will
be relevant

A<d, (2.21)

if and only if m? < 0. However, we must also consider the Breitenlohner-Freedman stability

bound [42, 43], which translates into a lower bound for m?

~<m? <0, (2.22)
Meanwhile the roots (2.20) satisfy,
d
0<A_§§§A+<d, (2.23)
with AL = d/2 when m? = —d?/4.? Based on the value of m?, there may be a choice to

be made for which root is taken to be A (related to the boundary conditions of ¢). For
m? > 1 — d?/4, the only option is A = A, because selecting A = A_ would violate the
unitarity bound, A > (d — 2)/2. However, m? < 1 — d?/4 gives us both options. While
the canonical choice A = A restricts us to A > d/2 (stricter than unitarity), using the
alternative quantization for which A = A_ allows us to reach as low as (d — 2)/2. So for
a bulk theory with a scalar field with —d?/4 < m? < 1 — d?/4, we have two possible dual
CFTs — one with A = A, and one with A = A_ — related by a Legendre transform
of the generating functional.

Working in the standard quantization, where A = A4, we can now express the leading-
order and next-to-leading-order coefficients in (2.19) in terms of the source and expectation
value of the dual operator, ¢ and (O), respectively,

A ©O)  a,
7) ~ @or — =T 2.24
Or) ~ dor™ + 5 A, —d (2.24)
However, if we choose to work in the alternative quantization, this identification is flipped.
In this case, ¢4 is identified as the source and ¢_ as the expectation value. Either way, a
generic way to write the near-boundary expansion is as follows,

o(r) ~ dor ™2 + 5 i0_> e (2.25)

2Note that when m? = —d?/4 the expansion (2.19) degenerates and must be generalized.



since Ay + A_ = d. As for the particular case A = d/2, a logarithmic divergence appears in
the 72 term, making the breakdown of modes evident [44]. In particular, near the asymptotic
boundary, the term proportional to the source behaves as

o(r) ~ ¢0rd/2 logr. (2.26)

By integrating the EOM from the horizon to the boundary, we obtain ¢(r) in the exterior.
The scalar field profile is used to get ¢g, but how we do so depends on whether we are working
in the standard or alternative quantization. This is because the power of the source term
is only leading in the former case. In short, we find,

lim 2~ (r) A > d ,
r—0 2

$o = jacan . (2.27)
lim —Sa =g o [The0)] . A<

As expected, neither of these formulas gives the correct result for A = d/2. In this case
we use the logarithmic expression (2.26) to obtain

p—d/2

o(r), A= g. (2.28)

%0 = }1—% logr
Similarly, we can obtain x(r) in the exterior. Ideally, we would like to obtain a solution
where x(0) = 0 so that the boundary time is canonically normalized. However, since we
have set x5 = 0 in order to do the integration, this boundary value will not be guaranteed
in general. Since a constant shift in y does not affect the equations of motion, there is a
simple fix to this problem. By simply evaluating x(0) and shifting the entire function by this
amount, we can obtain the ‘true’ x(r) for which x(0) = 0. In doing so, we also get the ‘true’
Xh, which, in combination with f; fixes the temperature of the black hole,

1 _ Ifple

T:
I3 47

(2.29)
In the interior, the fields generically diverge as they approach the singularity,

6(r) ~ (d—Declogr,  x(r) ~ (d—1)logr +x1,  f(r) ~ —fir ™ F¢)  (2.30)

where ¢, x1 and f; are the near-singularity constants. After plugging these solutions into (2.4)

_1 da—1 .2 . .
and redefining the radial coordinate as 7 = r 3 (d+25te ), we find an isotropic Kasner

universe near the singularity,
ds? ~ —dr? 4+ TPt + TP di? ) ¢(1) ~ —V2pglog T . (2.31)
The Kasner exponents are given by,

(d—1)c —2(d —2) B 4 _2y2(d—1)c
2d+(d-1 > PPTogrd-nE T 2ard-1)eE

bt =
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Figure 2. The Kasner exponent p; as a function of boundary deformation Tfﬁ = for d = 2 (left) and

d = 3 (right), and various values of A.

satisfying the constraints,

pe+(d—1)p, =1, (2.33)
Pl +pi+(d—1)p2=1. (2.34)

The constraints imply that only one of these exponents is independent. When integrating
to the singularity, we obtain ¢(r), from which we can get the constant ¢ and hence the
Kasner exponents. In this way, we can generate a plot between the deformation parameter
(normalized with respect to the temperature), Tfi_OA, and the desired Kasner exponent. For
example, the end result for p; vs. Tff—EA is shown in figure 2.

3 Perturbing RG flows with shock waves

We will now perturb the deformed geometries with a shock wave. The shock wave carries
energy F which we assume to be smaller than the mass of the black hole M. Nevertheless,
it increases the mass of the black hole by some amount from M to M + E. In order to
understand its potential impact on the black hole’s internal dynamics, we will explore several
observables: out-of-time-order correlators computed in the heavy-heavy-light-light limit, the
thermal a-function, and the entanglement velocity.

3.1 Geodesic length and OTOCs

One of the most famous entries of the AdS/CFT dictionary relates two-point correlators
in the boundary theory to certain bulk paths connecting the two insertion points on the
boundary theory. More concretely, in ‘first quantized’ language, the dictionary stipulates
that for operators O with conformal dimension Ap [45, 46],

Y
(O(X)OY)) = /X dpe—tol(P) (3.1)

where P is the all possible paths connecting the two points X and Y and L(P) represents the
lengths of those paths. In the large mass, or large conformal dimension limit, Ap — oo, the
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Figure 3. Left: spacelike geodesics on a generic black hole geometry (other than BTZ). The solid
red line represents the minimal geodesic at t;, = tg = 0. At some other boundary time t;, = tg = ty,
the minimal geodesic is instead given by the solid green line. If ¢, > 0 the geodesics bend towards the
past. Conversely, for ¢, < 0 the geodesics bend towards the future [1]. Right: spacelike geodesics on
the shock wave geometry. The shock is sent at a very early time from the left boundary, shifting the v
coordinate by a constant amount « along the shock. The solid purple line in this geometry represents
a geodesic anchored at some boundary time t;, = tg = tp.

correlation function can be well approximated by the sum of the geodesic lengths connecting
the two points,

(OX)OY) ~ Y e Bolx)), (3.2)

geodesics

where L(X,Y) is now geodesic length between X and Y.

We are interested in computing the 2-point correlation functions between symmetrically
placed boundary points on the shockwave geometries, so, the corresponding bulk objects
of interest are spacelike geodesics anchored at those boundary endpoints.? As it is well
known, those correlation functions can be related by analytic continuation to the four-point
out-of-time order correlators (OTOCs) that diagnose quantum chaos, in the so-called heavy-
heavy-light-light limit [47]. See [48] for a review. With this computation, then, we will be
able to explore chaotic properties of the holographic RG flows and explore possible imprints
from and on the Kasner interiors.

