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Abstract
This paper revisits the classical Linear Quadratic Gaussian (LQG) control from amod-
ern optimization perspective. We analyze two aspects of the optimization landscape
of the LQG problem: (1) Connectivity of the set of stabilizing controllers Cn ; and (2)
Structure of stationary points. It is known that similarity transformations do not change
the input-output behavior of a dynamic controller or LQG cost. This inherent symme-
try by similarity transformations makes the landscape of LQG very rich. We show that
(1) The set of stabilizing controllers Cn has at most two path-connected components
and they are diffeomorphic under a mapping defined by a similarity transformation;
(2) There might exist many strictly suboptimal stationary points of the LQG cost
function over Cn that are not controllable and not observable; (3) All controllable and
observable stationary points are globally optimal and they are identical up to a sim-
ilarity transformation. These results shed some light on the performance analysis of
direct policy gradient methods for solving the LQG problem.
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1 Introduction

As one of the most fundamental optimal control problems, Linear Quadratic Gaus-
sian (LQG) control has been studied for decades. Many structural properties of the
LQG problem have been established in the literature, such as existence of the optimal
controller, separation principle of the controller structure, and no guaranteed stability
margin of closed-loop LQG systems [3, 9, 48]. Despite the non-convexity of the LQG
problem, a globally optimal controller can be found by solving two algebraic Riccati
equations [48], or a convex semidefinite program based on a change of variables [15,
25, 32].

While extensive results on LQG have been obtained in classical control, its opti-
mization landscape is less studied, i.e., viewing the LQG cost as a function of the
controller parameters and studying its analytical and geometrical properties. On the
other hand, recent advances in reinforcement learning (RL) have revealed that the
landscape analysis of another benchmark problem, linear quadratic regulator (LQR),
can lead to fruitful and profound results, especially for model-free controller synthesis
[11, 23, 24, 27, 37, 38, 42]. For instance, it is shown that the set of static stabilizing
feedback gains for LQR is connected, and that the LQR cost function is coercive and
enjoys the gradient dominance property [6, 11]. These properties are fundamental for
establishing convergence guarantees of gradient-based algorithms and their model-
free RL extensions for solving LQR [24, 27]. Note that the LQR problem considers
a linear system with a fully observable state, which can impose severe limitations for
its applications in many practical scenarios where the system’s state is only partially
observable due to constraints in sensing or communication.

This paper aims to analyze the optimization landscape of the LQG problem, which
considers the optimal control of a partially observable linear system. Unlike LQR
whose optimal solution is a static feedback policy, the optimal controller of the LQG
problem is no longer static.We need to search over dynamic controllers for LQG prob-
lems. This makes its optimization landscape richer and yet much more complicated
than LQR. Furthermore, LQG has a natural symmetry structure induced by similarity
transformations that do not change the input-output behavior of dynamic controllers,
which is not the case for LQR.

Some recent studies [7, 16, 22, 30, 34] have demonstrated that symmetry properties
play a key role in rendering a large class of non-convex optimization problems in
machine learning tractable; see also [43] for a recent review. For the LQG problem,
we expect that the symmetry associatedwith similarity transformations can bring some
important properties of its non-convex optimization landscape, such as the existence
of spurious stationary points, the topology of the set of globally optimal points, etc.
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We also note that the notion of controllable and observable controllers1 is a unique
feature in controller synthesis of partially observable dynamical systems, making the
optimization landscape of LQG distinct from many machine learning problems.

1.1 Our contributions

In this paper, we view the classical LQG problem from a modern optimization per-
spective, and study two aspects of its optimization landscape. First, we characterize
the connectivity of the feasible region of the LQG problem, i.e., the set of strictly
proper stabilizing dynamic controllers, denoted by Cn (n is the state dimension). We
prove that Cn can be disconnected, but has at most two path-connected components
(Theorem 1) that are diffeomorphic under a similarity transformation (Theorem 2).
We further present a sufficient condition under which Cn is always connected, and this
condition becomes necessary for LQG problems with a single input or a single output
(Theorem 3). As a corollary, we show that Cn is always connected when the plant is
open-loop stable (Corollary 1).

Second, we investigate structural properties of the stationary points of the LQG
cost function. By exploiting the symmetry induced by similarity transformations, we
show that the LQG cost may have many strictly suboptimal stationary points that are
not controllable and not observable (Theorem 4). For LQG with an open-loop stable
plant, we explicitly construct a family of such strictly suboptimal stationary points,
and investigate the eigenvalues of the corresponding Hessian (Theorem 5). In contrast,
we prove that all controllable and observable stationary points are globally optimal
to the LQG problem (Theorem 6); this can be viewed as a special case of existing
results on first-order necessary conditions for optimal reduced-order controllers [48,
Theorem 20.6], [17, Sect. II]. We also show that these controllable and observable
stationary points are identical up to similarity transformations, and form a submanifold
of dimension n2 that has two path-connected components (Proposition 3). This result
implies that if local search iterates converge to a stationary point that corresponds
to a controllable and observable controller, then the algorithm has found a globally
optimal solution (Corollary 3). Finally, we construct an example showing that the
second-order shape of the LQG cost function can be ill-behaved around a controllable
and observable stationary point in the sense that its Hessian has a very large condition
number (see Example 7).

1.2 Related work

Optimization landscape of LQR: The Linear-Quadratic Regulator (LQR) has recently
re-attracted increasing interest [8, 11, 24, 31, 37, 38] in the study of RL techniques
for control systems. For model-free policy optimization methods, the optimization
landscape of LQR is essential for establishing their performance guarantees. In [11,
24, 27], it is shown that both continuous-time and discrete-time LQR problems enjoy
the gradient dominance property, and that model-free gradient-based algorithms con-

1 Such controllers are also called minimal in classical control theory. In this paper, we do not use this
terminology to avoid confusion with optimal controllers.
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verge to the optimal LQR controller under mild conditions. The authors in [42] have
examined the optimization landscape of a class of risk-sensitive state-feedback control
problems and the convergence of corresponding policy optimizationmethods. Further-
more, it is shown in [13] that a class of finite-horizon output-feedback linear quadratic
control problems also satisfies the gradient dominance property. Some recent studies
have examined the connectivity of stabilizing static output feedback policies [6, 10,
12]. It is shown in [12] that the set of stabilizing static output feedback policies can
be highly disconnected, which poses a significant challenge for decentralized LQR
problems. For general decentralized LQR, policy optimization methods can only be
guaranteed to reach some stationary point [23].

We note that many landscape properties of LQR are derived using classical control
tools [10, 13, 27, 42]. Our work leverages ideas from classical control tools [15, 25,
32, 48] to analyze the optimization landscape of the LQG problem.

Reinforcement learning for LQGand controller parameterization:Recent studies have
also started to investigate LQG with unknown dynamics, including offline robust con-
trol [4, 36, 44] and online adaptive control [19, 20, 33]. The line of studies on offline
robust control first estimates a systemmodel as well as a bound on the estimation error
(see, e.g., [29, 36, 46]), and then design a robust LQG controller that stabilizes the
plant against model uncertainty. For online adaptive control, the recent work [33] has
introduced an online gradient descent algorithm to update LQG controller parameters
with a sub-linear regret; see [19, 20] for further developments. For both lines of works,
a convex reformulation of the LQG problem is essential for algorithm design as well
as performance analysis. For example, the works [19, 20, 33] employ the classical
Youla parameterization [40], while the works [4, 44] adopt the recent system-level
parameterization (SLP) [39] and input-output parameterization (IOP) [14], respec-
tively. The Youla parameterization, SLP, and IOP are able to recast the LQG problem
into equivalent convex formulations in the frequency domain [45], but they all rely on
the underlying system dynamics explicitly. Thus, a system identification procedure is
required a priori in [4, 33, 36, 44], and these methods are all model-based.

In this work, we consider a natural model-free controller parameterization for LQG
in the state-space domain. This parameterization does not depend on the system
dynamics explicitly but leads to a non-convex formulation. Our results contribute
to the understanding of this non-convex optimization landscape, which shed light on
performance analysis of model-free RL methods for solving LQG.

Non-convex optimization with symmetry: Recent works [22, 43] have revealed the
significance of symmetry properties in understanding the geometry of many non-
convex optimization problems in machine learning. For example, the phase retrieval
[34] and low-rank matrix factorization [7, 22] problems have rotational symmetries,
while sparse dictionary learning [30] and tensor decomposition [16] exhibit discrete
symmetries; see [43] for a recent survey. These symmetries enable identifying the
local curvature of stationary points, and contribute to the tractability of the associated
non-convex optimization problems.

In this paper, we highlight the symmetry defined by similarity transformations of
dynamic output-feedback controllers, which enables us to derive novel results on the
optimization landscape of LQG. While the notion of similarity transformation has
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been extensively studied in classical control theory, its utilization in analyzing the
non-convex optimization landscape of LQG (and other control problems) is limited in
existing literature. We note that the symmetry defined by similarity transformations
also holds for other dynamic output feedback controller design problems, suggest-
ing that our results and analysis may be generalized or adapted to the optimization
landscape analysis of other important control problems (such asH2 andH∞ optimal
control).

1.3 Paper outline

In Sect. 2, we present the problem statement of Linear Quadratic Gaussian (LQG)
control. We introduce our main results on the connectivity of stabilizing controllers
in Sect. 3, and present our main results on the structure of stationary points of LQG
problems in Sect. 4. We conclude the paper in Sect. 5. Some technical proofs are
presented in the appendix.

Notations: The set of k× k real symmetric matrices is denoted by S
k . The set of k× k

real invertible matrices is denoted by GLk . ‖M‖F denotes the Frobenius norm for
any matrix M . For any M1, M2 ∈ S

k , we use M1 ≺ M2 and M2 � M1 to mean that
M2−M1 is positive definite, and use M1 � M2 and M2 � M1 to mean that M2−M1
is positive semidefinite.We use Ik to denote the k×k identity matrix, and use 0k1×k2 to
denote the k1 × k2 zero matrix; we sometimes omit their subscripts if the dimensions
can be inferred from the context.

2 Problem statement

In this section, we first introduce the linear quadratic Gaussian control problem, and
then present the problem statement of our work.

2.1 The linear quadratic Gaussian (LQG) problem

Consider a plant described by a continuous-time linear dynamical system2

ẋ(t) = Ax(t)+ Bu(t)+ w(t),

y(t) = Cx(t)+ v(t),
(1)

where x(t) ∈ R
n represents the state vector, u(t) ∈ R

m represents the control input,
y(t) ∈ R

p represents the output signal, and w(t) ∈ R
n, v(t) ∈ R

p are process and
measurement noises at time t . It is assumed that w(t) and v(t) are white Gaussian
noises with intensity matrices W � 0 and V � 0. For notational simplicity, we will
drop the argument t when it is clear in the context.

2 This paper focuses on the continuous-time setup. Discussion and results for discrete-time LQG are
provided in our online report [47].
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The classical linear quadratic Gaussian (LQG) problem is formulated as

min
u(t)

J := lim
T→∞

1

T
E

[∫ T

t=0

(
xTQx + uTRu

)
dt

]

subject to (1),

(2)

where Q � 0 and R � 0. Here, the input u(t) is allowed to depend on all past
observation y(τ ) with τ < t . We make the following standard assumption on the
problem setup throughout the paper.

Assumption 1 (A, B) and (A,W 1/2) are controllable, and (C, A) and (Q1/2, A) are
observable.

Unlike the linear quadratic regulator (LQR) problem, static feedback policies in
general do not achieve the optimal objective value, and we need to consider the class
of dynamic controllers in the form of

ξ̇ (t) = AKξ(t)+ BK y(t),

u(t) = CKξ(t).
(3)

Here ξ(t) ∈ R
q is the internal state and AK, BK,CK are matrices that specify the

controller’s dynamics. We refer to the dimension q of the internal state ξ as the order
of the dynamic controller (3). A dynamic controller is said to be full-order if q = n,
and is said to be reduced-order if q < n. We shall see later that it is unnecessary to
consider dynamic controllers with order beyond the system dimension n.

