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ARTICLE INFO ABSTRACT

Keywords: The anisotropic Fourier Heat Conduction Equation (FHCE) and the multidimensional phonon Boltzmann
Thermo-reflectance Transport Equation (BTE) were solved numerically in cylindrical coordinates and in time domain to simulate a
TDTR

Time Domain Thermo-Reflectance (TDTR) experimental silicon/aluminum substrate/transducer setup. The out-

gﬁirzl:azfla of-phase response of the probe laser was predicted at various beam offset distances for a pump laser pulse fre-
Thermal conductivity quency of 80 MHz and modulation frequency of 10 MHz and compared against experimental measurements for a
Anisotropy silicon substrate. The isotropic FHCE was also solved for comparison. Results show that the isotropic FHCE with
bulk thermal conductivity of 145 W/m/K significantly underpredicts the out-of-phase temperature difference,
particularly at smaller beam offsets. With an isotropic thermal conductivity of 105 W/m/K, the computed results
match experimental data at smaller beam offsets well, but overpredicts the experimental data at larger beam
offsets. An almost-perfect match is obtained by using an anisotropic thermal conductivity wherein the radial (in-
plane) thermal conductivity is set to 85 W/m/K and the axial (through-plane) conductivity is set to 130 W/m/K.
The multidimensional frequency and polarization dependent phonon BTE is next solved. The BTE results for the
out-of-phase temperature difference match experimental observations well at small and intermediate beam
offsets, but overpredicts the experimental data at larger beam offsets. FHCE results are fitted to the BTE pre-
dictions, and the extracted (best fit) thermal conductivity is found to be 110 W/m/K.
fundamentally, the measurements are made at the surface, while ther-
1. Introduction mal conductivity is a volumetric property.
The frequency-domain solution to the Fourier heat conduction
Time Domain Thermo-Reflectance (TDTR) is a noncontact optical equation (FHCE) is the most common and earliest mathematical model
pump probe technique that has found prolific usage for the study of used for this purpose. First proposed by Cahill [1] for analyzing TDTR
thermal transport at small time and length scales. “Small” refers to data, this approach has found prolific usage [2,3], and the Feldman al-
length scales that are smaller or comparable to the mean free paths of the gorithm [4] is used to treat multiple layers. Alternatively, numerical
energy-carrying phonons in a semiconductor material. In a TDTR solution of the FHCE may be used to attain the same goal, as has been
experiment, the sample is covered by a thin metallic layer called the demonstrated by Saurav and Mazumder [5] for Frequency Domain
transducer. Tt is heated using a modulated and pulsed laser beam Thermo-Reflectance (FDTR) experiments. Numerical solutions have the
resulting in surface temperature (reflectivity) oscillations. These oscil- advantage that finite substrate thicknesses (as opposed to semi-infinite)
lations are measured using a probe laser, which is also moved along the and realistic boundary conditions, such as Newton cooling, can be easily
surface, i.e., away from the center of the pump laser, often referred to as incorporated into the model.
beam offset, as illustrated in Fig. 1. The probe laser measures the trans- The vast majority of studies in which the thermal conductivity has
ducer surface temperature at a fixed duration after the pump laser pulse, been extracted from either TDTR or FDTR experiments have used the
and this is referred to as the delay time. The phase lag between the pump isotropic FHCE for fitting the measured phase lag, in which it has been
and the probe laser is fitted to model results to extract the thermal assumed that the thermal conductivity is same in all directions, or
conductivity. Consequently, a mathematical model that adequately de- isotropic. A notable study by Wilson and Cahill [6] showed that it is
scribes the thermal transport in the system is required because, difficult to accurately fit the measured TDTR data with an isotropic
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Nomenclature

A area [m?]

c specific heat capacity per unit volume [J m~> K]

D density of states per unit volume [m~3]

f number density function

fo equilibrium number density function

Gop spectral directionally integrated intensity [Wm 2 rad~s]
Ge contact conductance [W m 2 K]

h Dirac constant = 1.0546 x 10~ [mzkg.s’l]

Iop spectral directional phonon intensity [Wm™2sr~'rad!s]
Iowp equilibrium phonon intensity [Wm~2sr 'rad!s]

ks Boltzmann constant = 1.381 x 1072 [m?kg.s 2K ']

kr thermal conductivity of transducer [W m K

n unit surface normal vector

Npand total number of spectral intervals (or bands)

Ngir number of solid angles (or directions)

P phonon polarization index

q heat flux vector [Wm 2]

Q heat transfer rate [W]

r radial coordinate or radius [m]

r position vector [m]

s unit direction vector

t time [s]

T absolute temperature [K]

u internal energy [J m 3]

14 volume of cell [m3]

2 axial coordinate or thickness [m]
Greek

r density of transducer [kg m~>]

0 polar angle [rad]

Vop phonon group velocity vector [m s™1]
Top spectral relaxation time scale [s]

® angular frequency [rad s~]

[0)3 modulation frequency of pump laser [Hz]
Q solid angle [sr]

¢ phase lag [rad]

W azimuthal angle [rad]

FHCE solution, particularly when the probe laser spot is significantly
offset from the pump laser spot. They proposed a frequency-domain
solution to the anisotropic FHCE, and demonstrated, at least for their
particular experiment, that a superior fit can be obtained by using an
anisotropic thermal conductivity in which the in-plane conductivity is
significantly smaller than the through-plane conductivity.

