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1 Introduction

Undoubtedly, the Ryu-Takayanagi (RT) proposal relating the entanglement entropy of a
boundary region to the minimal area of a codimension-two bulk surface, is a cornerstone in the
connection between quantum information and quantum gravity. The RT proposal has become
an essential tool in studying foundational aspects of holography such as bulk reconstruction
and the emergence and dynamics of spacetime. An alternative way to understand holographic
entanglement entropy was proposed in [1]. This formalism does not rely on bulk surfaces
or minimal areas; it uses convex optimization to identify the entanglement entropy as the
maximization of a divergenceless norm-bounded vector flow. Specifically, at a moment of
time reflection symmetry we have,

SA = min
m(A)∼A

Area(m(A))
4GN

= 1
4GN

max
v∈F

∫
A

√
hnµv

µ , F ≡ {v | ∇µv
µ = 0, |v| ≤ 1}. (1.1)

This formula implies that the maximal flux through the boundary region A satisfying the
constraints imposed on F is equal to the area of the minimal bulk surface anchored to ∂A. The
integral lines of the flow are dubbed bit-threads [1]. This new language opened the possibility
of understanding holographic constructs using convex optimization techniques. This approach
has been a fruitful avenue of research in past years. Bit threads have been used to study
multipartite entanglement [1–5], holographic monogamy of mutual information [6, 7], the
hypergraph entropy cone [8], metric reconstruction [9], describe the entanglement structure
of a state in terms of a modified Biot-Savart law [10], etc. Furthermore, recent developments
extending the thread formulation to Lorentzian manifolds [11] showed that quantities other
than entanglement can be formulated in this language. We know now that entanglement is
not enough [12] to describe the full spacetime, in particular the interior of black holes. Other
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constructs are necessary, for example, complexity. While in quantum information there are
many notions of complexity, holographic complexity is thought to be dual to circuit or gate
complexity. This quantifies the number of unitary operations that have to be applied to a
reference state to get a target state within a tolerance.

The two main candidates are Complexity-Volume(CV) and Complexity-Action (CA).
These two holographic constructs explore the interior of a black hole and have the properties
expected from circuit complexity.

1. Complexity-Volume: the volume of a maximal codimension-one Cauchy slice Σ anchored
at the boundary Cauchy slice σA on which the CFT state is defined [13, 14].

CV (σA) = 1
GN l

max
Σ∼σA

Vol(Σ(σA)). (1.2)

2. Complexity-Action: the bulk action evaluated on the Wheeler-De Witt patch associated
to σA [15, 16].

CI(σA) = IW DW

πℏ
. (1.3)

In [17], the authors derived a reformulation of the CV proposal in terms of flows by proving
the max cut-min flow theorem. Together with the bit threads construction in [1], this entailed
developing the mathematical framework necessary to work with Lorentzian threads, and
allowed [18] to formulate CV in terms of Lorentzian flows. In [11] the authors provided
explicit constructions and an interlink between the discrete definition of complexity from the
CFT perspective and the continuous definition of this quantity. More concretely, the integral
lines of these flows correspond with “gatelines”, i.e. timelike curves that represent unitary
operations that transform a reference state to a target state. Thus, there is a clear picture
of how to understand CV in terms of threads. However, this understanding is missing for
CA. Furthermore, recently, it was shown [19, 20] that CV and CA are just two members of
an infinite family of observables that exhibit the linear growth and switchback behavior of
complexity. This freedom in the definition of holographic complexity need not be perceived
as a drawback; rather, it can be seen as a holographic feature that reflects the ambiguities
existing in the definition of quantum complexity. However, much work needs to be done to
understand this mapping. It is also possible that certain features will point to a particular
type of holographic observable as the dual of complexity. Clearly, an understanding of the
different facets and properties of this infinite class of gravitational observables is needed. In
this work, we focus on one such facet. It is currently not known how to describe this infinite
family of complexities, these generalized complexities,1 in terms of threads and optimization
problems. In this paper we take a first step to remedy this situation.

Let us briefly review the construction of generalized complexities. The generalized
volume complexities [19] are codimension-one, i.e. d−dimensional, observables2 that involve

1We use the term “generalized complexities” to refer to the observables obtained from the “complex-
ity = anything” proposal of [19, 20]. We adopt this name to emphasize that these observables are a generaliza-
tion of the CV, CA, and CV2.0 proposals.

2Throughout this paper we are working in a d + 1 asymptotically AdS space.
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two arbitrary functions, F1 and F2. The first step is to find the bulk surface Σ anchored
on a fixed boundary Cauchy slice “σA” that maximizes the functional

WF2 =
∫

Σ
ddσ

√
hF2 (gµν ;Xµ). (1.4)

Varying over the embeddings Xµ that define Σ, δX [WF2 ] = 0, we obtain the hypersurface Σ̃
that maximizes (1.4). Having determined Σ̃ we can evaluate the observable,

O
F1,Σ̃ = 1

GNℓ

∫
Σ̃
ddσ

√
hF1 (gµν ;Xµ). (1.5)

If F1 = F2 = 1 we reproduce the standard maximal volume prescription, CV. While the
family of observables obtained from (1.5) is large, it does not include CA or any observable3

defined in a codimension-zero hypersurface. The necessary extension of the construction was
presented in [20] and involves six independent functions, G1, G2, F1,+, F1,−, F2,+ and F2,−.
As before, we first determine the region that extremizes certain functional and then evaluate
the observable in that region. More explicitly, consider the functional

WF2±,G2 =
∫

Σ+
ddσ

√
hF2,+ (gµν ;Xµ) +

∫
Σ−

ddσ
√
hF2,− (gµν ;Xµ)

+ 1
ℓ

∫
V
dd+1x

√
−g G2 (gµν) (1.6)

where V is a region of spacetime bounded by Σ+ and Σ−. Extremizing WF2±,G2 by varying
the boundaries Σ+ and Σ−, yields a codimension-zero region of space, denoted Ṽ bounded
by Σ̃+ and Σ̃− where we evaluate the generalized observable,

O
F1±,G1,Σ̃±

= 1
GNℓ

∫
Σ̃+

ddσ
√
hF1,+ (gµν ;Xµ) + 1

GNℓ

∫
Σ̃−

ddσ
√
hF1,− (gµν ;Xµ)

+ 1
GNℓ2

∫
Ṽ
dd+1x

√
−g G1 (gµν) (1.7)

Under some constraints on the functions F1,2± and G1,2, the observables in (1.5) and (1.7)
define an infinite class of gravitational observables that display late time growth and switchback
effect and thus can be considered good candidates for holographic complexity [20]. The
familiar examples of CA and CV2.0 are two particular cases of (1.7) that arise when choosing
specific values of the functions F2±, F1±, G1, G2 and taking appropriate limits. A couple of
remarks are in order. First, note that the procedure of [20] requires that G2 has a primitive;
we require the same here. When it comes to evaluating the observable in thread language, we
present two procedures: one valid when G1 also admits a primitive and one if it does not.
Second, from the gravitational perspective, the calculation of a codimension-zero observable
like CA is more subtle because it involves joints and null boundary counterterms. It is natural
to ask how do these additional terms appear in (1.7). This question was addressed in [20].
By defining the region of interest as bounded by constant mean curvature slices and taking
an appropriate limit, the boundaries become null and one obtains the Wheeler-deWitt patch.