The LQG Problem (2) admits the celebrated separation principle and has a
closed-form solution by solving two algebraic Riccati equations [48, Theorem 14.7].
Specifically, the optimal controller is given by

ξ̇ = (A − BK )ξ + L(y − Cξ),

u = −K ξ.
(4)

Here the matrix L is called the Kalman gain which is given by L = PCTV−1 with P
being the unique positive semidefinite solution (see, e.g., [48, Corollary 13.8]) to

AP + PAT − PCTV−1CP +W = 0, (5a)

and the matrix K is called the feedback gain, given by K = R−1BTS where S is the
unique positive semidefinite solution to

ATS + SA − SBR−1BTS + Q = 0. (5b)

We see that the optimal LQG controller (4) can be written in the form of (3) with

AK = A − BK − LC, BK = L, CK = −K . (6)
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Thus, the solution from Ricatti equations (5) is always full-order, i.e., q = n. We note
that twodynamic controllerswith the same transfer functionK(s) = CK(s I−AK)

−1BK
lead to the same LQG cost. In general, the optimal LQG controller is only unique in
the frequency domain [48, Theorem 14.7] but not unique in the state-space domain;
any similarity transformation on (6) leads to another optimal solution that achieves
the global minimum cost (see Lemma 7).

2.2 Parameterization of dynamic controllers and the LQG cost function

Recently, model-free reinforcement learning methods have been studied for a range of
control problems, such as LQR [11, 27], finite-horizon discrete-time LQG [13], state-
feedback risk-sensitive control [42], etc. These works view classical control problems
from a modern optimization perspective, and directly optimize over policies based on
observed data, without explicit knowledge of the underlying model. In this paper, we
adopt a similar angle and view LQG from a model-free optimization perspective.

We consider the natural parameterization of the set of dynamic controllers in (3) by
their corresponding matrices (AK, BK,CK). To formulate the LQG cost as a function
of the parameterized dynamic controller (AK, BK,CK), we first need to specify its
domain. By combining (3) with (1), we get the closed-loop system

d

dt

[
x
ξ

]
=
[

A BCK
BKC AK

] [
x
ξ

]
+
[
I 0
0 BK

] [
w

v

]
,

[
y
u

]
=
[
C 0
0 CK

] [
x
ξ

]
+
[
v

0

]
.

(7)

It is known from classical control theory [48, Chapter 13] that under Assumption 1,
the LQG cost is finite if the closed-loop matrix

[
A BCK

BKC AK

]
=
[
A 0
0 0

]
+
[
B 0
0 I

] [
0 CK
BK AK

] [
C 0
0 I

]
(8)

is stable, i.e., the real parts of all its eigenvalues are negative; dynamic controllers
satisfying this condition are said to internally stabilize the plant (1). Furthermore,
the optimal controller given by (6) is guaranteed to internally stabilize the plant. We
therefore define the set of stabilizing controllers with order q ∈ N by3

Cq :=
{
K =

[
0m×p CK
BK AK

]
∈ R

(m+q)×(p+q)

∣∣∣∣ (8) is stable
}

, (9)

and let Jq : Cq → R be the function that maps a parameterized dynamic controller in
Cq to its corresponding LQG cost for each q ∈ N. Since the set of full-order stabilizing

3 In (9), for notational simplicity, we lumped the controller parameters into a single matrix; but it should
be interpreted as a dynamic controller, represented by (3). Note that this definition allows us to apply
block-wise matrix operations; see, e.g., (14).
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controllers Cn contains the optimal controller, we will mainly focus on the properties
of Cn in this paper. We will abbreviate Jn(K) as J (K) when no confusions occur.

The following lemma shows that the set Cq can be treated as an open set when it
is nonempty. This is a direct consequence of the fact that the Routh–Hurwitz stability
criterion returns a set of strict polynomial inequalities in terms of the elements of
(AK, BK,CK).

Lemma 1 Let q ≥ 1 such that Cq is nonempty. Then, Cq is an open subset of the linear
space

Vq :=
{[

DK CK
BK AK

]
∈ R

(m+q)×(p+q)

∣∣∣∣ DK = 0m×p

}
. (10)

Wealso have the following observation on the set of full-order stabilizing controllers
Cn , whose proof is postponed to Appendix A.1.

Lemma 2 The set Cn is non-empty, unbounded, and can be non-convex.

The following two lemmas give useful characterizations of the LQG cost function
Jq . Lemma 3 is known in the literature (see, e.g., [2]); Lemma 4 follows directly from
Lemma 3, and we provide a short proof in Appendix A.2.

Lemma 3 Fix q ∈ N such that Cq �= ∅. Given K ∈ Cq , we have

Jq(K) = tr

([
Q 0
0 CT

KRCK

]
XK

)
= tr

([
W 0
0 BKV BT

K

]
YK

)
, (11)

where XK and YK are the unique positive semidefinite solutions to the following Lya-
punov equations

[
A BCK

BKC AK

]
XK + XK

[
A BCK

BKC AK

]T
+
[
W 0
0 BKV BT

K

]
= 0, (12a)

[
A BCK

BKC AK

]T
YK + YK

[
A BCK

BKC AK

]
+
[
Q 0
0 CT

KRCK

]
= 0. (12b)

Lemma 4 For any q ∈ N with Cq �= ∅, the function Jq is real analytic on Cq .

Now, given the dimension n of the plant’s state variable, the LQG problem (2) can
be reformulated into a constrained optimization problem:

min
K

Jn(K)

subject to K ∈ Cn .
(13)

Based on (13), one may further derive model-free policy gradient algorithms to find
a solution to (13). To characterize the performance of policy gradient algorithms, it
is necessary to understand the landscape of (13). However, beyond Lemmas 1,2 and
4, little is known about their further geometrical and analytical properties, especially
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those that are fundamental for establishing convergence of gradient-based algorithms.
In this paper, we focus on the following two topics about the set Cn and the LQG cost
function Jn :

1. The connectivity of Cn and its implications (Sect. 3). Connectivity of the domain
is critical for performance analysis of gradient-based algorithms for model-free
controller synthesis. Most recent results focus on state-feedback controllers or
static output-feedback controllers [6, 11, 12, 27]. It is known that the set of stabi-
lizing state-feedback controllers is connected, which is crucial for gradient-based
algorithms to find a good solution. It is also known that the set of stabilizing static
output-feedback controllers can be highly disconnected [12]. The connectivity of
the set of stabilizing dynamic controllers Cn , however, has not been discussed
before in the literature.

2. The structure of the stationary points and the global optimum of Jn (Sect. 4).
Classical control theory shows that the optimal feedback gain for LQR is unique
under mild assumptions, and recently it is established that the LQR cost function is
gradient dominated and has a unique stationary point which is the globally optimal
solution [11, 27]. It has also been shown recently that a class of output-feedback
controller design problems in finite-time horizon has a unique stationary point
[13]. On the other hand, due to the non-uniqueness of optimal LQG controllers
in the state-space domain, we do not expect the LQG cost function Jn(K) to have
a unique stationary point. We aim to reveal further structural properties of the
stationary points of Jn(K) in this work.

3 Connectivity of the set of stabilizing controllers

In this section, we examine the connectivity of the set of stabilizing controllers Cn . We
summarize the main results regarding the connectivity of Cn in Sect. 3.1, and provide
their proofs in the subsequent subsections.

3.1 Main results

Wefirst introduce the notion of similarity transformation that is central in linear control
theory. Given q ≥ 1 such that Cq �= ∅, we define the mapping Tq : GLq × Cq → Cq
that represents similarity transformations on Cq by

Tq(T , K) :=
[
Im 0
0 T

] [
0 CK
BK AK

] [
Ip 0
0 T

]−1
=
[

0 CKT−1
T BK T AKT−1

]
(14)

(recall that GLq denotes the set of k × k real invertible matrices). It is not hard to
verify that given K ∈ Cq , Tq(T , K) is also in Cq for any T ∈ GLq . We can also check
that Tq is indefinitely differentiable on GLq × Cq , and that

Tq(T2,Tq(T1, K)) = Tq(T2T1, K) (15)
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for any T1, T2 ∈ GLq . This implies that for any fixed T ∈ GLn , the mapping
K �→ Tq(T , K) admits an inverse given by K �→ Tq(T−1, K). Therefore, we have
the following result.

Lemma 5 Given q ≥ 1 such that Cq �= ∅, for any T ∈ GLq , the mapping K �→
Tq(T , K) is a diffeomorphism from Cq to itself.

This section will mainly focus on the case q = n. For notational simplicity, for
any T ∈ GLn , we let TT : Cn → Cn denote the linear mapping given by TT (K) :=
Tn(T , K).

We are now ready to present the main technical results.

Theorem 1 The set Cn has at most two path-connected components.

Theorem 2 If Cn has two path-connected components C(1)
n and C(2)

n , then C(1)
n and C(2)

n
are diffeomorphic under the mapping TT for any invertible matrix T ∈ R

n×n with
det T < 0.

Theorem 2 shows that even if Cn has two path-connected components, there exists
a linear bijection defined by a similarity transformation TT between these two com-
ponents; this linear bijection will be orthogonal if T is orthogonal with det T = −1.
The following theorem then gives a sufficient condition for Cn to be path-connected;
this condition becomes necessary when the plant is single-input or single-output.

Theorem 3 The following statements hold.

1. Cn is path-connected if there exists a reduced-order stabilizing controller, i.e.,
Cn−1 �= ∅.

2. Suppose the plant (1) is single-input or single-output, i.e., m = 1 or p = 1. Then
the set Cn is path-connected if and only if Cn−1 �= ∅.

One main idea in our proofs is based on a classical change of variables for dynamic
controllers (see, e.g., [25, 32]). We adopt the change of variables to construct a set
with a convex projection and a surjective mapping from that set to Cn , and then path-
connectivity results follow from the fact that convex sets are path-connected. The
potential disconnectivity of Cn comes from the fact that the set of real invertible
matrices GLn = {Π ∈ R

n×n | detΠ �= 0} has two path-connected components
[21]: GL+n = {Π ∈ R

n×n | detΠ > 0}, GL−n = {Π ∈ R
n×n | detΠ < 0}. The

proof of Theorem 3 is based on the observation that a reduced-order controller can be
augmented to a full-order controller that is invariant under a similarity transformation
with det T < 0; for single-input or single-output plants, we use the determinant of the
observability or the controllability matrix of the controller to characterize whether its
order can be reduced. The full proofs are technically involved, and we postpone them
to Sects. 3.2 to 3.4.

Example 1 (Disconnectivity of stabilizing controllers) Given any open-loop unstable
plant with state dimension n = 1, it is straightforward to see that there exist no
reduced-order stabilizing controllers, i.e., Cn−1 = ∅. Thus, Theorem 3 indicates that
its associated set of stabilizing controllers Cn is not path-connected.
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Fig. 1 The set of stabilizing controllers C1 for Examples 1 and 2

As an example, consider the plant with A = 1, B = 1, C = 1, and Theorem 3
indicates that the corresponding Cn is not path-connected. Indeed, using the Routh–
Hurwitz stability criterion, it is straightforward to derive that

C1 =
{
K =

[
0 CK
BK AK

]
∈ R

2×2
∣∣∣∣AK < −1, BKCK < AK

}
. (16)

This set has two path-connected components: C1 = C+1 ∪ C−1 with C+1 ∩ C−1 = ∅,
where

C±1 :=
{
K =

[
0 CK
BK AK

]
∈ R

2×2
∣∣∣∣AK < −1, BKCK < AK, ±BK > 0

}
.

In addition, as expected from Theorem 2, it is easy to verify that C+1 and C−1 are
diffeomorphic under the mapping TT for any T < 0. Fig. 1a illustrates the region of
the set C1 in (16). ��

Theorem 3 also suggests the following corollary.

