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A B S T R A C T   

The anisotropic Fourier Heat Conduction Equation (FHCE) and the multidimensional phonon Boltzmann 
Transport Equation (BTE) were solved numerically in cylindrical coordinates and in time domain to simulate a 
Time Domain Thermo-Reflectance (TDTR) experimental silicon/aluminum substrate/transducer setup. The out- 
of-phase response of the probe laser was predicted at various beam offset distances for a pump laser pulse fre
quency of 80 MHz and modulation frequency of 10 MHz and compared against experimental measurements for a 
silicon substrate. The isotropic FHCE was also solved for comparison. Results show that the isotropic FHCE with 
bulk thermal conductivity of 145 W/m/K significantly underpredicts the out-of-phase temperature difference, 
particularly at smaller beam offsets. With an isotropic thermal conductivity of 105 W/m/K, the computed results 
match experimental data at smaller beam offsets well, but overpredicts the experimental data at larger beam 
offsets. An almost-perfect match is obtained by using an anisotropic thermal conductivity wherein the radial (in- 
plane) thermal conductivity is set to 85 W/m/K and the axial (through-plane) conductivity is set to 130 W/m/K. 
The multidimensional frequency and polarization dependent phonon BTE is next solved. The BTE results for the 
out-of-phase temperature difference match experimental observations well at small and intermediate beam 
offsets, but overpredicts the experimental data at larger beam offsets. FHCE results are fitted to the BTE pre
dictions, and the extracted (best fit) thermal conductivity is found to be 110 W/m/K.   

1. Introduction 

Time Domain Thermo-Reflectance (TDTR) is a noncontact optical 
pump probe technique that has found prolific usage for the study of 
thermal transport at small time and length scales. “Small” refers to 
length scales that are smaller or comparable to the mean free paths of the 
energy-carrying phonons in a semiconductor material. In a TDTR 
experiment, the sample is covered by a thin metallic layer called the 
transducer. It is heated using a modulated and pulsed laser beam 
resulting in surface temperature (reflectivity) oscillations. These oscil
lations are measured using a probe laser, which is also moved along the 
surface, i.e., away from the center of the pump laser, often referred to as 
beam offset, as illustrated in Fig. 1. The probe laser measures the trans
ducer surface temperature at a fixed duration after the pump laser pulse, 
and this is referred to as the delay time. The phase lag between the pump 
and the probe laser is fitted to model results to extract the thermal 
conductivity. Consequently, a mathematical model that adequately de
scribes the thermal transport in the system is required because, 

fundamentally, the measurements are made at the surface, while ther
mal conductivity is a volumetric property. 

The frequency-domain solution to the Fourier heat conduction 
equation (FHCE) is the most common and earliest mathematical model 
used for this purpose. First proposed by Cahill [1] for analyzing TDTR 
data, this approach has found prolific usage [2,3], and the Feldman al
gorithm [4] is used to treat multiple layers. Alternatively, numerical 
solution of the FHCE may be used to attain the same goal, as has been 
demonstrated by Saurav and Mazumder [5] for Frequency Domain 
Thermo-Reflectance (FDTR) experiments. Numerical solutions have the 
advantage that finite substrate thicknesses (as opposed to semi-infinite) 
and realistic boundary conditions, such as Newton cooling, can be easily 
incorporated into the model. 

The vast majority of studies in which the thermal conductivity has 
been extracted from either TDTR or FDTR experiments have used the 
isotropic FHCE for fitting the measured phase lag, in which it has been 
assumed that the thermal conductivity is same in all directions, or 
isotropic. A notable study by Wilson and Cahill [6] showed that it is 
difficult to accurately fit the measured TDTR data with an isotropic 
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FHCE solution, particularly when the probe laser spot is significantly 
offset from the pump laser spot. They proposed a frequency-domain 
solution to the anisotropic FHCE, and demonstrated, at least for their 
particular experiment, that a superior fit can be obtained by using an 
anisotropic thermal conductivity in which the in-plane conductivity is 
significantly smaller than the through-plane conductivity. 

The thermal conductivity extracted from both TDTR and FDTR ex
periments using the Fourier heat conduction equation has been found to 
change when the modulation frequency, laser spot size, and pulse widths 
of the pump laser are changed [1-3,7]. The Fourier law assumes that all 
energy carriers engage in infinite many collision (scattering) events 
regardless of the distance traversed. The dependence of thermal con
ductivity on the modulation frequency, laser spot size, or pulse width is 
attributed to the fact that when the laser modulation frequency is high, 
the thermal penetration depth, which is inversely proportional to the 
square root of the modulation frequency, is small, and can often be 
smaller than the mean free path of some of the energy-carrying phonons. 
Consequently, some phonons hardly scatter. This results in so-called 
ballistic-diffusive transport or quasi-ballistic transport. In this regime 

of transport, the effective thermal conductivity has been found to be 
smaller than the bulk value—a phenomenon known as thermal conduc
tivity suppression [7-9]. 

To capture the quasi-ballistic effects and predict the thermal con
ductivity suppression for different modulation frequencies, various en
hancements to Fourier law-based models have been proposed. One class 
of these models make use of the Hyperbolic Heat Conduction Equation 
(HHCE) [10-12], which accounts for finite velocity of the phonons by 
introducing a relaxation time as a parameter [11]. However, in the 
HHCE, all phonons are assumed to have the same velocity regardless of 
their type and frequency. An extension of the HHCE is the two-parameter 
models [13], in which the diffuse and ballistic phonons are treated 
differently by introducing an additional term in the Fourier heat con
duction equation that involves the characteristic ballistic heat transport 
length as an additional parameter. A two-band model has been proposed 
by Ramu and Bowers [14], in which a cut-off frequency was used to 
classify the phonons into ballistic and diffusive phonons. The ballistic 
phonons were then treated by introducing a higher-order correction 
term in the Fourier law that was derived from the phonon BTE. Wilson 