3Another common codimension-zero observable by the name of CV2.0 evaluates the spacetime volume of
the WDW patch [21].
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The authors showed that in this limit, the resulting null limit action agrees with the action
for a subregion with null boundaries including all the expected terms.4

In this paper we aim to understand generalized complexities in the framework of threads.
We find that it is useful to reformulate the problem in terms of thread distributions and
measures. We present a program to calculate the infinite family of codimension-one observables
and outline a path to understand the more subtle case of codimension-zero observables.

2 Lorentzian threads and measures

In computational physics, circuit complexity is defined as the minimum number of unitary
gates required to prepare a target state given an initial reference state within a defined
tolerance. In a CFT, we expect that the complexity of a state will grow over time due to
Hamiltonian evolution. Holographically, this increase of complexity is conjectured to be dual
to the late-time growth of the interior of a double-sided eternal AdS black hole. However, as
reviewed in the Introduction, there is a large family of bulk constructions that are potentially
dual to complexity. The first and most studied proposals are Complexity-Volume (CV)
and Complexity-Action (CA).

In this section, we will review how Complexity-Volume (CV) can be understood in the
language of flows and Lorentzian threads. This is conceptually similar to reformulating RT
formula for entanglement entropy in the language of bit threads [1]. After this, we will
propose a new approach to understand Lorentzian threads in terms of measures. With this
object, one would impose a constraint on the density of threads and propose a maximization
program whose solution is in agreement with the CV proposal.

2.1 Review of Lorentzian threads and CV

Before going into the thread formulation for complexity, we will establish some notation.
Let M be a (d + 1)-dimensional compact, oriented, Lorentzian manifold with boundary
∂M. Consider a region A on ∂M such that its causal future coincides with itself, that is,
J+(A) = A. This condition is imposed to guarantee the existence of a surface homologous
to A. The boundary of A will be denoted as σA, ∂A = σA. Thus, σA is a codimension-two
surface and as a consequence of its causal structure, σA must be a Cauchy surface on the
boundary manifold [17]. Let Σ be a bulk codimension-one slice anchored on σA. We say that Σ
is homologous to A (Σ ∼ A) if there exists a bulk region r(A) such that ∂r\∂M = −(Σ\∂M)
(see figure 1 for an illustration).

Given this setup, we can define a timelike flow v and Lorentzian threads as the integral
lines of this vector field [17]. The timelike nature of this vector flow makes it necessary to
reexamine some mathematical results previously established for this kind of spacelike flows.
In [17], the authors proved the Max Cut-Min Flow theorem for Lorentzian flows. Using this
result, the volume of maximal slice Σ̃ anchored to σA can be related to the minimal flux of
Lorentzian flows through region A. Let us review this in more detail.

4Strictly speaking, they also obtain an additional correction related to two of the surface gravities. For
technical details see appendix D in [20].
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Figure 1. Threads with measure µ crossing the codimension-one surface Σ.

A Lorentzian flow is defined as a divergenceless, future-directed vector field on M with
a lower bound on its norm

∇µv
µ = 0, v0 > 0, |v| ≥ 1. (2.1)

The flux through the boundary subregion A is∫
A
∗v =

∫
Σ
∗v =

∫
Σ
ddσ

√
hnµv

µ, (2.2)

where ∗ represents the Hodge dual, nµ is the unit normal to Σ and
√
h is the induced

volume element and v is the one-form dual to the flow. The first equality follows from
the divergenceless condition of the flow and second comes from the definition of flux. The
boundedness of the vector field immediately gives a lower bound on the flux as∫

A
∗v ≥ Vol(Σ̃). (2.3)

The max flow-min cut theorem states that, for the optimal flow, this inequality is
saturated [17], what implies

inf
v

∫
A
∗v = sup

Σ∼A
Vol(Σ). (2.4)

Thus, the maximal volume slice Σ̃ acts as an inverse bottleneck to minimum flux of
the flow. The integral lines of a Lorentzian flow are referred to as Lorentzian threads [11].
Just like the Lorentzian vector flow, the threads are timelike and future-directed. And
the divergenceless condition imposed on the vector field guarantees that the threads end
on the boundary.
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Lorentzian threads provide a natural way of expressing bulk geometric quantities related
to CV. It is easy to prove properties like superadditivity of subregion complexity using flows
and it provides new bounds on complexity as well [11]. Heuristically, we can think of these
threads as “gatelines” which are trajectories through spacetime that take a given reference
state to the final target state. Complexity is then the minimum number of gatelines crossing
the Cauchy slice on whose boundary the state is defined. This is conceptually similar to the
circuit complexity idea of minimum number of unitary gates needed to prepare a final state.

2.2 Complexity volume using measures

In the next section we will show that to understand generalized complexity in terms of
Lorentzian threads it is convenient to reformulate the problem in terms of measures. As a
warm up, let us explore the definition of CV in this language.

It might seem that, in order to solve the problem in terms of threads, one must determine
the optimal flow and solve its integral lines. However, there is a better way to approach this
problem. We can work directly with the set of all possible threads and propose a functional
that has to be optimized. As a result of this program, the actual configuration of threads is
found. With this object, it is first necessary to introduce the concept of a measure.

Given F a family of subsets of another set P,5 a measure is a function µ : F → R ∪
{−∞,∞} that satisfies the two following conditions [22]:

• Acts trivially on the empty set, i.e. µ(∅) = 0.

• For a series of disjoints subset Fn with n ≥ 1 such that ∪i≥1Fi ⊂ F ,

µ

( ⋃
i≥1

Fi

)
=
∑
i≥1

µ(Fi).

We are interested in P being the set of all timelike and future directed curves going
from Ac = ∂M\A to A. These curves are just a representation of the Lorentzian threads
introduced in the previous subsection. The measures we work with map a thread to the set
{0, 1}. In other words, a measure assigns a weight of 0 or 1 to each element in P.

