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Abstract

This paper revisits the classical Linear Quadratic Gaussian (LQG) control from a mod-
ern optimization perspective. We analyze two aspects of the optimization landscape
of the LQG problem: (1) Connectivity of the set of stabilizing controllers C,; and (2)
Structure of stationary points. It is known that similarity transformations do not change
the input-output behavior of a dynamic controller or LQG cost. This inherent symme-
try by similarity transformations makes the landscape of LQG very rich. We show that
(1) The set of stabilizing controllers C, has at most two path-connected components
and they are diffeomorphic under a mapping defined by a similarity transformation;
(2) There might exist many strictly suboptimal stationary points of the LQG cost
function over C, that are not controllable and not observable; (3) All controllable and
observable stationary points are globally optimal and they are identical up to a sim-
ilarity transformation. These results shed some light on the performance analysis of
direct policy gradient methods for solving the LQG problem.
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1 Introduction

As one of the most fundamental optimal control problems, Linear Quadratic Gaus-
sian (LQG) control has been studied for decades. Many structural properties of the
LQG problem have been established in the literature, such as existence of the optimal
controller, separation principle of the controller structure, and no guaranteed stability
margin of closed-loop LQG systems [3, 9, 48]. Despite the non-convexity of the LQG
problem, a globally optimal controller can be found by solving two algebraic Riccati
equations [48], or a convex semidefinite program based on a change of variables [15,
25, 32].

While extensive results on LQG have been obtained in classical control, its opti-
mization landscape is less studied, i.e., viewing the LQG cost as a function of the
controller parameters and studying its analytical and geometrical properties. On the
other hand, recent advances in reinforcement learning (RL) have revealed that the
landscape analysis of another benchmark problem, linear quadratic regulator (LQR),
can lead to fruitful and profound results, especially for model-free controller synthesis
[11, 23,24, 27, 37, 38, 42]. For instance, it is shown that the set of static stabilizing
feedback gains for LQR is connected, and that the LQR cost function is coercive and
enjoys the gradient dominance property [6, 11]. These properties are fundamental for
establishing convergence guarantees of gradient-based algorithms and their model-
free RL extensions for solving LQR [24, 27]. Note that the LQR problem considers
a linear system with a fully observable state, which can impose severe limitations for
its applications in many practical scenarios where the system’s state is only partially
observable due to constraints in sensing or communication.

This paper aims to analyze the optimization landscape of the LQG problem, which
considers the optimal control of a partially observable linear system. Unlike LQR
whose optimal solution is a static feedback policy, the optimal controller of the LQG
problem is no longer static. We need to search over dynamic controllers for LQG prob-
lems. This makes its optimization landscape richer and yet much more complicated
than LQR. Furthermore, LQG has a natural symmetry structure induced by similarity
transformations that do not change the input-output behavior of dynamic controllers,
which is not the case for LQR.

Some recent studies [7, 16, 22, 30, 34] have demonstrated that symmetry properties
play a key role in rendering a large class of non-convex optimization problems in
machine learning tractable; see also [43] for a recent review. For the LQG problem,
we expect that the symmetry associated with similarity transformations can bring some
important properties of its non-convex optimization landscape, such as the existence
of spurious stationary points, the topology of the set of globally optimal points, etc.
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We also note that the notion of controllable and observable controllers' is a unique
feature in controller synthesis of partially observable dynamical systems, making the
optimization landscape of LQG distinct from many machine learning problems.

1.1 Our contributions

In this paper, we view the classical LQG problem from a modern optimization per-
spective, and study two aspects of its optimization landscape. First, we characterize
the connectivity of the feasible region of the LQG problem, i.e., the set of strictly
proper stabilizing dynamic controllers, denoted by C, (n is the state dimension). We
prove that C, can be disconnected, but has at most two path-connected components
(Theorem 1) that are diffeomorphic under a similarity transformation (Theorem 2).
We further present a sufficient condition under which C,, is always connected, and this
condition becomes necessary for LQG problems with a single input or a single output
(Theorem 3). As a corollary, we show that C, is always connected when the plant is
open-loop stable (Corollary 1).

Second, we investigate structural properties of the stationary points of the LQG
cost function. By exploiting the symmetry induced by similarity transformations, we
show that the LQG cost may have many strictly suboptimal stationary points that are
not controllable and not observable (Theorem 4). For LQG with an open-loop stable
plant, we explicitly construct a family of such strictly suboptimal stationary points,
and investigate the eigenvalues of the corresponding Hessian (Theorem 5). In contrast,
we prove that all controllable and observable stationary points are globally optimal
to the LQG problem (Theorem 6); this can be viewed as a special case of existing
results on first-order necessary conditions for optimal reduced-order controllers [48,
Theorem 20.6], [17, Sect. II]. We also show that these controllable and observable
stationary points are identical up to similarity transformations, and form a submanifold
of dimension n” that has two path-connected components (Proposition 3). This result
implies that if local search iterates converge to a stationary point that corresponds
to a controllable and observable controller, then the algorithm has found a globally
optimal solution (Corollary 3). Finally, we construct an example showing that the
second-order shape of the LQG cost function can be ill-behaved around a controllable
and observable stationary point in the sense that its Hessian has a very large condition
number (see Example 7).

1.2 Related work

Optimization landscape of LOR: The Linear-Quadratic Regulator (LQR) has recently
re-attracted increasing interest [8, 11, 24, 31, 37, 38] in the study of RL techniques
for control systems. For model-free policy optimization methods, the optimization
landscape of LQR is essential for establishing their performance guarantees. In [11,
24, 27], it is shown that both continuous-time and discrete-time LQR problems enjoy
the gradient dominance property, and that model-free gradient-based algorithms con-

' Such controllers are also called minimal in classical control theory. In this paper, we do not use this

terminology to avoid confusion with optimal controllers.
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verge to the optimal LQR controller under mild conditions. The authors in [42] have
examined the optimization landscape of a class of risk-sensitive state-feedback control
problems and the convergence of corresponding policy optimization methods. Further-
more, it is shown in [13] that a class of finite-horizon output-feedback linear quadratic
control problems also satisfies the gradient dominance property. Some recent studies
have examined the connectivity of stabilizing static output feedback policies [6, 10,
12]. It is shown in [12] that the set of stabilizing static output feedback policies can
be highly disconnected, which poses a significant challenge for decentralized LQR
problems. For general decentralized LQR, policy optimization methods can only be
guaranteed to reach some stationary point [23].

We note that many landscape properties of LQR are derived using classical control
tools [10, 13, 27, 42]. Our work leverages ideas from classical control tools [15, 25,
32, 48] to analyze the optimization landscape of the LQG problem.

Reinforcement learning for LOQG and controller parameterization: Recent studies have
also started to investigate LQG with unknown dynamics, including offline robust con-
trol [4, 36, 44] and online adaptive control [19, 20, 33]. The line of studies on offline
robust control first estimates a system model as well as a bound on the estimation error
(see, e.g., [29, 36, 46]), and then design a robust LQG controller that stabilizes the
plant against model uncertainty. For online adaptive control, the recent work [33] has
introduced an online gradient descent algorithm to update LQG controller parameters
with a sub-linear regret; see [19, 20] for further developments. For both lines of works,
a convex reformulation of the LQG problem is essential for algorithm design as well
as performance analysis. For example, the works [19, 20, 33] employ the classical
Youla parameterization [40], while the works [4, 44] adopt the recent system-level
parameterization (SLP) [39] and input-output parameterization (IOP) [14], respec-
tively. The Youla parameterization, SLP, and IOP are able to recast the LQG problem
into equivalent convex formulations in the frequency domain [45], but they all rely on
the underlying system dynamics explicitly. Thus, a system identification procedure is
required a priori in [4, 33, 36, 44], and these methods are all model-based.

In this work, we consider a natural model-free controller parameterization for LQG
in the state-space domain. This parameterization does not depend on the system
dynamics explicitly but leads to a non-convex formulation. Our results contribute
to the understanding of this non-convex optimization landscape, which shed light on
performance analysis of model-free RL methods for solving LQG.

Non-convex optimization with symmetry: Recent works [22, 43] have revealed the
significance of symmetry properties in understanding the geometry of many non-
convex optimization problems in machine learning. For example, the phase retrieval
[34] and low-rank matrix factorization [7, 22] problems have rotational symmetries,
while sparse dictionary learning [30] and tensor decomposition [16] exhibit discrete
symmetries; see [43] for a recent survey. These symmetries enable identifying the
local curvature of stationary points, and contribute to the tractability of the associated
non-convex optimization problems.

In this paper, we highlight the symmetry defined by similarity transformations of
dynamic output-feedback controllers, which enables us to derive novel results on the
optimization landscape of LQG. While the notion of similarity transformation has
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been extensively studied in classical control theory, its utilization in analyzing the
non-convex optimization landscape of LQG (and other control problems) is limited in
existing literature. We note that the symmetry defined by similarity transformations
also holds for other dynamic output feedback controller design problems, suggest-
ing that our results and analysis may be generalized or adapted to the optimization
landscape analysis of other important control problems (such as H» and Ho optimal
control).

1.3 Paper outline

In Sect. 2, we present the problem statement of Linear Quadratic Gaussian (LQG)
control. We introduce our main results on the connectivity of stabilizing controllers
in Sect. 3, and present our main results on the structure of stationary points of LQG
problems in Sect. 4. We conclude the paper in Sect. 5. Some technical proofs are
presented in the appendix.

Notations: The set of k x k real symmetric matrices is denoted by S¥. The set of k x k
real invertible matrices is denoted by GL;. ||M | r denotes the Frobenius norm for
any matrix M. For any M1, M; € Sk, we use M < M; and M, > M, to mean that
M, — M is positive definite, and use M| < My and M> > M to mean that M, — M|
is positive semidefinite. We use I to denote the k x k identity matrix, and use O, x, t0
denote the k1 x k; zero matrix; we sometimes omit their subscripts if the dimensions
can be inferred from the context.

2 Problem statement

In this section, we first introduce the linear quadratic Gaussian control problem, and
then present the problem statement of our work.

2.1 The linear quadratic Gaussian (LQG) problem

Consider a plant described by a continuous-time linear dynamical system’

x(1) = Ax(t) + Bu(t) + w(t),

(D
y() = Cx(t) +v(@),

where x(t) € R” represents the state vector, u(t) € R™ represents the control input,
y(t) € RP represents the output signal, and w(r) € R", v(¢) € R? are process and
measurement noises at time ¢. It is assumed that w(#) and v(¢) are white Gaussian
noises with intensity matrices W > 0 and V > 0. For notational simplicity, we will
drop the argument ¢ when it is clear in the context.

2 This paper focuses on the continuous-time setup. Discussion and results for discrete-time LQG are
provided in our online report [47].
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The classical linear quadratic Gaussian (LQG) problem is formulated as

1 T
min J:= lim —=FE [f (XTQx + uTRu) dt:|
u(t) T—oo T =0

2)
subject to (1),

where QO > 0 and R > 0. Here, the input u(z) is allowed to depend on all past
observation y(t) with T < ¢. We make the following standard assumption on the
problem setup throughout the paper.