The thermal conductivity extracted from both TDTR and FDTR ex-
periments using the Fourier heat conduction equation has been found to
change when the modulation frequency, laser spot size, and pulse widths
of the pump laser are changed [1-3,7]. The Fourier law assumes that all
energy carriers engage in infinite many collision (scattering) events
regardless of the distance traversed. The dependence of thermal con-
ductivity on the modulation frequency, laser spot size, or pulse width is
attributed to the fact that when the laser modulation frequency is high,
the thermal penetration depth, which is inversely proportional to the
square root of the modulation frequency, is small, and can often be
smaller than the mean free path of some of the energy-carrying phonons.
Consequently, some phonons hardly scatter. This results in so-called
ballistic-diffusive transport or quasi-ballistic transport. In this regime

12.5ns

of transport, the effective thermal conductivity has been found to be
smaller than the bulk value—a phenomenon known as thermal conduc-
tivity suppression [7-9].

To capture the quasi-ballistic effects and predict the thermal con-
ductivity suppression for different modulation frequencies, various en-
hancements to Fourier law-based models have been proposed. One class
of these models make use of the Hyperbolic Heat Conduction Equation
(HHCE) [10-12], which accounts for finite velocity of the phonons by
introducing a relaxation time as a parameter [11]. However, in the
HHCE, all phonons are assumed to have the same velocity regardless of
their type and frequency. An extension of the HHCE is the two-parameter
models [13], in which the diffuse and ballistic phonons are treated
differently by introducing an additional term in the Fourier heat con-
duction equation that involves the characteristic ballistic heat transport
length as an additional parameter. A two-band model has been proposed
by Ramu and Bowers [14], in which a cut-off frequency was used to
classify the phonons into ballistic and diffusive phonons. The ballistic
phonons were then treated by introducing a higher-order correction
term in the Fourier law that was derived from the phonon BTE. Wilson
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Fig. 1. Schematic representation of a TDTR experimental setup along with depiction of the modulated power pulse train. The numbers shown correspond to the

conditions used for simulation in this study.
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et al. [15] proposed a two-channel model specifically to account for
nonequilibrium phonons in the context of TDTR experimental data
interpretation for Al/Si/Ge alloys. In another class of models, referred to
as ballistic-diffusive models, the phonon intensity was split into a diffusive
component and a ballistic component. It was first proposed by Chen
[16], and later expanded to complex three-dimensional geometry by
Mittal and Mazumder [17,18]. More recently, a model that introduces a
hydrodynamic term in the Fourier heat conduction equation-
—analogous to the advective term in the Navier-Stokes equation—has
been proposed to capture ballistic effects [19].

The development of various approximate quasi-ballistic models that
attempt to incorporate elements of the kinetic BTE into an otherwise
diffusive Fourier model has been primarily prompted by the fact that the
full-fledged phonon BTE is very challenging and time consuming to
solve [20], although promising new algorithmic developments have
been made on this front recently [21-26] to accelerate such computa-
tions. Peraud and Hadjiconstantinou [27] performed Monte Carlo sim-
ulations of phonon transport in a multidimensional optical pump-probe
setup by using an energy-based deviational formulation. Only a single
laser pulse was considered. This code was later used by Ding et al. [28]
to simulate a single laser pulse of a TDTR experiment to demonstrate
thermal conductivity suppression. Regner et al. [29] solved the
one-dimensional (1D) BTE in frequency domain to extract the thermal
conductivity accumulation and suppression functions. However, the
influence of multidimensional thermal transport, which becomes
apparent especially when the laser spot size is small, can only be
captured by solving the multidimensional BTE. Ali and Mazumder [30]
solved the full phonon BTE for TDTR experiments in a 2D planar setup
and the model demonstrated thermal conductivity suppression and its
dependence on the modulation frequency of the pump laser without the
use of any additional tuning parameters. In recent studies, Saurav and
Mazumder [31,32] simulated an FDTR experiment by solving the fre-
quency and polarization dependent phonon BTE in cylindrical co-
ordinates. The solution was advanced in time to a quasi-periodic state,
enabling reliable extraction of the phase lag and exhibited good match
with experimental measurements using two different relaxation
time-scale models for acoustic phonons. These recent studies contrast
previous studies [27,28] that only simulated a single laser pulse.

In TDTR simulations reported in the literature [27,28,30,33], the
pump laser is modeled as a heat flux with a Gaussian profile. This is also
the assumption used in analytical models. This is done to avoid com-
plexities associated with modeling laser absorption (photo-
n-phonon-electron interactions) in the transducer. These assumptions
essentially reduce the computations to a problem in which a transient
heat conduction problem is solved with a time-dependent heat flux on
the top. Despite these simplifications, TDTR experiments are particu-
larly challenging to simulate since the pump laser is pulsed and the pulse
duration is extremely short. To the best of the authors’ knowledge, there
are only two previous studies that have reported simulation of a TDTR
experimental setup using the multidimensional phonon BTE. A recent
study by Hu et al. [33] conducted 3D simulations of a TDTR setup and
demonstrated differences between BTE and FHCE predictions. The other
study is a slightly earlier study by Ali and Mazumder [30]. The simu-
lations performed by Ali and Mazumder [30] were in a 2D planar system
and were not compared to experimental data. While this study was
informative in understanding the numerical nuances of such a simula-
tion, being 2D planar, it is not fully representative of the actual TDTR
setup. Here, for the first time, an actual TDTR experimental setup is
simulated by solving the phonon BTE in cylindrical coordinates. An
isotropic phase-space is considered, and scattering is treated using the
single-time relaxation approximation. The solution is advanced far
enough in time such that the out-of-phase temperature change could be
computed reliably and compared to experimental measurements.
Additionally, both the isotropic and anisotropic FHCE equations are
solved numerically to extract the thermal conductivity both by fitting
the experimental data as well as by fitting the BTE results.
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2. Theory

This section is divided into three subsections. In Section 2.1, the
anisotropic FHCE is presented. In Section 2.2, the phonon BTE is pre-
sented, and Section 2.3 presents the connection between the BTE and
overall energy conservation (First Law).