In order to propose a program that determines complexity-volume in terms of measures,
we need to rewrite first the optimization program in terms of flows, given in [17], using
threads. In particular, both the objective and constraints must be translated into this new
language. The divergenceless condition in (2.1) is automatically implemented since, as was
previously mentioned, threads cannot have one end in the bulk, but both ends have to lie in
the boundary. The norm bound might be imposed by defining a delta function [23]:

∆(p, x) =
∫

p
dsδ(x− y(s)), (2.5)

where p ∈ P , y(s) is the trajectory of the thread p and s is a proper parameter. This function
counts the number of times a curve p passes through the point x. Any element of P is by

5For this family F to be well defined, it must include both the empty set ∅ and P, and be closed under
union and difference, i.e., if A, B ∈ F then A ∪ B ∈ F , A\B ∈ F [22].
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definition timelike and future directed and thus, ∆(x, p) only takes the values 0 or 1. This
function allows us to set a thread density ρ(x) as

ρ(x) =
∫
P
dµ∆(x, p), (2.6)

where the previous expression might be understood as a sum of the ∆ function for each possible
thread p multiplied by the factor µ(p). This formula might be written as ∑p∈P µ(p)∆(x, p),
but we do not employ the sum symbol since P is not a countable set.

With the previous definition, the norm bound reads

ρ(x) ≥ 1, ∀x ∈ M. (2.7)

Finally, we propose the objective to be given by the sum of weights of every single thread
in P. In this approach, the complexity of a CFT state on the slice σA is then given by
the following optimization program6

C = min 1
GNℓ

∫
P
dµ, s.t. ρ(x) ≥ 1 ∀x ∈ M. (2.8)

Solving (2.8) is not an easy task. Nevertheless, provided that both the objective and
constraint are linear functions of the measures (and hence, convex), the techniques of convex
optimization will allow us to dualize it to a more tractable program. We refer the reader
to [17, 24] for a deeper insight into this topic. In particular, starting from (2.8), one can
construct the following Lagrangian function (setting GN l = 1)

L =
∫
P
dµ+

∫
M
dd+1x

√
−gλ(x) (1 − ρ(x))

=
∫
P
dµ+

∫
M
dd+1x

√
−gλ(x)

(
1 −

∫
P
dµ∆(x, p)

)
,

(2.9)

where λ(x) is a non-negative Lagrange multiplier.7 Note that at each x ∈ M, there exists
a constraint and hence a corresponding Lagrange multiplier. For this reason, an integral
over all spacetime points of the function λ(x) has to be performed. After rearranging the
terms in (2.9), we find

L =
∫
M
dd+1x

√
−gλ(x) +

∫
P
dµ

(
1 −

∫
p
dsλ(s)

)
. (2.10)

For the Lagrangian to be lower bounded, we require the terms in the parenthesis to be
non-negative. Written in this way, it is clear that (2.10) be interpreted as the Lagrangian of
a dual program, a program where the measure µ is the Lagrange multiplier,

max
∫
M
dd+1x

√
−gλ(x), s.t.

∫
p
dsλ(s) ≤ 1 ∀p ∈ P . (2.11)

6We can set GN ℓ = 1 and restore this factor when necessary.
7The non-negative character of this Lagrange multiplier comes from the fact that it is associated to an

inequality constraint. If it were given for an equality constraint it may take any real value. More details about
convex optimization can be found in [17, 24].
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If the solution to (2.8) is m̃ and that of (2.11) p̃, weak duality guarantees that p̃ ≤ m̃.
But for the equality to hold, Slater’s condition must be satisfied [24]. Recall that Slater’s
condition is a necessary condition for strong duality. It states that, if the primal program (2.8)
admits a feasible solution µ̃ (not necessarily optimal) which strictly satisfies the inequality
constraints (ρ̃(x) =

∫
P dµ̃∆(x, p) > 1), then the optimal solutions of (2.8) and (2.11) coincide.

We will provide a heuristic argument showing that, indeed, Slater’s condition is satisfied.
One can cover the whole spacetime manifold with tubes of transverse area equal to one, even
if they intersect. Inside each tube, one can insert finite (but larger than one)8 number of
threads. As a consequence of this construction, the density of threads ρ(x) is larger than 1
for each point x ∈ M and, therefore, both programs share the same optimal solution.

Our next goal is to show that the optimum of (2.11) is the volume of the maximal slice
homologous to A, which will be denoted Σ̃. Setting λ(x) to be a delta function supported
on Σ̃, one can realize that the constraints are satisfied. Thus

max
∫
M
dd+1x

√
−gλ(x) ≥ Vol(Σ̃) (2.12)

In order to show that the equality in the previous expression holds, we will need the
following theorem:9

Theorem 1. Let M be a Lorentzian manifold, A, B two complementary subsets of the
boundary such that J+(∂A)|∂M = B and J−(∂B)|∂M = A, P the set of timelike, future
directed curves going from A to B and λ(x) a non-negative function on M. Then, statements
1) and 2) are equivalent:

1) ∃ψ : M → [−1/2, 1/2] s.t. ψ|A = −1/2, ψ|B = 1/2, |dψ| ≥ λ, dψ timelike FD

2) ∀p ∈ P ,
∫

p
dsλ ≤ 1, with s the proper distance along p.

As a consequence of Theorem 1 we have,

max
∫
M
dd+1x

√
−gλ(x) ≤

∫
M
dd+1x

√
−g|dψ|. (2.13)

Following [17], we define the region

r(c) = {x ∈ M|ψ(x) ≥ c}, (2.14)

and its closure on the bulk Σ(c) = ∂r(c)\∂M . Due to the fact that dψ is future-directed
and timelike, these Σ(c) are slices.10 Moreover, as ψ|A = −1/2 and ψ|B = 1/2, they all
must also be homologous to A, since all the level sets must have σA = ∂A as boundary.
Making use of the co-area formula [25]∫

M
dd+1x

√
−g|dψ| =

∫ 1/2

−1/2
dcVol(Σ(c)) ≤ max

Σ(c)∼A
Vol(Σ(c)). (2.15)

8Note that we demand this number to be larger but not equal to one since we are checking Slater’s condition,
which demands the existence of a feasible solution where the inequalities are strictly satisfied.

9We provide the proof of this theorem in appendix A.
10A slice is defined [17] as a compact codimension-one hypersurface-with-boundary in M which is everywhere

light or spacelike with future directed normal and whose interior is embedded in M.
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This last inequality, together with (2.13), finally shows that

C = min 1
GNℓ

∫
P
dµ, s.t. ρ(x) ≥ 1 ∀x ∈ M = max

Σ(c)∼A
Vol(Σ(c)). (2.16)

Thus, we have shown that using the language of measures, CV is obtained as a solution
of the program in (2.8).

3 Threads and generalized complexity

In this section, we derive the main result of our work. We propose a program to find
a Lorentzian thread configuration that calculates the generalized complexities of [19, 20].
Specifically, we propose minimal measure threads with certain density constraints and apply
the techniques of convex optimization to dualize the minimal program with constraints
into a maximal program.