Assumption 1 (A, B) and (A, W1/2) are controllable, and (C, A) and (Q'/2, A) are
observable.

Unlike the linear quadratic regulator (LQR) problem, static feedback policies in
general do not achieve the optimal objective value, and we need to consider the class
of dynamic controllers in the form of

(1) = Ak&(1) + Bxy(1),

3
u(t) = Cy&(1). @

Here £() € R is the internal state and Ak, Bk, Ck are matrices that specify the
controller’s dynamics. We refer to the dimension ¢ of the internal state £ as the order
of the dynamic controller (3). A dynamic controller is said to be full-order if g =n,
and is said to be reduced-order if g < n. We shall see later that it is unnecessary to
consider dynamic controllers with order beyond the system dimension 7.

The LQG Problem (2) admits the celebrated separation principle and has a
closed-form solution by solving two algebraic Riccati equations [48, Theorem 14.7].
Specifically, the optimal controller is given by

£ =(A—BK)E+ L(y — Cé),

u=—KEg. @

Here the matrix L is called the Kalman gain which is given by L = PCTV~! with P
being the unique positive semidefinite solution (see, e.g., [48, Corollary 13.8]) to

AP+ PAT—PC'v lcP+ W =0, (5a)

and the matrix K is called the feedback gain, given by K = R~'B"S where S is the
unique positive semidefinite solution to

ATS+SA—SBR'BTS+ Q0 =0. (5b)
We see that the optimal LQG controller (4) can be written in the form of (3) with

Ak=A—-—BK —-LC, Bck=L, Ckx=-K. (6)
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Thus, the solution from Ricatti equations (5) is always full-order, i.e., ¢ = n. We note
that two dynamic controllers with the same transfer function K(s) = Cx(s/—Ak) ™' Bk
lead to the same LQG cost. In general, the optimal LQG controller is only unique in
the frequency domain [48, Theorem 14.7] but not unique in the state-space domain;
any similarity transformation on (6) leads to another optimal solution that achieves
the global minimum cost (see Lemma 7).

2.2 Parameterization of dynamic controllers and the LQG cost function

Recently, model-free reinforcement learning methods have been studied for a range of
control problems, such as LQR [11, 27], finite-horizon discrete-time LQG [13], state-
feedback risk-sensitive control [42], etc. These works view classical control problems
from a modern optimization perspective, and directly optimize over policies based on
observed data, without explicit knowledge of the underlying model. In this paper, we
adopt a similar angle and view LQG from a model-free optimization perspective.

We consider the natural parameterization of the set of dynamic controllers in (3) by
their corresponding matrices (Ak, Bk, Ck). To formulate the LQG cost as a function
of the parameterized dynamic controller (Ak, Bk, Cx), we first need to specify its
domain. By combining (3) with (1), we get the closed-loop system

ile) =L Il o 1)
L=loale]+ bl

It is known from classical control theory [48, Chapter 13] that under Assumption 1,
the LQG cost is finite if the closed-loop matrix

ABCK_AO+BOOCKCO )

BkC A | |0 O O I||Bk Ax||0 I
is stable, i.e., the real parts of all its eigenvalues are negative; dynamic controllers
satisfying this condition are said to internally stabilize the plant (1). Furthermore,

the optimal controller given by (6) is guaranteed to internally stabilize the plant. We
therefore define the set of stabilizing controllers with order g € N by?

(N

L _ 0m><p Ck (m+q)x(p+q)
Cy = {K_[ Bx Ax eR

(8) is stable} , )

and let J, : C; — R be the function that maps a parameterized dynamic controller in
C, toits corresponding LQG cost for each ¢ € N. Since the set of full-order stabilizing

3 In (9), for notational simplicity, we lumped the controller parameters into a single matrix; but it should
be interpreted as a dynamic controller, represented by (3). Note that this definition allows us to apply
block-wise matrix operations; see, e.g., (14).
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controllers C,, contains the optimal controller, we will mainly focus on the properties
of C,, in this paper. We will abbreviate J,,(K) as J(K) when no confusions occur.

The following lemma shows that the set C, can be treated as an open set when it
is nonempty. This is a direct consequence of the fact that the Routh—-Hurwitz stability
criterion returns a set of strict polynomial inequalities in terms of the elements of
(Ak, Bk, Cx).

Lemma 1 Letq > 1 suchthat C4 is nonempty. Then, C4 is an open subset of the linear
space

_ J| Pk Ck (m+q)x (p+q)
Vy = {|:BK AJ ceR

Dk =0mx,,}. (10)

We also have the following observation on the set of full-order stabilizing controllers
Cn, whose proof is postponed to Appendix A.1.

Lemma 2 The set C,, is non-empty, unbounded, and can be non-convex.

The following two lemmas give useful characterizations of the LQG cost function
J;. Lemma 3 is known in the literature (see, €.g., [2]); Lemma 4 follows directly from
Lemma 3, and we provide a short proof in Appendix A.2.

Lemma3 Fix g € Nsuchthat C; # @. Given K € C4, we have

(o o (W o
=[St ) ()

where Xx and Y are the unique positive semidefinite solutions to the following Lya-
punov equations

;
A BCk A BCk w 0 .
|:BKC AK]XK+XK |:BKC AK} +[0 pvpy =% (2
T
A BCx A B . [e o 7.
|:BKC AK} Y+ Fi |:BKC AK}+[O cireg| =0 U

Lemma4 Forany q € Nwith C, # @, the function J, is real analytic on C.

Now, given the dimension n of the plant’s state variable, the LQG problem (2) can
be reformulated into a constrained optimization problem:

min J,(K)
K (13)
subjectto K € C,,.

Based on (13), one may further derive model-free policy gradient algorithms to find
a solution to (13). To characterize the performance of policy gradient algorithms, it
is necessary to understand the landscape of (13). However, beyond Lemmas 1,2 and
4, little is known about their further geometrical and analytical properties, especially
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those that are fundamental for establishing convergence of gradient-based algorithms.
In this paper, we focus on the following two topics about the set C,, and the LQG cost
function J,:

1. The connectivity of C, and its implications (Sect. 3). Connectivity of the domain
is critical for performance analysis of gradient-based algorithms for model-free
controller synthesis. Most recent results focus on state-feedback controllers or
static output-feedback controllers [6, 11, 12, 27]. It is known that the set of stabi-
lizing state-feedback controllers is connected, which is crucial for gradient-based
algorithms to find a good solution. It is also known that the set of stabilizing static
output-feedback controllers can be highly disconnected [12]. The connectivity of
the set of stabilizing dynamic controllers C,, however, has not been discussed
before in the literature.

2. The structure of the stationary points and the global optimum of J, (Sect. 4).
Classical control theory shows that the optimal feedback gain for LQR is unique
under mild assumptions, and recently it is established that the LQR cost function is
gradient dominated and has a unique stationary point which is the globally optimal
solution [11, 27]. It has also been shown recently that a class of output-feedback
controller design problems in finite-time horizon has a unique stationary point
[13]. On the other hand, due to the non-uniqueness of optimal LQG controllers
in the state-space domain, we do not expect the LQG cost function J,, (K) to have
a unique stationary point. We aim to reveal further structural properties of the
stationary points of J, (K) in this work.

3 Connectivity of the set of stabilizing controllers
In this section, we examine the connectivity of the set of stabilizing controllers C,,. We

summarize the main results regarding the connectivity of C,, in Sect. 3.1, and provide
their proofs in the subsequent subsections.

3.1 Main results
We first introduce the notion of similarity transformation that is central in linear control

theory. Given ¢ > 1 such that C; # @, we define the mapping .7, : GL, x C; — C;
that represents similarity transformations on C; by

-1 1
[ ol[o c][1, 01 _[ 0 T
Za(T.K) = [0 T} [BK AK} [0 T} - |:TBK TAKT‘11| 19

(recall that GL, denotes the set of k x k real invertible matrices). It is not hard to
verify that given K € C;, (T, K) is also in C; for any T € GL,. We can also check
that .7, is indefinitely differentiable on GL, x C,, and that

Tq(Ty, Ty (T1, K)) = T4 (T2 Ty, K) (15)
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for any T1, T, € GL,. This implies that for any fixed T € GL,, the mapping
K~ %(T, K) admits an inverse given by K — %(T’], K). Therefore, we have
the following result.

Lemma5 Given q > 1 such that C;, # O, for any T € GL,, the mapping K
Ty(T,K) is a diffeomorphism from Cy to itself.

This section will mainly focus on the case ¢ = n. For notational simplicity, for
any T € GL,, we let 97 : C, — C, denote the linear mapping given by 7 (K) :=
(T, K).

We are now ready to present the main technical results.
Theorem 1 The set C,, has at most two path-connected components.

Theorem 2 [fC,, has two path-connected components c,ﬁ” and C,(lz), then C,(,l) and C,(lz)

are diffeomorphic under the mapping I for any invertible matrix T € R"™" with
detT <O.

Theorem 2 shows that even if C,, has two path-connected components, there exists
a linear bijection defined by a similarity transformation .77 between these two com-
ponents; this linear bijection will be orthogonal if T is orthogonal with det 7 = —1.
The following theorem then gives a sufficient condition for C, to be path-connected;
this condition becomes necessary when the plant is single-input or single-output.

Theorem 3 The following statements hold.

1. Cy is path-connected if there exists a reduced-order stabilizing controller, i.e.,
Cn—l ?é J.

2. Suppose the plant (1) is single-input or single-output, i.e., m = 1 or p = 1. Then
the set C,, is path-connected if and only if C,—1 # Q.

One main idea in our proofs is based on a classical change of variables for dynamic
controllers (see, e.g., [25, 32]). We adopt the change of variables to construct a set
with a convex projection and a surjective mapping from that set to C,, and then path-
connectivity results follow from the fact that convex sets are path-connected. The
potential disconnectivity of C, comes from the fact that the set of real invertible
matrices GL, = {IT € R"™" | detIl # 0} has two path-connected components
[21]: GL;} = {IT € R"™" | detIT > 0}, GL, = {IT € R"*" | detIT < 0}. The
proof of Theorem 3 is based on the observation that a reduced-order controller can be
augmented to a full-order controller that is invariant under a similarity transformation
with det 7 < 0; for single-input or single-output plants, we use the determinant of the
observability or the controllability matrix of the controller to characterize whether its
order can be reduced. The full proofs are technically involved, and we postpone them
to Sects. 3.2 to 3.4.

Example 1 (Disconnectivity of stabilizing controllers) Given any open-loop unstable
plant with state dimension n = 1, it is straightforward to see that there exist no
reduced-order stabilizing controllers, i.e., C;,—1 = @. Thus, Theorem 3 indicates that
its associated set of stabilizing controllers C, is not path-connected.
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(a) C; for Example 1 (b) C; for Example 2

Fig.1 The set of stabilizing controllers C| for Examples 1 and 2

As an example, consider the plant with A = 1, B = 1, C = 1, and Theorem 3
indicates that the corresponding C, is not path-connected. Indeed, using the Routh—
Hurwitz stability criterion, it is straightforward to derive that

Clz{Kz[O CK]€R2><2

By Ax Ak < —1, BkCk < AK}. (16)

This set has two path-connected components: C; = C” UCy with Cf N C; = 0,
where

£ ) |0 Ck 2x2
S X

Ak < —1, BxCk < Ak, =Bk > O} .