2.1. Anisotropic Fourier Heat Conduction Equation (FHCE)

In the absence of convection, radiation, and any heat source, the
energy conservation equation (First Law) may be written as [34]

%ZPC%Z: -V-q @
where u is the specific internal energy, t is time, and q is the conductive
heat flux. The volumetric specific heat capacity is denoted by c, while
p and Tdenote the density and temperature of the medium, respectively.
The heat flux, in general, may be expressed using the anisotropic Fourier
law of heat conduction [34] as

q=—k:VT, )

where k denotes the thermal conductivity tensor. If the off-diagonal
terms in the thermal conductivity tensor are neglected, then substitut-
ing Eq. (2) in Eq. (1), followed by expansion of the right-hand-side of the
resulting equation in cylindrical coordinates, we obtain

o =M Tar ) TR ®

or 190 ( aT> T
where k, and k, are the thermal conductivities in the radial (in-plane)
and axial (through-plane) directions, respectively, as shown schemati-
cally in Fig. 2. In Eq. (3), any azimuthal variation has been neglected,
implying that it is valid only for a two-dimensional (2D) axisymmetric
system.

2.2. The phonon Boltzmann transport equation (BTE)

The BTE is suitable for modeling phonon transport in semi-
conductors, as phonons follow Bose-Einstein statistics and interact with
each other via scattering events. The phonon BTE, under the single
relaxation time approximation, may be written as [10,20]
= @
where f is the distribution function of an ensemble of phonons,fy is the
equilibrium number density function,zis the scattering time scale and vis
the phonon group velocity. In general, f = f(t,r,K),where r denotes the
position vector and K denotes the wave-vector. Here, it is assumed that
the wave-vector space (Brillouin zone) is isotropic. Hence, it can be
expressed conveniently [10] using a unit direction vector, s, and a fre-
quency . Thus, the distribution function,f, for each polarization p, is a
function of seven independent variables, i.e., f = f(t,r,S,w,p),where the
unit direction vector, S, may be expressed in terms of the azimuthal
angle, y, and polar angle, 0, as [35]

$ = sinfcosyi + sindsinyj + cosok. 5)

If the Cartesian coordinate system is used to describe space, for
example, one may write the functional dependence of fas f = f(t,x.y,z.0,
v, w,p). In other words, for a three-dimensional (3D) geometry,fis a
function of 8 independent variables. Since polarizations are discrete, it is
customary to think of f as being a function of 7 independent variables,
with the implicit understanding that it is different for different polari-
zations. The group velocity is also dependent on direction: v = v(S,w,p).
The equilibrium Bose-Einstein distribution, on the other hand, is
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Fig. 2. Schematic of the two-dimensional axisymmetric model used in the current study, along with boundary conditions used.

direction independent: f, = fo(w,T), as is the relaxation time-scale: 7 =
7(w, T,p). Following the seminal work of Majumdar [33], a phonon in-
tensity may be defined in terms of the distribution function:

w,p = I{tr,5,0,p)= |[v.,|hofD(0,p)/4n

6
Io.mp = IO(t7 rava) = |UIUxP|hwf0D(w’p)/4ﬂ’ ( )

where D(w, p) is the density of states, and I,,,, is the spectral directional
phonon intensity, while Iy, , is the equilibrium spectral phonon in-
tensity. Substitution of Eq. (6) into Eq. (4) yields [36]

al(u P
ot

0y VL = 2 —on @
Top

For any given frequency and polarization, the intensity, I,,, is a
function of time, 3 space variables (in 3D), and 2 directional variables,
making Eq. (7) a six-dimensional equation. Furthermore, it needs to be
solved for all frequency and polarizations in order to determine the heat
flux, as is discussed in Section 2.3.

Solution of the BTE [Eq. (7)] necessitates boundary conditions for the
intensity. Two types of boundary conditions are generally used [20]: (1)
thermalizing, and (2) reflective. At a thermalizing boundary, phonons
are emitted from it based on the equilibrium energy distribution and any
phonon that strikes it immediately gets absorbed. The boundary con-
dition is mathematically written as I, ,(t, tw, So,®,p) = Ioop(t,tw,®,p),
where 1, is the position vector of the boundary or wall, and §, is the
outgoing direction for the intensity.

2.3. Heat flux and energy conservation (First law)

Once the BTE [Eq. (7)] has been solved, the heat flux may be
calculated from the phonon intensity using the relationship [20]

®maxp ®max p
atn =Y [ [uersopsied =Y [ a,cne ©
Ominp 47 p Ominp

where the integrals are over all solid angles Q and the frequency range of
each polarization; ®naxp and @minpare the maximum and minimum
frequencies, respectively, corresponding to a given polarization, p. In Eq.
(8), q,, denotes the spectral heat flux while q denotes the total heat
flux. Substitution of Egs. (7) and (8) into Eq. (1), followed by some
manipulation, yields [20]:

tha)p)
Z / explfoo /Ky T] — 1

®minp
- @maxp |Uwp|th . p) 0Gw_P
*Z / \va}{rmp <exp[fzw/kﬂ]—1 Goo ) =3¢ |4
@minp
©
where
Gup = /1,07,,(19, 10)

4n

Eq. (9) is a nonlinear equation that may be solved to obtain the so-
called pseudo-temperature [20,37], T, at any location within the
computational domain and at any instant of time. In the section to
follow, numerical techniques for solution of the anisotropic FHCE BTE
are discussed.