Nomenclature 

A area [m2] 
c specific heat capacity per unit volume [J m−3 K−1] 
D density of states per unit volume [m−3] 
f number density function 
f0 equilibrium number density function 
Gω,p spectral directionally integrated intensity [Wm−2 rad−1s] 
GC contact conductance [W m−2 K−1] 
ℏ Dirac constant = 1.0546 × 10−34 [m2kg.s−1] 
Iω,p spectral directional phonon intensity [Wm−2sr−1rad−1s] 
I0,ω,p equilibrium phonon intensity [Wm−2sr−1rad−1s] 
kB Boltzmann constant = 1.381 × 10−23 [m2kg.s−2K−1] 
kT thermal conductivity of transducer [W m−1 K−1] 
n̂ unit surface normal vector 
Nband total number of spectral intervals (or bands) 
Ndir number of solid angles (or directions) 
p phonon polarization index 
q heat flux vector [Wm−2] 
Q̇ heat transfer rate [W] 

r radial coordinate or radius [m] 
r position vector [m] 
ŝ unit direction vector 
t time [s] 
T absolute temperature [K] 
u internal energy [J m−3] 
V volume of cell [m3] 
z axial coordinate or thickness [m] 

Greek 
ρT density of transducer [kg m−3] 
θ polar angle [rad] 
υω,p phonon group velocity vector [m s−1] 
τω,p spectral relaxation time scale [s] 
ω angular frequency [rad s−1] 
ωL modulation frequency of pump laser [Hz] 
Ω solid angle [sr] 
ϕ phase lag [rad] 
ψ azimuthal angle [rad]  

Fig. 1. Schematic representation of a TDTR experimental setup along with depiction of the modulated power pulse train. The numbers shown correspond to the 
conditions used for simulation in this study. 
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et al. [15] proposed a two-channel model specifically to account for 
nonequilibrium phonons in the context of TDTR experimental data 
interpretation for Al/Si/Ge alloys. In another class of models, referred to 
as ballistic-diffusive models, the phonon intensity was split into a diffusive 
component and a ballistic component. It was first proposed by Chen 
[16], and later expanded to complex three-dimensional geometry by 
Mittal and Mazumder [17,18]. More recently, a model that introduces a 
hydrodynamic term in the Fourier heat conduction equation
—analogous to the advective term in the Navier-Stokes equation—has 
been proposed to capture ballistic effects [19]. 

The development of various approximate quasi-ballistic models that 
attempt to incorporate elements of the kinetic BTE into an otherwise 
diffusive Fourier model has been primarily prompted by the fact that the 
full-fledged phonon BTE is very challenging and time consuming to 
solve [20], although promising new algorithmic developments have 
been made on this front recently [21-26] to accelerate such computa
tions. Peraud and Hadjiconstantinou [27] performed Monte Carlo sim
ulations of phonon transport in a multidimensional optical pump-probe 
setup by using an energy-based deviational formulation. Only a single 
laser pulse was considered. This code was later used by Ding et al. [28] 
to simulate a single laser pulse of a TDTR experiment to demonstrate 
thermal conductivity suppression. Regner et al. [29] solved the 
one-dimensional (1D) BTE in frequency domain to extract the thermal 
conductivity accumulation and suppression functions. However, the 
influence of multidimensional thermal transport, which becomes 
apparent especially when the laser spot size is small, can only be 
captured by solving the multidimensional BTE. Ali and Mazumder [30] 
solved the full phonon BTE for TDTR experiments in a 2D planar setup 
and the model demonstrated thermal conductivity suppression and its 
dependence on the modulation frequency of the pump laser without the 
use of any additional tuning parameters. In recent studies, Saurav and 
Mazumder [31,32] simulated an FDTR experiment by solving the fre
quency and polarization dependent phonon BTE in cylindrical co
ordinates. The solution was advanced in time to a quasi-periodic state, 
enabling reliable extraction of the phase lag and exhibited good match 
with experimental measurements using two different relaxation 
time-scale models for acoustic phonons. These recent studies contrast 
previous studies [27,28] that only simulated a single laser pulse. 

In TDTR simulations reported in the literature [27,28,30,33], the 
pump laser is modeled as a heat flux with a Gaussian profile. This is also 
the assumption used in analytical models. This is done to avoid com
plexities associated with modeling laser absorption (photo
n-phonon-electron interactions) in the transducer. These assumptions 
essentially reduce the computations to a problem in which a transient 
heat conduction problem is solved with a time-dependent heat flux on 
the top. Despite these simplifications, TDTR experiments are particu
larly challenging to simulate since the pump laser is pulsed and the pulse 
duration is extremely short. To the best of the authors’ knowledge, there 
are only two previous studies that have reported simulation of a TDTR 
experimental setup using the multidimensional phonon BTE. A recent 
study by Hu et al. [33] conducted 3D simulations of a TDTR setup and 
demonstrated differences between BTE and FHCE predictions. The other 
study is a slightly earlier study by Ali and Mazumder [30]. The simu
lations performed by Ali and Mazumder [30] were in a 2D planar system 
and were not compared to experimental data. While this study was 
informative in understanding the numerical nuances of such a simula
tion, being 2D planar, it is not fully representative of the actual TDTR 
setup. Here, for the first time, an actual TDTR experimental setup is 
simulated by solving the phonon BTE in cylindrical coordinates. An 
isotropic phase-space is considered, and scattering is treated using the 
single-time relaxation approximation. The solution is advanced far 
enough in time such that the out-of-phase temperature change could be 
computed reliably and compared to experimental measurements. 
Additionally, both the isotropic and anisotropic FHCE equations are 
solved numerically to extract the thermal conductivity both by fitting 
the experimental data as well as by fitting the BTE results. 

2. Theory 

This section is divided into three subsections. In Section 2.1, the 
anisotropic FHCE is presented. In Section 2.2, the phonon BTE is pre
sented, and Section 2.3 presents the connection between the BTE and 
overall energy conservation (First Law). 