In addition, as expected from Theorem 2, it is easy to verify that C?’ and C; are
diffeomorphic under the mapping 97 for any T < 0. Fig. 1a illustrates the region of
the set C; in (16). O

Theorem 3 also suggests the following corollary.

Corollary 1 Given any open-loop stable plant (1), the corresponding set of stabilizing
controllers C,, is path-connected.

Proof This corollary follows from the fact that for any open-loop stable plant, the
reduced-order controller (Ak, Bk, Ck) = ( — In—1, Ou—1)x p» Omx(n—1)) is internally
stabilizing, showing that C,—1 # @. O

Example 2 (Stabilizing controllers for an open-loop stable system) Consider an open-
loop stable plant (1) with A = —1, B = 1, C = 1. Since it is open-loop stable,
Corollary 1 indicates that its associated set of stabilizing controllers C, is path-
connected. Using the Routh—Hurwitz stability criterion, it is straightforward to derive

_Je 10 Ck 2x2
Cl—{K—[BKAK:IER

Ak < 1, BkCk < —AK} . (17
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This set is path-connected, as illustrated in Fig. 1b. O

Remark 1 We provide some remarks on the implications of the connectivity of the
domain of LQR/LQG for gradient-based algorithms. Recent studies have revisited the
classical LQR problem from a modern optimization perspective and designed policy
gradient algorithms for model-free controller synthesis [11, 27, 42]. For policy gradient
algorithms, the connectivity of the domain (the set of stabilizing controllers) becomes
important since gradient-based methods typically cannot jump between different con-
nected components. It is known that the set of stabilizing static state-feedback gains
{K € R™" | A — BK is stable} is connected [6], and this is one critical factor in
justifying the performance of the algorithms in [11, 27, 42]. On the other hand, the set
of stabilizing static output feedback policies {K € R"*? | A — BKC is stable} can
be highly disconnected [12], posing a significant challenge for gradient-based algo-
rithms. In Theorems 1 to 3, we have shown that the set of stabilizing controllers C,
for LQG has at most two path-connected components that are diffeomorphic to each
other under some similarity transformation. Since similarity transformation does not
change the input/output behavior of a controller, it makes no difference to search over
either path-connected component in C, even if C, is not path-connected. This brings
positive news to gradient-based local search algorithms for LQG.

3.2 Proof of Theorem 1

The basic idea of analyzing the path-connectivity of C, for LQG is in some sense
similar to the analysis for LQR [6]: We first adopt a classical change of variables for
constructing convex reformulation of the controller synthesis problem, and then path-
connectivity results generally follow from the path-connectivity of convex sets. But
compared to the analysis for LQR, here we need to use a more complicated change of
variables for dynamic controllers in the state-space domain.

Specifically, we adopt the change of variables presented in [25, 32]. Given the plant
dynamics (A, B, C) in (1), we first introduce the following convex set

F, = {(X, Y M,H F)| X, YeS" MecR"™ HcR"™, 6 FecR"™",

X1 AX+BF A AX+BF A T (18
) [ [ J <o}

1Y M YA+HC M YA+HC

and the “extended” set

gl‘l = {ZZ(X,Y,M,H,F,H,E)

(X5Y7M9H’F)Efna
. (19)
negeR> EN=1-YX

We shall later see that there exists a continuous surjective map from G, to C,, and
the path-connectivity of the convex set F, plays a key role in analyzing the path-
connected components of C,. Before proceeding, we note the following observation
for each element in G,,.
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Lemma6 Forany (X,Y,M,H,F,II, E) € G,, Il and E are always invertible, and
consequently, the block triangular matrices ! 9, and rex are invertible.
YB E 0 1
.. — X1
Proof By definition, for all (X,Y,W,H,F,II,E) € G,, we have |:I Y] > 0,
implying that

det(YX — I) = det X det(Y — X~ 1) = det [}1( ﬂ > 0.

Thus, det(I7) # 0anddet(&) # 0, indicating they are both invertible. The invertibility
of the other two block triangular matrices is straightforward. O

We now define a mapping from G, to a subset of R+ x(p+n)

Definition1 ForeachZ = (X,Y, M, H, F,II, £) in G,, let

— 0 &c@| _ (1 O o F 1 cx1!
?(2) = |:¢B(Z) @A(Z)j| = [YB E} |:H M — YAX1| [0 H} N 1))

We point out that this mapping (20) is essentially the change of variables presented
in [25, 32], which s critical for deriving convex reformulations of output-feedback con-
troller synthesis problems. The following result builds an explicit connection between
G, and C,, via the mapping @.

Proposition 1 The mapping @ defined by (20) is a continuous and surjective mapping
from G, to Cy,.

Proposition 1 has been effectively proved in [25, 32]. We provide a rigorous proof
in Appendix A.3.

After establishing the continuous surjection from G, to C,, it is now clear that we
can study the path-connectivity of C, via the path-connectivity of G,: Any continuous
path in G, will be mapped to a continuous path in C,, and thus any path-connected
component of G, has a path-connected image under the mapping @. Consequently,
the number of path-connected components of C, will be no more than the number of
path-connected components of G,,.

We now proceed to provide results on the path-connectivity of the set G,,.

Proposition 2 The set G,, has two path-connected components, given by

G ={(X,Y,M,H,F,I1,E) €G, | detll > 0},

G, ={X,Y,M,H,F,I1,5) € G, | detll <0}.
Proof First, the convexity of F,, implies that the set F,, is path-connected. We then
notice that the set of real invertible matrices GL,, = {IT € R"*" | det IT # 0} has

two path-connected components [21]

GL] = {IT e R"" | detIT > 0}, GL; = {IT € R"" | det T < 0}.
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Therefore the Cartesian product F,, x GL, has two path-connected components.
Finally, it is not hard to verify that the following mapping

(X,Y,M,H,F, )~ (X,Y,M,H,F,IT,(I —YX)[T™")

is a homeomorphism from F,, x GL, to G,,. Therefore G, also has two path-connected
components, and their expressions are evident. O

Proposition 2 then implies that C, has at most two path-connected components.
Precisely, upon defining C;” = @(G,"),C, = @(G,,), the two path-connected com-
ponents of C,, are just given by C;” and C,, , if C,, is not path-connected. This completes
the proof of Theorem 1.

3.3 Proof of Theorem 2

We have shown in the previous subsection that C; and C,; are the two path-connected
components if C, is not connected. To prove Theorem 2, it suffices to show that,
regardless of the path-connectivity of C,, for any 7 € R"*" with detT < 0, the
mapping 77 restricted on C; is a diffeomorphism from C;I to C,. And since 7 is
a diffeomorphism from C, to itself with inverse 771, and C; and C,; are two open
subsets of C,, we only need to show that 77 (C;/) € C, and F7-1(C;) € C;I when
detT < 0.

Consider an arbitrary point K = [ 0 Ck

+ s +
By AK] € C,. By the definition of C,", there
existsZ=(X,Y,M,H, F,I1, ) € G} such that ®(Z) = K. Now let

A

=TI, T, Z=(X,Y,M,H,F,I1,5).

[I] >

69

IAt is not difficult to verify that Z¢c G,. Since det IT =detT -detIT < 0, we have
Z € G, . Then,

5| 0 @c@) 0 F 1cx]!
P = ¢B(Z) ¢A(Z):| [ ] |:H M—YAX} [o ﬁ}
_ - 1ex1'Tr o
- H M- YAX orn| |or!
_ I 0 0 Ckl|l|I O . 0 CKT—I B
~ o T} |:BK AKi| [0 Tl] = |:TBK TAKT—l] =71 ®),

which implies that 77 (K) € @(G,) = C, and consequently 77 (C,") € C, .
The proof of Z7-1(C,’) € C;F is similar by noting that det 7~! < 0 if and only if
detT < O.
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3.4 Proof of Theorem 3

We first show that the non-emptiness of C,—; implies the path-connectivity of C,.
Indeed, suppose there exists K € C,_1. Then it can be augmented to be a full-order
controller in C,, by

0.6 0
K=| Bxkidxk 0 | €Cu
0 ‘ 0 —1
I,_1 O + . .
Nowlet T = 0 —1 . By the proof of Theorem 2, we can see that K e C; implies

Ir(K) € CF. On the other hand, we can directly check that .77 (K) = K. Therefore
we have K € C;” N C,, indicating that C;- N C, is nonempty. Consequently, C, is
path-connected.

We then consider the case when the plant is single-input or single-output. The goal
is to find a reduced-order controller in C,,—1 when C,, is connected. Here we only prove
the single-output case; the single-input case can be proved similarly.

Let T be any real n x n matrix with det T < 0. Let K© € C, be arbitrary, and let
KD = 73 (K©). If C, is path-connected, then there exists a continuous path

0 Ck@®

ke = [BK(r) Ax(t)

:|, t €10,1]

in C,, such that K(0) = K© and K(1) = K. Now for each 7 € [0, 1], let C(¢) be the
controllability matrix for (Ak(¢), Bk(?)), i.e.,

C(1) = [Bk(1) Ax(1)Bk(1) --- Ak()" "' Bk(1)] € R™,

where the dimension of C(¢) is n X n since the plant is single-output (i.e., the controller
is single-input). We then have C(1) = 7'C(0), and thus det C(1) - det C(0) < 0. On
the other hand, it can be seen that det C(¢) is a continuous function over ¢ € [0, 1].
Therefore det C(r) = 0 for some 7 € [0, 1], implying that (Ak(t), Bk(t)) is not
controllable. This indicates that the transfer function Cx(t)(sl, — Ax(z)) ! Bk(7)
can be realized by a state-space representation with dimension at most n — 1, and
consequently C,—1 # .

4 Structure of stationary points

In this section, we proceed to characterize the stationary points of the LQG cost
function. Section 4.1 discusses the invariance of the LQG cost J; under similarity
transformation and its implications. Section 4.2 shows how to compute the gradient
and the Hessian of the LQG cost J,. In Sect. 4.3, we investigate a class of spurious
stationary points that are not controllable and not observable. We characterize the
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controllable and observable stationary points for LQG over C, in Sect. 4.4. Finally, in
Sect. 4.5, we discuss the second-order behavior of J, (K) around its controllable and
observable stationary points.

4.1 Invariance of LQG cost under similarity transformation

As shown in Lemma 5, the similarity transformation .7 (7, -) is a diffeomorphism
from C, to itself for any invertible matrix 7 € GL,. Then together with (15), we can
see that the set of similarity transformations is a group that is isomorphic to GL,. We
can therefore define the orbit of K € C,; by

O :=1{7,(T,K) | T € GL,}.