Corollary 1 Given any open-loop stable plant (1), the corresponding set of stabilizing
controllers Cn is path-connected.
Proof This corollary follows from the fact that for any open-loop stable plant, the
reduced-order controller (AK, BK,CK) =

(− In−1, 0(n−1)×p, 0m×(n−1)
)
is internally

stabilizing, showing that Cn−1 �= ∅. ��
Example 2 (Stabilizing controllers for an open-loop stable system) Consider an open-
loop stable plant (1) with A = −1, B = 1, C = 1. Since it is open-loop stable,
Corollary 1 indicates that its associated set of stabilizing controllers Cn is path-
connected. Using the Routh–Hurwitz stability criterion, it is straightforward to derive

C1 =
{
K =

[
0 CK
BK AK

]
∈ R

2×2
∣∣∣∣AK < 1, BKCK < −AK

}
. (17)
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This set is path-connected, as illustrated in Fig. 1b. ��
Remark 1 We provide some remarks on the implications of the connectivity of the
domain of LQR/LQG for gradient-based algorithms. Recent studies have revisited the
classical LQR problem from a modern optimization perspective and designed policy
gradient algorithms formodel-free controller synthesis [11, 27, 42]. For policy gradient
algorithms, the connectivity of the domain (the set of stabilizing controllers) becomes
important since gradient-based methods typically cannot jump between different con-
nected components. It is known that the set of stabilizing static state-feedback gains
{K ∈ R

m×n | A − BK is stable} is connected [6], and this is one critical factor in
justifying the performance of the algorithms in [11, 27, 42]. On the other hand, the set
of stabilizing static output feedback policies {K ∈ R

m×p | A − BKC is stable} can
be highly disconnected [12], posing a significant challenge for gradient-based algo-
rithms. In Theorems 1 to 3, we have shown that the set of stabilizing controllers Cn
for LQG has at most two path-connected components that are diffeomorphic to each
other under some similarity transformation. Since similarity transformation does not
change the input/output behavior of a controller, it makes no difference to search over
either path-connected component in Cn even if Cn is not path-connected. This brings
positive news to gradient-based local search algorithms for LQG.

3.2 Proof of Theorem 1

The basic idea of analyzing the path-connectivity of Cn for LQG is in some sense
similar to the analysis for LQR [6]: We first adopt a classical change of variables for
constructing convex reformulation of the controller synthesis problem, and then path-
connectivity results generally follow from the path-connectivity of convex sets. But
compared to the analysis for LQR, here we need to use a more complicated change of
variables for dynamic controllers in the state-space domain.

Specifically, we adopt the change of variables presented in [25, 32]. Given the plant
dynamics (A, B,C) in (1), we first introduce the following convex set

Fn :=
{
(X , Y , M, H , F) | X ,Y ∈ S

n, M ∈ R
n×n, H ∈ R

n×p, F ∈ R
m×n,

[
X I
I Y

]
� 0,

[
AX+BF A

M Y A+HC

]
+
[
AX+BF A

M Y A+HC

]T
≺ 0

}
,

(18)

and the “extended” set

Gn :=
{
Z = (X ,Y , M, H , F,Π,Ξ)

∣∣∣∣ (X ,Y , M, H , F) ∈ Fn,

Π,Ξ ∈ R
n×n, ΞΠ = I − Y X

}
. (19)

We shall later see that there exists a continuous surjective map from Gn to Cn , and
the path-connectivity of the convex set Fn plays a key role in analyzing the path-
connected components of Cn . Before proceeding, we note the following observation
for each element in Gn .
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Lemma 6 For any (X ,Y , M, H , F,Π,Ξ) ∈ Gn,Π andΞ are always invertible, and

consequently, the block triangular matrices

[
I 0

Y B Ξ

]
and

[
I CX
0 Π

]
are invertible.

Proof By definition, for all (X ,Y ,W , H , F,Π,Ξ) ∈ Gn , we have

[
X I
I Y

]
� 0,

implying that

det(Y X − I ) = det X det(Y − X−1) = det

[
X I
I Y

]
> 0.

Thus, det(Π) �= 0 anddet(Ξ) �= 0, indicating they are both invertible. The invertibility
of the other two block triangular matrices is straightforward. ��

We now define a mapping from Gn to a subset of R
(m+n)×(p+n).

Definition 1 For each Z = (X ,Y , M, H , F,Π,Ξ) in Gn , let

Φ(Z) =
[

0 ΦC (Z)

ΦB(Z) ΦA(Z)

]
:=
[

I 0
Y B Ξ

]−1 [ 0 F
H M − Y AX

] [
I CX
0 Π

]−1
. (20)

We point out that this mapping (20) is essentially the change of variables presented
in [25, 32],which is critical for deriving convex reformulations of output-feedback con-
troller synthesis problems. The following result builds an explicit connection between
Gn and Cn via the mapping Φ.

Proposition 1 The mappingΦ defined by (20) is a continuous and surjective mapping
from Gn to Cn.

Proposition 1 has been effectively proved in [25, 32]. We provide a rigorous proof
in Appendix A.3.

After establishing the continuous surjection from Gn to Cn , it is now clear that we
can study the path-connectivity of Cn via the path-connectivity of Gn : Any continuous
path in Gn will be mapped to a continuous path in Cn , and thus any path-connected
component of Gn has a path-connected image under the mapping Φ. Consequently,
the number of path-connected components of Cn will be no more than the number of
path-connected components of Gn .

We now proceed to provide results on the path-connectivity of the set Gn .

Proposition 2 The set Gn has two path-connected components, given by

G+n = {(X ,Y , M, H , F,Π,Ξ) ∈ Gn | detΠ > 0} ,
G−n = {(X ,Y , M, H , F,Π,Ξ) ∈ Gn | detΠ < 0} .

Proof First, the convexity of Fn implies that the set Fn is path-connected. We then
notice that the set of real invertible matrices GLn = {Π ∈ R

n×n | detΠ �= 0} has
two path-connected components [21]

GL+n = {Π ∈ R
n×n | detΠ > 0}, GL−n = {Π ∈ R

n×n | detΠ < 0}.
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Therefore the Cartesian product Fn × GLn has two path-connected components.
Finally, it is not hard to verify that the following mapping

(X ,Y , M, H , F,Π) �→ (X ,Y , M, H , F,Π, (I − Y X)Π−1)

is a homeomorphism fromFn×GLn to Gn . Therefore Gn also has two path-connected
components, and their expressions are evident. ��

Proposition 2 then implies that Cn has at most two path-connected components.
Precisely, upon defining C+n = Φ(G+n ), C−n = Φ(G−n ), the two path-connected com-
ponents of Cn are just given by C+n and C−n , if Cn is not path-connected. This completes
the proof of Theorem 1.

3.3 Proof of Theorem 2

We have shown in the previous subsection that C+n and C−n are the two path-connected
components if Cn is not connected. To prove Theorem 2, it suffices to show that,
regardless of the path-connectivity of Cn , for any T ∈ R

n×n with det T < 0, the
mapping TT restricted on C+n is a diffeomorphism from C+n to C−n . And since TT is
a diffeomorphism from Cn to itself with inverse TT−1 , and C+n and C−n are two open
subsets of Cn , we only need to show that TT (C+n ) ⊆ C−n and TT−1(C−n ) ⊆ C+n when
det T < 0.

Consider an arbitrary point K =
[
0 CK
BK AK

]
∈ C+n . By the definition of C+n , there

exists Z = (X ,Y , M, H , F,Π,Ξ) ∈ G+n such that Φ(Z) = K. Now let

Π̂ = TΠ, Ξ̂ = ΞT−1, Ẑ = (X ,Y , M, H , F, Π̂, Ξ̂).

It is not difficult to verify that Ẑ ∈ Gn . Since det Π̂ = det T · detΠ < 0, we have
Ẑ ∈ G−n . Then,

Φ(Ẑ) =
[

0 ΦC (Ẑ)

ΦB(Ẑ) ΦA(Ẑ)

]
=
[

I 0
Y B Ξ̂

]−1 [
0 F
H M−Y AX

] [
I CX
0 Π̂

]−1

=
[
I 0
0 T

] [
I 0

Y B Ξ

]−1 [ 0 F
H M−Y AX

] [
I CX
0 Π

]−1 [I 0
0 T−1

]

=
[
I 0
0 T

] [
0 CK
BK AK

] [
I 0
0 T−1

]
=
[

0 CKT−1
T BK T AKT−1

]
= TT (K),

which implies that TT (K) ∈ Φ(G−n ) = C−n and consequently TT (C+n ) ⊆ C−n .
The proof of TT−1(C−n ) ⊆ C+n is similar by noting that det T−1 < 0 if and only if

det T < 0.
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3.4 Proof of Theorem 3

We first show that the non-emptiness of Cn−1 implies the path-connectivity of Cn .
Indeed, suppose there exists K̃ ∈ Cn−1. Then it can be augmented to be a full-order
controller in Cn by

K =
⎡
⎢⎣

0 C̃K 0

B̃K ÃK 0
0 0 −1

⎤
⎥⎦ ∈ Cn .

Now let T =
[
In−1 0
0 −1

]
. By the proof of Theorem 2, we can see that K ∈ C±n implies

TT (K) ∈ C∓n . On the other hand, we can directly check that TT (K) = K. Therefore
we have K ∈ C+n ∩ C−n , indicating that C+n ∩ C−n is nonempty. Consequently, Cn is
path-connected.

We then consider the case when the plant is single-input or single-output. The goal
is to find a reduced-order controller in Cn−1 when Cn is connected. Here we only prove
the single-output case; the single-input case can be proved similarly.

Let T be any real n × n matrix with det T < 0. Let K(0) ∈ Cn be arbitrary, and let
K(1) = TT (K(0)). If Cn is path-connected, then there exists a continuous path

K(t) =
[

0 CK(t)
BK(t) AK(t)

]
, t ∈ [0, 1]

in Cn such that K(0) = K(0) and K(1) = K(1). Now for each t ∈ [0, 1], let C(t) be the
controllability matrix for (AK(t), BK(t)), i.e.,

C(t) = [BK(t) AK(t)BK(t) · · · AK(t)n−1BK(t)
] ∈ R

n×n,

where the dimension of C(t) is n×n since the plant is single-output (i.e., the controller
is single-input). We then have C(1) = TC(0), and thus det C(1) · det C(0) ≤ 0. On
the other hand, it can be seen that det C(t) is a continuous function over t ∈ [0, 1].
Therefore det C(τ ) = 0 for some τ ∈ [0, 1], implying that (AK(τ ), BK(τ )) is not
controllable. This indicates that the transfer function CK(τ )(s In − AK(τ ))−1BK(τ )

can be realized by a state-space representation with dimension at most n − 1, and
consequently Cn−1 �= ∅.

4 Structure of stationary points

In this section, we proceed to characterize the stationary points of the LQG cost
function. Section 4.1 discusses the invariance of the LQG cost Jq under similarity
transformation and its implications. Section 4.2 shows how to compute the gradient
and the Hessian of the LQG cost Jq . In Sect. 4.3, we investigate a class of spurious
stationary points that are not controllable and not observable. We characterize the
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controllable and observable stationary points for LQG over Cn in Sect. 4.4. Finally, in
Sect. 4.5, we discuss the second-order behavior of Jn(K) around its controllable and
observable stationary points.

4.1 Invariance of LQG cost under similarity transformation

As shown in Lemma 5, the similarity transformation Tq(T , ·) is a diffeomorphism
from Cq to itself for any invertible matrix T ∈ GLq . Then together with (15), we can
see that the set of similarity transformations is a group that is isomorphic to GLq . We
can therefore define the orbit of K ∈ Cq by

OK := {Tq(T , K) | T ∈ GLq}.

Since the controllers K =
[
0 CK
BK AK

]
and Tq(T , K) =

[
0 CKT−1

T BK TAKT−1
]
have identical

input-output behavior regardless of T ∈ GLq , we have the following lemma that the
LQG cost is invariant under similarity transformations.

Lemma 7 Let q ≥ 1 such that Cq �= ∅. Then Jq(K) = Jq
(
Tq(T , K)

)
for any K ∈ Cq

and T ∈ GLq .

Consequently, the LQG cost is constant over an orbit OK for any K ∈ Cq .

Now consider K =
[
0 CK
BK AK

]
∈ Cq such that (AK, BK) is controllable and (CK, AK)

is observable. The following proposition shows that every orbit OK corresponding to
a controllable and observable controller has dimension q2 with two path-connected
components. The proof is given in Appendix A.4.

Proposition 3 Suppose K ∈ Cq represents a controllable and observable controller.
Then the orbitOK is a submanifold of Cq of dimension q2, and has two path-connected
components given by

O+K = {Tq(T , K) | det T > 0}, O−K = {Tq(T , K) | det T < 0}.

From Lemma 7 and Proposition 3, one interesting consequence is that given a
globally optimal LQG controller K∗ ∈ Cn , the points in its orbit OK∗ are all globally
optimal, and if K∗ is controllable and observable, the orbitOK∗ is a submanifold in Vn

of dimension n2, and it has two path-connected components. Figure 2 demonstrates
the orbits of globally optimal LQG controllers for an open-loop unstable plant and an
open-loop stable plant, showing that the set of globally optimal LQG controllers are
non-isolated and disconnected in Cn .