2.1. Anisotropic Fourier Heat Conduction Equation (FHCE) 

In the absence of convection, radiation, and any heat source, the 
energy conservation equation (First Law) may be written as [34] 

∂u
∂t

= ρc
∂T
∂t

= −∇⋅q (1)  

where u is the specific internal energy, t is time, and q is the conductive 
heat flux. The volumetric specific heat capacity is denoted by c, while 
ρ and Tdenote the density and temperature of the medium, respectively. 
The heat flux, in general, may be expressed using the anisotropic Fourier 
law of heat conduction [34] as 

q = −k : ∇T, (2)  

where k denotes the thermal conductivity tensor. If the off-diagonal 
terms in the thermal conductivity tensor are neglected, then substitut
ing Eq. (2) in Eq. (1), followed by expansion of the right-hand-side of the 
resulting equation in cylindrical coordinates, we obtain 

ρc
∂T
∂t

= kr
1
r

∂
∂r

(

r
∂T
∂r

)

+ kz
∂2T
∂z2 , (3)  

where kr and kz are the thermal conductivities in the radial (in-plane) 
and axial (through-plane) directions, respectively, as shown schemati
cally in Fig. 2. In Eq. (3), any azimuthal variation has been neglected, 
implying that it is valid only for a two-dimensional (2D) axisymmetric 
system. 

2.2. The phonon Boltzmann transport equation (BTE) 

The BTE is suitable for modeling phonon transport in semi
conductors, as phonons follow Bose-Einstein statistics and interact with 
each other via scattering events. The phonon BTE, under the single 
relaxation time approximation, may be written as [10,20] 

∂f
∂t

+ υ⋅∇f =
f0 − f

τ , (4)  

where f is the distribution function of an ensemble of phonons,f0 is the 
equilibrium number density function,τis the scattering time scale and υis 
the phonon group velocity. In general, f = f(t,r,K),where r denotes the 
position vector and K denotes the wave-vector. Here, it is assumed that 
the wave-vector space (Brillouin zone) is isotropic. Hence, it can be 
expressed conveniently [10] using a unit direction vector, ŝ, and a fre
quency ω. Thus, the distribution function,f , for each polarization p, is a 
function of seven independent variables, i.e., f = f(t,r, ŝ,ω,p),where the 
unit direction vector, ŝ, may be expressed in terms of the azimuthal 
angle, ψ , and polar angle, θ, as [35] 

ŝ = sinθcosψ î + sinθsinψ ĵ + cosθk̂. (5) 

If the Cartesian coordinate system is used to describe space, for 
example, one may write the functional dependence of fas f = f(t,x,y,z,θ,

ψ , ω, p). In other words, for a three-dimensional (3D) geometry,f is a 
function of 8 independent variables. Since polarizations are discrete, it is 
customary to think of f as being a function of 7 independent variables, 
with the implicit understanding that it is different for different polari
zations. The group velocity is also dependent on direction: υ = υ(ŝ,ω,p). 
The equilibrium Bose-Einstein distribution, on the other hand, is 
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direction independent: f0 = f0(ω,T), as is the relaxation time-scale: τ =

τ(ω,T, p). Following the seminal work of Majumdar [33], a phonon in
tensity may be defined in terms of the distribution function: 

ω, p = I(t, r, ŝ, ω, p) =
⃒
⃒υω,p

⃒
⃒ℏωfD(ω, p)

/
4π

I0,ω,p = I0(t, r, ω, p) =
⃒
⃒υω,p

⃒
⃒ℏωf0D(ω, p)

/
4π,

(6)  

where D(ω, p) is the density of states, and Iω,p is the spectral directional 
phonon intensity, while I0,ω,p is the equilibrium spectral phonon in
tensity. Substitution of Eq. (6) into Eq. (4) yields [36] 

∂Iω,p

∂t
+ υω,p⋅∇Iω,p =

I0,ω,p − Iω,p

τω,p
. (7) 

For any given frequency and polarization, the intensity, Iω,p, is a 
function of time, 3 space variables (in 3D), and 2 directional variables, 
making Eq. (7) a six-dimensional equation. Furthermore, it needs to be 
solved for all frequency and polarizations in order to determine the heat 
flux, as is discussed in Section 2.3. 

Solution of the BTE [Eq. (7)] necessitates boundary conditions for the 
intensity. Two types of boundary conditions are generally used [20]: (1) 
thermalizing, and (2) reflective. At a thermalizing boundary, phonons 
are emitted from it based on the equilibrium energy distribution and any 
phonon that strikes it immediately gets absorbed. The boundary con
dition is mathematically written as Iω,p(t, rw, ŝo, ω, p) = I0,ω,p(t, rw, ω, p), 
where rw is the position vector of the boundary or wall, and ŝo is the 
outgoing direction for the intensity. 

2.3. Heat flux and energy conservation (First law) 

Once the BTE [Eq. (7)] has been solved, the heat flux may be 
calculated from the phonon intensity using the relationship [20] 

q(t, r) =
∑

p

∫ωmax,p

ωmin,p

∫

4π

Iω,p(t, r, ŝ, ω, p)ŝdΩdω =
∑

p

∫ωmax,p

ωmin,p

qω,p(t, r)dω (8)  

where the integrals are over all solid angles Ω and the frequency range of 
each polarization; ωmax,p and ωmin,pare the maximum and minimum 
frequencies, respectively, corresponding to a given polarization, p. In Eq. 
(8), qω,p denotes the spectral heat flux while q denotes the total heat 
flux. Substitution of Eqs. (7) and (8) into Eq. (1), followed by some 
manipulation, yields [20]: 

∂
∂t

⎛

⎜
⎝

∑

p

∫ωmax,p

ωmin,p

ℏωD(ω, p)

exp[ℏω/kBT] − 1
dω

⎞

⎟
⎠

= −
∑

p

∫ωmax,p

ωmin,p

1
⃒
⃒υω,p

⃒
⃒

[
1

τω,p

( ⃒
⃒υω,p

⃒
⃒ℏωD(ω, p)

exp[ℏω/kBT] − 1
− Gω,p

)

−
∂Gω,p

∂t

]

dω

(9)  

where 

Gω,p =

∫

4π

Iω,pdΩ. (10) 

Eq. (9) is a nonlinear equation that may be solved to obtain the so- 
called pseudo-temperature [20,37], T, at any location within the 
computational domain and at any instant of time. In the section to 
follow, numerical techniques for solution of the anisotropic FHCE BTE 
are discussed. 