3.1 Codimension-one observables

The observables described in [19] are calculated in two steps. The first step is to select a
codimension-one surface Σ̃ that optimizes the integral of an arbitrary function F2(gµν , X

µ)
on the surface. The next step is to evaluate the integral of a second arbitrary function
F1(gµν , X

µ) on the same surface.
To be a meaningful definition of circuit complexity, the final observable must be positive.

However, the functions F1 and F2 may be positive or negative on Σ̃. We find that to find the
optimal surface Σ̃ we only need positive measures but to evaluate the observable we need to
introduce a rescaling that effectively ammounts to considering positive and negative measures.

Let us first focus on obtaining the optimal surface Σ̃ which extremizes the functional (1.5).
In section 2.2 we showed how to find the maximal volume hypersurface homologous to σA

from the thread formulation. Our goal here is to propose a program that will determine
Σ in the case of a generalized functional. Unlike in CV, where we looked for a maximum
solution, in the present case we have an extremization program. In principle, there may be
more than one extremal surface. If that is the case, we should choose the one maximizing the
complexity. However, we are still faced with the possibility of F2 being negative.

If F2(x) is negative at certain codimension-zero subregions in spacetime, an extremal
slice might have some patches lying inside these subregions. The functional will be maximal
if, inside this patches, the maximal hypersurface is null, which is not a sensible result. So we
use the absolute value of F2 which turns an optimization program including both maxima
and minima into a single maximisation program.11 In the appendix A, we show the surfaces
extremizing the functional W (F2) also extremize W (|F2|).12 Nevertheless, positive measures
cannot capture all the information of the sign of F2 so, in order to do it, one solves the
problem (just with positive measures) and then constructs the surface Σ̃. Then, those threads
that intersect Σ̃ at a point x such that F2(x) is negative, must have their sign changed.

11One approach is to consider both positive and negative measured threads in the optimization program.
However this does not work as we show in appendix B.

12In [26] it was pointed out that the positivity of complexity required taking only positive functions F2.
This was implicitly done in [19, 20].
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In contrast to the previous case, where the output of the optimization program was the
volume of the maximal surface homologous to σA, we want a program whose solution is the
maximum among the integral of F2(x) over all the surfaces homologous to this boundary
region. To implement this, consider the following optimization program:

min
∫
P
dµ, s.t. ρ(x) ≥ |F2(x)|, ∀x ∈ M, (3.1)

where µ(p) is non-negative and F2(x) is some function defined at every point in the manifold
(which may take positive or negative values). The Lagrangian (λ(x) ≥ 0) is:

L[µ, λ] =
∫
P
dµ+

∫
M
dd+1x

√
−gλ(x)

(
|F2(x)| −

∫
P
dµ∆(x, p)

)
=
∫
M
dd+1x

√
−gλ(x)|F2(x)| +

∫
P
dµ

(
1 −

∫
M
dd+1x

√
−gλ(x)∆(x, p)

)
=
∫
M
dd+1x

√
−gλ(x)|F2(x)| +

∫
P
dµ

(
1 −

∫
p
dsλ(y(s))

)
.

(3.2)

The dual program is then:

max
∫
M
dd+1x

√
−gλ(x)|F2(x)|, s.t.

∫
p
dsλ ≤ 1, ∀p ∈ P , (3.3)

where the inequality stems from requiring the minimum of the Lagrangian to be finite.
The argument for Slater’s condition to be satisfied is similar to the one given in the

previous section for complexity-volume. Let us cover the whole spacetime with tubes of
unit transverse area. We can find the point of the tube with the maximum value of |F2(x)|,
and fill the tube with a greater (but finite) number of threads. Hence the constraint at
every point is strictly satisfied. This implies strong duality which means that the solution
of (3.1) and (3.3) must coincide.

In this case a feasible λ(x) is a delta function supported on a Cauchy slice Σ with a fixed
boundary. This gives a lower bound on the solution of (3.3)

max
∫
M
dd+1x

√
−gλ(x)|F2(x)| ≥ max

∫
Σ
ddσ

√
h|F2(x)|. (3.4)

We can find the upper bound by using Theorem 1 as follows

max
∫
M
dd+1x

√
−gλ(x)|F2(x)| ≤

∫
M
dd+1x

√
−g|dψ||F2(x)|, (3.5)

where ψ : M → [−1/2, 1/2] s.t. ψ|Ac = −1/2, ψ|A = 1/2 and |dψ| ≥ λ(x). Using the
coarea formula∫

M
dd+1x

√
−g|dψ||F2(x)| =

∫ 1/2

−1/2
dc

∫
Σ(c)

ddσ
√
h|F2(x)| ≤ max

∫
Σ
ddσ

√
h|F2(x)| (3.6)

where Σ(c) are level sets of ψ homologous to A.
Since the upper and lower limits of (3.3) are same, it is the optimal solution.

min
∫
P
dµ = max

∫
Σ
ddσ

√
h|F2(x)|. (3.7)
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Strong duality states that the maximum of the integral of |F2| on Σ is equal to the
minimum measure of the set of all threads with density constraints. Clearly, we can interpret
this program as searching for the surface of maximum volume with respect to a re-scaled
metric ḡµν such that

√
−ḡ = |F2|

√
−g.13 Notice that the program calculates the right-hand

side of (3.7) but does not provide the location of Σ̃. To obtain it, we need to resort to
complementary slackness. It states that at every feasible point:

λ̃(x)(F2(x) − ρ̃(x)) = 0, ∀x ∈ M (3.8)

Therefore, for points at which λ(x) ̸= 0 the inequality constraint gets saturated i.e. ρ(x) =
|F2(x)|. This allows us to reconstruct the surface Σ̃. Having found the optimal surface Σ̃,
the next step is evaluating the observable OF1,F2 .

3.1.1 Case I: F1(x) = F2(x)

In the formulation of [19, 20], when F1(x) = F2(x), finding Σ̃ and obtaining the value of the
observable OF1=F2 is done in one step by maximizing (1.5). In threads language, the situation
is similar, except for a subtlety encountered if F2 is negative in some region. Recall that in
section 3.1 we argued that to find Σ̃ we take |F2(x)| in equation (3.1). But to evaluate the
observable we should take the sign of F2 into account to reproduce the expected results (1.5).
We will see that this requires including negative measure threads when evaluating OF1=F2 .