3. Numerical procedure

3.1. Discretization of the anisotropic Fourier heat conduction equation
(FHCE)

The anisotropic FHCE is discretized by applying the standard finite-
volume procedure [38] to Eq. (3). The central difference scheme is used
for spatial discretization, while the forward Euler (or explicit) method is
used for discretization in time. Application of these procedures results in
the following discrete equation for control volumes (or cells) within the
substrate (interior cells in Fig. 3):

2rjAr; 2r;Ar;
pcAzg——1 A d T = peAz d I T
k- Az (2r; + Ary) k- Az (2r; — Ary)
KAz (2l AG) | (g qm ) &25A4 ~ A) (Tf‘ - )
+{ AT+ ATy }( jeik — g ) T { Ar + Ar je1k — Lk ) s

4k,r;Ar; 4k,riAr;
_ = (- _ ey _m
+ |:AZJ( + AZk+1 < ket J'k) + AZk + AZk,l < k=1 ]k>
1)

where the radius of the (j,k)-th cell’s center is denoted by r;, while the
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Fig. 3. Illustration of the mesh/stencil used for computations in the two different regions of the computational domain (transducer on top and substrate at

the bottom).

radial span (grid size) is denoted by Ar;. The axial span of the (j,k)-th cell
is denoted by Az,. The superscripts n and n+ 1 denote values at the
previous and current time-steps, respectively, such that t = nAt, At
being the time-step size. Likewise, finite-volume equations may be
derived for cells adjacent to the boundaries. For example, for cells within
the substrate and adjacent to the substrate-transducer interface, we
obtain

2r;Ar;
t T

2r;Ar;
pcAzk#Tﬁl = pcAz,

k. Az (2r; — Ary)

s N
+2q b.j‘ A7 + { Ar, 1 Ar } (T?—l,k - TTk) , 12)

4k, r;Ary 4k,riAr;
— | (T, — TV _ A r T
|:AZ)< + AZk+1:| ( et ]'k> + |:Azk + Azk71:| ( k=1 J,k)

where q'b is the heat flux from the transducer to the substrate (Fig. 3)
and is discussed in more detail in Section 3.3.

3.2. The finite angle method (FAM)

The present work uses the finite angle method (FAM) [20,35] for
solving the BTE [Eq. (7)]. The FAM is a variant of the Discrete Ordinates
Method [35] that mitigates ray effects and guarantees energy conser-
vation. In the FAM, the entire solid angle space is first split into a set of
nonoverlapping smaller solid angles. These smaller solid angles may be
based on equal subdivisions in 6 and y, as shown in Fig. 4. The BTE [Eq.
(7)1 is first integrated over a volume [finite volume method in space on a
structured mesh with cell index (j,k)1, followed by finite solid angles to
yield [20,35]:

011« wp Sk —~
o | Vowli+ [0up| D Lwpsn (SiTir) Agin
(k) f=1 (13)
1 .
= —— (Lwp.ii) — Liwpio) VinQiVi=1,2, . Ng
Top. (k)

where Ny, is the total number of discrete directions or finite solid angles,
V(i xis the volume of the (j,k)-th cell, Ag(y is the area of the f-th face of
the (j,k)-th cell, and

~~

S P

J—

Ay,
2

Fig. 4. Polar coordinate system used for angular discretization in the FAM.

O;+A0; /2 yi+Ay;/2

Q= / dQ = sinfdfdy = 2sind;sin (A;’I i) Ay, a4
AQ; 0—00;/2 yi—Ay;/2

and

S; = cosy;sin (%) (AG; — cos(20i)sin(A0i)ﬁ

+siny;sin (A;l/ i) [A; — cos(20,)sin(A6))]j (15)

AV Nai A
+< 5 >51r1(201)51n(A01)k

The subscript i for the intensity now denotes an intensity along a line
of sight passing through the center of the solid angle, i.e., in the direction
Si(see Fig. 5). Finally, the face intensity in Eq. (13) is expressed in terms
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Fig. 5. Schematic representation of geometric quantities used for finite volume
discretization of the BTE.

of cell-center intensities using the first-order upwind or step scheme
[35]:

I; ik if /S\i'ﬁf >0
I'.(n‘ SfGk) = { P e oo 5 (16)
Lopfk) L oo nif) if s;np <0
where N(f) denotes the neighboring cell next to face f, as shown in Fig. 5.
As a final note, in cylindrical coordinates, the volume appearing in
Zi(jk)  To(jk)
Eq. (13) may be determined using Vjx) = 2zrdrdz where 1y
2p(jk)  TiGk)
and r,(; x)are inner and outer radii, respectively, of the (j,k)-th cell, while
Zp(jk) and zjx) are bottom and top z-coordinates, respectively, of the
same cell, as shown on Figs. 3 and 4. For any horizontal face, the area is

given by Agp = ”(rg(j,k) - riz(j‘k)>, while for any vertical face, the area is

given by Af(j,k) = 27rrf (zt(j.k) — Zb(j,k))-
3.3. Treatment of the transducer

The transducer is a thin metallic layer placed on top of the substrate,
as shown in Figs. 1 and 2. In this study, heat conduction in the trans-
ducer is treated using the isotropic FHCE. Furthermore, since the
transducer is very thin, it is assumed that there is no temperature vari-
ation within the transducer in the z direction (Fig. 2). The only variation
is in the r direction. Under this premise, the computational domain may
be discretized using a structured mesh along the r direction, as shown in
Fig. 3.