3. Numerical procedure 

3.1. Discretization of the anisotropic Fourier heat conduction equation 
(FHCE) 

The anisotropic FHCE is discretized by applying the standard finite- 
volume procedure [38] to Eq. (3). The central difference scheme is used 
for spatial discretization, while the forward Euler (or explicit) method is 
used for discretization in time. Application of these procedures results in 
the following discrete equation for control volumes (or cells) within the 
substrate (interior cells in Fig. 3): 

ρcΔzk
2rjΔrj

Δt
Tn+1

j,k = ρcΔzk
2rjΔrj

Δt
Tn

j,k

+

[
krΔzk

(
2rj + Δrj

)

Δrj + Δrj+1

](
Tn

j+1,k − Tn
j,k

)
+

[
krΔzk

(
2rj − Δrj

)

Δrj + Δrj−1

](
Tn

j−1,k − Tn
j,k

)

+

[
4kzrjΔrj

Δzk + Δzk+1

](
Tn

j,k+1 − Tn
j,k

)
+

[
4kzrjΔrj

Δzk + Δzk−1

](
Tn

j,k−1 − Tn
j,k

)

,

(11)  

where the radius of the (j,k)-th cell’s center is denoted by rj, while the 

Fig. 2. Schematic of the two-dimensional axisymmetric model used in the current study, along with boundary conditions used.  
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radial span (grid size) is denoted by Δrj. The axial span of the (j,k)-th cell 
is denoted by Δzk. The superscripts n and n + 1 denote values at the 
previous and current time-steps, respectively, such that t = nΔt, Δt 
being the time-step size. Likewise, finite-volume equations may be 
derived for cells adjacent to the boundaries. For example, for cells within 
the substrate and adjacent to the substrate-transducer interface, we 
obtain 

ρcΔzk
2rjΔrj

Δt
Tn+1

j,k = ρcΔzk
2rjΔrj

Δt
Tn

j,k

+2qʹ́
b,j

⃒
⃒
⃒
n
rjΔrj +

[
krΔzk

(
2rj − Δrj

)

Δrj + Δrj−1

](
Tn

j−1,k − Tn
j,k

)

+

[
4kzrjΔrj

Δzk + Δzk+1

](
Tn

j,k+1 − Tn
j,k

)
+

[
4kzrjΔrj

Δzk + Δzk−1

](
Tn

j,k−1 − Tn
j,k

)

, (12)  

where qʹ́
b is the heat flux from the transducer to the substrate (Fig. 3) 

and is discussed in more detail in Section 3.3. 

3.2. The finite angle method (FAM) 

The present work uses the finite angle method (FAM) [20,35] for 
solving the BTE [Eq. (7)]. The FAM is a variant of the Discrete Ordinates 
Method [35] that mitigates ray effects and guarantees energy conser
vation. In the FAM, the entire solid angle space is first split into a set of 
nonoverlapping smaller solid angles. These smaller solid angles may be 
based on equal subdivisions in θ and ψ , as shown in Fig. 4. The BTE [Eq. 
(7)] is first integrated over a volume [finite volume method in space on a 
structured mesh with cell index (j,k)], followed by finite solid angles to 
yield [20,35]: 

∂Ii,ω,p

∂t

⃒
⃒
⃒
⃒

(j,k)

V(j,k)Ωi +
⃒
⃒υω,p

⃒
⃒
∑Nf ,k

f=1
Ii,ω,p,f(j,k)

(
Si⋅n̂f

)
Af(j,k)

=
1

τω,p,(j,k)

(
Io,ω,p,(j,k) − Ii,ω,p,(j,k)

)
V(j,k)Ωi∀i = 1, 2, ..., Ndir

(13)  

where Ndir is the total number of discrete directions or finite solid angles, 
V(j,k)is the volume of the (j,k)-th cell, Af(j,k) is the area of the f-th face of 
the (j,k)-th cell, and 

Ωi =

∫

ΔΩi

dΩ =

∫θi+Δθi/2

θi−Δθi/2

∫ψ i+Δψ i/2

ψ i−Δψ i/2

sinθdθdψ = 2sinθisin
(Δψ i

2

)
Δψ i, (14)  

and 

Si = cosψ isin
(Δψ i

2

)
[Δθi − cos(2θi)sin(Δθi)]̂i

+sinψ isin
(Δψ i

2

)
[Δθi − cos(2θi)sin(Δθi)]̂j

+
(Δψ i

2

)
sin(2θi)sin(Δθi)k̂

(15) 

The subscript i for the intensity now denotes an intensity along a line 
of sight passing through the center of the solid angle, i.e., in the direction 
ŝ i(see Fig. 5). Finally, the face intensity in Eq. (13) is expressed in terms 

Fig. 3. Illustration of the mesh/stencil used for computations in the two different regions of the computational domain (transducer on top and substrate at 
the bottom). 

Fig. 4. Polar coordinate system used for angular discretization in the FAM.  
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of cell-center intensities using the first-order upwind or step scheme 
[35]: 

Ii,ω,p,f(j,k) =

{ Ii,ω,p,j,k if ŝi⋅n̂f > 0
Ii,ω,p,N(f)

if ŝi⋅n̂f < 0 , (16)  

where N(f) denotes the neighboring cell next to face f, as shown in Fig. 5. 
As a final note, in cylindrical coordinates, the volume appearing in 

Eq. (13) may be determined using V(j,k) =

∫zt(j,k)

zb(j,k)

∫ro(j,k)

ri(j,k)

2πrdrdz, where ri(j,k)

and ro(j,k)are inner and outer radii, respectively, of the (j,k)-th cell, while 
zb(j,k) and zt(j,k) are bottom and top z-coordinates, respectively, of the 
same cell, as shown on Figs. 3 and 4. For any horizontal face, the area is 

given by Af(j,k) = π
(

r2
o(j,k)

− r2
i(j,k)

)
, while for any vertical face, the area is 

given by Af(j,k) = 2πrf
(
zt(j,k) − zb(j,k)

)
. 