We conclude this subsection by noting that the LQG cost function Jq(K) is not
coercive in the sense that theremight exist sequences of stabilizing controllers K j ∈ Cq
with ‖K j‖F → +∞ or infK′∈∂Cq ||K j − K′||F → 0 such that lim sup j→∞ Jq(K j ) is
finite. Indeed, from Proposition 3, the orbit OK can be unbounded while Jq(K) is
constant for any controller in the same orbit. Furthermore, the following example
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Fig. 2 Non-isolated and disconnected globally optimal LQG controllers. In both cases, we set Q = 1, R =
1, V = 1,W = 1. (a) LQG cost for Example 1 when fixing AK = −1− 2

√
2. (b) LQG cost for Example

2 when fixing AK = 1− 2
√
2. The red curves represent the set of globally optimal LQG controllers

shows that the LQG cost might converge to a finite value even when the controller K
approaches the boundary of Cq .

Example 3 (Non-coercivity of the LQG cost) Consider the plant in Example 2 given
by A = −1, B = 1,C = 1, and we let Q = 1, R = 1, V = 1,W = 1. The set

C1 is given by (17). Let Kε =
[
0 ε

−ε 0

]
∈ C1 for any ε �= 0, and it is not hard to

see that limε→0 Kε ∈ ∂C1. On the other hand, by solving the Lyapunov Eq (12a),

we get the unique solution XKε = 1
2

[
ε2+1 ε

ε ε2+2

]
and the corresponding LQG cost

J (Kε) = 1
2 (1+ 3ε2 + ε4), indicating limε→0 J (Kε) = 1/2 < +∞. ��

4.2 The gradient and the Hessian of the LQG cost

The following lemma gives a closed-form expression for the gradient of the LQG cost
function Jq , and its proof is given in Appendix A.7.

Lemma 8 (Gradient of LQG cost Jq) Fix q ≥ 1 such that Cq �= ∅. For every

K =
[
0 CK
BK AK

]
∈ Cq , the gradient of Jq(K) is given by

∇ Jq(K) =
[

0 ∂ Jq (K)

∂CK
∂ Jq (K)

∂BK
∂ Jq (K)

∂AK

]
,
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with

∂ Jq(K)

∂AK
= 2

(
Y T
12X12 + Y22X22

)
, (21a)

∂ Jq(K)

∂BK
= 2

(
Y22BKV + Y22X

T
12C

T + Y T
12X11C

T
)

, (21b)

∂ Jq(K)

∂CK
= 2

(
RCKX22 + BTY11X12 + BTY12X22

)
, (21c)

where XK and YK , partitioned as

XK =
[
X11 X12

XT
12 X22

]
, YK =

[
Y11 Y12
Y T
12 Y22

]
(22)

are the unique positive semidefinite solutions to (12a) and (12b), respectively.

We next consider the Hessian of Jq(K). Let K be any controller in Cq , and we use
Hess K : Vq × Vq → R to denote the bilinear form of the Hessian of Jq at K, so that
for any Δ ∈ Vq , we have

Jn(K +Δ) = Jn(K)+ tr
(
∇ Jq(K)TΔ

)
+ 1

2
Hess K(Δ,Δ)+ o(‖Δ‖2F )

as ‖Δ‖F → 0. Obviously, Hess K is symmetric in the sense that for all x, y ∈ Vn ,
Hess K(x, y) = Hess K(y, x). The following lemma shows how to compute the quantity
Hess K(Δ,Δ) for any Δ ∈ Vq by solving three Lyapunov equations, whose proof is
given in Appendix A.7.

Lemma 9 Fix q ≥ 1 such that Cq �= ∅. Let K =
[
0 CK
BK AK

]
∈ Cq . Then for any

Δ =
[

0 ΔCK

ΔBK ΔAK

]
∈ Vq , we have

Hess K(Δ,Δ) = 2 tr

(
2

[
0 BΔCK

ΔBKC ΔAK

]
X ′K,Δ · YK + 2

[
0 0
0 CT

KRΔCK

]
· X ′K,Δ

+
[
0 0
0 ΔBKVΔT

BK

]
YK +

[
0 0
0 ΔT

CK
RΔCK

]
XK

)
,

where XK and YK are the solutions to the Lyapunov Eqs (12a) and (12b), and X ′K,Δ ∈
R

(n+q)×(n+q) is the solution to the following Lyapunov equation

[
A BCK

BKC AK

]
X ′K,Δ + X ′K,Δ

[
A BCK

BKC AK

]T
+ M1(XK,Δ) = 0, (23)
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with

M1(XK,Δ) :=
[

0 BΔCK

ΔBKC ΔAK

]
XK+XK

[
0 BΔCK

ΔBKC ΔAK

]T
+
[
0 0
0 BKVΔT

BK
+ΔBKV BT

K

]
.

From Lemma 9, one can further get Hess K(Δ1,Δ2) for any Δ1,Δ2 ∈ Vn by

Hess K(Δ1,Δ2) = 1

2
(Hess K(Δ1+Δ2,Δ1+Δ2)−Hess K(Δ1,Δ1)−Hess K(Δ2,Δ2)) .

4.3 Spurious stationary points

In this part, we show that the LQG cost Jn(K) over the full-order stabilizing con-
troller Cn may have many spurious stationary points that are not controllable and not
observable.

We first investigate the gradient of Jq(K) under similarity transformation. Given
any T ∈ GLq , recall the definition of the linear mapping of similarity transformation
Tq (T , K) in (14). The following lemma gives an explicit relationship among the
gradients of Jq(·) at K and Tq (T , K), whose proof is given in Appendix A.6.

Lemma 10 Let K =
[
0 CK
BK AK

]
∈ Cq be arbitrary. For any T ∈ GLq , we have

∇ Jq

∣∣∣∣
Tq (T ,K)

=
[
Im 0
0 T−T

]
· ∇ Jq

∣∣∣∣
K

·
[
Ip 0
0 T T

]
. (24)

As expected, a direct consequence of Lemma 10 is that, if K ∈ Cq is a stationary
point of Jq , then any controller in the orbit OK is also a stationary point of Jq . In
addition, Lemma 10 allows us to establish an interesting result that any stationary
point of Jq can be augmented to stationary points of Jq+q ′ for any q ′ > 0 with the
same objective value.

Theorem 4 Let q ≥ 1 be arbitrary. Suppose there exists K
 =
[
0 C


K
B

K A


K

]
∈ Cq such

that ∇ Jq(K
) = 0. Then for any q ′ ≥ 1 and any stable Λ ∈ R
q ′×q ′ , the following

controller

K̃

 =

⎡
⎣ 0 C


K 0
B

K A


K 0
0 0 Λ

⎤
⎦ ∈ Cq+q ′ (25)

is a stationary point of Jq+q ′ over Cq+q ′ satisfying Jq+q ′
(
K̃


) = Jq(K
).

Proof Since K
 ∈ Cq , we have K̃

 ∈ Cq+q ′ by construction. It is straightforward to

verify that

Tq+q ′
(
T , K̃


) = K̃



with T =
[
Iq 0
0 −Iq ′

]
.
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Therefore, by Lemma 10, we have

∇ Jq+q ′
∣∣∣∣
K̃



= ∇ Jq+q ′

∣∣∣∣
Tq+q′

(
T ,K̃



) =

[
Im+q 0
0 −Iq ′

]
· ∇ Jq+q ′

∣∣∣∣
K̃



·
[
Ip+q 0
0 −Iq ′

]
,

which implies that, excluding the the bottom right q ′ × q ′ block, the last q ′ rows and

the last q ′ columns of ∇ Jq+q ′
∣∣∣∣
K̃



are zero. On the other hand, it can be checked that

Jq+q ′
([

K 0
0 Λ

])
= Jq(K), ∀ K ∈ Cq ,

and since ∇ Jq(K
) = 0, we can see that the upper left (m + q) × (p + q) block of

∇ Jq+q ′
∣∣∣∣
K̃ 


is equal to zero. Then, from Lemma 3, it is not difficult to verify that the

value Jq(K̃


) is independent of the q ′ × q ′ stable matrix Λ, and thus the bottom right

q ′ × q ′ block of ∇ Jq+q ′
∣∣∣∣
K̃



is zero.

We can now see that ∇ Jq+q ′
∣∣∣∣
K̃



= 0. This completes the proof. ��

Theorem 4 indicates that from any stationary point of Jq over reduced-order stabi-
lizing controllers in Cq , we can construct a family of stationary points of Jq+q ′ over
higher-order stabilizing controllers in Cq+q ′ . Moreover, the stationary points con-
structed by (25) are not controllable and not observable. Therefore, assuming that
the optimal LQG controller is controllable and observable, as long as there exists
some q < n such that the problem of finding an optimal reduced-order controller
minK∈Cq Jq(K) has a solution, we can then augment this solution to obtain a family of
stationary points in Cn that are not controllable and not observable, and consequently
are spurious stationary points.

The following theorem explicitly constructs a family of stationary points for Jn
with an open-loop stable plant, and also provides a criterion for checking whether the
corresponding Hessian is indefinite or vanishing.

Theorem 5 Suppose the plant (1) is open-loop stable. Let Λ ∈ R
n×n be stable, and

let

K
 =
[
0 0
0 Λ

]
.

Then K
 is a stationary point of Jn(K) over K ∈ Cn, and the corresponding Hessian
Hess K
 is either indefinite or zero.

Furthermore, suppose Λ is diagonalizable, and let eig(−Λ) denote the set of (dis-
tinct) eigenvalues of −Λ. Let Xop and Yop be the solutions to the following Lyapunov
equations

AXop + XopA
T +W = 0, ATYop + YopA + Q = 0, (26)

123



Analysis of the optimization... 419

and let
Z =

{
s ∈ C | CXop

(
s I − AT)−1YopB = 0

}
. (27)

Then, the Hessian of Jn at K
 is indefinite if and only if eig(−Λ) � Z , and is zero if
and only if eig(−Λ) ⊆ Z .

The fact that K
 =
[
0 0
0 Λ

]
is a stationary point can be proved similarly as Theorem

4. Appendix A.9 gives a detailed proof regarding the properties of the Hessian. A
recent study [26] also shows that the LQG cost in terms of observer-based controllers
has a zero gradient when K = 0, L = 0 for open-loop stable systems.

Theorem 5 constructs a family of strict saddle points or stationary points with
vanishing Hessians for LQG with open-loop stable plants. We present two examples
illustrating the Hessians at stationary points that are not controllable and observable.

Example 4 (Strict saddle point) Consider the plant in Example 2 with A = −1, B =
1,C = 1, and we choose Q = R = 1,W = V = 1. By Theorem 5, given any

a < 0, the controller K
 =
[
0 0
0 a

]
∈ R

2×2 is a stationary point of J1(K) over the set

of full-order stabilizing controller C1. Furthermore, we can be check that

CXop
(
s I − AT)−1YopB = 1

4(s + 1)
.

Therefore the Hessian of J1 at K
 is indefinite by Theorem 5, indicating that K
 is a
strict saddle point. Indeed, by using (11), we can directly compute the LQG cost and
obtain

J1

([
0 CK
BK AK

])
= A2

K − AK(1+ B2
KC

2
K)− BKCK(1− 3BKCK + B2

KC
2
K)

2(−1+ AK)(AK + BKCK)
.

The Hessian at K
 can then be represented as

⎡
⎢⎢⎢⎢⎣

∂2 J (K)

∂A2
K

∂2 J (K)
∂AK∂BK

∂2 J (K)
∂AK∂CK

∂2 J (K)
∂BK∂AK

∂2 J (K)

∂B2
K

∂2 J (K)
∂BK∂CK

∂2 J (K)
∂CK∂AK

∂2 J (K)
∂CK∂BK

∂2 J (K)

∂C2
K

⎤
⎥⎥⎥⎥⎦
∣∣∣∣
K=K


= 1

2(1− a)

⎡
⎣0 0 0
0 0 1
0 1 0

⎤
⎦ ,

which has eigenvalues 0 and ± 1
2(1−a)

. ��
Example 5 (Stationary point with a vanishing Hessian) Consider the following SISO
system:

A =
[−1 0
1 −2

]
, B =

[−1
1

]
, C = [−2 11

]
, W =

[
1 0
0 1

]
, V = 1,
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Fig. 3 The function
t �→ Jn(K
 + tΔ) for Example 5

and let Q =
[
1 0
0 1

]
, R = 1. It can be checked that

CXop
(
s I − AT)−1YopB = 5(s − 1)

36(s + 1)(s + 2)
.