The governing equation for heat conduction in the transducer is a
modified form of Eq. (3), and is written as

aTrikrg< 0TT>

(qlt — q’b)
P =7 ar\Uor

a7
27

where p, cr, kr, and zrare the density, specific heat capacity, thermal
conductivity (assumed isotropic), and thickness of the transducer,
respectively. The temperature of the transducer is denoted by Tr. The
heat fluxes at the top and bottom surfaces of the transducer are denoted

by q'tand q'b, respectively. The heat flux on the top surface is the energy
supplied by the pump laser, and is a known quantity, written as

7, - {qm)[l +sinayf] for § <t <t,+ At as)
0 otherwise

where qlL(r) is the radially varying (assumed to be Gaussian) laser flux,
and w;is the modulation frequency of the pump laser. The instances
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where the laser pulses are turned on are denoted by t,, while the pulse
widths (durations) are denoted by At,. The heat flux on the bottom
surface of the transducer is not a known quantity. However, it can be
related to the substrate through the relationship

q’b = GC(TT - Tmp) (19)

where T, is the local temperature on the top of the substrate surface,
and Ggis the contact conductance between the transducer and the sub-
strate. Although Tepis not directly known, it can be derived from the
solution (of temperature) in the substrate, which in turn, requires so-
lution of either the FHCE or the BTE in the substrate. This is done in a
self-consistent manner, as described in Section 3.4.

As a final step, applying the finite-volume procedure [38] for dis-
cretization of Eq. (17), along with explicit (forward Euler) time dis-
cretization, we obtain

2r;Ar; 2r;Ar; »on 4o
PrCr2r ]At }T'lel :pTCTZT#T;j +2(‘1 tj| —94 by )UAU
kTZT (27} + AT}) szT(2r- — Ar)
bkttt S M VA Y ) 0 —T"‘> o\ ) (T"‘ —T".)
{ Arj+Arjg } (Thea =)+ { Arj+Ar, JAU

(20)

where superscripts n and n + 1 denote values at the previous and current
time-steps, respectively.

3.4. Solution algorithm

This section is split into two subsections. In the first subsection, the
solution algorithm to determine the temperature distribution using the
FHCE is described. In the second subsection, the solution algorithm to
determine the temperature distribution using the phonon BTE is
described.

3.4.1. Solution algorithm for the FHCE

In order to compute the temperature distribution and heat flux in a
TDTR setup using the FHCE and the explicit (or forward Euler) time
marching procedure, the following steps are executed:

1. The temperature of the entire solution (computational) domain is
first initialized. This includes the transducer and the substrate. This
also includes nonisothermal boundaries, such as the transducer top,
and the top surface of the substrate. Physically, the entire system is at
the ambient temperature initially.

2. The flux at the bottom surface of the transducer is computed using
Eq. (19).

3. The discretized form of the FHCE in the transducer [Eq. (20)] is
marched forward explicitly by one time step to determine the tem-
perature of the cells in the transducer.

4. The discretized form of the isotropic (k; = k;) or anisotropic
(k; # k;) FHCE [Egs. (11-12) and other similar equations for cells
adjacent to boundaries] is marched forward explicitly by one time
step to determine the temperature distribution Tj; inside the
substrate.

5. Eq. (19) is used again to compute the heat flux at the bottom surface
of the transducer.

6. Steps 3-5 are repeated, i.e., the solution is marched forward in time.
The temperature distributions obtained in Steps 3 and 4 serve as
initial conditions for the next time step.

3.4.2. Solution algorithm for the BTE

Determination of the (pseudo-)temperature distribution and heat
flux in a TDTR setup using the explicit (or forward Euler) time marching
procedure requires the following steps:
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1. The temperature of the entire solution (computational) domain is
first initialized. This includes nonisothermal boundaries, such as the
transducer top. Physically, the entire system is at the ambient tem-
perature initially.

2. The discretized form of the BTE [Eq. (13)] is marched forward
explicitly by one time step to determine the spectral intensity, [; , p.
This intensity is then post-processed to compute the incident phonon
intensity, G,p, using Eq. (10). Likewise, Eq. (8) may be used to
compute the heat flux at locations of interest, e.g., at boundary
surfaces.

3. The computed value of G, is then substituted into Eq. (9) and the
resulting equation is solved using a nonlinear equation solver to
determine the pseudo-temperature distribution at the next time step.
This temperature distribution serves as the initial condition in the
substrate for the next time step.

4. The intensities obtained from the solution of the BTE can also be used
to determine the heat flux at the top surface of the substrate using Fq.
(8.

5. The heat flux at the top surface of the substrate is equal to the heat
flux at the bottom surface of the transducer, q'b j- Once this is known,
Eq. (20) can be marched forward in time. Solution of Eq. (20) yields
the transducer temperature.

6. With the heat flux and transducer temperature both being known,
the temperature on the top of the substrate can now be computed
using Eq. (19). This new temperature replaces the initial condition in
Step 1 and represents the initial condition in the transducer for the
next time step.