Consider the optimal configuration and the points x where each thread crosses Σ̃, that is
x = p ∩ Σ̃. Each of the threads that goes through a point where F2 < 0 should contribute
negatively to the observable. Thus, we must include positive and negative measure threads,

∀x ∈ Σ s.t. F2(x) < 0, µ′(p) = −µ(p), x = p ∩ Σ̃,
∀x ∈ Σ s.t. F2(x) ≥ 0, µ′(p) = µ(p), x = p ∩ Σ̃,

(3.9)

where µ(p) > 0. The integral over µ′(p), then gives the required generalized complexity,

OF1=F2 =
∫
P
dµ′ =

∫
Σ̃
ddσ

√
hF2(x). (3.10)

3.1.2 Case II: F1(x) ̸= F2(x)

In section 3.1 we argued that ρ(x) = |F2(x)|, ∀x ∈ Σ. Thus,∫
Σ̃
ddσ

√
hρ(x) =

∫
Σ̃
ddσ

√
h|F2(x)|. (3.11)

It is convenient to discretize this integral in order to provide a cleaner geometrical inter-
pretation. Suppose that threads intersect the surface Σ̃ at m different points. Notice that
m ≤ #threads since two or more threads can cross Σ at the same point. We will partition the

13The fact that the function F2(x) can be equal to zero at a certain region of spacetime might worry the
reader. However, the nature of the maximization program will make the optimal surface not to intersect these
regions. There are examples in which this sentence might not be true. For instance, suppose that inside the
bulk domain of dependence of any Cauchy slice anchored to σA there is a closed shell where F2 = 0 while
outside F2 ̸= 0 but F2 ≪ 1 and inside F2(x) ≫ 1. The optimal Cauchy surface will clearly cross the shell
although F2(x) = 0 over it.
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maximal surface into a set of smaller areas Ai, i = 1, . . . ,m such that,
∫

Ai
ddσ

√
h|F2(σ)| = ni

where ni is the number of threads going through Ai. Due to linearity of the integral,∫
Σ̃
ddσ

√
h|F2(σ)| =

∑
i

∫
Ai

ddσ
√
h|F2(σ)| =

∑
i

µ(pi), (3.12)

If every single Ai has a small enough area14

∫
Ai

ddσ
√
h|F2(σ)| ≈ Area(Ai)|F2(xi)|, (3.13)

where xi is the intersection of the thread i with Σ̃. Thus, for threads appearing in the
optimal configuration we have

µ(pi) = 1
ni

Area(Ai)|F2(xi)|, (3.14)

where Ai is the area enclosing pi. In virtue of (3.13) and (3.14), the observable OF1,F2 can
be obtained by rescaling the measure of each thread by F1(xi)/|F2(x)|. Indeed,

OF1,F2 =
∑

i

µ(pi)
F1(xi)
|F2(xi)|

≈
# threads∑

i=1

1
ni

Area(Ai)F1(xi) ≈
# areas∑

i=1
Area(Ai)F1(xi)

≈
∫

Σ̃
ddx

√
hF1(x).

(3.15)

A couple of remarks are in order. First, note that the original measure µ is strictly
positive since it is the solution of maximizing |F2(x)|. However, the multiplicative factor
takes the sign of the function F1(x), and thus, the final observable also depends on the
sign of the latter function. Second, µ, used to determine Σ̃, has by construction a value
equal to 0 or 1 on each thread. However, the rescaling makes the image of µ′ to be the
real numbers and not just the finite set {0, 1}.

3.2 Codimension-zero observables

Once we have analysed in detail the thread formalism that allows the computation of
generalized complexities, one can go one step further and not restrict just to programs that
in the end yield a solution localized at a codimension-one surface, but it can be also extended
immediately to codimension-zero surfaces, as shown in [20]. The underlying idea followed
in the latter paper is an extension of the functional (1.5) such that it is also evaluated on a
codimension-zero region V in the bulk, as stated in (1.6) that we recall here

WG2,F2,±(V) =
∫

Σ+
ddσ

√
hF2,+(gµν ;Xµ

+) +
∫

Σ−
ddσ

√
hF2,−(gµν ;Xµ

−)

+ 1
ℓ

∫
V
dd+1x

√
−gG2(gµν),

(3.16)

14In a holographic CFT the number of degrees of freedom, and therefore the number of threads, scales like
N2. Thus, each Ai has a small area and the approximation (3.13) holds.
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where Σ± are two codimension-one surfaces (with volume form
√
hddσ), V the region enclosed

by these two surfaces and Xµ
± are the embeddings of Σ±. Finding the previous surfaces

reduces to an extremization of this functional under changes of Xµ
±

δX±

[
WG2,F2,±(Ṽ)

]
= 0. (3.17)

In general, the extremization of the functions is hindered by the appearance of the
volume (or codimension-zero) term. One simplifying situation occurs when the function G2
admits a primitive function G̃2, in such a way that Stokes’ theorem can be applied, the
functional may be recast as

WG2,F2,±(V) =
∫

Σ+
ddσ

√
h[F2,+(gµν ;Xµ

+) + G̃2(gµν ;Xµ
+)]

+
∫

Σ−
ddσ

√
h[F2,−(gµν ;Xµ

−) − G̃2(gµν ;Xµ
−)],

(3.18)

and both Σ+ and Σ− can be obtained from two different optimisation programs

δX+

(∫
Σ̃+

ddσ
√
h[F2,+(gµν ;Xµ

+) + G̃2(gµν ;Xµ
+)]
)

= 0,

δX−

(∫
Σ̃−

ddσ
√
h[F2,−(gµν ;Xµ

−) − G̃2(gµν ;Xµ
−)]
)

= 0.
(3.19)

Once Σ± are determined, the generalized complexity is given by

O[G1, F1,±,VG2,F2,± ](ΣCFT) = 1
GNℓ

∫
Σ̃+[G2,F2,+]

ddσ
√
hF1,+(gµν ;Xµ

+)

+ 1
GNℓ

∫
Σ̃−[G2,F2,−]

ddσ
√
hF1,−(gµν ;Xµ

−)

+ 1
GNℓ2

∫
Ṽ[G2,F2,±]

dd+1x
√
−gG1(gµν).

(3.20)

Notice that the extremizations in (3.19) resemble much like that the one solved in
section 3.1, fact that leads us to think that one can find these surfaces repeating exactly the
same steps as before. First, we propose the following program to compute Σ+

min µ+(P ), s.t. ∀x ∈ M ρ+(x) ≥ |F2,+(x) + G̃2(x)|. (3.21)

Its dual program is

max
∫
M
ddx

√
−gλ+(x)|F2,+(x) + G̃2(x)| s.t.

∫
p
dsλ+(x) ≤ 1 ∀p ∈ P+. (3.22)

where P+ is the set of threads that go from Ac to A. Although both P+ and P− are exactly
the same set, we put the labels ± to differentiate the families of threads that are employed to
obtain Σ̃+ from the homologous ones used to obtain Σ̃−. Because of the same argument as
before, the solution to this program is the integral of |F2,+(x)+G̃2(x)| over Σ̃+. Similarly, one
can obtain Σ̃− with an equivalent program using a measure µ−(p). In this case, the primal
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Figure 2. Two different measures µ+ and µ− at each x ∈ M.

program differs slightly from (3.21) due to a change in the density constraint introduced
to match with the second line in (3.19)

min µ−(P ), s.t. ∀x ∈ M ρ−(x) ≥ |F2,−(x) − G̃2(x)|, (3.23)

but the procedure is exactly the same which gives a dual as:

max
∫
M
ddx

√
−gλ−(x)|F2,−(x) − G̃2(x)|, s.t.