By Theorem 5, the point K
 =
⎡
⎣0 0 0
0 −1 0
0 0 −1

⎤
⎦ is a stationary point of Jn with a vanishing

Hessian. In Fig. 3, we plot the graph of the function t �→ Jn(K
 + tΔ) for Δ =⎡
⎣ 0 2 1/2
−1 1 3
3 0 0

⎤
⎦ . Figure 3 suggests that K
 is a saddle point of Jn with a vanishing

Hessian but non-vanishing third-order partial derivatives. ��

Remark 2 Some recent studies have shown that many gradient-based algorithms can
automatically escape strict saddle points under mild conditions [18]. However, Exam-
ple 5 shows that the LQG cost function may have non-strict saddle points, and further
analysis is required to examine whether gradient-based methods can also escape such
stationary points. In addition, the existence of local minima is also important and
relevant for the convergence of first-order algorithms, which we leave as future work.

4.4 Controllable and observable stationary points are globally optimal

In this section, we will show that all controllable and observable stationary points are
globally optimal to the LQG problem (2).

We first give a useful lemma for controllable and observable stabilizing controllers
(see Appendix A.8 for a proof).

Lemma 11 Fix q ∈ N such that Cq �= ∅, and let K ∈ Cq be controllable and observ-
able. Under Assumption 1, the solutions XK and YK to (12) are positive definite.

By letting the gradient (21) be equal to zero, we can derive closed-form expressions
for full-order controllable and observable stationary points K ∈ Cn and show that they
are globally optimal. This result is formally summarized below.
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Theorem 6 Under Assumption 1, all controllable and observable stationary points of
Jn(K) over K ∈ Cn are globally optimal, and they are in the form of

AK = T (A − BK − LC)T−1, BK = −T L, CK = KT−1, (28)

where T ∈ R
n×n is an invertible matrix, and

K = R−1BTS, L = PCTV−1, (29)

with P and S being the unique positive definite solutions to the Riccati equations (5).

Proof The theorem can be viewed as a special case of [48, Theorem 20.6], [17, Section
II] that analyze first-order necessary conditions for optimal reduced-order controllers.
Following the analysis in [48, Chapter 20], we give an adapted proof.

Consider a stationary point K =
[
0 CK
BK AK

]
∈ Cn such that the gradient (21) van-

ishes. If the controller K is controllable and observable, we know by Lemma 11 that
the solutions XK and YK to (12a) and (12b) are unique and positive definite. Upon
partitioning XK and YK in (22), by the Schur complement, the following matrices are
well-defined and positive definite

P := X11 − X12X
−1
22 XT

12 � 0, S := Y11 − Y12Y
−1
22 Y T

12 � 0. (30)

We further define T := Y−122 Y T
12. By (21a), we know that matrix T is invertible, and

T−1 = −X12X
−1
22 . Now, by letting ∂ Jn(K)

∂BK
= 0 and noting (21b), we have

BK = −(XT
12 + Y−122 Y T

12X11)C
TV−1 = −(XT

12 + T X11)C
TV−1

= −T (X11 − X12X
−1
22 XT

12)C
TV−1 = −T PCTV−1.

(31)

Similarly, from (21c), we have

CK = −R−1BT(Y11X12X
−1
22 + Y12) = R−1BTST−1. (32)

Furthermore, since XK is the solution to the Lyapunov equation (12a), by plugging in
the blocks of XK we get

0 = AX11 + X11A + BCKX
T
12 + X12C

T
KB

T
K +W , (33a)

0 = AX12 + BCKX22 + X11C
TBT

K + X12A
T
K, (33b)

0 = AKX22 + X22A
T
K + BKCX12 + XT

12C
TBT

K + BKV BT
K . (33c)

Now, (33c) + T×(33b) leads to

AKX22 + X22A
T
K + BKCX12 + XT

12C
TBT

K + BKV BT
K

+ T (AX12 + BCKX22 + X11C
TBT

K + X12A
T
K) = 0,
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which is the same as

AKX22 + X22A
T
K − T PCTV−1CX12 − XT

12C
TV−1CPT + T PCTV−1CPT

+ T (AX12 + BR−1BTST−1X22 − X11C
TV−1CPT + X12A

T
K) = 0.

By the definition of T , we have T X12 = −X22. Then, the equation above becomes

AKX22 − T PCTV−1CX12 − XT
12C

TV−1CPT + T PCTV−1CPT

+ T (AX12 + BR−1BTST−1X22 − X11C
TV−1CPT ) = 0,

leading to

AK = T PCTV−1CX12X
−1
22 + XT

12C
TV−1CPT X−122 − T PCTV−1CPT X−122

− T (AX12 + BR−1BTST−1X22 − X11C
TV−1CPT )X−122

= T (A − PCTV−1C − BR−1BTS)T−1.
(34)

From (31), (32) and (34), upon defining K and L in (29), it is easy to see that the
stationary points are in the form of (28). It remains to prove that P and S defined
in (30) are the unique positive definite solutions to the Riccati Eqs (5a) and (5b).

We multiply (33c) by T−1 on the left and by T−T on the right, and by noting that
BK = −T PCTV−1 and T−1 = −X12X

−1
22 , we get

0 =X12X
−1
22 AKX

T
12 + X12A

T
KX

−1
22 XT

12

+ PCTV−1CX12X
−1
22 XT

12 + X12X
−1
22 XT

12C
TV−1CP + PCTV−1CP.

Since P = X11 − X12X
−1
22 XT

12, we further get

0 =X12X
−1
22 AKX

T
12 + X12A

T
KX

−1
22 XT

12

+ PCTV−1CX11 + X11C
TV−1CP − PCTV−1CP.

(35)

Next, we multiply (33b) by −T−T = X−122 XT
12 on the right and get

0 = AX12X
−1
22 XT

12 + BCKX
T
12 + X11C

TV−1CTP + X12A
T
KX

−1
22 XT

12.

By plugging this equality into (35), we get

0 = −AX12X
−1
22 XT

12 − BCKX
T
12 − X12X

−1
22 XT

12A − X12C
T
KB

T − PCTV−1CP.

Then, we plug the above equality into (33a) and get

0 = A(X11 − X12X
−1
22 XT

12)+ (X11 − X12X
−1
22 XT

12)A − PCTV−1CP +W ,
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and since P = X11 − X12X
−1
22 XT

12, we see that P satisfies the Riccati Eq (5a). By
similar steps, we can derive from (12b) that S satisfies the Riccati equation (5b).

Finally, from classical control theory [48, Theorem 14.7], a globally optimal con-
troller to the LQGproblem (13) is given by (6), and any similarity transformation leads
to another equivalent controller with the same LQG cost. Therefore, any controllable
and observable stationary point, given by (28), is globally optimal. ��

We note that controllability and observability are required in the proof of Theorem
6, as they guarantee that the matrices (30) are well-defined and the solutions (31)
and (32) are unique.

Theorem 6 implies that, if the LQG problem (13) has a globally optimal solution
in Cn that is also controllable and observable, then the globally optimal controller is
unique modulo similarity transformations. This is expected from the classical result
that the globally optimal LQG controller is unique in the frequency domain [48,
Theorem 14.7]. Theorem 6 also allows us to establish the following corollaries.

Corollary 2 The following statements hold:

1. If Jn(K) has a controllable and observable stationary point in Cn, then any sta-
tionary point that is not controllable or observable is strictly suboptimal.

2. If Jn(K) has a globally optimal point in Cn that is not controllable or observable,
then all stationary points of Jn(K) are not controllable or observable.

We have already seen LQG cases with strictly suboptimal stationary points that
are not controllable and not observable in Example 4 and Example 5. It should be
noted that, even with Assumption 1, the LQG problem (13) might have no control-
lable and observable stationary points; this happens if the controller from the Ricatti
equations (5) is not controllable or observable.

Example 6 (Globally optimal controllers that are not controllable or observable) Here
we give an example from [41], whose optimal LQG controller does not have a full-
order realization in Cn that is controllable and observable. Consider the linear system
(1) with

A =
[
0 −1
1 0

]
, B =

[
1
0

]
, C = [1 −1] , W =

[
1 −1
−1 16

]
, V = 1,

and let the LQG cost be defined by Q =
[
4 0
0 0

]
, R = 1. This LQG problem satisfies

Assumption 1, and the globally optimal controller is given by

AK =
[−3 0
5 −4

]
, BK = L =

[
1
−4
]

, CK = −K = [−2 0
]
. (36)

It is not hard to see that (CK, AK) is not observable. Consequently, by Corollary 2, all
stationary points of Jn are not controllable or observable for this example.

123



424 Y. Tang et al.

In this case, the globally optimal controllers in Cn are not all connected by similarity
transformations. For example, it can be verified that the following two controllers are
both globally optimal:

K1 =
⎡
⎣ 0 −2 0

1 −3 0
−4 5 −4

⎤
⎦ , K2 =

⎡
⎣0 −2 0
1 −3 0
0 0 −1

⎤
⎦ ,

but there exists no similarity transformation between K1 and K2 since
[−3 0
5 −4

]
and[−3 0

0 −1
]
have different sets of eigenvalues. ��

Now let us consider a sequence of gradient descent iterates that converges to a point.
Then Theorem 6 also allows us to check whether the limit point is a globally optimal
solution to the LQG problem.

Corollary 3 Consider the gradient descent iteration Kt+1 = Kt − αt∇ Jn(Kt ) for the
LQG problem (13), where αt > 0 is the step size. Suppose inf t αt > 0 and the iterates
Kt converge to a point K∗. Then K∗ is globally optimal if it is a controllable and
observable controller.

Remark 3 Corollary 3 proposes checking the controllability and observability of K∗
for verifying global optimality when the gradient descent iterates converge to K∗. In
practice, the limit K∗ cannot be directly computed, and one tentative approach to check
its controllability (observability) is to check whether the smallest singular value of the
controllability (observability) matrix of the last iterate KT is sufficiently bounded away
from zero. A rigorous justification of this approach will be of interest for future work.

Remark 4 Note that Corollary 3 does not discuss under what conditions will the gra-
dient descent iterates converge. The results in [1] guarantee that if the cost function
is analytic over the whole Euclidean space, then the gradient descent with step sizes
satisfying the Wolfe conditions will either converge to a stationary point or diverge to
infinity. In our case, however, the cost function Jn(K) is only analytic over a subset
Cn ⊂ Vn . Furthermore, Jn(K) is not coercive as shown in Example 3. Whether the
gradient descent with properly chosen step sizes can converge to a stationary point of
Jn(K) requires further investigation.

4.5 Hessian of Jn(K) at controllable and observable stationary points

Finally, we turn to characterizing the second-order behavior of Jn around a globally
optimal controller K∗ by investigating the eigenvalues and eigenspaces of the Hessian
Hess K∗ . We assume K∗ is controllable and observable throughout this subsection.

Proposition 3 guarantees that for any controllable and observable K ∈ Cn , the orbit
OK is a submanifold of dimension n2 in Cn , which allows us to define the tangent
space of OK .4 For each controllable and observable K ∈ Cn , we use T OK to denote

4 A visualization of a manifoldM and its tangent space TxM at one point x ∈M is provided in Fig. 4.
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Fig. 4 Visualization of a
manifoldM and its tangent
space TxM at some x ∈M.
Here γ (t) is an arbitrary C∞
curve inM that passes through
x , and v is the tangent vector of
γ (t) at x . The tangent space
TxM consists of all such
vectors v

the tangent space ofOK at K, and treat it as a subspace of Vn ; recall that Vn is defined
by (10). The dimension of T OK is then dim T OK = dimOK = n2. We denote the
orthogonal complement of T OK in Vn by T O⊥K . The following proposition charac-
terizes the tangent space T OK and its orthogonal complement T O⊥K at a controllable
and observable controller K ∈ Cn , whose proof is given in Appendix A.5.