7. Steps 2-6 are repeated, i.e., the solution is marched forward in time.

4. Results and discussion

For the purposes of this study, the experimental setup and data re-
ported by Wilson and Cahill [6] were used for reference and comparison.
The substrate in this experiment is a silicon block and is covered by an
aluminum transducer of thickness 80 nm. The modulation frequency of
the pump, w;, is 9.8 MHz and the pump laser radius, ryump, is 1.05 pm. A
Gaussian laser flux profile (in r) was used for all calculations. The
duration of the heating pulse is 0.1 ps. The repetition or pulse rate of the
laser is 80 MHz (every 12.5 ns) and the out-of-phase temperature
response is measured at a delay time of 100 ps. The radius of the probe
beam is the same as the pump beam. Since 80 MHz is not exactly
divisible by 9.8 MHz, for convenience, 10 MHz was used for computa-
tions so that the time steps could be exactly aligned to both the laser
modulation and the repetition rate.

Preliminary calculations were first conducted to estimate the ther-
mal penetration depth (which indirectly affects the computational
domain size), and the grid density necessary to adequately resolve the
heat wave. Following this study, a computational domain with zg= 100
pm and rs= 100 pm was deemed adequate. For numerical calculations, a
100 x 100 nonuniform mesh with a stretching factor not exceeding 1.05
was used, as shown schematically in Fig. 3. The time marching scheme
commenced with At = 0.1 ps (same as the laser pulse duration) and the
time-step size was progressively increased to span the repetition rate of
12.5 ns using 1002 time-steps. The maximum time-step size used was
1.25 ps, which is dictated by the stability criterion of the explicit time
marching (forward Euler) scheme used here for both the FHCE and the
BTE. It is also small enough to resolve all scattering events in the BTE
calculation. Isothermal boundary conditions (300 K) were applied to the
side and bottom surfaces of the substrate, while an adiabatic boundary
condition was applied to the top surface of the transducer beyond the
laser spot (Fig. 2). In a previous study [5], Newton cooling boundary
conditions, with heat transfer coefficients consistent with natural con-
vection, were used for all boundary conditions, and it was found that the
results did not change compared to the boundary conditions used here.
The thermophysical properties of the aluminum transducer and bulk
silicon are shown in Table 1. The nominal value of the interfacial
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Table 1
Thermophysical properties of the various materials used in the calculations.
Silicon (bulk) Aluminum
Density (kg/m®) 2329 2689
Specific heat capacity (J/kg/K) 702 900
Thermal conductivity (W/m/K) 145 160

(between the substrate and the transducer) contact conductance, Gc,
was taken to be 250 MW/mZ/K, in keeping with Wilson and Cahill [6].

4.1. Extraction of thermal conductivity

In order to compare the computed results to experimental mea-
surements and extract the thermal conductivity, the following procedure
is adopted. First, time domain simulations of the TDTR setup are per-
formed using the FHCE. From the computed temperature distributions,
the temperature, Gaussian profile (in r) weighted area-averaged over the
probe area on the surface of the transducer, is computed at all instances
of time. Fig. 6 shows a plot of such a signal (solid black curve) over the
final three cycles. On this plot, the temperature values corresponding to
the delay times are marked, as shown by the red circles along with a
zoomed image shown in the inset of Fig. 6. A sine curve is then fitted to
the red circles, as shown by the dotted line. The frequency of this sine
curve is the same as the modulation frequency w, [6]. The process is then
repeated by offsetting the probe area from the center of the pulse laser,
as shown in Fig. 1. The temperature at any offset radius, o, is then given
by [6]

T(ro) = Tw +Arosin(th+¢ro), (21)

where T(ro) is the radially Gaussian profile weighted area-averaged
probe temperature at location ro, T is the ambient temperature, Ao
is the amplitude of the fitted sine curve at location rp, and ¢,,is the
phase lag from the sinusoidal pump laser signal with modulation fre-
quency . The in-phase and out-of-phase components of the tempera-
ture at the location rp are given by [6]

ATy = Arocos(¢d,o) (22a)

ATy = Arosin(do) (22b)

The two main inputs to the anisotropic FHCE are the radial and axial
thermal conductivities. Since the computed temperatures change as a
function of these two inputs, the in-phase and out-of-phase temperature
responses can be changed by altering the radial and axial thermal con-
ductivities. Wilson and Cahill [6] noted that the out-of-phase signal is
particularly affected by the choice of k,versus k,, while the in-phase
component is unaffected by that choice. Fig. 7 shows a plot of the
out-of-phase temperature, AT,,, measured by Wilson and Cahill [6], as
well as computed by our numerical model as a function of beam offset.
Using the relaxation time scales reported by Ward and Briodo [43], we
obtained a bulk thermal conductivity of 145 W/m/K. When the bulk
value of k, = k,= 145 W/m/K is used, the out-of-phase response is
severely underpredicted when compared to measured values. Since
thermal conductivity is known to be suppressed at the nanoscale, k, =
k,= 105 W/m/K was attempted next. While this choice improved the
results significantly, the AT,,was overpredicted for large beam offsets.
This suggests that radial thermal transport is overpredicted when k, =
k,= 105 W/m/K. Based on this premise, Wilson and Cahill [6] recom-
mended lowering the k, value relative to the k, value. They obtained the
best fit to the experimental data by using k,= 140 W/m/K and k,= 80
W/m/K.