In a previous work [21], the authors computed these spacelike geodesics for a metric of
the form (2.4), without a shock wave perturbation. See figure 3 (left) for an illustration.
Since the shock wave geometry is still given in the form (2.4), but piecewise,® it will be
useful to review their calculation.

3In certain cases, complex saddles may dominate the path integral (3.1) [1]. Particularly, in the presence of
a shock wave, complex geodesics turn out to be crucial for computing the late time position space correlators [3].
However, real geodesics do play a role in computing momentum space/hybrid correlators. We elaborate on
this subtle point in section 3.1.3.

“More concretely, one side of the shock wave is a black hole of the form (2.4) with mass M and the other
side a black hole of the same form with mass M + F.



To start, it is important to note that due to the spatial symmetry, these geodesics will
lie on a constant ¥ plane. The induced metric on such a plane is,

ds?|z _ 1 —f(r)e X" gy ar” 3.3
r=constant — r2 r)e + f(T) : ( : )

The spacelike geodesics on this plane can be parametrized as r = r(t) so that their length
functional becomes,

r

dt p2 ]2
L= / — l—f(r)e_"(’") + f(r)] = /dtﬁ, (3.4)

where £ is the Lagrangian,

o8

Note that since £ does not depend explicitly on time, we can define a conserved quantity

= 7{\/ —F(r)eX) + (3.5)

&, which represents the energy associated with the spacelike geodesic,

—x(r)
g% _p- fr)e

or T\/*f(r)fX(T) + fi&i) |

(3.6)

The geodesic length can then be obtained by plugging (3.6) into (3.4). This yields the minimal
geodesic length anchored at some boundary time slice ¢t = #;,(&),

Tt —x/2
L=2 A 9logre. (3.7)
] Jre 2 1+f(r2§;;<(r)

Note we have added a counterterm to subtract the UV divergences coming from the AdS
boundary. Here r. represents the UV cutoff and r; is the turning point of the geodesic,
determined by the relation,
r e*X(Tt)
gz _Jlre ™ — (3.8)
T

The boundary time can likewise be expressed as a function of the turning point r; (or,
equivalently, as a function of &),

Tt dr Tt eX/2dy
P A . 3.9
=l P+ Fe X (rE)? >

Finally, one can relate the geodesic length to the boundary time by expressing both as a

function of the turning point r; and studying their parametric dependences.

Let us now move on to the shock wave geometry, which we depict in figure 3 (right). The
shock wave is sent from the left asymptotic boundary at some late boundary time t¢,,. The
energy of the shock wave, which we denote as F, is significantly small compared to the mass
of the black hole, M. However, it is enough to increase the mass of the black hole from M



to M + E. Our focus is to compute the two-point function in the boundary theory, which
for the case of heavy operators, is given by the minimal geodesic length on this perturbed
geometry. To achieve this, we split the calculation into two steps. First, we compute the
length of all possible geodesics anchored at one of the boundaries that intersect the shock at
a given point. Second, we extremize over all possible intersections along the shock wave.
In order to proceed, we perform a coordinate transformation from the standard
Schwarzschild coordinates (2.4) to the fully extended Kruskal coordinates (u,v),

Eugs (r) —dmy
w=-—es " wulv=—e B, (3.10)
where,
reX/2dy eX/2dy
tr)=t, + & / . re(r) = . 3.11
R B O e (o M A () 1

In the Penrose diagram, the shock wave propagates along a null surface at constant u. In the
limit £ <« M, the net effect of the shock amounts to a shift in the v coordinate by a constant
amount «, without affecting the other coordinate u. To make this more precise, it is convenient
to use two different sets of Kruskal coordinates, (u,v) for the right (or past) of the shock,
and (a,v) for the left (or future) of the shock. The null shell propagates along the surface,
27 (7, (0)—tu, 27 (1 (0)—

= €5 Oy, = T Ot (3.12)
Meanwhile, by ensuring that the metric across the shock wave stays continuous imposes
the following matching conditions:

47 ~
~ ~ —=Tx (T
Uy = —e B «(r)

4m
 ugv=—es 1) (3.13)
For small enough shock wave energy E, one can approximate i, = u,. At the same time,
for large values of t,, the value of radial direction r is pushed towards the horizon radius
7. Thus we can expand the fields around the horizon, &(r) = f(r)e X")/2 = & (r)(r — ) +

dr . Gra(r)
.= F(’I“ —rp,). By evaluating r,, we further find e #

= C(r,rp)(r — 1), where C is a
smooth function and non-zero at the horizon. Then we find that the shift « in the small
E and large t,, limit is given by,’
a=70—v= Z;Z;Z[C(Th’rh)' (3.14)
We now proceed to split the geodesic into two pieces L = L 4+ Lo and compute their
corresponding lengths. Namely, we compute the geodesic length from the right boundary up
to the shock and then from the shock to the left boundary. At the end of the calculation, we
extremize the sum with respect to the intersection point along the shock wave. When the
energy of the right geodesic has € > 0, we solve the differential equation for vy to determine
its value as a function of the conserved quantity €. On the other hand, for £ < 0, we
solve for up instead of vp. Note that in this case the geodesic has a turning point before

®See appendix B of [47].
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it intersects the shock wave. In summary, we have®

v'(r)  2meY/? (rSR B \/f(r)e—x/2 + 7“%%)

: b e g ey
u'(r)  2mex/? (7"53 + \/f(r)efxm + 7“25]%2)
_ =0 €r <0. (3.16)
u B f(7")\/f(r)e*X/2 + 1263
Similarly, for the left geodesic we must solve
a'(r) 2meX/? (TgL - \/f(T‘)e—X/Q + ?”25%)
— + :O, gL <O7 (317)
—Xx/2 262
i 2 (T5L+\/f(T)6 /24 L)
o'(r)  2me -0 E >0. (3.18)

v g f(r) \/f(r)e_X/2 + 7‘25%

For a better illustration of the procedure, we show a geodesic in this backreacted geometry
in figure 3 (right).

The total length L is given sum of the two geodesic lengths. Assuming &z > 0 and
&1, < 0, so that the turning point is on the left (future) of the shock wave, we find

Tt —X/24 1 T -Xx/2q
L= c Y4 ] e S (3.19)
—X —X
LiJre 2 14 f(:Q);% LIJrn 2 14 f(g;i
1 —X/24
Ly = / S — (3.20)
€] Jr. 1 4 Lex
r2E2
L=1L+Ls. (3.21)

The left /right energies £, and g can be expressed as a function of v and ¢ at the horizon.
Moreover, the shock wave shifts the v coordinate by a constant amount, i.e. ® = v + «. Thus,
we can establish a relation between &£ and £r by using this shift in v. This means that the
total length L can be written solely as a function of £g. Finally, by extremizing with respect
to this energy, we can ultimately derive the geodesic length.

Example of the procedure: shock waves in BTZ. A simple example in which we
can carry out the above steps explicitly is that of the BTZ black hole. This solution is
characterized by f(r) = (1 —r?/r?), x(r) = 0 and ¢(r) = 0. By solving (3.15)—(3.18) in
this background, we can get the following relation between the energies £g ;, and the values

5For £r < 0 we must multiply u by exp(—2r.) to determine v at the horizon.