∫
p
dsλ−(x) ≤ 1 ∀p ∈ P−. (3.24)

It is a noteworthy fact that in this case we have two families of threads that do not
interact among themselves, one associated to Σ̃+ and another one to Σ̃− (see figure 2), each
of them associated to the measures µ+ and µ− respectively. Again, in order to reconstruct
the surfaces from the optimal thread configuration, it is only necessary to search those points
at which ρ+(x) or ρ−(x) saturate the constraints, since this set of points constitute the
support of the Lagrange multipliers λ+(x) and λ−(x).

As done in the previous sections, the optimization program would give the observable in
the case of F1,±(x) = F2,±(x), G1(x) = G2(x) (non-negative). In contrast, when F1,±(x) ̸=
F2,±(x), G1(x) ̸= G2(x), we have to perform a rescaling of the measures analogous to that
shown in section 3.1.2. More concretely, complexity would be given by

OF1,±,F2,±,G1,G2 =
#P+∑
i=1

µ+(pi)
F1,+(xi) + G̃1(xi)
|F2,+(xi) + G̃2(xi)|

+
#P−∑
i=1

µ−(pi)
F1,−(xi) − G̃1(xi)
|F2,−(xi) − G̃2(xi)|

=
#P+∑
i=1

µ′+(pi) +
#P−∑
i=1

µ′−(pi),

(3.25)

where in the last equality, we have made the redefinition µ′± = µ±
F1,±(xi)±G̃1(xi)
|F2,±(xi)±G̃2(xi)|

. We have

again made the assumption here that the function G1 has a primitive G̃1 so that the integral
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over a codimension-zero region can be reduced to an integral over the codimenion-1 surfaces.
In the next section we discuss the cases where this is not possible.

3.2.1 CV 2.0 and CA

In general, the computation of observables evaluated on codimension-zero surfaces is hard
to execute. The main reason is found in the fact that our formalism is highly based upon
the assumption G2(x)√−gdd+1x = d

(
G̃2(x)

√
hddσ

)
, where √

−gdd+1x is the volume form
of the spacetime while

√
hddσ± is corresponding to the surface Σ̃±. Even in the simplest

cases, as for instance, when G2(x) is constant, finding G̃2(x) is a highly non-trivial exercise
whose solution is not formally guaranteed.

As in [20] we will assume the existence of a G̃2(x) such that the associated G2(x) is
constant and take F1± = F2± = α± → 0. In [20] it is shown the solutions to this problem are
two surfaces Σ̃± such that Σ̃+ ∪ Σ̃− is the boundary of the Wheeler-de Witt patch.

Once the surfaces are known, the observable OF1±,F2±,G1,G2 would be determined after
integrating the function G1 in the region delimited by these two surfaces and F1+ and F1−
over Σ̃± respectively. The contribution of the latter surfaces is determined following the
same approach as in 3.1.2. Nonetheless, the piece evaluated on the codimension-zero surface
cannot be extracted from the threads already presented and finding a new way of perform
this calculation becomes a central objective. Note that this is conceptually different from
what has been previously done in the literature since until now the structure of the threads
away from the optimizing surface played no role in the observables. However, in the case
of codimension-zero observables, the threads themselves are contained in the region. Here
we will take a pragmatic approach; we motivate how one can perform the calculation of
the observable and leave questions about the interpretation and the exploration of other
possible methods for future work.

First note that the trace of the extrinsic curvature tensor can be employed to parametrize
the set of hypersurfaces of constant K homologous to the boundary region σA [27]. Let us
select a finite but large set of N+1 of them. This set will be denoted with D = Σ0,Σ1, . . . ,ΣN

where Σ0 = Σ̃−, ΣN = Σ̃+. In particular, we want two contiguous surfaces to be very close
one to the other. We look at the intersection points between threads and Σ0 and construct a
line perpendicular to this surface with constant tangent vector. We illustrate this construction
in figure 3. In case several threads intersect at the same point in Σ̃+, we just build one line.
These lines intersect Σ1 at another set of points. We can repeat the same procedure until
the space between Σ̃+ and Σ̃− is sewed with a set of threads. Then, we find a tessellation
of each hypersurface in D.

We will label each area Aij with two indices, where the first index identifies the hyper-
surface and the second one labels the infinitesimal area element in it. If there are n threads,
the observable would approximately be given by

OF1±,F2±,G1,G2 =
∫
V
dd+1xG1(x) ≈

N−1∑
i=0

n∑
j=1

Aij

∫ si+1

si

dsjG1(x) (3.26)

where sj is employed to parametrize the thread j and si is the value of this parameter when
the thread intersects the hypersurface Σi.
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Figure 3. Foliating spacetime with constant curvature slices and sewing them with threads.

To see the specific cases of interest we set G1(x) = 1, ∀x ∈ M and see that the observable
becomes the spacetime volume of the Wheeler-deWitt patch, thus giving us the CV 2.0 result.
The less trivial case is found by setting G2(x) to be the Lagrangian density at each point
L(x). Then the observable becomes the action of the Wheeler-deWitt patch as required
by Complexity Action.

Note that our construction picks the points from one set of threads which saturate the
surface Σ̃− and builds up infinitesimal area and volume elements from that. Alternatively,
we could have started from the set of threads that saturates Σ̃+ and built this structure in
the past direction. For discrete set of threads, these two methods will give different solutions.
However as we go to the continuum limit, the answers will converge to the same value.

4 Conclusions

In [19, 20] the authors proposed an infinite family of generalized holographic complexities.
The existence of a large number of gravitational observables that reproduce the behavior
necessary to be dual of complexity, underscores the fact that our holographic understanding
of quantum complexity still needs to be developed much further.