Proposition 4 Let K =
[
0 CK
BK AK

]
∈ Cn represent a controllable and observable con-

troller. Then

T OK =
{[

0 −CKH
HBK H AK − AKH

] ∣∣∣∣H ∈ R
n×n
}

,

T O⊥K =
{
Δ =

[
0 ΔBK

ΔCK ΔAK

]
∈ Vn

∣∣∣∣ΔAK A
T
K − AT

KΔAK +ΔBK B
T
K − CT

KΔCK = 0

}
.

We now present the following lemma, which shows that the tangent space T OK∗
is a subspace of the null space of Hess K∗ , defined as

null Hess K∗ = {x ∈ Vn | Hess K∗(x, y) = 0, ∀y ∈ Vn}.

Lemma 12 Suppose K∗ is controllable and observable. Then T OK∗ ⊆ null Hess K∗ .

This lemma is a direct corollary of [22, Theorem 2], and can be viewed as a local
version of Lemma 7 indicating the invariance of Jn along the orbitOK . Consequently,
the dimension of the null space of HessK∗ is at least n2. On the other hand, we also
have the following result.

Lemma 13 Suppose K∗ is controllable and observable, and let Δ ∈ T O⊥K∗ . Then for
all sufficiently small t > 0,

Jn(K∗ + tΔ)− Jn(K∗) > 0.

Proof Weprove by contradiction. Suppose for any δ > 0, there always exists t ∈ (0, δ)
such that Jn(K∗ + tΔ) = Jn(K∗). Then we can find a positive sequence (t j ) j≥1 such
that t j → 0 and Jn(K∗+t jΔ) = Jn(K∗). Denote K j = K∗+t jΔ. SinceΔ is orthogonal
to T OK∗ , there must exists some j ≥ 1 such that K j /∈ OK∗ . By [48, Theorem 3.17],
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we can see that the transfer function of K j will be different from the transfer function
of K∗. Then by the uniqueness of the transfer function solution to the LQG problem,
K j cannot be a global minimum of Jn , contradicting Jn(K j ) = Jn(K∗). ��

Combining the observations from Lemmas 12 and 13, we can see that, while the
Hessian Hess K∗ is degenerate and its null space has a nontrivial subspace T OK∗ ,
the degeneracy associated with T OK∗ does not cause much trouble for optimizing
Jn , as the directions in T OK∗ correspond to similarity transformations that lead to
other globally optimal controllers, while along the directions orthogonal to T OK∗ , the
optimal controller of Jn is locally unique.

We are therefore interested in the behavior of Hess K∗ restricted to the subspace
T O⊥K∗ . Specifically, we let rcond K∗ denote the reciprocal condition number of Hess K∗

restricted to the subspace T O⊥K∗ , i.e.,

rcondK∗ :=
minΔ⊥T OK∗ Hess K∗(Δ,Δ)/‖Δ‖2F
maxΔ⊥T OK∗ Hess K∗(Δ,Δ)/‖Δ‖2F

. (37)

Intuitively, if rcondK∗ is bounded away from zero, then we can expect gradient-based
methods to achieve good local convergence behavior for optimizing Jn . However,
we give an explicit example below showing that rcondK∗ can be very bad even if the
original plant seems entirely normal.

Example 7 Let ε > 0 be arbitrary, and let

A = 3

2

[−1 0
0 −1− ε

]
, B =

[
1

1+ ε

]
, C = [1 1

]
,

and

Q =
[
4 1
1 4

]
, W =

[
4 1+ ε

1+ ε 4(1+ ε)2

]
, V = R = 1.

For this plant, the positive definite solutions to the Riccati equations (5) are given by

P =
[
1 0
0 1+ ε

]
, S =

[
1 0
0 1

1+ε

]
, and the optimal controller K∗ is then given by

K∗ =
⎡
⎣ 0 −1 −1

1 − 7
2 −2

1+ ε −2(1+ ε) − 7
2 (1+ ε)

⎤
⎦ .

It can be checked that the optimal controller provided by the Riccati equations is
controllable and observablewhen ε �= 0. In Fig. 5,we plot theminimumandmaximum
eigenvalues of HessK∗ restricted to T O⊥K∗ , as ε varies in [0.005, 0.5]. It can be seen
that rcondK∗ degrades rapidly as ε approaches zero. Moreover, even if we set ε = 0.5,
the reciprocal condition number rcondK∗ is still below 1.7× 10−6. On the other hand,
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Fig. 5 The minimum and
maximum eigenvalues of
HessK∗ restricted on T O⊥K∗ , and
the reciprocal condition number
rcondK∗

if we plug in ε = 0.5, the resulting plant’s parameters as well as the controllability
and observability matrices

[
B AB

] =
[
1 −1.5
1.5 −3.375

]
,

[
C
CA

]
=
[

1 1
−1.5 −2.25

]

seem entirely normal. ��

The observations in Example 7 suggest that, if we apply the vanilla gradient descent
algorithm to the optimization problem (13), it may take a large number of iterations
for the iterate to converge to a globally optimal controller for certain LQG problems
that appear entirely normal.

To conclude this section, we provide some final remarks on the symmetry structures
in LQG compared to existing literature on the landscapes of some non-convexmachine
learning problems.

Remark 5 (Symmetry structures in LQG) Due to the symmetry induced by similarity
transformations, the landscape of LQG shares some similarities with the landscapes
of non-convex machine learning problems with rotational symmetries such as phase
retrieval, matrix factorization [22, 34, 43]. For example, the stationary points of these
non-convex problems are non-isolated, and the tangent space of the orbit associated
with the symmetry group is a subspace of the null space of the Hessian (see Lemma
12). On the other hand, for phase retrieval [34] and matrix factorization [22], the
classification of all stationary points as well as their local curvatures (Hessian) seem
to be relatively well understood, while there remain many open questions regarding
the stationary points of LQG, such as the existence of local optimizers that are not
globally optimal, whether all non-globally-optimal stationary points have the form
of (25) up to similarity transformations. Finally, in addition to the apparent algebraic
intricacy of LQG and control-theoretic notions such as controllable and observable
controllers, the non-compactness of the group of similarity transformations may also
render the landscape of LQG distinct from the non-convex machine learning problems
with rotational symmetries.
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5 Conclusion

In this paper, we investigated the optimization landscape structures of the LQG prob-
lem, including the connectivity of the set of stabilizing dynamic controllers Cn , and
some structural properties of the stationary points of the LQG cost function. These
results reveal rich yet complicated optimization landscape properties of LQG.

Ongoing work includes establishing convergence conditions for gradient descent
algorithms and investigating whether local search algorithms can escape saddle points
of the LQG problem. Also, we note that the optimization landscape of LQG depends
on the parameterization of dynamic controllers, and it will be interesting to investi-
gate different parameterizations (see our technical report [47] for relevant numerical
results). It would also be interesting to investigate criteria for the existence of con-
trollable and observable stationary points of Jn in Cn , as well as how to certify the
global optimality of a stationary point without knowing the system order n. Finally,
we hope our results will facilitate future research on the design of a full model-free
policy gradient algorithm for LQG with performance guarantees.

A Technical Proofs

A.1 Proof of Lemma 2

It is a well-known fact in control theory that Cn �= ∅ under Assumption 1. In particular,
any pole assignment algorithm or solving the Ricatti equations (5a) and (5b) can find
a feasible point in Cn . To show the unboundedness of Cn , we introduce the following
set

Sn =
{
K=
[
0 CK
BK AK

]
∈ R

(m+n)×(p+n)

∣∣∣∣ AK = A − BK − LC, BK = L,CK = −K ,

A − BK and A − LC are stable

}
.

It has been established in classical control theory that Sn ⊂ Cn [48, Chapter 3.5] and
the set {K | A − BK is stable} is unbounded (see, e.g., [6, Observation 3.6]). Thus,
the set Sn is unbounded, and so is Cn . Non-convexity of Cn is also known and can be
illustrated by the explicit counterexample in Example 8.

Example 8 (Non-convexity of stabilizing controllers) Consider a dynamical system (1)
with A = 1, B = 1,C = 1. The set of stabilizing controllers Cn = C1 is given by

Cn =
{
K =

[
0 CK
BK AK

]
∈ R

2×2
∣∣∣∣
[
1 CK
BK AK

]
is stable

}
.

It is easy to verify that the two controllers K(1) =
[
0 2
−2 −2

]
and K(2) =

[
0 −2
2 −2

]

internally stabilize the plant and thus belong to C1. However, K̂ = 1
2

(
K(1) + K(2)) =[

0 0
0 −2

]
fails to stabilize the plant. ��
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A.2 Proof of Lemma 4

Upon vectorizing the Lyapunov equation (12a), we have

(
In+q ⊗ Acl,K + Acl,K ⊗ In+q

)
vec(XK) = −vec

([
W 0
0 BKV BT

K

])
.

Since Acl,K is stable, we know that In+q ⊗ Acl,K + Acl,K ⊗ In+q is invertible, and thus
we have

vec(XK) = −
(
In+q ⊗ Acl,K + Acl,K ⊗ In+q

)−1 vec
([

W 0
0 BKV BT

K

])
.

It is not difficult to see that each element of
(
In+q ⊗ Acl,K + Acl,K ⊗ In+q

)−1 is a
rational function of the elements of K. Therefore, the LQG cost function

Jq(K) = tr

([
Q 0
0 CT

KRCK

]
XK

)

is a rational function of the elements of K, which is real analytical.

A.3 Proof of Proposition 1

The following Lyapunov stability criterion [5] will be used in our proof: A square real
matrix M is stable if and only if the Lyapunov inequality MP + PMT ≺ 0 has a
positive definite solution P � 0.

It is straightforward to see that Φ(·) is continuous since each element of Φ(Z) is a
rational function in terms of the elements of Z (a ratio of two polynomials). To show
that Φ is a mapping onto Cn , we need to prove the following statements:

1. For allK ∈ Cn , there existsZ = (X ,Y , M, H , F,Π,Ξ) ∈ Gn such thatΦ(Z) = K.
2. For all Z = (X , Y , M, H , F,Π,Ξ) ∈ Gn , we have Φ(Z) ∈ Cn .

To show the first statement, let K =
[
0 CK
BK AK

]
∈ Cn be arbitrary. The stability of

the matrix

[
A BCK

BKC AK

]
implies that the Lyapunov inequality

[
A BCK

BKC AK

] [
X ΠT

Π X̂

]
+
[
X ΠT

Π X̂

] [
A BCK

BKC AK

]T
≺ 0 (38)

has a solution

[
X ΠT

Π X̂

]
� 0.Without loss of generalitywemay assume that detΠ �= 0

(otherwise we can add a small perturbation on Π to make it invertible while still
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preserving the inequality (38)). Upon defining

[
Y Ξ

ΞT Ŷ

]
:=
[
X ΠT

Π X̂

]−1
, T :=

[
X ΠT

Π X̂

]−1 [
X I
Π 0

]
=
[
I Y
0 ΞT

]
,

we can verify that

Y X +ΞΠ = I , T T
[
X ΠT

Π X̂

]
T =

[
X I
I Y

]
� 0. (39)

Upon letting
M = Y AX +Ξ BKCX + Y BCKΠ +Ξ AKΠ,

H = Ξ BK, F = CKΠ,
(40)

we can also verify that

T T
[

A BCK
BKC AK

] [
X ΠT

Π X̂

]
T =

[
AX + BF A

M Y A + HC

]
. (41)

Combining (41) with (38) and (39), we see that Z = (X ,Y , M, H , F,Π,Ξ) ∈ Gn
by the definition of Gn . Note that the change of variables (40) can be compactly
represented as

[
0 F
H M

]
=
[

I 0
Y B Ξ

] [
0 CK
BK AK

] [
I CX
0 Π

]
+
[
0 0
0 Y AX

]
,

and with the guarantee in Lemma 6, we see that

[
0 CK
BK AK

]
=
[

I 0
Y B Ξ

]−1 [ 0 F
H M−Y AX

] [
I CX
0 Π

]−1
=
[

0 ΦC (Z)

ΦB(Z) ΦA(Z)

]
= Φ(Z).