— 11 —



of v and ¥ at the horizon,

e~ tr/Thy
Er = 3.22
R rp(1 — e tr/Thy)’ (8.22)
—tL/mhj
p=——>" Y (3.23)

rp(1 — e_tL/Thf)) ’

where tp and t;, are the right and left anchoring times of the geodesic. Plugging these values
for the energies in the total length and then extremizing with respect to £r, we find the
total (regulated) length of the extremal geodesic,

t t
L =1L+ Ly =2log2r, +2log (cosh ( L;;h R) + 3€(thL)/2rh> , (3.24)

This matches with the expected result for the geodesic length, derived in [47].
Relation to quantum chaos. In order to understand the chaotic effects of the shock
wave on the system, it suffices to set t;, = tg = 0 and study the response of the two-point

function (3.2) to a perturbation sent at a very early time t,,. For example, in the case of
a BTZ black hole, the shock wave parameter o (3.14) simplifies to

— _— t / h
w T . .2
« Me (3 5)

From (3.2), it follows that the (normalized) two-point function on the shock wave geometry is,

(O(tL)O(tr)) e Bolu(00) ( 1 )%o 526
(OL)O(tR))o |t —tn=0 e 8oLo(00) A1 4 8£Metw/7“h '
ApE tw
~1- S05eN 4 O(BY /M), (3.27)

where L,, and Lg represent the geodesic lengths in the presence and absence of the shock
wave, rp = % is the black hole horizon radius and f is the inverse temperature. The latter
approximation is valid when t, < t < t,, where ty, is the scale of local thermalization
tin ~ B and t, is the so-called scrambling time ¢, ~ Slog Sguy. Typically, t;, is set by the
decay of local perturbations, which can be obtained from a quasi-normal mode analysis.
Meanwhile, t, represents a more global scale, which measures the spread of information
throughout O(1) of the black hole’s degrees of freedom [49].

The exponential decrease of correlations following local thermalization exemplifies the
‘butterfly effect’, often regarded as the smoking gun of quantum chaos. In fact, upon analytic
continuation, (3.26) can be related to the infamous OTOC that diagnoses the exponential
growth of the commutator squared C(t) = —([W(t), O(0)]?) for a generic pair of (Hermitian)
operators, W and O, inserted at the same boundary. More specifically, (3.26) can be mapped
to the OTOC

(OO)WR)O0)W(t))
(0(0)0(0)) WH)W(?)) °

F(t) = (3.28)

in the so-called heavy-heavy-light-light limit, where a pair of operators backreact on the
geometry (the W’s) and the other two probe the deformed geometry (the O’s). For theories
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with a large number of degrees of freedom N2, there is a parametrically large hierarchy
between scrambling and thermalization times, and (3.28) takes the form

F(t)Nl_ﬁeALt+...Nl_e/\L(t*t*)_F...

e : (3.29)

where t, = % log(%) is the scrambling time and Ay, is the (quantum) Lyapunov exponent.
In general quantum systems, Az, is known to be bounded from above by [50]

AL < —. (330)

A particularly noteworthy result is that for holographic theories with Einstein gravity duals,
this bound is precisely saturated, providing compelling evidence for the assertion that black
holes stand as the fastest scramblers in nature [49].

Chaotic OTOCs in holographic RG flows. The gravitational sector of the RG flows
studied in this paper is just pure Einstein gravity, so Az must saturate the bound (3.30).
Moreover, the number of degrees of freedom in a holographic theory is set in terms of the
AdS radius L, and Newton’s constant G, N? ~ Ld_l/ G. Thus, at least in the time window
of interest, ty, < t < t4, all that is left to determine is the constant fy in (3.29). This will
depend on the strength of the deformation ¢y, or more specifically, on the dimensionless

combination Tff,o x-

With the geodesic method outlined above, we can actually do a bit better. We can
compute F'(t) all the way to the scrambling regime, where the OTOC is expected to fade
away and eventually drop to zero. We show a sample of our results in figure 4. One can
roughly estimate the scrambling time by observing when F'(¢) is affected by order one amount.
Based on figure 4, it can be inferred that the scrambling time increases as the strength of

the relevant deformation TZ’E ~ increases. We will provide a more quantitative analysis of
this observable in the next subsection.

3.1.1 Scrambling time

To validate the claim of the previous section, here we will estimate the time that a shock
sent at a very early time takes to scramble across the event horizon. More precisely, we will
determine t,, — the time at which the shock wave is inserted at the boundary — such that
it makes an O(1) shift in « [47]. For that purpose, we will briefly recap some of the key
steps in the construction of the shock wave geometries.

We start with a metric of the form (2.4), and introduce two sets of Kruskal coordinates
(u,v) and (@, ), defined as in (3.10). We then add a null perturbation with energy F < M
at a time t,,, sent from the left asymptotic boundary. The coordinates (u,v) will describe
the portion of the manifold to the right (past) of the shock while the (u,?) coordinates
(u,v) will describe the portion of the manifold to the right (future) of the shock. The null
perturbation propagates along the surface (3.12). Meanwhile, the matching conditions imply
some relations between tilded and un-tilded variables (3.13), from which one can read off
a formula for the shift a, given by (3.14)

7Ed7“h

« @diMco“h,’rh) . (331)
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Figure 4. The OTOC as a function of shock time t,, for d = 2 and A = 1.4. We observe that the
scrambling time ¢, increases as we increase the strength of the deformation, which we can estimate as
the time at which F(t) is decreased by an order one amount.

All quantities at the left are known, except for C(ry, 7). This is defined as the coefficient
of the divergent term in r, as r — rp. More specifically, the function C(r,r) is defined as
C(r,rp) = B r) /(r—rp,), which is finite since r.(r) diverges logarithmically near the horizon.
Finally, by using the area law for the black hole horizon and the first law of thermodynamics,
we finally determine the scrambling time after setting a@ = 1,

B (d — 1)Vol(R*1)T

te = 14(0) + — log

3.32
27 4C(Th,rh)EGNrﬁ ( )

With the above equation at hand, we can now investigate the behavior of the scrambling

time in the holographic RG flows in consideration. In figure 5 we plot the results that we

obtain for the scrambling time as a function of the strength of the deformation Tf? ~ for

d = 2 and d = 3 and various values of A. As anticipated, we find that the scrambling
time increases monotonically as a function of the deformation parameter Tﬁf’%A. We also
show the results of ¢, vs. p;, to try to understand the dependence of the scrambling on the
near-singularity Kasner geometry.