In the present study, multiple combinations of krand k,were used and
the AT, computed for various beam offset values. The least-square
errors (L2Norm) between each predicted dataset and the experimen-
tally measured dataset were then computed. The least-square errors
were computed on the normalized error (difference between the pre-
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Fig. 7. Comparison of out-of-phase temperature response computed using the
anisotropic FHCE and experimental data [6].

diction and experiment, normalized by the experimental value) rather
than absolute errors. This is because for large beam offset values, the
ATy values are small, and using absolute error values, as opposed to
normalized error values, would undermine their contributions. In our
calculations, the best fit, based on minimization of the least-square
normalized error, was obtained by using k,= 130 W/m/K and k,= 85
W/m/K, as shown in Fig. 7. The slight difference in the final fitted
anisotropic thermal conductivity could be attributed to differences in
the analytical model (the analytical model assumes semi-infinite media)
used in [6] versus the numerical model used here, the fact that 10 MHz
instead of 9.8 MHz was used as the pulse repetition rate, as well as the
discretization errors in time and space in the numerical model. Also, the
exact criteria used to obtain the fit may affect the results. Nonetheless,
the results confirm the findings of Wilson and Cahill [6]; notably, that an
anisotropic FHCE yields a better fit to measured TDTR data. In general, it
was observed that predicted results for small beam-offset values are far
more sensitive to changes in either k;or k,compared to those at large
beam-offset values. In other words, it is easier to adjust k,or k, to obtain
a better fit in the center of the plot shown in Fig. 7 than it is to obtain a fit
at the ends.

4.2. BTE predictions

For BTE calculations, the frequency space was discretized, as shown
in Fig. 8, with Nyyu = 14, Ni4 = 24, following previous studies [28,
39-41]. Likewise, following previous studies [40,41], the angular space
was discretized using 4 azimuthal angles and 20 polar angles, resulting
in a total of 80 finite solid angles or directions.

Scattering of phonons has been treated using a variety of approaches
ranging all the way from scattering time scales derived from ab initio
calculations with full treatment of the anisotropic Brillouin zone [42-44]
to simplified parameterized single-time relaxation time-scale expres-
sions. Here, the latter approach is used in keeping with the assumption
of an isotropic wave-vector space (see Section 2.2) and also because
these parameterized scattering time-scale expressions have been
routinely used in engineering calculations [20-22,30-32,37,39,40,45].
For the scattering (or relaxation) time-scales of acoustic phonons, the
following expressions proposed by Broido and co-workers [46] was
used:

vy = Ay@’T[1—exp(— 3T /6p)] (23a)
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Fig. 8. Dispersion relation of silicon from [48]; discretization of the frequency
space is also shown.
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Ty = AJo*T[1 —exp(— 3T /6p)] (23b)
where the subscripts N and U stand for Normal and Umklapp processes,
respectively, and the subscript p stands for the polarization of the
phonon, i.e., either longitudinal acoustic (LA) or transverse acoustic
(TA). The constants in Eq. (23) are as follows:AY, = 7.10 x 102,
rad 2K LAY, = 109x 10 2srad 2K}, AV, = 951x 105>
rad K1, and AY, = 37.8 x 10-*7s%.rad *K L. It is worth noting that
although this model is parameterized (primarily, to allow convenient
use), it was derived from first principles [46]. Optical phonons were also
considered in this study. Although it is generally believed that optical
phonons do not contribute significantly to thermal transport in silicon
except at high temperature [39] because of their low group velocities,
they do contribute significantly to storage of energy. Hence, they have
the ability to affect the thermal diffusivity and, thereby, the phase lag.
To highlight this point, for a crystalline material, the internal energy and
the specific heat capacity at constant volume, which is the derivative of
internal energy with respect to temperature, are given by [20]

@max.p

_ hwD(w,p)
u= Ep: / explo kT — 1 (242)
Dminp
) omasp
. du _h / @ D(w7p)exp[ha)/k32T] do (24b)
dT  ksT? 4 (explhw/ksT] — 1)

Eq. (24b), when used in conjunction with the dispersion relations
shown in Fig. 8 to compute the specific heat capacity of silicon at 300 K,
yields a value of 625.4 J/kg/K, as opposed to the reported bulk value of
702 J/kg/K at 300 K. Limited data is available on the relaxation time
scale for optical phonon scattering in silicon. In this study, the data
published by Henry and Chen [47] were used. Fig. 9 shows the spectral
mean free path data along with least-square curve-fits that were used to
represent that scattered data in the present computations. The curve-fit
expressions are as follows:

ALO = Awwz + BLow + CLO (253)
ATO = AToeXp( — BT()CU) (25b)
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Fig. 9. Spectral mean free path of optical phonons, obtained from Henry and
Chen [44], along with least-square curve-fits for the same data. LO = Longi-
tudinal Optical; TO = Transverse Optical.
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where Ais the mean free path in meters, while w is the frequency in rad/
s. The constants in Eq. (22) are as follows: Ajp = 4.065 x 1073%, Bjp =
—1.039x 1072, C;p =6.641 x 1077, Aro = 0.1254, and Bro = 1.51 x
10713, The relaxation time-scale for optical phonon scattering were
computed using z = A/v. The dispersion relationships for silicon, shown
in Fig. 8, adopted from Pop [48], were used to compute the phonon
group velocities, v, for all frequencies and polarizations. As stated
earlier, it is assumed that the wave-vector space is isotropic and,
therefore, the dispersion relationship in only one lattice direction is
necessary. Once the relaxation time-scales of the various phonons were
computed, the Mathiessen rule [10] was used to compute the overall
relaxation time-scale for scattering.