We then prove the second statement. Let Z = (X ,Y , M, H , F,Π,Ξ) ∈ Gn be
arbitrary. Let X̂ = Π(X −Y−1)−1ΠT, and it is straightforward to see that X̂ � 0 and

[
X ΠT

Π X̂

] [
I Y
0 ΞT

]
=
[
X XY +ΠTΞT

Π ΠY + X̂ΞT

]
=
[
X I
Π 0

]
,

where we used the fact that

ΠY + X̂ΞT = ΠY +Π(X − Y−1)−1ΠTΞT = ΠY −Π(X − Y−1)−1(XY − I )

= ΠY −Π(X − Y−1)−1(X − Y−1)Y = 0.

We also have
[
0 F
H M

]
=
[

I 0
Y B Ξ

] [
0 ΦC (Z)

ΦB(Z) ΦA(Z)

] [
I CX
0 Π

]
+
[
0 0
0 Y AX

]
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from the definition of Φ. Similarly as showing the equality (41), we can derive that

[
AX+BF A

M Y A+HC

]
=
[
I Y
0 ΞT

]T [
A BΦC (Z)

ΦB(Z)C ΦA(Z)

] [
X ΠT

Π X̂

] [
I Y
0 ΞT

]
.

Then from the definition of Gn , we can further get

[
A BΦC (Z)

ΦB(Z)C ΦA(Z)

] [
X ΠT

Π X̂

]
+
[
X ΠT

Π X̂

] [
A BΦC (Z)

ΦB(Z)C ΦA(Z)

]T
≺ 0,

and since X−ΠT X̂−1Π = Y−1 � 0, the matrix

[
X ΠT

Π X̂

]
is positive definite. We can

now see that

[
A BΦC (Z)

ΦB(Z)C ΦA(Z)

]
satisfies the Lyapunov inequality and thus is stable,

meaning that Φ(Z) ∈ Cn .

A.4 Proof of Proposition 3

We have already seen that Tq gives a smooth Lie group action of GLq on Cq . We
first show that the isotropy group of K under the group actions in GLq , defined by
{T ∈ GLq | Tq(T , K) = K}, is a trivial group containing only the identity matrix.

Let T ∈ GLq satisfy Tq(T , K) = K, i.e.,

[
0 CKT−1

T BK T AKT−1
]
=
[
0 CK
BK AK

]
.

Then we have T AK = AKT , and consequently T A j+1
K BK = AKT A j

KBK. By math-

ematical induction, we can see that T A j
KBK = A j

KBK for all j = 0, . . . , q − 1,

indicating that any column vector of A j
KBK is an eigenvector of T with eigenvalue 1.

On the other hand, the controllability of K implies the column vectors of the matrix[
BK AKBK · · · Aq−1

K BK

]
span the whole space R

q . Therefore R
q is a subspace of the

eigenspace of T with eigenvalue 1, meaning that T is just the identity matrix.
Since the isotropy group {T ∈ GLq | Tq(T , K) = K} only contains the identity, by

[21, Proposition 7.26], the mapping T �→ Tq(T , K) is an immersion and the orbitOK
is an immersed submanifold.

We then prove thatOK is closed under the original topology of Cq . Suppose (Tj )
∞
j=1

is a sequence in GLq such that

Tq(Tj , K) =
[

0 CKT
−1
j

Tj BK Tj AKT
−1
j

]
→
[
0 C̃K

B̃K ÃK

]
= K̃, j →∞.

Let G(s) be the transfer function of K, i.e., G(s) = CK(s I − AK)
−1BK. We notice

that for any j ≥ 1, the matrix s I − Tj AKT
−1
j is invertible if and only if s I − AK is
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invertible. Thus for any fixed s ∈ C such that s I − AK is invertible, we have

lim
j→∞CKT

−1
j (s I − Tj AKT

−1
j )−1Tj BK = C̃K(s I − ÃK)

−1 B̃K.

On the other hand, we simply have

CKT
−1
j (s I − Tj AKT

−1
j )−1Tj BK = CK(s I − AK)

−1BK = G(s).

This shows that the transfer function of K̃ agrees with G(s) for any s ∈ C such
that s I − AK is invertible, and thus is just equal to G(s). On the other hand, the
controllability and observability of K ∈ Cq indicates that the transfer function G(s)
has orderq, and so any two state-space representations ofG(s)with orderq will always
be similarity transformations of each other [48, Theorem 3.17]. In other words, there
exists T̃ ∈ GLq such that

K̃ =
[
0 C̃K

B̃K ÃK

]
=
[

0 CK T̃−1
T̃ BK T̃ AK T̃−1

]
= Tq(T̃ , K),

which implies that K̃ ∈ OK . We can now conclude that OK is a closed subset of Cq .
As a consequence of the closedness of OK , the set OK equipped with the subspace
topology induced from Cq is a locally compact Hausdorff space.

Now, by combining the above results and applying [28, Theorem 2.13], we can
conclude that the mapping T �→ Tq(T , K) is a homeomorphism from GLq to OK .
Therefore, the mapping T �→ Tq(T , K) is a diffeomorphism fromGLq toOK , andOK
is an embedded submanifold of Cq with dimension given by dimOK = dimGLq = q2.
Finally, the two path-connected components of OK are immediate.

A.5 Proof of Proposition 4

Let H ∈ R
q×q be arbitrary. Then for sufficiently small ε, we have

Tq (I+εH , K) =
[

0 CK(I+εH)−1
(I+εH)BK (I+εH)AK(I+εH)−1

]
= K + ε

[
0 −CKH

HBK H AK − AKH

]
+ o(ε),

implying that the tangent map of Tq(·, K) at the identity is given by

H �→
[

0 −CKH
HBK H AK − AKH

]
.

Then sinceTq(·, K) is a diffeomorphism fromGLq toOK , the tangent map ofTq(·, K)

at the identity is an isomorphism from R
q×q (the tangent space of GLq at the identity)

to the tangent space T OK . Thus

T OK =
{[

0 −CKH
HBK H AK − AKH

] ∣∣∣∣H ∈ R
q×q
}

.
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Then the orthogonal complement T O⊥K is given by

T O⊥K =
{
Δ ∈ Vq

∣∣∣∣ tr(U TΔ) = 0 for all U ∈ T OK

}

=
{

Δ∈Vq

∣∣∣∣ tr
([

0 −CKH
HBK H AK−AKH

]T
Δ

)
= 0,∀H ∈ R

q×q
}

=
⎧⎨
⎩
[

0 ΔBK
ΔCK ΔAK

]
∈Vq

∣∣∣∣ tr H
T
(
ΔAK A

T
K−AT

KΔAK+ΔBK B
T
K−CT

KΔCK

)
= 0

∀H ∈R
q×q

⎫⎬
⎭

=
{[

0 ΔBK
ΔCK ΔAK

]
∈Vq

∣∣∣∣ΔAK A
T
K − AT

KΔAK +ΔBK B
T
K − CT

KΔCK = 0

}
.

This completes the proof.

A.6 Proof of Lemma 10

Let Δ ∈ Vq be arbitrary. We have

Jq(Tq (T , K+Δ))− Jq(Tq (T , K))

= Jq(Tq
(
T , K)+Tq(T ,Δ

)
)− Jq(Tq (T , K))

= tr

⎡
⎣
(
∇ Jq

∣∣∣∣
Tq (T ,K)

)T
·Tq (T ,Δ)

⎤
⎦+ o(‖Δ‖)

= tr

⎡
⎣
(
∇ Jq

∣∣∣∣
Tq (T ,K)

)T
·
[
Im 0
0 T

]
Δ

[
Ip 0
0 T−1

]⎤
⎦+ o(‖Δ‖)

= tr

⎡
⎣
([

Im 0
0 T

]T
· ∇ Jq

∣∣∣∣
Tq (T ,K)

·
[
Ip 0
0 T−1

]T)T
Δ

⎤
⎦+ o(‖Δ‖).

On the other hand, Lemma 7 shows that the LQG cost stays the same when applying
similarity transformation. Thus, we have

Jq(TT (K+Δ))− Jq(TT (K)) = Jq(K+Δ)− Jq(K) = tr

[(
∇ Jq

∣∣∣∣
K

)T
·Δ
]
+ o(‖Δ‖).

Comparing the two equations leads to the relationship (24).

A.7 The gradient and the Hessian of Jq(K)

We first introduce the following lemma.
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Lemma 14 Suppose M : (−δ, δ) → R
k×k and G : (−δ, δ) → S

k are two indefinitely
differentiable matrix-valued functions for some δ > 0 and k ∈ N\{0}, and suppose
M(t) is stable for all t ∈ (−δ, δ). Let X(t) denote the solution to the following
Lyapunov equation

M(t)X(t)+ X(t)M(t)T + G(t) = 0.

Then X(t) is indefinitely differentiable over t ∈ (−δ, δ), and its j ’th order derivative
at t = 0, denoted by X ( j)(0), is the solution to the following Lyapunov equation

M(0)X ( j)(0)+ X ( j)(0)M(0)T

+
⎛
⎝ j∑

i=1

j !
i !( j − i)!

(
M (i)(0)X ( j−i)(0)+ X ( j−i)(0)M (i)(0)T

)
+ G( j)(0)

⎞
⎠ = 0.

(42)

Proof The differentiability of X(t) follows from the observation that it can be written
as vec(X(t)) = −(Ik⊗M(t)+M(t)⊗ Ik)−1 vec(G(t)) by the vectorized form of the
Lyapunov equation. Now, since M(t), G(t) and X(t) are indefinitely differentiable,
they admit Taylor expansions around t = 0 given by

M(t) =
a∑
j=0

t j

j !M
( j)(0)+ o(ta),

G(t) =
a∑
j=0

t j

j !G
( j)(0)+ o(ta),

X(t) =
a∑
j=0

t j

j ! X
( j)(0)+ o(ta)

for any a ∈ N. By plugging these Taylor expansions into the original Lyapunov
equation, after some algebraic manipulations, we can show that

a∑
j=0

t j

⎡
⎣ j∑
i=0

1

i !( j−i)!
(
M(i)(0)X ( j−i)(0)+ X ( j−i)(0)M(i)(0)T

)
+ G( j)(0)

j !

⎤
⎦+ o(ta) = 0.

Since the above equality holds for all sufficiently small t , we get

j∑
i=0

1

i !( j − i)!
(
M (i)(0)X ( j−i)(0)+ X ( j−i)(0)M (i)(0)T

)
+ 1

j !G
( j)(0) = 0,

which is the same as (42). Thus, X ( j)(0) is a solution to the Lyapunov Eq (42). ��
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Now, given any stabilizing controller K ∈ Cq , we denote the closed-loop matrix as

Acl,K =
[

A BCK
BKC AK

]
=
[
A 0
0 0

]
+
[
B 0
0 I

]
K
[
C 0
0 I

]

and recall that the LQG cost is given by

Jq(K) = tr

([
Q 0
0 CT

KRCK

]
XK

)
,

where XK is the unique positive semidefinite solution to the Lyapunov Eq (12a).

Consider an arbitrary directionΔ =
[

0 ΔCK

ΔBK ΔAK

]
∈ Vq . For sufficiently small t > 0

such that K + tΔ ∈ Cq , the corresponding closed-loop matrix is

Acl,K+tΔ = Acl,K + t

[
B 0
0 I

]
Δ

[
C 0
0 I

]
,

and we let XK,Δ(t) denote the solution to the Lyapunov equation (12a) with closed-
loop matrix Acl,K+tΔ, i.e.,

(
Acl,K + t

[
B 0
0 I

]
Δ

[
C 0
0 I

])
XK,Δ(t)+ XK,Δ(t)

(
Acl,K + t

[
B 0
0 I

]
Δ

[
C 0
0 I

])T

+
[
W 0
0 (BK+tΔBK )V (BK+tΔBK )

T

]
= 0.