A couple of comments are in order. First, notice that for large enough deformation,
the scrambling time seems to increase without a bound. We cannot verify if ¢, — oo or

if £, saturates to a constant value since our numerics break down for very large values of
Td*A

Tf_o ~. Even so, we believe ¢g > is an interesting limit to explore, which should be
amenable to analytic computation.” We leave this exploration for future work. Second,
as we can observe, the curves of ¢, vs. p; turn out to be multivalued: for a given value of
p; there can be two possible scrambling times. This means we cannot extract the Kasner
exponent unequivocally from the scrambling time. This follows from the simple fact that

Pt VS. Tff—EA is non-monotonic in our RG flows (see figure 2), so the relation between them

"One generally expects t. ~ 8log Spr — oo as 3 — 00 (T — 0), since in this limit there is no scrambling
of information. Naively, the limit ¢ > T%~% should behave similarly, and our results seem to agree with this
expectation. However, we cannot completely rule out a different behavior due to the extra scale set by ¢o.
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Figure 5. Scrambling time ¢, normalized with respect to its Schwarzschild value t as a function of

deformation parameter Tff’E ~ (left) or as a function of p; (right) for d = 2 (top) and d = 3 (bottom),

and different values of A.

is non-invertible. Physically, this implies that subleading corrections to the Kasner regime
will be needed to fully determine the scrambling time, a property that can be attributed
to the black hole’s horizon. This should not come as a surprise. It is a well-known fact in
holography that the properties of the black hole are not only determined by the leading
asymptotic boundary values of the fields (non-normalizable modes) but also by the subleading
values (normalizable modes). The same situation should apply if we insist on expressing
the same observables in terms of near-singularity data. Since the bulk equations are second
order, we would need two conditions to fully characterize a given solution. These may be
given near the AdS boundary, as commonly done in holography, or at any other place, for
example, in the near-singularity region.

3.1.2 Butterfly velocity

A further diagnosis of quantum chaos comes from considering the response of the system
to local perturbations, as opposed to homogeneous ones. This can be accomplished by
upgrading the OTOC (3.28) to

(OO)W(t, Z)O0)W(E, T))
(0(0)0(0)) W(t, ©)WV(t, 7))’

where the operators W are now inserted a particular point in space Z. In this case, (3.29)

F(t,7) =

(3.33)

generalizes to [51]

Ft,5) ~1- 30 (-4) Foeen 1_6“0‘“‘%) Fo.

N2€ IR (334)
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where vp is the so-called butterfly velocity. The butterfly velocity estimates the speed of
propagation of a localized perturbation that falls into the black hole. From the boundary
theory perspective, this quantity defines an emergent light cone, defined by ¢ — t. > |Z|/vp.
Within the cone, one has that C(t,¥) = —((W(t, ), 0(0)]?) ~ O(1) while outside the cone,
one has C(t,Z) ~ 0. Thus, vp acts as a Lieb-Robinson velocity, setting a bound for the
rate of transfer of quantum information [52].

For planar black holes in AdS, the butterfly velocity has already been computed in
a number of models [53-57]. Notably, in [58] it was shown that for asymptotically AdS
black holes in Einstein gravity, with matter satisfying the null energy condition (NEC), the
butterfly velocity is upper bounded by

d
=it <yl 3.35
where v¥™® is the value of the vp for pure AdS-Schwarzschild (no matter). However, there

are known holographic systems that violate the bound: i) certain RG flows that break
explicitly the symmetries of AdS [59-61], and holographic theories without a UV fixed point
(non-AdS back holes) [62-64].%

Our RG flows do respect the symmetries of AdS, since the relevant deformation is
introduced homogenously through space. Thus, we expect (3.35) to be respected. It is

however interesting to study the dependence of vp with respect to Tf_o ~ and determine

whether this quantity can offer new insights on the black hole interiors.

There are a number of ways to extract this observable: a shock wave calculation with
spatial dependence, analogous to the calculation we did for the scrambling time [51], from
entanglement wedge subregion duality, proposed originally in [68], or by a pole-skipping
analysis [69]. We will proceed with the shock wave calculation.

Once again, the starting point is a black hole of the form (2.4). In terms of Kruskal
coordinates (3.10) the metric can be written as follows:

ds* = (A(uv)dudv + B(uv)dig) , (3.36)
where ) )
_ B flr)e™ _ L
A(uv) = PP R , B(uwv) = 2 (3.37)

The black hole horizon is at » = r;, or uv = 0. We now perturb this black hole geometry with a
localized shock sent from the left asymptotic boundary. The shock wave propagates along the
u = 0 surface. For large t,, > 3, the stress-energy tensor of the shock is exponentially boosted,

shock __ 2miy —
To 0% = Fe 7 §(u)d(T). (3.38)

This local perturbation transforms the background geometry into,

ds® = (A(uv)dud”u + B(uv)d#® + A(uv)é(u)a(:c)dzf) . (3.39)

8Higher curvature gravities also violate the bound for large values of the couplings [65]. However, these
theories violate causality unless one includes an infinite tower of higher derivative terms [66, 67].
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Particularly, the shock wave shifts the v coordinate by a space-dependent function. v —
v+ a(x). Our goal is to determine the form of this function.
In the presence of the shock wave, Einstein’s equations become,

d(d—1)

G — 5

Guv = T/?V + TSBOCk ) (34(])
where T, is just the right side of (2.2). By expanding A(uv) and B(uv) around the horizon
and then replacing the result in (3.40), we find the following equation

_ 167G Ny B(0) 277%

(=07 + p*)a(z) = A(0) o(Z), (3.41)

2r(d—1)TeXh/?
Th

1

where p = is known as the screening length. The solution for large |Z| > p~

is given by,

B (tu—to)—plal

W 9 (3.42)

a(zr) =

where t, is the scrambling time, ¢, ~ %bg(a/GN) with a being a constant. Since the
leading correction to F'(t, &) is proportional to the shift o, we can immediately be read off
the butterfly velocity from (3.42),

o [ 27T rpe—Xn/2

In figure 6 we show the results for the butterfly velocity as a function of the deformation

parameter Tg’f =~ and the Kasner exponent p;. Contrary to the scrambling time, the butterfly
velocity displays a non-monotonic behavior as we vary the strength of the deformation.
Although our numerics break down for large enough T;?—EA, it seems likely that vp returns to
the original value (without deformation) as Tff,o ~ — 00. It would be interesting to understand
this limit better. Other than that, the butterfly velocities do respect the bound (3.35). The

plots of vp vs. p; are multivalued, as was found for the scrambling time. The same conclusion

applies here: it seems likely to us, that one needs subleading terms near the singularity to
fully determine observables like t, and vp without making reference to the boundary CFT.