To bring to light the difficulty of BTE calculations for the problem at
hand, a rough estimate is helpful. Since 40 bands and 80 angles are used,
the calculation essentially entails time-marching 3200 partial differen-
tial equations on a mesh with 10,000 cells. For a modulation frequency
of 10 MHz, the time-period for each cycle is 100 ns. Since approximately
8000 time-steps are used per cycle (1002 per pulse repetition) and the
solution is advanced by roughly 10 cycles (determined by trial-and-error
from the FHCE calculations) to attain quasi-periodic state, the simula-
tions require approximately 80,000 time-steps. Using band-based par-
allelization over 40 processors (same as the number of bands), the
calculations required approximately 184 h.

The out-of-phase temperature difference predicted by BTE calcula-
tions is shown in Fig. 10. It is evident that the predictions do not match
experimental results at larger beam offset values. It appears that in the
BTE results, radial transport of energy is stronger than suggested by the
experimental data. This could be attributed to several factors: the
assumption that the phonons are in equilibrium at the substrate-
transducer interface, the relaxation time scales from different sources
used for the computations, the assumption of an isotropic Brillouin zone,
and lack of detailed treatment of electron-phonon coupling at the
interface. While electron-phonon coupling has been considered in pre-
vious work [49,50], it requires tuning of additional parameters. An
attempt was also made to fit the BTE predictions using results of the
FHCE with the goal of extracting an effective thermal conductivity, and
this yielded a value (isotropic) of 110 W/m/K. The fit is shown in
Fig. 10, as well. When thermal conductivity values of 105 and 115
W/m/K was tried, the AT, predicted at larger beam off-set values (right
end of figure) changed marginally, while the AT,, predicted at small
beam offset values (left end of figure) changed significantly, resulting in
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Fig. 10. Out-of-phase temperature response computed using the phonon BTE
compared to experimental data [6]. FHCE fit to the BTE results is also shown.
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a larger least-square error. In other words, the AT, at large beam offset
values is far less sensitive to the value of the thermal conductivity than
for small beam offset values. It was found that the only way to better fit
the BTE results would be to use an unrealistically large value of k,(not
shown). Since the FHCE and BTE are fundamentally different models, an
exact fit should, perhaps, not be expected in the first place.

One of the key observations from our simulations is that the temporal
decay of the temperature signal immediately after the pulse, as shown in
the inset of Fig. 6, is extremely rapid and the shape of the decay curve
sensitive to the model (FHCE versus BTE) that is used to replicate its
behavior. Perhaps, in future TDTR experiments, if the out-of-phase
temperature difference were recorded simultaneously at two different
delay instances, such data would significantly aid in better under-
standing the shape of the delay curve and the subsequently extracted
thermal conductivity. An interesting study would be to investigate how
much the thermal conductivity changes if one or the other or both sets of
data (from the two delay instances) are used. This may be a recom-
mended direction of extension of currently used TDTR experimental
setups.

5. Summary and conclusions

Time Domain Thermo-Reflectance (TDTR) is a routinely used state-
of-the-art noncontact optical pump-probe technique for the study of
thermal transport at sub-micron scales in semiconductor materials. In
this study, two models are used to simulate a TDTR experimental setup
in time domain and extract the thermal conductivity. One of these is the
transient Fourier Heat Conduction Equation (FHCE); in particular, based
on previous reports that anisotropy may be important to consider, the
anisotropic FHCE is used. The second model is the full frequency and
polarization dependent phonon Boltzmann Transport Equation (BTE).
Both computations are conducted in a two-dimensional axisymmetric
geometry in cylindrical coordinates. The thin metallic transducer film
covering the substrate is modeled using the Fourier law and radial
conduction in the transducer is included. Both computations are per-
formed with a computational mesh comprised of 10,000 control vol-
umes. For angular discretization of the BTE, 80 solid angles (directions)
are used, while for discretization of the frequency space, 40 spectral
intervals (or bands) are used. For time advancement, the explicit (for-
ward Euler) procedure with unequal time step size starting at 0.1 ps and
increasing up to 1.25 ps is used. The simulation is carried out until quasi-
periodic state is reached. This requires approximately 10 modulation
cycles (80 pulses) of the pump laser. For BTE calculations, the scattering
time scales published by Ward and Briodo [43] were used to model
acoustic phonon scattering in this study. Optical phonons were also
included and the time-scales for scattering of optical phonons was esti-
mated from Henry and Chen [44]. The BTE computations required
approximately 184 h of wall clock time on a parallel computer system
with 40 processors.

The out-of-phase response of the probe laser was predicted at various
beam offset distances for a pump laser pulse frequency of 80 MHz and
modulation frequency of 10 MHz and compared against experimental
measurements [6] for a silicon substrate covered by an aluminum
transducer. Predictions of the isotropic FHCE with a bulk isotropic (k, =
k;) thermal conductivity of 145 W/m/K was found to severely under-
predict the measured out-of-phase temperature difference AT,,,. With
the isotropic FHCE, the best fit to the experimental data was obtained
with

kr = k; = 105 W/m/K. It was found that an almost-exact match
could be attained with

k,= 130 W/m/K and k,= 85 W/m/K, confirming previous findings
that suggested using an in-plane conductivity significantly smaller than
the through-plane conductivity [6]. Results of solution of the BTE
showed that the predicted AT,, values match experimental data quite
well for small and intermediate beam offset values, but

AToyis severely underpredicted for large beam offset values. FHCE
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results were fitted to the BTE results to extract an effective thermal
conductivity, and an isotropic thermal conductivity k, =k, = 110 W/
m/K yielded the best fit. Attempts to fit the anisotropic FHCE to the BTE
results failed as a close fit (better than the isotropic fit) could only be
obtained with unrealistically large

kyvalues.
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