3.3. Treatment of the transducer 

The transducer is a thin metallic layer placed on top of the substrate, 
as shown in Figs. 1 and 2. In this study, heat conduction in the trans
ducer is treated using the isotropic FHCE. Furthermore, since the 
transducer is very thin, it is assumed that there is no temperature vari
ation within the transducer in the z direction (Fig. 2). The only variation 
is in the r direction. Under this premise, the computational domain may 
be discretized using a structured mesh along the r direction, as shown in 
Fig. 3. 

The governing equation for heat conduction in the transducer is a 
modified form of Eq. (3), and is written as 

ρTcT
∂TT

∂t
=

kT

r
∂
∂r

(

r
∂TT

∂r

)

+
(qʹ́

t − qʹ́
b)

zT
(17)  

where ρT, cT, kT, and zTare the density, specific heat capacity, thermal 
conductivity (assumed isotropic), and thickness of the transducer, 
respectively. The temperature of the transducer is denoted by TT. The 
heat fluxes at the top and bottom surfaces of the transducer are denoted 
by qʹ́

tand qʹ́
b, respectively. The heat flux on the top surface is the energy 

supplied by the pump laser, and is a known quantity, written as 

qʹ́
t =

{
qʹ́

L(r)[1 + sinωLt] for tp ≤ t ≤ tp + Δtp
0 otherwise

(18)  

where qʹ́
L(r) is the radially varying (assumed to be Gaussian) laser flux, 

and ωLis the modulation frequency of the pump laser. The instances 

where the laser pulses are turned on are denoted by tp, while the pulse 
widths (durations) are denoted by Δtp. The heat flux on the bottom 
surface of the transducer is not a known quantity. However, it can be 
related to the substrate through the relationship 

qʹ́
b = GC

(
TT − Ttop

)
(19)  

where Ttop is the local temperature on the top of the substrate surface, 
and GCis the contact conductance between the transducer and the sub
strate. Although Ttopis not directly known, it can be derived from the 
solution (of temperature) in the substrate, which in turn, requires so
lution of either the FHCE or the BTE in the substrate. This is done in a 
self-consistent manner, as described in Section 3.4. 

As a final step, applying the finite-volume procedure [38] for dis
cretization of Eq. (17), along with explicit (forward Euler) time dis
cretization, we obtain 

ρTcTzT
2rjΔrj

Δt
Tn+1

T,j = ρTcTzT
2rjΔrj

Δt
Tn

T,j +2
(

qʹ́
t,j

⃒
⃒
⃒
n

−qʹ́
b,j

⃒
⃒
⃒
n)

rjΔrj

+

[
kTzT

(
2rj + Δrj

)

Δrj + Δrj+1

](
Tn

T,j+1 −Tn
T,j

)
+

[
kTzT

(
2rj − Δrj

)

Δrj + Δrj−1

](
Tn

T,j−1 −Tn
T,j

)

(20)  

where superscripts n and n + 1 denote values at the previous and current 
time-steps, respectively. 

3.4. Solution algorithm 

This section is split into two subsections. In the first subsection, the 
solution algorithm to determine the temperature distribution using the 
FHCE is described. In the second subsection, the solution algorithm to 
determine the temperature distribution using the phonon BTE is 
described. 

3.4.1. Solution algorithm for the FHCE 
In order to compute the temperature distribution and heat flux in a 

TDTR setup using the FHCE and the explicit (or forward Euler) time 
marching procedure, the following steps are executed:  

1. The temperature of the entire solution (computational) domain is 
first initialized. This includes the transducer and the substrate. This 
also includes nonisothermal boundaries, such as the transducer top, 
and the top surface of the substrate. Physically, the entire system is at 
the ambient temperature initially.  

2. The flux at the bottom surface of the transducer is computed using 
Eq. (19).  

3. The discretized form of the FHCE in the transducer [Eq. (20)] is 
marched forward explicitly by one time step to determine the tem
perature of the cells in the transducer.  

4. The discretized form of the isotropic (kr = kz) or anisotropic 
(kr ∕= kz) FHCE [Eqs. (11-12) and other similar equations for cells 
adjacent to boundaries] is marched forward explicitly by one time 
step to determine the temperature distribution Tj,k inside the 
substrate.  

5. Eq. (19) is used again to compute the heat flux at the bottom surface 
of the transducer.  

6. Steps 3–5 are repeated, i.e., the solution is marched forward in time. 
The temperature distributions obtained in Steps 3 and 4 serve as 
initial conditions for the next time step. 

3.4.2. Solution algorithm for the BTE 
Determination of the (pseudo-)temperature distribution and heat 

flux in a TDTR setup using the explicit (or forward Euler) time marching 
procedure requires the following steps: 

Fig. 5. Schematic representation of geometric quantities used for finite volume 
discretization of the BTE. 
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1. The temperature of the entire solution (computational) domain is 
first initialized. This includes nonisothermal boundaries, such as the 
transducer top. Physically, the entire system is at the ambient tem
perature initially.  

2. The discretized form of the BTE [Eq. (13)] is marched forward 
explicitly by one time step to determine the spectral intensity, Ii,ω,p. 
This intensity is then post-processed to compute the incident phonon 
intensity, Gω,p, using Eq. (10). Likewise, Eq. (8) may be used to 
compute the heat flux at locations of interest, e.g., at boundary 
surfaces.  

3. The computed value of Gω,p is then substituted into Eq. (9) and the 
resulting equation is solved using a nonlinear equation solver to 
determine the pseudo-temperature distribution at the next time step. 
This temperature distribution serves as the initial condition in the 
substrate for the next time step.  

4. The intensities obtained from the solution of the BTE can also be used 
to determine the heat flux at the top surface of the substrate using Eq. 
(8).  

5. The heat flux at the top surface of the substrate is equal to the heat 
flux at the bottom surface of the transducer, qʹ́

b,j. Once this is known, 
Eq. (20) can be marched forward in time. Solution of Eq. (20) yields 
the transducer temperature.  