3.1.3 Can OTOCs diagnose the Kasner singularity?

We have seen that observables such as £, and vg encode certain information of the RG flow,
but are unable to uniquely determine the Kasner exponent p; that characterizes the region
near the singularity. We believe we understand the reason. In the limit of the OTOC relevant
for the calculation of F'(t,Z) (3.33), the operators O are inserted at t;, = tg = 0. In the heavy-
heavy-light-light limit of the OTOC, this implies that geodesic probing of the backreacted
geometry intersects the shock wave very near the bifurcate horizon (or, exactly at the bifurcate
horizon in the limit ¢,, — o0). Meanwhile, the leading correction to geodesic length, and thus
to F(t,Z), is proportional to the shift a, and comes from a local effect near the intersection
point. As a result, both ¢, and vp can be understood as properties of the near-horizon region

,17,



1.000 1000

0.995 |- 0.995 -
0.990 - 0.990 -

0.985 |- 0.985

Q Q
> >
0.980 0.980
0.975F 0.975F
0.970 F 0.970 F
0.000 0.002 0.004 0.006 0.008 0.010 0.012 0.014
Pt
T
0.865 - 0.865 - A=2
0.860 - 0.860 - — 0A=2.2
— A=24
@ 0.855 @ 0.855 ]
> >
0.850 - 0.850 -
0.845 0.845
0.840f, . . . . . . L 0840 , | . . . . . .
0 20 40 60 80 100 120 140 -033 032 -031 -030 -029 -0.28 -0.27
%o Pt

Figure 6. Butterfly velocity as a function of deformation parameter TfE ~ (left) or as a function of

pt (right) for d = 2 (top) and d = 3 (bottom), and different values of A.

of the black hole. This is a well-known fact that can be further explained by recasting the
calculation of F'(¢, ) in terms of a scattering problem near the black hole horizon [70].

What happens if we now let ¢, and tr to be arbitrary? If we set tp = t;, = t, and vary
tp the geodesic will start exploring part of the interior geometry, and eventually, probe the
region near the singularity.” To understand this point, let us analyze first the case without
a shock wave, studied briefly in section 3.1. First, note that as we increase the energy of
the geodesic, the turning point gets closer to the singularity. Hence, we can use the Kasner
metric to determine the turning points for large enough energies,

&2 7m
Py = =0 +... as & — 0. (3.44)

In fact, in the strict limit £& — oo the geodesic becomes null, reaching the singularity for
some finite boundary time ¢, = tgng [21]. See figure 7 (left) for an illustration. From (3.7)
and (3.9), it then follows that,

9 3 __cAd—1t2d
L =2log (5) + e p LETa (3.45)
tp = lsing + 3 + - T EEE-D -2t (3.46)

9This is not true if d = 2. In that case p; > 0 and this implies that r, approaches a constant value as
& — 00 [22]. Therefore, we will specialize to d > 3 for the rest of this subsection.
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Figure 7. Null limit of the two-point function in the geodesic approximation (left), and null limit of
the OTOC, in the heavy-heavy-light-light approximation (right).

The first terms in these expressions come from near-boundary contributions, while the last
term corresponds to the leading order contribution near the singularity. Combining these
two expressions, we then find the relation,

L(ty) = 210g(2At) + c1 At + co(At)? + - -« + & (AL) /P (3.47)

where At = [tp — tsing|. This formula is valid for arbitrary dimensions d > 3 and thus
generalizes the result of [21]. Note that the term coming from the singularity is generally non-
analytic, while those coming from the boundary are all analytic. This means that, studying the
non-analytic corrections to two-point correlation functions in the limit ¢ — #g,g is in principle
sufficient to extract the Kasner exponent p; and thus recover the near-singularity geometry.
Let us now come back to the case with a shock wave. In this scenario, we also find that
the turning point reaches the singularity as £, — oo, in which case the geodesic becomes
null. See figure 7 (right). Thus, on general grounds, we expect the same type of contribution
to the length coming from the near-singularity region, L ~ (At)*l/ Pt perhaps with a shift to
tsing Of order . Naively, this would imply that the four-point OTOC should also suffice to
diagnose p;, by studying certain time limits. In particular, upon analytic continuation, we
would expect that the relevant OTOC should be of the form (O(tp)W (ty) O(—tp)W(tw)), with
tw > [ and t, & teng. However, this naive expectation is not true. It was recently shown that
in this limit, the null geodesic is not the relevant saddle for the position-space correlator [3],
which is instead given by a complex geodesic. Nevertheless, [3] showed that the null limit
does feature in a ‘hybrid’ correlator where one considers the Fourier transform of ¢; and
takes the limit wy — co. Based on their result, we can expect that the peculiar non-analytic
contribution to the length from the near-singularity does show up in a ‘hybrid’ OTOC

(O(t) W (t) O(—wp)W(ty)) ~ e~ A tans 0 (3.48)

in the limit ¢,, — oo, wp — 00, t) = tsng. It would be interesting to understand this
result from a field theory calculation. Note that in this case, the intersection between the
shockwave and the geodesic still happens at the horizon, but far from the bifurcation point.
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However, one could engineer a situation in which the two intersect very close to the singularity,
e.g., by varying t,,. Perhaps, in such a scenario, one could also try to understand (3.48) by
reformulating the bulk calculation of the OTOC in terms of the scattering of quanta close to the
singularity, analogous to the calculation of [70]. We leave these explorations for future work.

3.2 Thermal a-function

In this section, we will explore the characteristics of the thermal a-function, first introduced
in [33] and later expanded upon in [71]. Our focus will be on the effect of a shock wave sent
from the left asymptotic boundary at some arbitrary boundary time ¢,,. Before doing that, let
us briefly discuss the holographic ‘trans-IR’ flows that are accessible via the black hole interiors.

The core concept of a ‘trans-IR’ flow involves an analytic continuation of the conventional
RG flow beyond its infrared (IR) fixed point to complex energies. The a-function is monotonic
along the entire RG flow, including both the conventional RG flow, defined outside the horizon,
and the ‘trans-IR’ portion of the flow, defined inside the black hole, i.e., the ‘cosmological
interior.” To define this function, we start with the following black hole metric,

ds? = *4(2) [—h(z)zdtQ + d.’fﬂ + d2?, (3.49)

with t € R, # € R¥"!, 2 > 0. These are known as domain-wall coordinates. Holographically,
z represents an energy scale in the theory. We assume that h(z) has a simple root at the
black hole horizon z = 0, i.e., the IR. The AdS boundary is located at z — oo and it
therefore corresponds to the UV of the theory. With this metric, the thermal a-function
is defined as [33],

(3.50)

ar(z) = n/? { h(z) r_l

r (g) o5 LA(2)

It is straightforward to show that this function is monotonic. This can be achieved by
demanding that the matter fields respect the null energy condition (NEC), T, k*k" > 0,
where T}, is the stress-energy tensor and k* is an arbitrary null vector. Picking the radial
null vector k* = e_A(Z)(Sf + 6%, and using the bulk Einstein’s equations, one can show the
monotonicity of the thermal a-function by evaluating,

dar 1
dz  Al(z)d

(T; - T;) >0. (3.51)

It is also easy to check that this function is stationary at the AdS boundary and at the
horizon, i.e., dg—zﬂzﬁm = C%T]Z:g = 0 [33]. These are fixed points of the RG flow.

Note that the above coordinates are only defined in the exterior of the black hole.
However, we can access the black hole interior by the following analytic continuation of
the time and radial coordinate,
el
2T’
AR (0)

2
useful to employ the coordinate patch from (2.4), which can access the black hole interior

t =tr —sgn(tr) z =ik, (3.52)

where v is some half integer and T = . To demonstrate monotonicity inside, it is

— 20 —



without the need for analytic continuation. We make a coordinate transformation, z — z(r),
and some identifications to find the a-function in this patch. This transformation amounts to:

% _ _Tlf(r) , (3.53)
A = %2 (3.54)
h(z)? = f(r)e ) (3.55)
By substituting (3.54)—(3.55) in (3.50), we finally get,
/2
Further, by using Einstein’s equations, we find that,
dar - ‘
DL 5 ) (Tr - Tt) <0, (3.57)

thus proving that the a-function is also monotonic inside of the black hole, i.e., for r > r,.1°

In summary, the a-function is monotonic throughout the entire flow and becomes stationary

1" These properties allow us to establish a connection between this

at the fixed points.
monotonic function and the total number of degrees of freedom as we vary the energy scale
in the corresponding dual field theory [33].