0 Ck [0 or!
Bk AK} and 74(T. K) = [TBK TAKT ™!
input-output behavior regardless of T € GL,, we have the following lemma that the
LQG cost is invariant under similarity transformations.

Since the controllers K = |: i| have identical

Lemma7 Letq > 1 such that C; # @. Then J,(K) = J, (%(T, K)) foranyK e C,
and T € GL,.

Consequently, the LQG cost is constant over an orbit Ok for any K € C,.

0 Ck
By Ak
is observable. The following proposition shows that every orbit Ok corresponding to
a controllable and observable controller has dimension g2 with two path-connected
components. The proof is given in Appendix A.4.

Now consider K = :| € C, such that (Ak, By) is controllable and (Ck, Ax)

Proposition 3 Suppose K € C, represents a controllable and observable controller.
Then the orbit Ok is a submanifold of Cy of dimension g, and has two path-connected
components given by

Of ={Z,(T,K) | detT >0}, O ={Z,(T,K)|detT <0}

From Lemma 7 and Proposition 3, one interesting consequence is that given a
globally optimal LQG controller K* € C,, the points in its orbit Og= are all globally
optimal, and if K* is controllable and observable, the orbit Ok+ is a submanifold in V),
of dimension n2, and it has two path-connected components. Figure 2 demonstrates
the orbits of globally optimal LQG controllers for an open-loop unstable plant and an
open-loop stable plant, showing that the set of globally optimal LQG controllers are
non-isolated and disconnected in C,,.

We conclude this subsection by noting that the LQG cost function J, (K) is not
coercive in the sense that there might exist sequences of stabilizing controllersK; € C,
with [|K;||F — o0 or ian’eva IIK; — K'l|[r — 0 such that lim SUP;_, o0 Jy(Kj) is
finite. Indeed, from Proposition 3, the orbit Ok can be unbounded while J,(K) is
constant for any controller in the same orbit. Furthermore, the following example
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(a) Open-loop unstable plant in Example 1 (b) Open-loop stable plant in Example 2

Fig.2 Non-isolated and disconnected globally optimal LQG controllers. In both cases, weset Q = 1, R =
1,V =1,W = 1. (a) LQG cost for Example 1 when fixing Ax = —1 — 24/2. (b) LQG cost for Example
2 when fixing A = 1 — 2+/2. The red curves represent the set of globally optimal LQG controllers

shows that the LQG cost might converge to a finite value even when the controller K
approaches the boundary of C,.

Example 3 (Non-coercivity of the LQG cost) Consider the plant in Example 2 given
byA=—-1,B=1,C=1l,andwelet Q =1,R =1,V = 1,W = 1. The set

Cy is given by (17). Let K¢ = _06 g € C; for any € # 0, and it is not hard to

see that lime_,0 Kc € 9Cy. On the other hand, by solving the Lyapunov Eq (12a),
2

we get the unique solution Xx, = % |:6 :1 621 2} and the corresponding LQG cost

J(Ke) = 5 (1 + 3€% + €*), indicating lime_.o J (Ke) = 1/2 < +0o0. O

4.2 The gradient and the Hessian of the LQG cost

The following lemma gives a closed-form expression for the gradient of the LQG cost
function J;, and its proof is given in Appendix A.7.

Lemma8 (Gradient of LOG cost J;) Fix g > 1 such that C;, # Q. For every

1 0 Ck ) o
K= [BK AK] € Cy, the gradient of J,(K) is given by

3J4 (K)
0 dCk

VJq(K): 8Jy(K) 8J4(K) |
d Bk JAk
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with
3J,(K)
S =2 (Yh X1 + Yo Xan) la)
9 Ax
3J, (K
8‘;; ) _, (YZZBKV + YuXL,CT+ YITzXnCT) : (21b)
K
3J, (K
an( ) =2 (RCKXzz +BTY11 X120 + BTY12X22) ) (210)
K

where Xy and Yk, partitioned as
X1 X2 Yi1 Yo
Xk = , Yk = 22
« |:XT2 X2 « Y1T2 Y2 22
are the unique positive semidefinite solutions to (12a) and (12b), respectively.

We next consider the Hessian of J, (K). Let K be any controller in C,, and we use
Hessk : V; x V; — R to denote the bilinear form of the Hessian of J; at K, so that
for any A € V,, we have

|
T K+ A) = J,(K) +tr (VJq(K)TA) + 5 Hess(A, 4) + o(|Al2)

as ||Allr — 0. Obviously, Hessk is symmetric in the sense that for all x, y € V,,
Hessk(x, y) = Hessk(y, x). The following lemma shows how to compute the quantity
Hessk (A, A) for any A € V,; by solving three Lyapunov equations, whose proof is
given in Appendix A.7.

0 Ck

Lemma9 Fix g > 1 such that C; # Q. Let K = |:BK Ax

:| € C4. Then for any

A= |: 0 ACK] € V,, we have

_ 0 BAc¢| 0 0 ,
Hessk(A, A) =21tr <2 |:ABKC Ay i| XK,A Yk +2 |:0 CERACK . XK,A

0o 0 7,0 0 7,
o agval | oAl RAq | *¢)

where Xk and Yk are the solutions to the Lyapunov Eqs (12a) and (12b), and X{( A€
RUHO*X0+4) s the solution to the following Lyapunov equation

T
A BCk ’ ’ A BCk _
[BKC AK]XK,AJFXK,A[BKC AK:| + M) (Xg, A) =0, (23)
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with

.
[ 0 Bag 0 BAc 0 0
Mi(Xk, A):= |:ABKC A :|XK+XK[ABKC Ay + 0 BkVAp +Ap VB

From Lemma 9, one can further get Hessx (A, Ay) for any Ay, Ay € V, by

1
Hessk (A1, 42) = 3 (Hessk(A1+A42, A1 +Az)—Hessk(Ay, Aj) —Hessk(Az, A3)) .

4.3 Spurious stationary points

In this part, we show that the LQG cost J,(K) over the full-order stabilizing con-
troller C, may have many spurious stationary points that are not controllable and not
observable.

We first investigate the gradient of J, (K) under similarity transformation. Given
any T € GL,, recall the definition of the linear mapping of similarity transformation
J, (T, K) in (14). The following lemma gives an explicit relationship among the
gradients of J, (-) at Kand .7, (T, K), whose proof is given in Appendix A.6.

Lemma 10 LerK = |:£ SK] € Cy be arbitrary. For any T € GL, we have
K Ak
I, 0O I, 0
v, = [ " _T} V| - [ P T]. (24)
T K 0T K LOT

As expected, a direct consequence of Lemma 10 is that, if K € C; is a stationary
point of J,, then any controller in the orbit O is also a stationary point of J,. In
addition, Lemma 10 allows us to establish an interesting result that any stationary
point of J, can be augmented to stationary points of J, . for any ¢’ > 0 with the
same objective value.

0 Cg
By Ak
that VJ,(K*) = 0. Then for any q' > 1 and any stable A € RY%4 | the following
controller

Theorem 4 Let g > 1 be arbitrary. Suppose there exists K* = |: i| € Cy such

K'= | BiAL 0 | € Cyiy (25)

is a stationary point of J, 4 over Cyq satisfying Jq g (K*) = J, (K.

Proof Since K* € C,, we have K' e Cy+q by construction. It is straightforward to
verify that

Ty (T.K) =K with T = [gf _(;q/]
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Therefore, by Lemma 10, we have

Vigtg | = Vgt

[Iuig ©
R AR R
“q+q ’

5]
R* O —Iq/

which implies that, excluding the the bottom right ¢’ x ¢’ block, the last ¢’ rows and

the last ¢’ columns of VJy4q'| are zero. On the other hand, it can be checked that

K

KO
Jq+q/<|:0 AD =J,(K), VKec,

and since VJ, (K*) = 0, we can see that the upper left (m + ¢) x (p + ¢) block of

Viyig is equal to zero. Then, from Lemma 3, it is not difficult to verify that the
KN*

value J; (R*) is independent of the ¢’ x ¢’ stable matrix A, and thus the bottom right

q" x q' block of VJ,

is zero.
R*

We can now see that VJ, | = 0. This completes the proof. O

~%

Theorem 4 indicates that from any stationary point of J,; over reduced-order stabi-
lizing controllers in C;, we can construct a family of stationary points of J, . over
higher-order stabilizing controllers in C,,. Moreover, the stationary points con-
structed by (25) are not controllable and not observable. Therefore, assuming that
the optimal LQG controller is controllable and observable, as long as there exists
some g < n such that the problem of finding an optimal reduced-order controller
mingec, Jy(K) has a solution, we can then augment this solution to obtain a family of
stationary points in C, that are not controllable and not observable, and consequently
are spurious stationary points.

The following theorem explicitly constructs a family of stationary points for J,
with an open-loop stable plant, and also provides a criterion for checking whether the
corresponding Hessian is indefinite or vanishing.

Theorem 5 Suppose the plant (1) is open-loop stable. Let A € R™*" be stable, and

let
«_|0 0
K_[O A:|'

Then K* is a stationary point of J,,(K) over K € C,, and the corresponding Hessian
Hess g+ is either indefinite or zero.

Furthermore, suppose A is diagonalizable, and let eig(— A) denote the set of (dis-
tinct) eigenvalues of — A. Let Xqp and Yop be the solutions to the following Lyapunov
equations

AXop + XopAT + W =0, ATYop+ YopA+ Q =0, (26)
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and let
zZ= {s € C| CXop(sI — AT) ' YopB =0]. 27)

Then, the Hessian of J,, at K* is indefinite if and only if eig(—A) ¢ Z, and is zero if
and only ifeig(—A) C Z.

The fact that K* = |:8 g] is a stationary point can be proved similarly as Theorem

4. Appendix A.9 gives a detailed proof regarding the properties of the Hessian. A
recent study [26] also shows that the LQG cost in terms of observer-based controllers
has a zero gradient when K = 0, L = 0 for open-loop stable systems.

Theorem 5 constructs a family of strict saddle points or stationary points with
vanishing Hessians for LQG with open-loop stable plants. We present two examples
illustrating the Hessians at stationary points that are not controllable and observable.

Example 4 (Strict saddle point) Consider the plant in Example 2 with A = —1, B =
1,C = 1, and we choose Q = R = 1, W = V = 1. By Theorem 5, given any
a < 0, the controller K* = [8 2 € R>*? is a stationary point of J; (K) over the set

of full-order stabilizing controller C;. Furthermore, we can be check that

—1 1
CXOP(SI—AT) YO Bzm

Therefore the Hessian of J; at K* is indefinite by Theorem 5, indicating that K* is a
strict saddle point. Indeed, by using (11), we can directly compute the LQG cost and
obtain

S < 0 Cx ) A} — Ax(l + BZCP) — BkCk(1 — 3BkCk + BECY)
! Bk A - 2(—=1+ Ax)(Ak + BkCx) .