6. With the heat flux and transducer temperature both being known, 
the temperature on the top of the substrate can now be computed 
using Eq. (19). This new temperature replaces the initial condition in 
Step 1 and represents the initial condition in the transducer for the 
next time step.  

7. Steps 2–6 are repeated, i.e., the solution is marched forward in time. 

4. Results and discussion 

For the purposes of this study, the experimental setup and data re
ported by Wilson and Cahill [6] were used for reference and comparison. 
The substrate in this experiment is a silicon block and is covered by an 
aluminum transducer of thickness 80 nm. The modulation frequency of 
the pump, ωL, is 9.8 MHz and the pump laser radius, rpump, is 1.05 μm. A 
Gaussian laser flux profile (in r) was used for all calculations. The 
duration of the heating pulse is 0.1 ps. The repetition or pulse rate of the 
laser is 80 MHz (every 12.5 ns) and the out-of-phase temperature 
response is measured at a delay time of 100 ps. The radius of the probe 
beam is the same as the pump beam. Since 80 MHz is not exactly 
divisible by 9.8 MHz, for convenience, 10 MHz was used for computa
tions so that the time steps could be exactly aligned to both the laser 
modulation and the repetition rate. 

Preliminary calculations were first conducted to estimate the ther
mal penetration depth (which indirectly affects the computational 
domain size), and the grid density necessary to adequately resolve the 
heat wave. Following this study, a computational domain with zS= 100 
μm and rS= 100 μm was deemed adequate. For numerical calculations, a 
100 × 100 nonuniform mesh with a stretching factor not exceeding 1.05 
was used, as shown schematically in Fig. 3. The time marching scheme 
commenced with Δt = 0.1 ps (same as the laser pulse duration) and the 
time-step size was progressively increased to span the repetition rate of 
12.5 ns using 1002 time-steps. The maximum time-step size used was 
1.25 ps, which is dictated by the stability criterion of the explicit time 
marching (forward Euler) scheme used here for both the FHCE and the 
BTE. It is also small enough to resolve all scattering events in the BTE 
calculation. Isothermal boundary conditions (300 K) were applied to the 
side and bottom surfaces of the substrate, while an adiabatic boundary 
condition was applied to the top surface of the transducer beyond the 
laser spot (Fig. 2). In a previous study [5], Newton cooling boundary 
conditions, with heat transfer coefficients consistent with natural con
vection, were used for all boundary conditions, and it was found that the 
results did not change compared to the boundary conditions used here. 
The thermophysical properties of the aluminum transducer and bulk 
silicon are shown in Table 1. The nominal value of the interfacial 

(between the substrate and the transducer) contact conductance, GC, 
was taken to be 250 MW/m2/K, in keeping with Wilson and Cahill [6]. 

4.1. Extraction of thermal conductivity 

In order to compare the computed results to experimental mea
surements and extract the thermal conductivity, the following procedure 
is adopted. First, time domain simulations of the TDTR setup are per
formed using the FHCE. From the computed temperature distributions, 
the temperature, Gaussian profile (in r) weighted area-averaged over the 
probe area on the surface of the transducer, is computed at all instances 
of time. Fig. 6 shows a plot of such a signal (solid black curve) over the 
final three cycles. On this plot, the temperature values corresponding to 
the delay times are marked, as shown by the red circles along with a 
zoomed image shown in the inset of Fig. 6. A sine curve is then fitted to 
the red circles, as shown by the dotted line. The frequency of this sine 
curve is the same as the modulation frequency ωL[6]. The process is then 
repeated by offsetting the probe area from the center of the pulse laser, 
as shown in Fig. 1. The temperature at any offset radius, rO, is then given 
by [6] 

T(rO) = T∞ + ArOsin(ωLt + ϕrO), (21)  

where T(rO) is the radially Gaussian profile weighted area-averaged 
probe temperature at location rO, T∞ is the ambient temperature, ArO 
is the amplitude of the fitted sine curve at location rO, and ϕrOis the 
phase lag from the sinusoidal pump laser signal with modulation fre
quency ωL. The in-phase and out-of-phase components of the tempera
ture at the location rO are given by [6] 

ΔTin = ArOcos(ϕrO) (22a)  

ΔTout = ArOsin(ϕrO) (22b) 

The two main inputs to the anisotropic FHCE are the radial and axial 
thermal conductivities. Since the computed temperatures change as a 
function of these two inputs, the in-phase and out-of-phase temperature 
responses can be changed by altering the radial and axial thermal con
ductivities. Wilson and Cahill [6] noted that the out-of-phase signal is 
particularly affected by the choice of krversus kz, while the in-phase 
component is unaffected by that choice. Fig. 7 shows a plot of the 
out-of-phase temperature, ΔTout, measured by Wilson and Cahill [6], as 
well as computed by our numerical model as a function of beam offset. 
Using the relaxation time scales reported by Ward and Briodo [43], we 
obtained a bulk thermal conductivity of 145 W/m/K. When the bulk 
value of kr = kz= 145 W/m/K is used, the out-of-phase response is 
severely underpredicted when compared to measured values. Since 
thermal conductivity is known to be suppressed at the nanoscale, kr =

kz= 105 W/m/K was attempted next. While this choice improved the 
results significantly, the ΔToutwas overpredicted for large beam offsets. 
This suggests that radial thermal transport is overpredicted when kr =

kz= 105 W/m/K. Based on this premise, Wilson and Cahill [6] recom
mended lowering the kr value relative to the kz value. They obtained the 
best fit to the experimental data by using kz= 140 W/m/K and kr= 80 
W/m/K. 

In the present study, multiple combinations of krand kzwere used and 
the ΔTout computed for various beam offset values. The least-square 
errors (L2Norm) between each predicted dataset and the experimen
tally measured dataset were then computed. The least-square errors 
were computed on the normalized error (difference between the pre

Table 1 
Thermophysical properties of the various materials used in the calculations.   