With this introduction, let us now investigate any possible imprints of a shock wave on
the thermal a-function of our holographic RG flows. To begin with, it is clear that ar(r)
has knowledge of the full black hole interior. In fact, from its behavior at » — oo we can
already extract the information about the Kasner singularity [33]:

_ (@d=1)[d(1+ps)—2]
ap(r) ~ Cyr (T—p) as 1 — 00, (3.58)

where Cy > 0 is a constant. This relation should still be the same in the presence of a shock

wave, with a small change in p; given the change in the mass of the black hole, hence the

change in the temperature T" and the ratio TZ’B ~. However, there is a more drastic effect on

ar(r). More specifically, we observe that the a-function undergoes a finite discontinuity at
the location of the shock wave. This discontinuity follows from the fact that the derivative
of the a-function is proportional to the trace of the stress-energy tensor (3.57). When a
shock wave is introduced, it results in a delta function in the stress-energy tensor, which
leads to a finite discontinuity in the a-function. When the shock wave is sent at the infinite

19Since d, becomes time-like for r > 7, it is interesting to note that ar(r) can be used to define a relational
notion of a ‘clock’ in the ‘cosmological interior’, given its monotonicity (or rather, 1/ar(r), which is an
increasing function). Such cosmologies can in principle be solved for given consistent initial data by considering
the Wheeler-DeWitt equation for the black hole interior [72].

" Note that, because of the coordinate transformation (3.53), dar/dr is not necessarily zero at the horizon.
However, if we insist that z should map to the physical energy E, we can identify the horizon as a fixed
point of the RG flow. Other points where dar/dr = 0 should also imply dar/dz = 0 and viceversa, provided
dr/dz # {0, c0}.
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Figure 8. Thermal a-function in the unperturbed RG flow (left) and in the presence of a shock wave
sent at t,, — oo (right). The discontinuity happens exactly at the horizon r = ry, and its magnitude
is of order O(E/M) for E < M.

past (t,, — 00), we can compute the discontinuity analytically in terms of near-horizon data.
More specifically, by evaluating the function (3.56) in the two different patches glued at
the horizon we find that, at O(E/M):

/2

where x(r) and x(r) are ‘pre’ and ‘post’ shock wave metric functions and A(rp,ry) is

d/2
Aap — (e—(d—l)f((rh)/Q _ e—(d—l)X(Th)/2> _ __Br'? dny, A(rp,ra),  (3.59)

(gt

determined from the expansion of the latter near the horizon, e~(4=1DX(")/2 = const. + (r —
i) A(r, ) + O[(r — 74)?]. In figure 8 we plot our results for the thermal a-function as a
function of r and contrast it with respect to the case without a shock wave. Physically, the
shift in ap implies that the positive energy shock removes some degrees of freedom at the
horizon, leading to a sudden drop in the thermal a-function. The discontinuity happens
in this case exactly at the horizon and its magnitude (3.59) is of order O(E/M), as we
are considering the limit £ < M. We further plot |Aar| as a function of the deformation

parameter TffEA in figure 9.

We can also analyze the case where the shock wave is sent at some arbitrary t,,. Qualita-
tively, a similar effect is observed, i.e., a sudden jump in the thermal a-function, given by a
formula similar to (3.59). However, the discontinuity does not happen at the horizon in the
more general case. The exact point of the transition can be determined by finding the position
of the shock rghock, which depends on the time ¢ we chose to perform the measurement. This
should not come as a surprise. We recall that the shock wave geometry can be interpreted as a
‘quenched’ state in the theory which can be obtained by a time-dependent Hamiltonian. Thus
it makes sense that the thermal a-function, which measures the number of degrees of freedom
at a given energy scale, could be time-dependent as well. In figure 10 we show the results
for the a-function in a simple example, where we have fixed the time of the measurement
t. The transition point happens at some 7ghocc > 7. Since the region r > r, codifies the
evolution of the cosmological interior, the jump can also be interpreted as a ‘cosmological
time skip.!? To understand this effect, we must think in terms of an observer falling into the

12Tn the t, — oo case, the jump merely shifts the initial time of the cosmological evolution.
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Figure 9. Discontinuity in the thermal a-function across a shock wave sent at t,, — oo as a function
of deformation parameter Tf—SA, for d = 3 and various values of A.

singularity and encountering the shock wave along its trajectory. The shock wave deforms
the geometry and, as a result, induces a relativistic effect in the observer that is perceived
as an infinitely boosted length contraction. Since 0, is time-like in the interior of the black
hole, the length contraction is then interpreted as a time contraction, which explains the
term ‘time skip. We recall that the bulk matter is assumed to respect energy conditions (the
NEC, in particular), so the time jump is always future-directed. That is, we cannot jump
back in time unless we violate the assumed energy conditions.

3.3 Entanglement velocity

Another observable that is sensitive to the black hole interior is the so-called entanglement
velocity [4]. In a quenched system, the entanglement entropy of a large subsystem S4 grows
as [73, 74] dSa/dt = vpsin2a for ty, < t <K tgat, where ty, ~ [ is the local thermalization
time and tgy¢ is the saturation time, which scales with the characteristic size of the system
tsat ~ Lr. Here sy, is the equilibrium entropy density, ¥ 4 is the area bounding the subsystem
and vg is the entanglement velocity. The above relation was initially derived for a quenched
black-hole system with a single boundary. However, [4] showed that the same relation applies
to the case of a two-sided black hole (TFD state) undergoing the usual Hamiltonian evolution.
The map between the two follows by cutting the usual eternal black hole Penrose diagram in
half by adding an end-of-the-world brane in the bulk, producing the so-called ‘B-states.’

The entanglement velocity vg has been shown to be upper bounded by the butterfly
velocity vp in general quantum chaotic systems [58],

VE S VB, (3.60)
where they further uncovered some interesting connections between the two. Given that

vg can probe part of the black hole interior, while vp can be entirely derived from near-
horizon physics, for completeness, here we will present the calculation of vg in the RG
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Figure 10. A shock wave is sent from the left asymptotic boundary at ¢,, (left). Because of this
perturbation, the thermal a-function changes discontinuously across the shock wave (right). The point
of discontinuity is determined by the position of the shock wave at the time of the measurement. In
this example, we have picked ¢ = 0, which yields » = 3. In contrast, the black hole horizon is located
at rp, = 1.5.

flows considered in this paper and contrast the results with those we obtained earlier for
the butterfly velocity vp.