The Hessian at K* can then be represented as

PIK  02IK)  8EIK)
aAﬁ dAKIBk 0AkICk

0 0 0
2IK)  PIK  9%J(K) — ; 0O 0 1
PBAAC Tomg 9BOCK || T 2(1—a) ’
R2JK)  2IK) 2K | 010
ICkdAK ICKIBK  3C}

which has eigenvalues 0 and iﬁ. O

Example 5 (Stationary point with a vanishing Hessian) Consider the following SISO
system:

-1 0 -1 10
A:[1 _2}, Bz[l}, C=[-211], W:[Ol], V=1,
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Fig.3 The function A Jn(K*+tA)
t > Ju(K* 4+ 1A) for Example 5

0.8333 ‘\

~0.04  -0.02 0.02 0.04 P

and let Q = |:(1) (1):|, R = 1. It can be checked that

_— 55— 1)
CXOP(SI —A ) YOpB = m

00 0
By Theorem 5, the pointK* = | 0 —1 0 | is a stationary point of J,, with a vanishing
00 -1

Hessian. In Fig. 3, we plot the graph of the function ¢ +— J,(K* + rA) for A =
0212
—11 3 |. Figure 3 suggests that K* is a saddle point of J, with a vanishing
300

Hessian but non-vanishing third-order partial derivatives. O

Remark 2 Some recent studies have shown that many gradient-based algorithms can
automatically escape strict saddle points under mild conditions [18]. However, Exam-
ple 5 shows that the LQG cost function may have non-strict saddle points, and further
analysis is required to examine whether gradient-based methods can also escape such
stationary points. In addition, the existence of local minima is also important and
relevant for the convergence of first-order algorithms, which we leave as future work.

4.4 Controllable and observable stationary points are globally optimal

In this section, we will show that all controllable and observable stationary points are
globally optimal to the LQG problem (2).

We first give a useful lemma for controllable and observable stabilizing controllers
(see Appendix A.8 for a proof).

Lemma 11 Fix q € N such that C; # @, and let K € C, be controllable and observ-
able. Under Assumption 1, the solutions Xk and Yk to (12) are positive definite.

By letting the gradient (21) be equal to zero, we can derive closed-form expressions
for full-order controllable and observable stationary points K € C,, and show that they
are globally optimal. This result is formally summarized below.
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Theorem 6 Under Assumption 1, all controllable and observable stationary points of
Ju(K) over K € C,, are globally optimal, and they are in the form of

Ak=T(A—BK —LC)T™', Bx=-TL, Cx=KT"', (28)
where T € R"*" s an invertible matrix, and
K=R'B'S, L=pPC'V7!, (29)

with P and S being the unique positive definite solutions to the Riccati equations (5).

Proof The theorem can be viewed as a special case of [48, Theorem 20.6], [17, Section
1] that analyze first-order necessary conditions for optimal reduced-order controllers.
Following the analysis in [48, Chapter 20], we give an adapted proof.

0 Ck
Bk Ak
ishes. If the controller K is controllable and observable, we know by Lemma 11 that
the solutions Xk and Yk to (12a) and (12b) are unique and positive definite. Upon
partitioning Xk and Yk in (22), by the Schur complement, the following matrices are
well-defined and positive definite

Consider a stationary point K = € Cp such that the gradient (21) van-

Pi=Xi1 —X1X5' X[, =0,  S:=Y) —YpVp,' Y], > 0. (30)

We further define T := Y2_2l Y {rz. By (21a), we know that matrix T is invertible, and

Tl = —X12X2_21. Now, by letting %B(KK) = 0 and noting (21b), we have

Bk = (X, + Y, YLXDCTVT! = ~ (x|, + TX1)CTV !

(3D
=-T(X11 — X12X5' X],)C'V = —1pCcTVv—.
Similarly, from (21c), we have
Cx = —R'BT(Y11X12X5,' + Y12) = RT'BTST™!. (32)

Furthermore, since X is the solution to the Lyapunov equation (12a), by plugging in
the blocks of Xk we get

0=AX11 + X11A + BCkX], + X12CRBY + W, (33a)
0=AX12+ BCxX2 + X11C By + X12AL, (33b)
0= AkX2 4+ X0 Ak 4+ BKCX12 + X1,C"BY + BV By. (33¢)

Now, (33¢) + T x(33b) leads to

AkX2 + X0 Ag + BkCX12+ X[,C" By + BcV By
+ T(AX12 + BCkX2 + X11CTBE + Xleb =0,
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which is the same as

AkX2 + XnAf —TPCTV7iCX1 — XL,cv-icpPT + TPCTVICPT
+T(AX12 4+ BR'BTST X9 — X11CTVICPT 4 X12A)) = 0.

By the definition of 7', we have 7' X2 = —X»>. Then, the equation above becomes

AkX2n — TPC'VICX, — xLCTvlcpT + TPC'VICPT
+T(AX124+ BR'B'ST 'X2 — X1,C"V'CPT) =0,

leading to

Ak =TPCVICX X5 + X,CTVTICPTXy) —TPCTVT'CPTXS)
—~T(AX12+ BR'BTST ' X5 — X1 CTV-'CPT) X5, (34)
=T(A—PC'V-ic—-BR'B'S) T

From (31), (32) and (34), upon defining K and L in (29), it is easy to see that the
stationary points are in the form of (28). It remains to prove that P and S defined
in (30) are the unique positive definite solutions to the Riccati Eqgs (5a) and (5b).

We multiply (33c) by 7! on the left and by 7~ on the right, and by noting that
Bk =—-TPCTV~'and 77! = —X12X5,', we get

0 =X12X5, AkX1, + X12AR X5, X],
+ PCTVICX X5 X], + X1X5' X1, CTv=lcp + PCTv I CP.

Since P = X1 — X12X;21 Xsz, we further get

0 =X12X,, AkX], + X12AR X5, X1,
+prCc'vicx, +x,c'vlcp — pcTv-IcP.

(35)
Next, we multiply (33b) by =71 = X2_2l XIZ on the right and get
0=AX12X5 X], + BCkX ], + X11CTVTICTP + XA X5, X,
By plugging this equality into (35), we get
0=—AX12X,) X], — BCkX], — X12X5, X[, A — X12C BT — PCTV~ICP.
Then, we plug the above equality into (33a) and get

0=AX11 — X12X5,) X)) + (X11 — X12X5, X[,)A — PCTV7ICP + W,
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and since P = X1 — X12X2_21 XE, we see that P satisfies the Riccati Eq (5a). By
similar steps, we can derive from (12b) that S satisfies the Riccati equation (5b).
Finally, from classical control theory [48, Theorem 14.7], a globally optimal con-
troller to the LQG problem (13) is given by (6), and any similarity transformation leads
to another equivalent controller with the same LQG cost. Therefore, any controllable
and observable stationary point, given by (28), is globally optimal. O

We note that controllability and observability are required in the proof of Theorem
6, as they guarantee that the matrices (30) are well-defined and the solutions (31)
and (32) are unique.

Theorem 6 implies that, if the LQG problem (13) has a globally optimal solution
in C, that is also controllable and observable, then the globally optimal controller is
unique modulo similarity transformations. This is expected from the classical result
that the globally optimal LQG controller is unique in the frequency domain [48,
Theorem 14.7]. Theorem 6 also allows us to establish the following corollaries.

Corollary 2 The following statements hold:

1. If J,(K) has a controllable and observable stationary point in C,, then any sta-
tionary point that is not controllable or observable is strictly suboptimal.

2. If J,(K) has a globally optimal point in Cy that is not controllable or observable,
then all stationary points of J,,(K) are not controllable or observable.

We have already seen LQG cases with strictly suboptimal stationary points that
are not controllable and not observable in Example 4 and Example 5. It should be
noted that, even with Assumption 1, the LQG problem (13) might have no control-
lable and observable stationary points; this happens if the controller from the Ricatti
equations (5) is not controllable or observable.

Example 6 (Globally optimal controllers that are not controllable or observable) Here
we give an example from [41], whose optimal LQG controller does not have a full-
order realization in C, that is controllable and observable. Consider the linear system
(1) with

0-—1 1 1 -1
A=[10] B:[O] c=[1-1], W=|:_116], V=1,

40
oo
Assumption 1, and the globally optimal controller is given by

and let the LQG cost be defined by Q = |: R = 1. This LQG problem satisfies

=70 mr=[l)] ammk-p20 e

It is not hard to see that (Ck, Ak) is not observable. Consequently, by Corollary 2, all
stationary points of J,, are not controllable or observable for this example.
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In this case, the globally optimal controllers in C,, are not all connected by similarity
transformations. For example, it can be verified that the following two controllers are
both globally optimal:

0,=2 0 0,-2 0
Ki = 1:-3 0 |, Kh=11-3 0 |,
—4'5 —4 0'0 —1

. T . . -3 0
but there exists no similarity transformation between K; and K since |: 5 _ 4i| and

|:_03 _01} have different sets of eigenvalues. O

Now let us consider a sequence of gradient descent iterates that converges to a point.
Then Theorem 6 also allows us to check whether the limit point is a globally optimal
solution to the LQG problem.

Corollary 3 Consider the gradient descent iteration K; 11 = K, — o, VJ,(K;) for the
LQG problem (13), where o; > 0 is the step size. Suppose inf; «; > 0 and the iterates
K; converge to a point K*. Then K* is globally optimal if it is a controllable and
observable controller.

Remark 3 Corollary 3 proposes checking the controllability and observability of K*
for verifying global optimality when the gradient descent iterates converge to K*. In
practice, the limit K* cannot be directly computed, and one tentative approach to check
its controllability (observability) is to check whether the smallest singular value of the
controllability (observability) matrix of the last iterate K7 is sufficiently bounded away
from zero. A rigorous justification of this approach will be of interest for future work.

Remark 4 Note that Corollary 3 does not discuss under what conditions will the gra-
dient descent iterates converge. The results in [1] guarantee that if the cost function
is analytic over the whole Euclidean space, then the gradient descent with step sizes
satisfying the Wolfe conditions will either converge to a stationary point or diverge to
infinity. In our case, however, the cost function J, (K) is only analytic over a subset
Cn C V,. Furthermore, J,(K) is not coercive as shown in Example 3. Whether the
gradient descent with properly chosen step sizes can converge to a stationary point of
J,, (K) requires further investigation.

4.5 Hessian of J,(K) at controllable and observable stationary points

Finally, we turn to characterizing the second-order behavior of J,, around a globally
optimal controller K* by investigating the eigenvalues and eigenspaces of the Hessian
Hess . We assume K* is controllable and observable throughout this subsection.
Proposition 3 guarantees that for any controllable and observable K € C,,, the orbit
O is a submanifold of dimension n2 in C,, which allows us to define the tangent
space of Ok.* For each controllable and observable K € C,, we use 7 Ok to denote

4 A visualization of a manifold M and its tangent space 7 M at one point x € M is provided in Fig. 4.
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Fig.4 Visualization of a
manifold M and its tangent
space 7, M at some x € M.
Here y(¢) is an arbitrary C*°
curve in M that passes through
x, and v is the tangent vector of
y (t) at x. The tangent space
Ty M consists of all such
vectors v

the tangent space of Ok at K, and treat it as a subspace of V,; recall that ), is defined
by (10). The dimension of 7 Ok is then dim 7 O = dim Og = n2. We denote the
orthogonal complement of 7 Ok in V, by 7 (’)é. The following proposition charac-
terizes the tangent space 7 Ok and its orthogonal complement T(’)i‘ at a controllable
and observable controller K € C,, whose proof is given in Appendix A.5.