In the past, bit threads have provided an intuitive understanding of holographic entan-
glement. Therefore, it is natural to ask if Lorentzian threads can provide a formulation
of generalized complexities that would shed some light on their interpretation. In that
spirit, in this paper we initiate the study of generalized complexities in the language of
Lorentzian threads. For the standard maximal volume complexity, CV, the work of [11]
proposes the interpretation of Lorentzian threads as “gatelines” where each thread going
from the complementary past of a boundary subregion to the subregion itself represents one
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gate of unitary evolution. We find that to understand generalized complexitites it useful to
reformulate the problem using the language of distributions and measures [23] instead of
flows as done in [11]. We encountered subtleties associated with the fact that the generalized
observables are defined by functions that can be positive or negative in different regions.
We find it necessary to introduce threads with negative contributions or negative measures.
With all these ingredients, we find an optimization program to calculate the infinite family
of codimension-one, or generalized volume, observables. We also propose a way of tackling
the codimension-zero observables, although much work needs to be done in this case. Our
works opens several directions of research:

• Thread classes. Can we identify subclasses of threads distributions or equivalently,
complexity observables by demanding they satisfy other properties? For example, we can
ask if there are particular thread configurations that encode Einstein’s equations [28–30],
or investigate issues of unitarity in time asymmetric situations as was done in [31].
Another related question is, can we correlate additive properties with the behavior of
F1? That is, can we identify the behavior of F1 required to produce a complexity that
is superadditive/subadditive?

• Explicit flow constructions. The methods developed in [11] could be useful to find
explicit flow constructions for different observables. Furthermore, our approach is
agnostic regarding the existence of a horizon. Thus, these constructions would allow
us to ask questions regarding the interior of the black holes in terms of threads in the
spirit of [32].

• Interpretation of threads beyond CV. It has been proposed [11] that for the maximal
volume prescription, CV, the threads represent gatelines. However, a direct interpreta-
tion of threads as gatelines is not so clear even in the other familiar example of CA. To
what extent can still think of threads as gatelines in generalized complexities? This is
an open question.

• Negative measure threads. We have shown the necessity of introducing negative measure
threads to formulate generalized complexities if F1(x) is negative in some region. Naively,
we can picture negative measure threads as reducing the number of operations needed to
construct a target state. Thus, negative measure threads could lead to scenarios where
constructing the whole state is less costly than constructing a subsystem. It is tempting
to interpret negative measure threads as anti-unitary gates. However, the mapping
between threads and gates is still, in our opinion, at a heuristic, speculative, level. We
believe more work is needed to put these statements in firm footing. Finding the correct
interpretation of threads in a generalized complexity framework and in particular the
interpretation of negative measure threads is a question we hope to return to shortly.
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A Proofs of Theorem 1 and Theorem 2

In this appendix we will prove the theorems used in section 2.2 and 3.1.

Theorem 1. Let M be a Lorentzian manifold, A, B two complementary subsets of the
boundary such that J+(∂A)|∂M = B and J−(∂B)|∂M = A, P the set of timelike, future
directed curves going from A to B and λ(x) a non-negative function on M. Then, statements
1) and 2) are equivalent:

1) ∃ψ : M → [−1/2, 1/2] s.t. ψ|A = −1/2, ψ|B = 1/2, |dψ| ≥ λ, dψ timelike FD

2) ∀p ∈ P ,
∫

p
dsλ ≤ 1, with s the proper distance along p.

Proof. We will follow a similar derivation as in [23]. Let us assume that 1) holds. Therefore
one finds:

1 = ψ|BA =
∫

p
dψ =

∫
p
ds
dψ

ds
=
∫

p
ds
dyµ

ds
∂µψ =

∫
p
ds
dyµ

ds
∂νψgµν (A.1)

where yµ is the trajectory of the thread. Before going one step further, let us take into
account that dψ is timelike and future directed. The vector field dual to this one (∂µψ∂µ)
will be also timelike but past directed. As the thread is directed to the future, the vector field
dyµ

ds ∂µ is future directed. It is easy to show that, under these circumstances, gµνu
µvν ≥ |u||v|

for u timelike, future directed and v timelike, past directed. Hence

1 ≥
∫

p
ds

∣∣∣∣dyµ

ds

∣∣∣∣ |dψ| (A.2)

Provided that, by definition of proper distance,
∣∣∣dyµ

ds

∣∣∣ = 1, one finds

1 ≥
∫

p
ds|dψ| ≥

∫
p
dsλ (A.3)

In other words,
∫

p dsλ ≤ 1, reaching in this way 2).
Now, we have to show the other implication. Let us assume 2) and rewrite the integral

over the thread as
∫

p dsλ =
∫

p dt| − ẋ|λ. In this expression −ẋ is the covector associated the
tangent to the curve p. The reason why we add a minus sign is that the tangent vector is
future directed. We define

ψ−(y) := sup
p timelike

from A to y

∫
p
dt| − ẋ|λ, ψ+(y) := sup

p timelike
from y to B

∫
p
dt| − ẋ|λ. (A.4)
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where the supremum is over all the curves going from A to y and from y to B respectively.
By assumption

ψ−(y) + ψ+(y) ≤ 1 (A.5)

and also:
lim
y→A

ψ−(y) = 0, lim
y→B

ψ+(y) = 0 (A.6)

Let us now calculate the gradient of ψ−. Notice that the integrand is a differentiable
function of ẋ since it corresponds to timelike future directed curves. To be able to apply the
Hamilton-Jacobi formula15 [23], we have to remark that the optimal solution may have a
lightlike tangent vector. In order to overcome this problem, we will consider the domain to
be the whole tangent space and implement the constraint by defining the integrand to equal
−∞ whenever the velocity is outside the future light cone.

ψ−(y) = sup
q timelike

from A to y

∫
q
dt

{
| − ẋ|λ −ẋ ∈ i+

−∞ otherwise ,

ψ+(y) = sup
q timelike

from y to B

∫
q
dt

{
| − ẋ|λ −ẋ ∈ i+

−∞ otherwise .

Here, i+ is the set of non-spacelike, future directed one-forms. If −ẋ is timelike (which is
the case of interest for us), we find that π±µ = ∂ẋµ(| − ẋ|λ) = −λẋµ/| − ẋ|. Consequently

|dψ±|2 = λ2ẋµẋ
µ

| − ẋ|2
≥ λ2 (A.7)

Therefore |dψ±| ≥ λ. Moreover, setting

ψ(y) = ψ−(y) − ψ+(y)
2(ψ−(y) + ψ+(y)) , (A.8)

one may immediately realize that ψ|A = −1/2 and ψ|B = 1/2 and, taking into account (A.7)

|dψ| ≥ ψ+(y)
(ψ−(y) + ψ+(y))2 |dψ−| + ψ−(y)

(ψ−(y) + ψ+(y))2 |dψ+| ≥
1

ψ+(y) + ψ−(y)λ ≥ λ. (A.9)

Proving in this way that 2) implies 1).