To start, we consider symmetric entangling surfaces probing the deformed interiors.
This can be accomplished by picking the subsystem to be A = Ay U Ar, where Ay, and Agr
are half-spaces on the left and right boundaries, respectively. The induced metric on the
entangling surface that corresponds to this subsystem is given by

1 1
dsi2nduced = 2 [(_f(T)GX(T)t'(r)Q + 0

) dr? + da?le] : (3.61)

leading to the following area functional:

A= /ﬁ\/—f(r)e—xmt'(r)? + f(lr) = /drc. (3.62)

Like the symmetric geodesics, the above Lagrangian £ does not explicitly depend on time.
Thus, we can define a conserved quantity €& which is constant over the entire spacelike surface,
oL

sgn(&)eX(M/2dy
FEW1+ Fr)ex) /(ra-1€)?

where t;, is the boundary anchoring time for the bulk entangling surface, and 7; is the turning

(3.63)

point defined by the relation,
f(rt)efx(rt)

2 _
g2 — _ ST (3.64)
Ty
With these expressions at hand, we find the area of the extremal surface to be
(3.65)

Tt dr
A=2 .
I VI + et (ri-te2)
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Figure 11. Entanglement velocity as a function of the deformation parameter Tff = (left) and the
Kasner exponent p; (right) for d = 3 and various values of A.

At late times (£ — o0), the extremal surfaces are trapped on a slice with ry = rq;4 inside
the horizon. This causes their areas to exhibit linear growth, which indicates a velocity
for the associated entanglement entropies. We obtain this rate of growth of the entropy
at late times from (3.65),

oS 2up o 2(d-1)|fle7X

— = —————— = VUESth, vV =T , 3.66

8tb 4GNT'g71 b g " T2(d71) T=Tcrit ( )
where § = ﬁ. We plot the entanglement velocity vg as a function of the deformation

parameter TZ’E ~ and Kasner exponent p; in figure 11. In general, we observe that the

entanglement velocity’s dependence on the deformation exhibits a qualitatively similar pattern
to what we observed for the butterfly velocity, demonstrating a non-monotonic behavior.
Furthermore, although these extremal surfaces probe part of the interior geometry, their
dependence on p; indicates we cannot understand vg solely as a feature of the near-singularity
region. It is likely that subleading corrections near the singularity could completely determine
vg, as we previously argued in the case of the butterfly velocity. Finally, we depict the
ratio between these two velocities as a function of the deformation parameter and Kasner
exponent in figure 12, which demonstrates that the bound (3.60) is respected along the full
RG flow. All these conclusions remain valid for any d > 2. However, for brevity, we have
only presented plots for the case of d = 3.

4 Bouncing interiors

Recently, it has been shown that the interiors of planar AdS black holes, which are solutions of
the Einstein-Scalar system (2.1) with an even super-exponential potential, exhibit an infinite
sequence of Kasner epochs [75], bearing a resemblance to Misner’s mixmaster universe [41].
We will use this model to explore how the different field theory observables are affected by
the intricate nature of the black hole interior.

To begin with, let us briefly review the relevant features of the model. For simplicity, we
will fix the number of dimensions to d = 3 so that the gravity action reads,

I= /d4x\/jg <R +6— %v%vagb - V(¢)> : (4.1)
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Figure 12. Ratio between entanglement velocity and butterfly velocity as a function of the deformation
parameter Tf—EA (left) and the Kasner exponent p; (right) for d = 3 and various values of A. For any
amount of relevant deformation, the entanglement velocity is always less than the butterfly velocity,
as expected.

with a potential given by V(¢) = im?¢* + 15 exp[%]. We will further consider the following
metric ansatz, which is similar to (2.4) but specialized to (3 + 1)-dimensions,

_ dp?
—f(p)e Xt 4 i dz? + dy?| . (4.2)

Note that we have introduced a new radial coordinate p, related to r via
r =exp(p). (4.3)

We do so in order to improve the accuracy of the numerics for large values of r. By plugging
this ansatz into the equations of motion, we find

20" (p)f(p) +2f" ()¢ (p) — f(P)X'(P)¢'(p) — 6 (p)¢'(p) —2V'(d(p)) =0,  (4.4)
A4f'(p) = f(p)¢' (p)* —12f(p) —2V(6(p)) =0,  (4.5)

2x'(p) = ¢'(p)* = 0

We expect the behavior of the fields near the boundary region p — —oo to be:
¢ ~ ¢0 e(d—A)p’ X~ Oa f ~ 1 3 (47)

where ¢y is the source of the relevant operator inducing the RG flow. We also assume f(p)
has a simple root at the horizon p = pp, in which terms we can express the temperature
of the black hole as

Xpt+2p
_ P enle (48)
4w ' )

T

With these boundary conditions, we can numerically solve the equations of motion. We
follow a procedure analogous to that outlined in section 2: we first shoot from the horizon
to the boundary to relate near-horizon and near-boundary data, and then we shoot from
the horizon to the interior of the black hole.
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In figure 13 we plot a typical solution for the scalar field and its derivative as a function
of radial coordinate p, for some sample parameters. A linear behavior in ¢, or a constant
in ¢/, corresponds to an approximate Kasner solution, thus we see that the evolution of
the interior undergoes an infinite sequence of Kasner epochs separated by sharp bounces,
a feature of the so-called ‘cosmological billiards’ [76]. In each of these epochs, the solution
can be approximately described by

d~2p+d1, x~28p+x1, [~ —f1eB Ly (4.9)

where the constant ¢ determines the Kasner exponents through the standard relations (2.32).
The dependence of this constant and the Kasner exponents on ¢/ T34 for fixed p are highly
oscillatory, indicating the chaotic nature of the interiors. We investigate these dependence
in figure 14, for some sample parameters.

In the subsequent sections, we will study the signatures of the bouncing interiors on
various observables in the dual field theory.

4.1 Thermal a-function

In terms of the p coordinate, the thermal a-function (3.56) reads

d/2
ar(p) = ——e~(d=Dx(0)/2, (4.10)

q0Cs
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occur where the a-function becomes flat or, equivalently, where its derivative gets a steep jump,

reaching "lg—pT =

Since ar(p) is defined all the way to p — oo we expect it should be able to diagnose all
the cosmological history of the black hole interior. Interestingly, we find sharp features in
the a-function that could be used to diagnose the Kasner epochs of the black hole interior
as well as the transitions between them:

o First, each Kasner epoch is characterized by a specific dependence of the a-function,
given by (3.58). In terms of the p coordinate, we find that

_ (d=1)[d(1+pg)—2]p

ar(p) x e I=pt) , (4.11)

possibly up to a constant. Thus, dlogar/dp = (1/ar)dar/dp is a constant if and only
if the geometry is approximately Kasner. This constant can be used to read off the

value of p;.

e Second, for each cosmological bounce the a-function displays an instantaneous plateau,
implying that
dar(p)/dp =0. (4.12)

This can be deduced by observing that dar/dp < dx/dp < d¢/dp, which follows
from (4.10) and (4.6), respectively, and the fact that the latter derivative vanishes
instantaneously when there is a Kasner transition (see figure 13). Cosmological bounces
are thus identified as new fixed points of the RG flow.