0 Ck

Proposition4 Let K = |:BK Ax

] € C, represent a controllable and observable con-
troller. Then

_ 0 _CKH nxn
7Ok = {[HBK HAg — AKH:| ‘H SR

1 | 0 Ap
TOK_{A_[ACKAAK eV

ApcAf — ARAag + ApBg — CRAc, = o} :

We now present the following lemma, which shows that the tangent space 7 O+
is a subspace of the null space of Hess g+, defined as

null Hess g+ = {x € V,, | Hessgx(x, y) =0, Yy € V,}.

Lemma 12 Suppose K* is controllable and observable. Then T Oy C null Hess .

This lemma is a direct corollary of [22, Theorem 2], and can be viewed as a local
version of Lemma 7 indicating the invariance of J, along the orbit Ok. Consequently,
the dimension of the null space of Hessk~ is at least n2. On the other hand, we also
have the following result.

Lemma 13 Suppose K* is controllable and observable, and let A € TO%. Then for
all sufficiently small t > 0,

Jo(K* +1A) — J,(K*) > 0.
Proof We prove by contradiction. Suppose forany § > 0, there always exists ¢ € (0, 3)
such that J,,(K* +rA) = J,(K*). Then we can find a positive sequence (;) j>1 such

thatt; — Oand J, (K*+1;4) = J,(K*). Denote K; = K*41; A. Since A is orthogonal
to 7 O+, there must exists some j > 1 such that K; ¢ Ok+. By [48, Theorem 3.17],
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we can see that the transfer function of K; will be different from the transfer function
of K*. Then by the uniqueness of the transfer function solution to the LQG problem,
K; cannot be a global minimum of J,, contradicting J,,(K;) = J,,(K*). m|

Combining the observations from Lemmas 12 and 13, we can see that, while the
Hessian Hessy+ is degenerate and its null space has a nontrivial subspace 7 O+,
the degeneracy associated with 7Ok« does not cause much trouble for optimizing
Jn, as the directions in 7 O+ correspond to similarity transformations that lead to
other globally optimal controllers, while along the directions orthogonal to 7 O+, the
optimal controller of J,, is locally unique.

We are therefore interested in the behavior of Hess g+ restricted to the subspace
TOi‘*. Specifically, we let rcond g+ denote the reciprocal condition number of Hess g+

restricted to the subspace TO@, ie.,

miny | 70,, Hessg+ (4, A)/|| Al
rcondgs := K g . 37)
maxa | 70Oy Hessg=(A, 4) /1A%

Intuitively, if rcondg+ is bounded away from zero, then we can expect gradient-based
methods to achieve good local convergence behavior for optimizing J,. However,
we give an explicit example below showing that rcondg+ can be very bad even if the
original plant seems entirely normal.

Example 7 Let € > 0 be arbitrary, and let

3[-1 0 1
AZE[O—I—e]’ B=[1+6], c=[11],

and

41 4 1+4¢€
Q‘[14] W‘[1+e4(1+e)2] V=Fk=1

For this plant, the positive definite solutions to the Riccati equations (5) are given by

1 0 10 . . .
P = |:0 14 e]’ S = [0 1 :|, and the optimal controller K* is then given by

Tre
0 -1 —1
K =] 1 -1 -2
l+e—-2(14+€ —I(1+e)

It can be checked that the optimal controller provided by the Riccati equations is
controllable and observable when € # 0. InFig. 5, we plot the minimum and maximum
eigenvalues of Hessg+ restricted to T(’)é*, as € varies in [0.005, 0.5]. It can be seen
that rcondy+ degrades rapidly as € approaches zero. Moreover, even if we set € = 0.5,
the reciprocal condition number rcond- is still below 1.7 x 107, On the other hand,
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Fig.5 The minimum and 102 . .
maximum eigenvaluesof
Hessy restricted on TO&'*, and
the reciprocal condition number 1072} —
rcondyx — — min eigenvalue
—-—- max eigenvalue
1076 | rcond g =
— -
_ =
- = =
-
10710} _ ==
- = =
_
L -
10714 - -
1072 107t

if we plug in € = 0.5, the resulting plant’s parameters as well as the controllability
and observability matrices

(8 AB] = [1?5 —_3.1335} ’ [CCA} = [—1.5 —21.25]

seem entirely normal. O

The observations in Example 7 suggest that, if we apply the vanilla gradient descent
algorithm to the optimization problem (13), it may take a large number of iterations
for the iterate to converge to a globally optimal controller for certain LQG problems
that appear entirely normal.

To conclude this section, we provide some final remarks on the symmetry structures
in LQG compared to existing literature on the landscapes of some non-convex machine
learning problems.

Remark 5 (Symmetry structures in LQG) Due to the symmetry induced by similarity
transformations, the landscape of LQG shares some similarities with the landscapes
of non-convex machine learning problems with rotational symmetries such as phase
retrieval, matrix factorization [22, 34, 43]. For example, the stationary points of these
non-convex problems are non-isolated, and the tangent space of the orbit associated
with the symmetry group is a subspace of the null space of the Hessian (see Lemma
12). On the other hand, for phase retrieval [34] and matrix factorization [22], the
classification of all stationary points as well as their local curvatures (Hessian) seem
to be relatively well understood, while there remain many open questions regarding
the stationary points of LQG, such as the existence of local optimizers that are not
globally optimal, whether all non-globally-optimal stationary points have the form
of (25) up to similarity transformations. Finally, in addition to the apparent algebraic
intricacy of LQG and control-theoretic notions such as controllable and observable
controllers, the non-compactness of the group of similarity transformations may also
render the landscape of LQG distinct from the non-convex machine learning problems
with rotational symmetries.
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5 Conclusion

In this paper, we investigated the optimization landscape structures of the LQG prob-
lem, including the connectivity of the set of stabilizing dynamic controllers C,, and
some structural properties of the stationary points of the LQG cost function. These
results reveal rich yet complicated optimization landscape properties of LQG.

Ongoing work includes establishing convergence conditions for gradient descent
algorithms and investigating whether local search algorithms can escape saddle points
of the LQG problem. Also, we note that the optimization landscape of LQG depends
on the parameterization of dynamic controllers, and it will be interesting to investi-
gate different parameterizations (see our technical report [47] for relevant numerical
results). It would also be interesting to investigate criteria for the existence of con-
trollable and observable stationary points of J, in C,, as well as how to certify the
global optimality of a stationary point without knowing the system order 7. Finally,
we hope our results will facilitate future research on the design of a full model-free
policy gradient algorithm for LQG with performance guarantees.

A Technical Proofs
A.1 Proof of Lemma 2

Itis a well-known fact in control theory thatC, # @ under Assumption 1. In particular,
any pole assignment algorithm or solving the Ricatti equations (5a) and (5b) can find
a feasible point in C,. To show the unboundedness of C,;, we introduce the following
set

Ak =A—BK —-LC,Bxk=L,Ckx=—-K,

S =1K=| O Cklc gumtmxpn .
A — BK and A — LC are stable

By A

It has been established in classical control theory that S,, C C, [48, Chapter 3.5] and
the set {K | A — BK is stable} is unbounded (see, e.g., [6, Observation 3.6]). Thus,
the set S,, is unbounded, and so is C,. Non-convexity of C, is also known and can be
illustrated by the explicit counterexample in Example 8.

Example 8 (Non-convexity of stabilizing controllers) Consider adynamical system (1)
with A =1, B = 1, C = 1. The set of stabilizing controllers C, = C; is given by

_ _ 10 Ck »all 1 Ckl .
C"_{K_[BK AK:|ER By Ax is stable ¢ .

It is easy to verify that the two controllers K() = |:_02 _221| and K@ = |:g :3]

internally stabilize the plant and thus belong to C;. However, K= % (K(l) + K(2)) =

|:8 _02i| fails to stabilize the plant. O
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A.2 Proof of Lemma 4

Upon vectorizing the Lyapunov equation (12a), we have

w 0
(In+g ® Ack + Ak ® Lntq) vec(Xk) = —vec ([ 0 Bk VB&]) .

Since Ay k is stable, we know that ;1 ; ® Acl k + Aclk ® 1,14 1s invertible, and thus
we have

-1 w 0
vee(Xk) = — (Intq ® Acik + Ack ® Inyq)  vec (|: 0 BKVBTD .
K

It is not difficult to see that each element of (In+q Q@ Atk + Actk ® In+q)_1 is a
rational function of the elements of K. Therefore, the LQG cost function

_ o 0
o-+([3 b

is a rational function of the elements of K, which is real analytical.

A.3 Proof of Proposition 1

The following Lyapunov stability criterion [5] will be used in our proof: A square real
matrix M is stable if and only if the Lyapunov inequality MP + PM' < 0 has a
positive definite solution P > 0.

It is straightforward to see that @ (-) is continuous since each element of @ (Z) is a
rational function in terms of the elements of Z (a ratio of two polynomials). To show
that @ is a mapping onto C,, we need to prove the following statements:

1. ForallK € C,,thereexistsZ = (X,Y, M, H, F,II, E) € G, suchthat ®(Z) = K.
2. ForalZz=(X,Y,M,H, F,II, B) € G,, we have ®(Z) € C,,.