Silicon (bulk) Aluminum 

Density (kg/m3) 2329 2689 
Specific heat capacity (J/kg/K) 702 900 
Thermal conductivity (W/m/K) 145 160  
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diction and experiment, normalized by the experimental value) rather 
than absolute errors. This is because for large beam offset values, the 
ΔTout values are small, and using absolute error values, as opposed to 
normalized error values, would undermine their contributions. In our 
calculations, the best fit, based on minimization of the least-square 
normalized error, was obtained by using kz= 130 W/m/K and kr= 85 
W/m/K, as shown in Fig. 7. The slight difference in the final fitted 
anisotropic thermal conductivity could be attributed to differences in 
the analytical model (the analytical model assumes semi-infinite media) 
used in [6] versus the numerical model used here, the fact that 10 MHz 
instead of 9.8 MHz was used as the pulse repetition rate, as well as the 
discretization errors in time and space in the numerical model. Also, the 
exact criteria used to obtain the fit may affect the results. Nonetheless, 
the results confirm the findings of Wilson and Cahill [6]; notably, that an 
anisotropic FHCE yields a better fit to measured TDTR data. In general, it 
was observed that predicted results for small beam-offset values are far 
more sensitive to changes in either kror kzcompared to those at large 
beam-offset values. In other words, it is easier to adjust kror kz to obtain 
a better fit in the center of the plot shown in Fig. 7 than it is to obtain a fit 
at the ends. 

4.2. BTE predictions 

For BTE calculations, the frequency space was discretized, as shown 
in Fig. 8, with NTA = 14, NLA = 24, following previous studies [28, 
39-41]. Likewise, following previous studies [40,41], the angular space 
was discretized using 4 azimuthal angles and 20 polar angles, resulting 
in a total of 80 finite solid angles or directions. 

Scattering of phonons has been treated using a variety of approaches 
ranging all the way from scattering time scales derived from ab initio 
calculations with full treatment of the anisotropic Brillouin zone [42-44] 
to simplified parameterized single-time relaxation time-scale expres
sions. Here, the latter approach is used in keeping with the assumption 
of an isotropic wave-vector space (see Section 2.2) and also because 
these parameterized scattering time-scale expressions have been 
routinely used in engineering calculations [20-22,30-32,37,39,40,45]. 
For the scattering (or relaxation) time-scales of acoustic phonons, the 
following expressions proposed by Broido and co-workers [46] was 
used: 

τ−1
N,p = AN

p ω2T[1 − exp( − 3T / θD)] (23a) 

Fig. 6. Transducer temperature (averaged over probe area) computed using the anisotropic FHCE (kr= 85 W/m/K andkz= 130 W/m/K) with no beam offset and a 
delay time of 100 ps. 

Fig. 7. Comparison of out-of-phase temperature response computed using the 
anisotropic FHCE and experimental data [6]. 

Fig. 8. Dispersion relation of silicon from [48]; discretization of the frequency 
space is also shown. 
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τ−1
U,p = AU

p ω4T[1 − exp( − 3T / θD)] (23b)  

where the subscripts N and U stand for Normal and Umklapp processes, 
respectively, and the subscript p stands for the polarization of the 
phonon, i.e., either longitudinal acoustic (LA) or transverse acoustic 
(TA). The constants in Eq. (23) are as follows:AN

LA = 7.10 × 10−20s. 
rad−2K−1,AN

TA = 10.9 × 10−20s.rad−2K−1, AU
LA = 9.51 × 10−47s3. 

rad−4K−1, and AU
TA = 37.8 × 10−47s3.rad−4K−1. It is worth noting that 

although this model is parameterized (primarily, to allow convenient 
use), it was derived from first principles [46]. Optical phonons were also 
considered in this study. Although it is generally believed that optical 
phonons do not contribute significantly to thermal transport in silicon 
except at high temperature [39] because of their low group velocities, 
they do contribute significantly to storage of energy. Hence, they have 
the ability to affect the thermal diffusivity and, thereby, the phase lag. 
To highlight this point, for a crystalline material, the internal energy and 
the specific heat capacity at constant volume, which is the derivative of 
internal energy with respect to temperature, are given by [20] 

u =
∑

p

∫ωmax,p

ωmin,p

ℏωD(ω, p)

exp[ℏω/kBT] − 1
dω (24a)  

c =
du
dT

=
ℏ2

kBT2

∑

p

∫ωmax,p

ωmin,p

ω2D(ω, p)exp[ℏω/kBT]

(exp[ℏω/kBT] − 1)
2 dω (24b) 

Eq. (24b), when used in conjunction with the dispersion relations 
shown in Fig. 8 to compute the specific heat capacity of silicon at 300 K, 
yields a value of 625.4 J/kg/K, as opposed to the reported bulk value of 
702 J/kg/K at 300 K. Limited data is available on the relaxation time 
scale for optical phonon scattering in silicon. In this study, the data 
published by Henry and Chen [47] were used. Fig. 9 shows the spectral 
mean free path data along with least-square curve-fits that were used to 
represent that scattered data in the present computations. The curve-fit 
expressions are as follows: 

ΛLO = ALOω2 + BLOω + CLO (25a)  

ΛTO = ATOexp( − BTOω) (25b)  

where Λis the mean free path in meters, while ω is the frequency in rad/ 
s. The constants in Eq. (22) are as follows: ALO = 4.065 × 10−35, BLO =

− 1.039 × 10−20, CLO = 6.641 × 10−7, ATO = 0.1254, and BTO = 1.51 ×

10−13. The relaxation time-scale for optical phonon scattering were 
computed using τ = Λ/υ. The dispersion relationships for silicon, shown 
in Fig. 8, adopted from Pop [48], were used to compute the phonon 
group velocities, υ, for all frequencies and polarizations. As stated 
earlier, it is assumed that the wave-vector space is isotropic and, 
therefore, the dispersion relationship in only one lattice direction is 
necessary. Once the relaxation time-scales of the various phonons were 
computed, the Mathiessen rule [10] was used to compute the overall 
relaxation time-scale for scattering. 