We now proceed with Theorem 2 and that we recall here

Theorem 2. Let M be a d+ 1-dimensional Lorentzian manifold, σ a Cauchy slice living on
the boundary of M and Σ a codimension-one Cauchy surface whose boundary coincides with
σ. The extremization of the functional

W =
∫

Σ
ddx

√
hF2, (A.10)

under changes of the integration manifold Σ provides the same extrema as the extremization
of the functional

W ′ =
∫

Σ
ddx

√
h|F2|. (A.11)

15Hamilton-Jacobi formula assures that the variation of the on-shell action after a modification in the final
position is given by the canonical momentum in its final value.
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Proof. We first remark that the variation of the position of the surface Σ in our case cannot
be interpreted as a modification of the background metric gµν but is given by a modification
of the embedding coordinates Xµ (do not confuse with xµ, which represent the spacetime
coordinates). Furthermore, apart from the surface, the function F2 will also have an explicit
dependence in these embedding coordinates. The procedure we are going to follow is analogous
to that shown in appendix B of [33].

For simplicity, we will write the volume form of Σ as dΩ = ddx
√
h and taking into account

that the variation of this form generated by a vector field δX (corresponding to the variation
of the position of the surface)

δdΩ = £δXdΩ. (A.12)
The displacement vector δX might be decomposed as the sum of two terms: one normal

to Σ and another tangent to the latter surface. That is [33]

δXµ = δanµ + δbµ,

δa = −nµδX
µ,

δbµ = hµ
νδX

ν ,

(A.13)

where nα is the vector normal to Σ. In can be shown that, δdΩ be written as [33]

δdΩ = (Diδb
i + δaK)dΩ, (A.14)

where K is the extrinsic curvature of Σ, Di is the covariant derivative induced on it and i

runs from 1 to d. Hence, the variation of δW reads

δW =
∫

Σ

(
δdΩF2 + dΩ ∂F2

∂Xµ
δXµ

)
. (A.15)

Applying integration by parts and Stokes theorem

δW =
∫

Σ

[
δaKF2 + ∂F2

∂Xµ
(δbµ + nµδa) −DµF2δb

µ
]
dΩ +

∫
∂Σ

√
|γ|F2δb

idσi (A.16)

where γ is the deteminant of the induced metric on ∂Σ. Keeping in mind that we do not
vary of the boundary’s surface, the last term just vanish. On the other hand, the extremality
condition imposes that δW = 0 for arbitrary variations δa and δbi so

[
KF2 + ∂F2

∂Xµnµ
]

Xµ=X̃µ
= 0[

∂F2
∂Xµ −DµF2

]
Xµ=X̃µ

= 0
∀X̃ ∈ Σ. (A.17)

In particular, if there is a point X̃ ∈ Σ such that F2(X̃) ≥ 0 it is immediate that
[
K|F2| +K ∂|F2|

∂Xµ nµ
]

Xµ=X̃µ
= 0[

∂|F2|
∂Xµ −Dµ|F2|

]
Xµ=X̃µ

= 0
(A.18)

or if F2(X̃) ≤ 0 −
[
K|F2| + ∂|F2|

∂Xµ nµ
]

Xµ=X̃µ
= 0

−
[

∂|F2|
∂Xµ −Dµ|F2|

]
Xµ=X̃µ

= 0
∀X̃ ∈ Σ. (A.19)

So it is verified that for any configuration that extremizes
∫

Σ d
dσ

√
hF2 will also extremize∫

Σ d
dσ

√
h|F2|.
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B Comments on negative measures

Many of the subtleties in the program arise from the fact that F2 can be negative. In this
appendix, we discuss another approach we could naively take and show why it doesn’t work.
We start with the assuming the existence of both positive and negative measure threads
in the optimization program itself.

Suppose that instead of optimizing W (|F2|) in section 3.1, we had optimized W (F2). In
the case where this function is non-negative everywhere the previous derivation would be
completely valid and would lead to the same optimal surface Σ̃. However, if F2 is negative
at some patch, an inconvenience would appear, since the optimal solutions for W (|F2|) and
W (F2) might be different. This fact will become clearer later. In order to overcome this
problem, we are going to define a measure µ that assigns a value of 0, 1 or −1 to each thread.
That is, µ : p ∈ P → {−1, 0, 1}. This function can be split as the sum of two simpler ones
µ = µ+ − µ− such that µ± : p ∈ P → {0, 1}. The density function does not modify its
definition, but will be expressed as the sum of two densities:

ρ(x) =
∫
P
dµ

∫
p
dsδ(x− p(s)) =

∫
P
dµ+

∫
p
dsδ(x− p(s)) −

∫
P
dµ−

∫
p
dsδ(x− p(s))

= ρ+(x) − ρ−(x),
(B.1)

with
ρ± ≡

∫
P
dµ±

∫
p
dsδ(x− p(s)). (B.2)

We will propose the following program to find the extremal surface Σ:

min
∫
P
dµ s.t. ρ+ − ρ− ≥ F2(x) ∀x ∈ M. (B.3)

Here, it is important to remark that (as was explained before), although only one
constraint is written, we are saying that there is one constraint per point in spacetime. This
is the reason why, when the Lagrangian is proposed, an integral has to be introduced. This
fact is crucial to understand why negative measures have to be introduced. Suppose that
the function F2(x) is negative in a certain subset U ⊆ M and that we only work with
positive measures. As a consequence of complementary slackness [24], it is known that,
for the optimal configuration

λ(x)(F2(x) − ρ+(x)) = 0 ∀x ∈ M, (B.4)

and in particular

λ(x)(−|F2(x)| − ρ+(x)) = 0 ∀x ∈ U. (B.5)

Notice that for x ∈ U , either λ(x) = 0 or ρ+ = −|F2(x)|. By definition ρ+(x) is always
non-negative so the last equality will never hold and λ(x) = 0 ∀x ∈ U . At a first sight, this
does not seem to be a great problem. Nonetheless, it becomes evident when U = M since it
would imply λ(x) = 0 everywhere and we do not get any surface Σ as a solution. Now, let us
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Figure 4. Negative measured threads where F2(x) is negative.

write down the Lagrangian associated to our program using signed measures

L =
∫
P
dµ+ −

∫
P
dµ− +

∫
M
ddx

√
−gλ(x)(F2(x) − ρ+ + ρ−)

=
∫
M
ddx

√
−gλ(x)F2(x) +

∫
P
dµ+

(
1 −

∫
p
dsλ

)
+
∫
P
dµ−

(∫
p
dsλ− 1

)
.

(B.6)

The dual program is then

max
∫
M
ddx

√
−gλ(x)F2(x), s.t.

∫
p
dsλ ≤ 1 ∀p ∈ P+,

∫
p
dsλ ≥ 1 ∀p ∈ P−. (B.7)

One might think that the optimal solution takes place when λ(x) is a delta function
supported on the Cauchy slice that makes the function

√
hF2(x) maximal (see figure 4)

such that:

min
∫
P
dµ = max

∫
Σ

√
hF2(x). (B.8)

The problem found with this approach is the fact that, as we are considering functions
that might be negative in some patches, a maximization program might not capture all the
possible solutions because those that minimize the functional are not covered in this case.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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