0 Ck

To show the first statement, let K =
By Ak

:| € C, be arbitrary. The stability of

the matrix A BC
BxC Ak

T T T
A BCk||X IZ + X IZ A BCk -0 (38)
BxC Ax I X T X BxC Ak

xmr
has a solution [ % ] > 0. Without loss of generality we may assume thatdet I7 # 0

K:| implies that the Lyapunov inequality

(otherwise we can add a small perturbation on I to make it invertible while still
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preserving the inequality (38)). Upon defining

v g] _[xa L _[xaT x| _[1 Y
Ty |lm x| Tl ox mo|l~|ogT)|
we can verify that
YX+EOD=1, T' X, _[X1 0 (39)
Upon letting
M =YAX + EBKCX + YBCkII + 5 AI1, 40
H = 5B, F = CkI,
we can also verify that
xmar
7T A BCk Iy AX + BF A . @1
BxC Ax ||O X M YA+ HC

Combining (41) with (38) and (39), we see that Z = (X,Y, M, H, F,I1, &) € G,
by the definition of G,. Note that the change of variables (40) can be compactly

represented as

0 F]_[1 0][0 c][1cx] o o
HM|~|vBE||BcAc||0 T 0YAX|

and with the guarantee in Lemma 6, we see that

—1
F ][1 cx} :[ 0 @C(Z)] — o).

ock] [1 01'[o
Bx Ax| ~ |YBE| |HM-vAx||0 IT ®p(Z) Da(2)

We then prove the second statement. Let Z = (X,Y, M, H, F, I, &) € G, be
arbitrary. Let X=0 (X —Y~H~UITT, and it is straightforward to see that X = 0and

Xo[ry] [Xxy+O 8" [x1
o X |[|0&8"| " |mny+Xx&g" | [I0]

where we used the fact that

oY+ X' =ny+n0Xx -y H'me'=ny-nx-y H'xy-n
=ny-nox-vy Hlx-vyhHy=o.
We also have
0F] _[1I 0 0 @c@][rcx] o o
T|YBE||®p2) P4 ||0 T 0YAX

HM
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from the definition of @. Similarly as showing the equality (41), we can derive that

AX+BF A ] _[1 Y] [ A Boc@][xO[IY
M  YA+HC| |0E&T| |®os@)C 42 ||T X [|0ET|"

Then from the definition of G,;, we can further get

A Boc@|[x M7 N X’ A Boc@)] 0
o52C 0,2 ||m x|V |m % ||es@C oa | <7

. 5 C[x I, . .
andsince X — IT" X7 = Y~ » 0, the matrix |:17 % ] is positive definite. We can

A BPc(2)
Dp(L)C D4(2)
meaning that @ (2) € C,.

now see that |: ] satisfies the Lyapunov inequality and thus is stable,

A.4 Proof of Proposition 3

We have already seen that .7, gives a smooth Lie group action of GL, on C,;. We

first show that the isotropy group of K under the group actions in GL,, defined by

{T € GL, | 74(T,K) =K}, is a trivial group containing only the identity matrix.
Let T € GL, satisty 7, (T, K) =K, i.e,,

0 kT '] [0 ¢k
T Bk TAKT_1 | Bk A |
Then we have T Ak = AkT, and consequently TAJkHBK = AKTAJkBK. By math-

ematical induction, we can see that TAyBx = AyBk forall j = 0,...,q — 1,

indicating that any column vector of AJkBK is an eigenvector of 7" with eigenvalue 1.
On the other hand, the controllability of K implies the column vectors of the matrix
[BK AkBg -+ - Azfl BK] span the whole space R?. Therefore RY is a subspace of the
eigenspace of 7" with eigenvalue 1, meaning that 7 is just the identity matrix.

Since the isotropy group {T" € GL, | 7, (T, K) = K} only contains the identity, by
[21, Proposition 7.26], the mapping T+ .7, (T, K) is an immersion and the orbit O
is an immersed submanifold.

We then prove that O is closed under the original topology of C,. Suppose (T/)‘J?il
is a sequence in GL, such that

0 CkT;! 0 Ck] .
4T}, K) = ’ - M=K jo oo
OR [TjBK TjAKTj_lj| - [BK Ak e

Let G(s) be the transfer function of K, i.e., G(s) = Ck(sI — Ak)~'Bx. We notice
that for any j > 1, the matrix s/ — T; A T;l is invertible if and only if s — Ak is
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invertible. Thus for any fixed s € C such that s/ — Ak is invertible, we have

lim CkT; ' (sI — T,-AKTj”)—lT,-BK = Cx(sI — Ax) ' Bx.

j—o00 J
On the other hand, we simply have

CKTJ'_I(SI - T/AKTj_l)ilTjBK = Ck(sI — Ax)"'Bx = G(s).

This shows that the transfer function of K agrees with G(s) for any s € C such
that sI — Ak is invertible, and thus is just equal to G(s). On the other hand, the
controllability and observability of K € C, indicates that the transfer function G(s)
has order ¢, and so any two state-space representations of G(s) with order ¢ will always
be similarity transformations of each other [48, Theorem 3.17]. In other words, there
exists T € GL, such that

. 0 Ck 0 CxT! -
K: ~ ~ = ~ ~ ~ = T K
[BK AK] [TBK T AT ! 74T, K),

which implies that K e Ok. We can now conclude that O is a closed subset of C;.
As a consequence of the closedness of Ok, the set Ok equipped with the subspace
topology induced from C; is a locally compact Hausdorff space.

Now, by combining the above results and applying [28, Theorem 2.13], we can
conclude that the mapping T +— 7, (T, K) is a homeomorphism from GL, to Ok.
Therefore, the mapping T +— .7, (T, K) is a diffeomorphism from GL,, to Ok, and Ok
is an embedded submanifold of C, with dimension given by dim Ok = dim GL, = q°.
Finally, the two path-connected components of Ok are immediate.

A.5 Proof of Proposition 4

Let H € R7*4 be arbitrary. Then for sufficiently small €, we have

—1 _
Z,(H—eH,K):[ 0 Cx(I+€H) ]=K+e[ 0 CxH

(I+€eH)Bx (I+eH)Ac(I+eH)™! HBy HAx — AKH] +o(©),
implying that the tangent map of .7, (-, K) at the identity is given by

0 —CxH

i |:HBK HAg — AKH]

Then since .7 (-, K) is a diffeomorphism from GL,; to O, the tangent map of .7, (-, K)
at the identity is an isomorphism from R7*¢ (the tangent space of GL, at the identity)
to the tangent space 7 Ok. Thus

_ 0 —CxH axq
7Ok = {[HBK HAg — AKH} ‘H R
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Then the orthogonal complement 7 O% is given by

TOg=14¢€V,

tr(UTA) =0 forall U € TOK}

T
0 —CxH . axq
tr<|:HBK HAK—AKHi| A)-O,VH e R

T, T T T T
1o asdy, trH(AAKAK—AKAAK+ABKBK—CKACK)=O
ACK AAK a

0 Ap
= eV
[ACK AAKi| 4

This completes the proof.

=14¢€V,

VH eR9*4

ApcAf — ARAag + Ap By — CRAgq = 0} :

A.6 Proof of Lemma 10

Let A € V, be arbitrary. We have

Jg( Ty (T, K+A))—Jy (T (T, K))
= J, (T4 (T, K)+Ty(T, A)) — Jg(Ty (T, K))

T

_ <wq )-%(T,A) +o(llAl)
T4(T.K)

=tr <VJq

.
I, 0 I, 0
) -[5” T}A[(;’ T_l] +o(lAll)
T4(T K)

T
_ I, 0
=1tr <|:0 Ti|-VJq

5, o7\
5’T_1] ) Al +o(lAl.

Fy(T K) |:

On the other hand, Lemma 7 shows that the LQG cost stays the same when applying
similarity transformation. Thus, we have
T
) : A} +o(lAD.
K

T (T (K+A))—Jy (T (K) = J (K +2A)—J,(K) = tr[(wq

Comparing the two equations leads to the relationship (24).
A.7 The gradient and the Hessian of J, (K)
We first introduce the following lemma.
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Lemma 14 Suppose M : (—8,8) — RF*K and G = (=8, 8) — SF are two indefinitely
differentiable matrix-valued functions for some § > 0 and k € N\{0}, and suppose
M (t) is stable for all t € (—6,6). Let X(t) denote the solution to the following
Lyapunov equation

MOXH) +XOM®" + G) = 0.

Then X (1) is indefinitely differentiable over t € (=8, 8), and its j'th order derivative
att = 0, denoted by X7 (0), is the solution to the following Lyapunov equation

M©0)XD0) + XD 0)M(©0)T

J

L (MOOxXID0) +xIDOMOOT) + G690 | =o0.
P G —i!

(42)

Proof The differentiability of X (¢) follows from the observation that it can be written
asvec(X (1) = —(Lk @M (1) + M (1) ® I) ~! vec(G (1)) by the vectorized form of the
Lyapunov equation. Now, since M (¢), G(¢) and X (¢) are indefinitely differentiable,
they admit Taylor expansions around ¢ = 0 given by

Mo =3 SMD©) + o),
=07

Gn=) ?j,GU)(m + 00",
=07

X =Y %X(j)(O) +o(t)

j=0""

for any a € N. By plugging these Taylor expansions into the original Lyapunov
equation, after some algebraic manipulations, we can show that

a | J ‘ o o , 0
) tj[z i'(jl_i)l (M(I)(O)XU_[)(O) + X('/_[)(O)M(I)(O)T>+ . ;‘(O):| e
= |5 ! !

Since the above equality holds for all sufficiently small #, we get
J 1 . y - . 1
> o= (MO©XI2©) + XD OMOO)) + —GP©0) =0,
~ l(j —1)! Jj!
1=

which is the same as (42). Thus, X )(0) is a solution to the Lyapunov Eq (42). O
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Now, given any stabilizing controller K € C,, we denote the closed-loop matrix as

dne— | A BC] _[A0] [BO][CO
K=1pc Ak | T |00 01 01

and recall that the LQG cost is given by

—uf]€ .9
Jg(K) = tr <|:O C;RCK] XK),

where X is the unique positive semidefinite solution to the Lyapunov Eq (12a).

0 Acgy
Apy Aag
such that K 4+ A € C,, the corresponding closed-loop matrix is

B O CcoO
AclK+14 :Acl,K+l|:0 I]A[O I]

and we let Xk a(¢) denote the solution to the Lyapunov equation (12a) with closed-
loop matrix Al K+s4, 1.€.,

]
(Ad,K T [lg ﬂ A [g (I)D Xk () + XK,Aa)(Ad,K e [ﬁ ﬂ A [g ?D

. 0 =0
0 (Bk+tAp)V(Bk+tAp)' |~

Consider an arbitrary direction A = [ :| € V,. For sufficiently small > 0

(43)
By Lemma 14, we see that Xk 4 (¢) admits a Taylor expansion of the form
/ t2 " 2
XK,A(t)zXK+t~XK’A(O)+E-XK’A(0)+0(t ), (44)

and the derivatives X {< 4(0) and X {é 4(0) are the solutions to the following Lyapunov
equations

Act Xk 2(0) + Xg 4 (OVA]  + My (Xk, 4) =0, (45)
A kXK £0) + X{ A (0)A] ¢ +2Ma(Xg 4(0), A) =0, (46)
where
T T
_[Bo0] [co col +[BO 0 0
M1 (Xk, 4) = [0 1} 4 [0 1} X+ X [o 1] 4 {o 1] + [0 BKVA};K+ABKVB;]’

, B0l [co]., , co]” ;[B0O]" [0 O
Mo (X4, 4) = [o 1} A [0 1} Xk a@+ X2 [0 1] AT[O 1] + [0 Ap VA, ]
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Now, by plugging the Taylor expansion (44) into the expression (11) for J, (K), we
get

_ Q0 0
JgK+14)=1tr ([0 (Ck +1A¢,)TR(Ck -HACK)] XK,AU))

B 0 0 , 0 0
_Jq(K)+t-tr<|:0 CIRCK}XKA(O)+ 0 CERAG, + AT, RCy | XK

2
T O N T 0 Xk A0
2 "\ [0 cfree] KA 0 CRRAG, + AL, RCy | 7K.

TP X )+ (%)
T K o s
0 AL RAC

dJg(KHA)

. . . d*J,(K+ A
from which we can directly recognize —;— and e &HA)

dr?