To bring to light the difficulty of BTE calculations for the problem at 
hand, a rough estimate is helpful. Since 40 bands and 80 angles are used, 
the calculation essentially entails time-marching 3200 partial differen
tial equations on a mesh with 10,000 cells. For a modulation frequency 
of 10 MHz, the time-period for each cycle is 100 ns. Since approximately 
8000 time-steps are used per cycle (1002 per pulse repetition) and the 
solution is advanced by roughly 10 cycles (determined by trial-and-error 
from the FHCE calculations) to attain quasi-periodic state, the simula
tions require approximately 80,000 time-steps. Using band-based par
allelization over 40 processors (same as the number of bands), the 
calculations required approximately 184 h. 

The out-of-phase temperature difference predicted by BTE calcula
tions is shown in Fig. 10. It is evident that the predictions do not match 
experimental results at larger beam offset values. It appears that in the 
BTE results, radial transport of energy is stronger than suggested by the 
experimental data. This could be attributed to several factors: the 
assumption that the phonons are in equilibrium at the substrate- 
transducer interface, the relaxation time scales from different sources 
used for the computations, the assumption of an isotropic Brillouin zone, 
and lack of detailed treatment of electron-phonon coupling at the 
interface. While electron-phonon coupling has been considered in pre
vious work [49,50], it requires tuning of additional parameters. An 
attempt was also made to fit the BTE predictions using results of the 
FHCE with the goal of extracting an effective thermal conductivity, and 
this yielded a value (isotropic) of 110 W/m/K. The fit is shown in 
Fig. 10, as well. When thermal conductivity values of 105 and 115 
W/m/K was tried, the ΔTout predicted at larger beam off-set values (right 
end of figure) changed marginally, while the ΔTout predicted at small 
beam offset values (left end of figure) changed significantly, resulting in 

Fig. 9. Spectral mean free path of optical phonons, obtained from Henry and 
Chen [44], along with least-square curve-fits for the same data. LO = Longi
tudinal Optical; TO = Transverse Optical. 

Fig. 10. Out-of-phase temperature response computed using the phonon BTE 
compared to experimental data [6]. FHCE fit to the BTE results is also shown. 
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a larger least-square error. In other words, the ΔTout at large beam offset 
values is far less sensitive to the value of the thermal conductivity than 
for small beam offset values. It was found that the only way to better fit 
the BTE results would be to use an unrealistically large value of kr(not 
shown). Since the FHCE and BTE are fundamentally different models, an 
exact fit should, perhaps, not be expected in the first place. 

One of the key observations from our simulations is that the temporal 
decay of the temperature signal immediately after the pulse, as shown in 
the inset of Fig. 6, is extremely rapid and the shape of the decay curve 
sensitive to the model (FHCE versus BTE) that is used to replicate its 
behavior. Perhaps, in future TDTR experiments, if the out-of-phase 
temperature difference were recorded simultaneously at two different 
delay instances, such data would significantly aid in better under
standing the shape of the delay curve and the subsequently extracted 
thermal conductivity. An interesting study would be to investigate how 
much the thermal conductivity changes if one or the other or both sets of 
data (from the two delay instances) are used. This may be a recom
mended direction of extension of currently used TDTR experimental 
setups. 

5. Summary and conclusions 

Time Domain Thermo-Reflectance (TDTR) is a routinely used state- 
of-the-art noncontact optical pump-probe technique for the study of 
thermal transport at sub-micron scales in semiconductor materials. In 
this study, two models are used to simulate a TDTR experimental setup 
in time domain and extract the thermal conductivity. One of these is the 
transient Fourier Heat Conduction Equation (FHCE); in particular, based 
on previous reports that anisotropy may be important to consider, the 
anisotropic FHCE is used. The second model is the full frequency and 
polarization dependent phonon Boltzmann Transport Equation (BTE). 
Both computations are conducted in a two-dimensional axisymmetric 
geometry in cylindrical coordinates. The thin metallic transducer film 
covering the substrate is modeled using the Fourier law and radial 
conduction in the transducer is included. Both computations are per
formed with a computational mesh comprised of 10,000 control vol
umes. For angular discretization of the BTE, 80 solid angles (directions) 
are used, while for discretization of the frequency space, 40 spectral 
intervals (or bands) are used. For time advancement, the explicit (for
ward Euler) procedure with unequal time step size starting at 0.1 ps and 
increasing up to 1.25 ps is used. The simulation is carried out until quasi- 
periodic state is reached. This requires approximately 10 modulation 
cycles (80 pulses) of the pump laser. For BTE calculations, the scattering 
time scales published by Ward and Briodo [43] were used to model 
acoustic phonon scattering in this study. Optical phonons were also 
included and the time-scales for scattering of optical phonons was esti
mated from Henry and Chen [44]. The BTE computations required 
approximately 184 h of wall clock time on a parallel computer system 
with 40 processors. 

The out-of-phase response of the probe laser was predicted at various 
beam offset distances for a pump laser pulse frequency of 80 MHz and 
modulation frequency of 10 MHz and compared against experimental 
measurements [6] for a silicon substrate covered by an aluminum 
transducer. Predictions of the isotropic FHCE with a bulk isotropic (kr =

kz) thermal conductivity of 145 W/m/K was found to severely under
predict the measured out-of-phase temperature difference ΔTout . With 
the isotropic FHCE, the best fit to the experimental data was obtained 
with 

kr = kz = 105 W/m/K. It was found that an almost-exact match 
could be attained with 

kz= 130 W/m/K and kr= 85 W/m/K, confirming previous findings 
that suggested using an in-plane conductivity significantly smaller than 
the through-plane conductivity [6]. Results of solution of the BTE 
showed that the predicted ΔTout values match experimental data quite 
well for small and intermediate beam offset values, but 

ΔToutis severely underpredicted for large beam offset values. FHCE 

results were fitted to the BTE results to extract an effective thermal 
conductivity, and an isotropic thermal conductivity kr = kz = 110 W/ 
m/K yielded the best fit. Attempts to fit the anisotropic FHCE to the BTE 
results failed as a close fit (better than the isotropic fit) could only be 
obtained with unrealistically large 

krvalues. 
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