The above properties are nicely illustrated in the example shown in figure 15. It is worth
noting that these features are not present in the case of standard RG flows with quadratic
potential, as explored in the previous sections (see figure 8).

We can also study the influence of a shock wave sent at some arbitrary time ¢, on the
thermal a-function. In this case, the interior evolution may abruptly transition between
epochs or skip one or multiple epochs altogether. The time at which the skip occurs is
controlled by t,,, while the strength of the skip is determined by the ratio F/M. We illustrate
how these behaviors are captured by the a-function in figure 16.
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figure 15. Depending on E/M, the time skip can completely bypass one of the cosmological bounces,
or even jump over one or multiple Kasner epochs.

4.2 Butterfly & entanglement velocities

For RG flows with quadratic potential, we found that butterfly and entanglement velocities
are single-valued functions of the boundary deformation parameter, Tf—EA, displaying a non-
monotonic behavior. Moreover, these observables were found to be multi-valued functions
of the Kasner exponent p;, implying that they cannot uniquely determine the nature of
the singularity or vice-versa. In this section, we study these observables for black holes
with bouncing interiors. The goal is to investigate whether any distinctive signatures can
be observed.

Following the same steps outlined in the previous section we find that, in terms of
the p coordinate,

dpn —X
v = VaTerre=Xn/2 Vg = ¢ , (4.13)

4p
€ P=Pcrit

. . . . .. —x(pt)
where puit is the value of the turning point p; which maximizes £2 = —f(pt)ei#. As

expected, vg can be written in terms of horizon data, while vy does generally depend on the
interior geometry since perit > pp- In figure 17 we show the results for vp and vg as a function

of T?E ~. The qualitative nature of the dependence of these observables on the deformation is
the same as in the case where the interior has no cosmological bounces. We can understand
this for the butterfly velocity, as the (super-)exponential part of the potential only kicks in for
values of p larger than the horizon, having a minimal effect on the exterior geometry. As for
the entanglement velocity, we observe that pcix typically gets stuck at the first of the Kasner
epochs and does not really reach the region where the bounces take place. We have plotted vp
and vg as a function of p; corresponding to the first of the Kasner epochs but the end results
are qualitatively similar to those in figure 6 and figure 11, respectively, so we will not show
them here. Finally, it is easy to check that the bound (3.60) is satisfied for this case as well.

5 Conclusions and outlook

In this paper, we studied holographic RG flows at finite temperature perturbed by a shock
wave. In particular, we considered RG flows generated by deforming the boundary CFT with
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display the same qualitative behavior as we obtained for RG flows with quadratic potential.

a relevant operator, altering the geometry of the black hole interior from AdS-Schwarzschild
to a more general Kasner universe near the spacetime singularity. We then introduced
null matter in the form of a shock wave into this deformed background and investigated
the imprints of various field theory observables on and from the near-horizon and interior
dynamics of the black hole.

Using the out-of-time-order correlators, we found that the scrambling time monotonically
increases as the strength of the deformation is increased, while the butterfly velocity exhibits
a non-monotonic behavior. These two observables are extracted from a ‘chaotic’ limit of the
OTOC and are completely determined from near-horizon data. However, while expressing
them in terms of near-singularity data, we learned that they are generically multivalued
functions of the Kasner exponent p;, implying that subleading corrections to the Kasner
regime are needed to fully specify them. This should not come as a surprise. In holography,
we are used to specify the asymptotic values of the bulk fields (non-normalizable modes)
as well as the subleading values (normalizable modes) to fully determine a bulk solution.
Similarly, the initial value problem in general relativity requires us to specify not only the
metric of a spatial slice but also its conjugate momentum (or its extrinsic curvature), which
contains information of its derivatives. In that spirit, it would be interesting to understand
how subleading corrections to the Kasner regime map to near-horizon data and vice versa
for some gravitational solutions of interest. Finally, inspired by the recent results of [3], we
uncovered a novel ‘hybrid” OTOC that can probe the interior geometry and reach all the way
to the singularity for d > 3. Specifically, in a particular limit, we showed that his OTOC
includes a term with a distinctive non-analytic dependence on p;, shown in (3.48), providing
a way to fully determine the Kasner geometry near the singularity. It would be interesting
to come up with a bulk representation of such OTOCs in terms of the scattering of quanta
in the black hole interior, perhaps following the steps of [70]. Similarly, it would be very
insightful to reproduce (3.48) from a field theory calculation and to understand precisely
how is p; encoded in the deformed CFT.

Next, we focused on two observables that are more sensitive to the black hole interior:
the thermal a-function and the entanglement velocity. We showed that, because of the shock
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wave, the a-function undergoes a finite discontinuity, signaling an instantaneous loss of degrees
of freedom due to the infalling matter. The discontinuity can be explained by observing
that its derivative is proportional to the bulk stress-energy tensor which, in the case of a
shock wave, takes the form of a delta function. Thus, after integrating, it generates the
advertised discontinuity. In terms of the interior’s evolution, we interpret this discontinuity as
a ‘cosmological time skip’, which arises as a result of an infinitely boosted length contraction.
Further, for matter respecting the null energy condition, this time skip can be shown to always
be future-directed, thus, protecting the chronology of the ‘cosmological interior.” This result
follows almost immediately from the monotonicity of the a-function. It would be interesting
to investigate possible new phenomena at the semi-classical level, in which case the NEC
need not be satisfied. Regarding the entanglement velocity, we found a very similar behavior
to the butterfly velocity, i.e., a non-monotonic dependence with respect to the strength of
the deformation. Even though the entanglement velocity does probe part of the black hole
interior, we arrived at the same obstacle when expressing it in terms of near-singularity
data, namely, that it is generally a multivalued function. This follows from the fact, that
the surfaces that compute this quantity generically get stuck at some final slice and thus
do not actually probe the near-singularity region.

Lastly, we repeated our analyses in a model where the interior geometry undergoes an
infinite sequence of bouncing Kasner epochs, introduced originally in [75]. In this case, we
found that the a-function presents very distinctive features that could be used to diagnose the
Kasner epochs of the interior as well as the transitions between them. Notably, the a-function
becomes stationary exactly as each of the cosmological bounces take place, which are thus
interpreted as new fixed points in the RG flow. Further, as a result of the ‘time skip’, when
we perturb the system with a shock wave the interior’s evolution may now abruptly transition
between epochs or even skip one or multiple epochs altogether. Other observables, such as
the butterfly velocity or the entanglement velocity, exhibit limited sensitivity to the intricate
interior dynamics. This lack of sensitivity is especially anticipated in the case of the butterfly
velocity, as it can be exclusively determined from near-horizon data, and this is minimally
influenced by the dynamics occurring in the interior. Regarding the entanglement velocity, we
find it fails to probe very deep in the interior, resulting in a qualitatively similar behavior to
scenarios without cosmological bounces. In the future, it would be interesting to investigate
the behavior of these and other observables in other models with exotic cosmological interiors,
for example, in the case of holographic superconductors [23-25].
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