1=0 1=0
Now suppose X is the solution to the following Lyapunov equation A¢g kX +

XAILK + M = 0 for some M € S"t9. Then, by [48, Lemma 3.18], the solution

i i — [F00 LAdks pp Ak’
to the above Lyapunov equation can be written as X = fo el kS MeT ek ds, and
consequently

Q 0 _ +oo Q 0 Acl kS AIIKS
tr([() CgRCKi|X>_/0 tr 0 CgRCK e Me" el ds

= +Ootr TS o 0 A M ) ds = tr(YkM)
o " Lo CiRrRCK - KRR

in which we recall that Y is the unique positive semidefinite solution to Lyapunov

Eq (12b). Therefore the first-order derivative w can be alternatively given
=0
by '
dJ,(K+1A)
dt =0
=tr| YkM1(Xk, A 0 0 X
= tr| YxM1(Xk, A) + OCERACK—FATCKRCK K
0Rck], [00],[BO]., ., [co]", [oo 0 o]\

=2u ([o 0 }XK[O 1] + [0 1] YKXK[O 1} * [0 I]YK[BKV ODA

One can readily recognize the gradient VJ, (K) as W' = tr(VJ,(K)TA).

=0
Upon partitioning Xk and Yk as (22), a few simple calculations lead to the gradient
formula of J, (K) in (21).
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d*J, (K+tA)

e can be

=0

Similarly, we can show that the second-order derivative

alternatively given by

0 0
=2tr | YkMa (X A(0), A X, (0
L r( kM2 (X, (0) )+[o C;RACKJFATCKRCK] ka©

0 0 x
oAl RAc | *K
_ B0 cOo|., 0 0 ’
=2tr (2[0 I]A |:0 I] XK,A(O)YK+2|:O C-IK-RACK] XK,A(O)

0 0 1, .0 0 7,
Tloagval | T oAl RAq | M)

d*J,(K+14)
dt?

d*J,(K+tA)

Then noticing that Hessg (A, A) = T

forany A € V,, we get the desired
t=0
expression for the Hessian of J,.

A.8 Proof of Lemma 11

By [48, Lemma 3.18], given a stable matrix A, if (C, A) is observable, then the solution
L to the Lyapunov equation ATL 4+ LA + CTC = 0 is positive definite. Therefore,
we only need to prove that

0% 0 |:A BCK}
0 Ricy| LBKC Ak

is observable. By [48, Theorem 3.3], this is equivalent to showing that the eigenvalues
of the following matrix

A BCk Ly L1z Q% 0 A+L11Q% BCK+L12R%CK
BC Ax | T|Lu L oo | = ) 3
K K 21 L22 0 R2Ck BkC + L1 Q2 Ax+ L»nR2Ck

can be arbitrarily assigned by choosing L1, L2, L21, L. This is indeed true by
choosing L1y = —BR_% and observing that A + L1 Q% and Ak + LzzR%CK can
be arbitrarily assigned since (Q%, A), (Ck, Ak) are both observable. Thus, by [48,

Lemma 3.18], the solution Yk to (12b) is positive definite. Similarly, we can prove Xg
is positive definite.
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A.9 Proof of Theorem 5

We first show that K* is a stationary point of J,, (K) over K € C,. Since .7, (—1,,, K*) =
K*, by Lemma 10, we have

I, O

Vi, 0 _I]wn
n

=VJ,

K* Tn(—1n,K*) |:

This equality implies that, excluding the bottom right n x n block, the last n rows

and the last n columns of VJ,| are zero. On the other hand, it is not hard to see

*

that J,, (K*) does not depend on the choice of A as long as A is stable. Therefore the

bottom right n x n block of VJ,,| is zero. We can now see that VJ,
K*
that K* is a stationary point of J,,.

0 Ac
Let A = K
|:ABK Ay

= 0, showing
K*

] € V, be arbitrary, and let

a _ 0 Acy Q _ 0 0 3) _ 0 0
A _|:0 0:|’ 4 _[ABKO’ A _OAAK'

By the bilinearity of the Hessian, we have

3
Hessg-(A, A) = Y Hessg-(AD + AP, AD 4 AD)) = "Hessy- (49, AD),

I1<i<j<3 i=1

Since the controllers K* 4+ tA® fori = 1,2, 3 and K* 4+ +(AD + A(3)) fori =1,2
have the same transfer function representation as K*, we can see that for all sufficiently
small 7,

Ta(K) = Jy(K* +140) = J,(K* +14P) = J,(K* +149)
=1 (K +1(AD + A% = 1, K +1(A% + 2a9)y),

which implies that Hess g=(A®, AD) = 0 foralli = 1,2, 3, and that Hess (A" +
AP AW 4 AG)) = Hessg+ (AP + A A@ 4 A®)) = 0. Therefore

Hess g+ (A, A) = Hess = (AY + AP AD 4 APy,
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Now, if Hessg+(A, A) = 0 for all A € V,, then the Hessian Hess g+ is obviously
zero. Otherwise, Hess g+ (A, A) # 0 for some A € V,, which implies that

Hess e (A1, A®)y = = (HessK«(A(l)+A(2) AD 4 A
—Hessg- (A0, AD) _Hessy (4@, A<2)))

1
=3 Hessg+(A, A) # 0.

Note that A and A@ are linearly independent (otherwise Hess + AW, A(Z)) will
be zero). Together with Hess g+ (A(i), A(i)) = 0 fori = 1,2, we see that Hess g+
must be indefinite (a symmetric matrix having a 2 x 2 principal submatrix with zero
diagonal entries and non-zero off-diagonal entries must be indefinite).

Now we proceed to the situation where A is diagonalizable. We let ei(k) denote the
k-dimensional vector where only the ith entry is 1 and other entries are zero.
Part I: eig(—A) Q Z = the Hessian is indefinite. Let 1 € eig(—A)\Z. Since
A ¢ Z, there exists some i, j such that

G == e CXop (11 — AT) " YopBe™ #0.

We shall only provide the proof for the situation when A is real. When A is complex,
the proof employs similar techniques but is more complicated, and we refer interested
readers to our online report [47].

A0
0

(n) 0 0

0 A
A — Ck |, AP — ,
[o 0 } Ay 0

where A(IK) = ejm) WTp=1 and A(Z) = Te(”) (p )T Then it’s not hard to see that

T (K 4+ tAD) = J(K* +1:AD) = J,(K*) for any sufficiently small 7, indicating
that both Hess K*(A“), AW)Y and Hess K*(A(z), ADY are equal to zero. On the other
hand, we have that the unique solutions to Lyapunov Eqs (12a) and (12b) are X+ =

Xop 0 | Yp O
|: 0 0:| Y = |: 00l By Lemma 9, we can see that

Let T be a real invertible matrix such that TAT ! = |: i| Let A(l) AD ¢

V, be given by

0
0 BA Yop O
(1 2) A @)y — C ’ op
Hessy+(AY 4+ A, AY + A )_4tr<|:A%2)C 0 K:| XK*’A(1)+A(2) |: 0 0:|),
K

@ Springer



440 Y.Tang et al.

where X |/<* AOFAD is the solution to the following Lyapunov equation

A0 A0
|:0 A} X A<1>+A(2>+XK* AD4A® |:0 A}
.
oo BAL) [Xop o}r[xop 0} 0 BAG|_,
Agc o JLoOofTLoofaPc o | T

Since

) (77 TAQT
[ ((2)) BACKi| [Xop o] N [Xop 0]|: ((2)) BACK} _ { (2)0 XopCTAY) }
AR C 0 00 0 0J[agic o Ao CXop 0

the matrix X |/<* A4 a@ CaN be represented by

» B /-i-oo exp([A 0} s) [ 0 XOPCTA(ZK)T} exp( A OT )
K, AD4AD — 2)
+ 0 0A ABKCXOP 0A
+o0 eAS 0 0 XOPCTA(Z)T e T
= 0 eAs @ ds
0 AR CXop 0
+00 0 eAS XQPCTAg)TeATS
= / ASA(Z)CX ATS O « dS,
0 e B € Xope

which can be shown to lead to

+
Hess i (AD + 4@, A0 4 A@) = /

4tr ( (1) AQA(Z)CXopeA SYOP) ds.
0

By the construction of A(l) and A( ) we have A(l)e/‘Y AQ) _“e;m)e-(p)T, and thus

1
+0o0 T T
Hess:(AD + 4@, 40 4 A@) = / 46”1 C X gpe D YopBe™ ds
0
= 4¢P C X op (AT — AT)“ YopBe;m) =4G(L),

which is nonzero by assumption. Consequently,

Hessi+(A, A@) = 2(HessK*(A(l)—|—A(2) AD A2

— Hessg* (A(l), A(l)) — Hess K*(A(z), A(z)))
=2G(A) # 0.
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Together with the fact that Hess k- (AD ADY = Hessg« (AP, A@) = 0, we can
see that neither Hess = nor — Hess g+ can be positive semidefinite. Thus Hess g+ has
at least one positive eigenvalue and one negative eigenvalue.

Part II: eig(—A) € Z — the Hessian is zero. In this part, we will show that if
eig(—A) € Z, then Hessg+(A, A) =0 forany A € V), .

Let A = 0 ACK] € V, be arbitrary. Let

0 A 0 0 0 0
AL — [ CK]’ AD [ ] A®) _ [ ]
0 0 ABK 0 0 AAK

We have already shown that Hessg(A, A) = Hessys (AN + A@ AD 1 A@)),
Let T be an invertible n x n (complex) matrix that diagonalizes A as TAT! =
diag(—A1, ..., —A,). Define Uy = e('")eIE")TT_l, Vik = Te,((n)eﬁp)T foreach 1 <

i
i<m,l <j<pandl <k <n.ltisnothardtoseethat {Ujy |1 <i <m,1 <
k < n} forms a basis of C"*", and {V;; | 1 < j < n,1 <k < n} forms a basis of
C"*4. Therefore Ac, and Ap, can be expanded as

Ace= Y > aalin. Apc= > > BiVic.

1<i<m 1<k<n 1<j<q 1<k<n

By similar derivations as in Case 1, we can get
+00 T
Hess g (AD + 4@ AD 1 A@) = / 4tr (BACKeASABKCXDpeA SY0p> ds.
0

Then, since

Ace™ A=Y Y Y D euBlUine™ Vi

1<ism1<j<ql<k<nl1<k'<n

e—)\.ls

S DD I DD DTN i IS PN

I<i<m1<j<q 1<k<n1<k'<n e—)\ns

= Z Z Z aikﬁjke_}‘”elgm)e;pﬁ,

I<ism 1<j<q1<k=n
we have

Hessgs(AD + A@ AW 4 A@)

e T T (m)
S OY X[ e €K el s
0

I<i<m 1<j<q 1<k<n

Z Z Z 4aikﬂjk~e;p)TCXop(Ak1—AT)_IYOpBeY").

Isism1=<j=<q 1<k=n
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Since eig(—A)\Z = J, we can see that CXop(AkI — AT)_IYOPB =O0forany 1 <
k < n. Therefore, we have Hess g~ (A, A) = Hess K*(A“) +AD AD 4 A(z)) =0,
which completes the proof.
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