(43)
By Lemma 14, we see that XK,Δ(t) admits a Taylor expansion of the form

XK,Δ(t) = XK + t · X ′K,Δ(0)+ t2

2
· X ′′K,Δ(0)+ o(t2), (44)

and the derivatives X ′K,Δ(0) and X ′′K,Δ(0) are the solutions to the following Lyapunov
equations

Acl,KX
′
K,Δ(0)+ X ′K,Δ(0)AT

cl,K + M1(XK,Δ) = 0, (45)

Acl,KX
′′
K,Δ(0)+ X ′′K,Δ(0)AT

cl,K + 2M2
(
X ′K,Δ(0),Δ

) = 0, (46)

where

M1(XK,Δ) :=
[
B 0
0 I

]
Δ

[
C 0
0 I

]
XK + XK

[
C 0
0 I

]T
ΔT
[
B 0
0 I

]T
+
[
0 0
0 BKVΔT

BK
+ΔBKV BT

K

]
,

M2
(
X ′K,Δ(0),Δ

) :=
[
B 0
0 I

]
Δ

[
C 0
0 I

]
X ′K,Δ(0)+ X ′K,Δ(0)

[
C 0
0 I

]T
ΔT
[
B 0
0 I

]T
+
[
0 0
0 ΔBKVΔT

BK

]
.
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Now, by plugging the Taylor expansion (44) into the expression (11) for Jq(K), we
get

Jq (K + tΔ) = tr

([
Q 0
0 (CK + tΔCK )TR(CK + tΔCK )

]
XK,Δ(t)

)

= Jq (K)+ t · tr
([

Q 0
0 CT

K RCK

]
X ′K,Δ(0)+

[
0 0
0 CT

K RΔCK +ΔT
CK

RCK

]
XK

)

+ t2

2
· tr
([

Q 0
0 CT

K RCK

]
X ′′K,Δ(0)+ 2

[
0 0
0 CT

K RΔCK +ΔT
CK

RCK

]
X ′K,Δ(0)

+ 2

[
0 0
0 ΔT

CK
RΔCK

]
XK

)
+ o(t2),

from which we can directly recognize d Jq (K+tΔ)

dt

∣∣∣∣
t=0

and d2 Jq (K+tΔ)

dt2

∣∣∣∣
t=0

.

Now suppose X is the solution to the following Lyapunov equation Acl,KX +
X AT

cl,K + M = 0 for some M ∈ S
n+q . Then, by [48, Lemma 3.18], the solution

to the above Lyapunov equation can be written as X = ∫ +∞0 eAcl,KsMeA
T
cl,Ks ds, and

consequently

tr

([
Q 0
0 CT

KRCK

]
X

)
=
∫ +∞

0
tr

([
Q 0
0 CT

KRCK

]
eAcl,KsMeA

T
cl,Ks
)
ds

=
∫ +∞

0
tr

(
eA

T
cl,Ks

[
Q 0
0 CT

KRCK

]
eAcl,KsM

)
ds = tr(YKM),

in which we recall that YK is the unique positive semidefinite solution to Lyapunov

Eq (12b). Therefore the first-order derivative d Jq (K+tΔ)

dt

∣∣∣∣
t=0

can be alternatively given

by

d Jq(K+tΔ)

dt

∣∣∣∣
t=0

= tr

(
YKM1(XK,Δ)+

[
0 0
0 CT

KRΔCK +ΔT
CK

RCK

]
XK

)

= 2 tr

⎡
⎣
([

0 RCK
0 0

]
XK

[
0 0
0 I

]
+
[
B 0
0 I

]T
YKXK

[
C 0
0 I

]T
+
[
0 0
0 I

]
YK

[
0 0

BKV 0

])T
Δ

⎤
⎦.

One can readily recognize the gradient ∇ Jq(K) as d Jq (K+tΔ)

dt

∣∣∣∣
t=0

= tr
(∇ Jq(K)TΔ

)
.

Upon partitioning XK and YK as (22), a few simple calculations lead to the gradient
formula of Jq(K) in (21).
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Similarly, we can show that the second-order derivative d2 Jq (K+tΔ)

dt2

∣∣∣∣
t=0

can be

alternatively given by

d2 Jq(K+tΔ)

dt2

∣∣∣∣
t=0

= 2 tr

(
YKM2

(
X ′K,Δ(0),Δ

)+
[
0 0
0 CT

KRΔCK +ΔT
CK

RCK

]
X ′K,Δ(0)

+
[
0 0
0 ΔT

CK
RΔCK

]
XK

)

= 2 tr

(
2

[
B 0
0 I

]
Δ

[
C 0
0 I

]
X ′K,Δ(0)YK + 2

[
0 0
0 CT

KRΔCK

]
X ′K,Δ(0)

+
[
0 0
0 ΔBKVΔT

BK

]
YK +

[
0 0
0 ΔT

CK
RΔCK

]
XK

)
.

Then noticing that Hess K(Δ,Δ) = d2 Jq (K+tΔ)

dt2

∣∣∣∣
t=0

for anyΔ ∈ Vq , we get the desired

expression for the Hessian of Jq .

A.8 Proof of Lemma 11

By [48, Lemma 3.18], given a stablematrix A, if (C, A) is observable, then the solution
L to the Lyapunov equation ATL + L A + CTC = 0 is positive definite. Therefore,
we only need to prove that

([
Q

1
2 0

0 R
1
2CK

]
,

[
A BCK

BKC AK

])

is observable. By [48, Theorem 3.3], this is equivalent to showing that the eigenvalues
of the following matrix

[
A BCK

BKC AK

]
+
[
L11 L12
L21 L22

][
Q

1
2 0

0 R
1
2CK

]
=
[

A + L11Q
1
2 BCK + L12R

1
2CK

BKC + L21Q
1
2 AK + L22R

1
2CK

]

can be arbitrarily assigned by choosing L11, L12, L21, L22. This is indeed true by

choosing L12 = −BR− 1
2 and observing that A + L11Q

1
2 and AK + L22R

1
2CK can

be arbitrarily assigned since (Q
1
2 , A), (CK, AK) are both observable. Thus, by [48,

Lemma 3.18], the solution YK to (12b) is positive definite. Similarly, we can prove XK
is positive definite.
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A.9 Proof of Theorem 5

We first show that K
 is a stationary point of Jn(K) over K ∈ Cn . SinceTn(−In, K
) =
K
, by Lemma 10, we have

∇ Jn

∣∣∣∣
K


= ∇ Jn

∣∣∣∣
Tn(−In ,K
)

=
[
Im 0
0 −In

]
· ∇ Jn

∣∣∣∣
K


·
[
Ip 0
0 −In

]
.

This equality implies that, excluding the bottom right n × n block, the last n rows

and the last n columns of ∇ Jn

∣∣∣∣
K


are zero. On the other hand, it is not hard to see

that Jn(K
) does not depend on the choice of Λ as long as Λ is stable. Therefore the

bottom right n×n block of∇ Jn

∣∣∣∣
K


is zero. We can now see that∇ Jn

∣∣∣∣
K


= 0, showing

that K
 is a stationary point of Jn .

Let Δ =
[

0 ΔCK

ΔBK ΔAK

]
∈ Vn be arbitrary, and let

Δ(1) =
[
0 ΔCK

0 0

]
, Δ(2) =

[
0 0

ΔBK 0

]
, Δ(3) =

[
0 0
0 ΔAK

]
.

By the bilinearity of the Hessian, we have

Hess K
 (Δ,Δ) =
∑

1≤i< j≤3
Hess K
 (Δ(i) +Δ( j), Δ(i) +Δ( j))−

3∑
i=1

Hess K
 (Δ(i), Δ(i)).

Since the controllers K
 + tΔ(i) for i = 1, 2, 3 and K
 + t(Δ(i) +Δ(3)) for i = 1, 2
have the same transfer function representation as K
, we can see that for all sufficiently
small t ,

Jn(K
) = Jn(K
 + tΔ(1)) = Jn(K
 + tΔ(2)) = Jn(K
 + tΔ(3))

= Jn(K
 + t(Δ(1) +Δ(3))) = Jn(K
 + t(Δ(2) +Δ(3))),

which implies that Hess K
 (Δ(i), Δ(i)) = 0 for all i = 1, 2, 3, and that Hess K
 (Δ(1)+
Δ(3), Δ(1) +Δ(3)) = Hess K
 (Δ(2) +Δ(3), Δ(2) +Δ(3)) = 0. Therefore

Hess K
 (Δ,Δ) = Hess K
 (Δ(1) +Δ(2), Δ(1) +Δ(2)).
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Now, if Hess K
 (Δ,Δ) = 0 for all Δ ∈ Vn , then the Hessian Hess K
 is obviously
zero. Otherwise, Hess K
 (Δ,Δ) �= 0 for some Δ ∈ Vn , which implies that

Hess K
 (Δ(1), Δ(2)) = 1

2

(
HessK
 (Δ(1)+Δ(2), Δ(1)+Δ(2))

−HessK
 (Δ(1), Δ(1))−HessK
 (Δ(2), Δ(2))
)

= 1

2
Hess K
 (Δ,Δ) �= 0.

Note that Δ(1) and Δ(2) are linearly independent (otherwise Hess K
 (Δ(1), Δ(2)) will
be zero). Together with Hess K
 (Δ(i), Δ(i)) = 0 for i = 1, 2, we see that Hess K


must be indefinite (a symmetric matrix having a 2× 2 principal submatrix with zero
diagonal entries and non-zero off-diagonal entries must be indefinite).

Now we proceed to the situation where Λ is diagonalizable. We let e(k)
i denote the

k-dimensional vector where only the i th entry is 1 and other entries are zero.
Part I: eig(−Λ) � Z  ⇒ the Hessian is indefinite. Let λ ∈ eig(−Λ)\Z . Since
λ /∈ Z , there exists some i, j such that

G(λ) := e(p)T
i C Xop

(
λI − AT)−1YopBe(m)

j �= 0.

We shall only provide the proof for the situation when λ is real. When λ is complex,
the proof employs similar techniques but is more complicated, and we refer interested
readers to our online report [47].

Let T be a real invertible matrix such that TΛT−1 =
[−λ 0
0 ∗

]
. Let Δ(1), Δ(2) ∈

Vn be given by

Δ(1) =
[
0 Δ

(1)
CK

0 0

]
, Δ(2) =

[
0 0

Δ
(2)
BK

0

]
,

where Δ
(1)
CK
= e(m)

j e(n)T
1 T−1 and Δ

(2)
BK
= T e(n)

1 e(p)T
i . Then it’s not hard to see that

Jn(K
 + tΔ(1)) = Jn(K
 + tΔ(2)) = Jn(K
) for any sufficiently small t , indicating
that both Hess K
 (Δ(1), Δ(1)) and Hess K
 (Δ(2), Δ(2)) are equal to zero. On the other
hand, we have that the unique solutions to Lyapunov Eqs (12a) and (12b) are XK
 =[
Xop 0
0 0

]
,YK
 =

[
Yop 0
0 0

]
. By Lemma 9, we can see that

Hess K
 (Δ(1) +Δ(2), Δ(1) +Δ(2)) = 4 tr

([
0 BΔ

(1)
CK

Δ
(2)
BK
C 0

]
X ′K
,Δ(1)+Δ(2)

[
Yop 0
0 0

])
,

123



440 Y. Tang et al.

where X ′
K
,Δ(1)+Δ(2) is the solution to the following Lyapunov equation

[
A 0
0 Λ

]
X ′K
,Δ(1)+Δ(2) + X ′K
,Δ(1)+Δ(2)

[
A 0
0 Λ

]T

+
[

0 BΔ
(1)
CK

Δ
(2)
BK
C 0

][
Xop 0
0 0

]
+
[
Xop 0
0 0

][
0 BΔ

(1)
CK

Δ
(2)
BK
C 0

]T
= 0.

Since

[
0 BΔ

(1)
CK

Δ
(2)
BK

C 0

][
Xop 0
0 0

]
+
[
Xop 0
0 0

][
0 BΔ

(1)
CK

Δ
(2)
BK

C 0

]T
=
[

0 XopCTΔ
(2)T
BK

Δ
(2)
BK

CXop 0

]
,

the matrix X ′
K
,Δ(1)+Δ(2) can be represented by

X ′K
,Δ(1)+Δ(2) =
∫ +∞
0

exp

([
A 0
0 Λ

]
s

)[
0 XopCTΔ

(2)T
BK

Δ
(2)
BK

CXop 0

]
exp

([
A 0
0 Λ

]T
s

)
ds

=
∫ +∞
0

[
eAs 0
0 eΛs

][
0 XopCTΔ

(2)T
BK

Δ
(2)
BK

CXop 0

][
eA

Ts 0

0 eΛ
Ts

]
ds

=
∫ +∞
0

[
0 eAs XopCTΔ

(2)T
BK

eΛ
Ts

eΛsΔ
(2)
BK

CXopeA
Ts 0

]
ds,

which can be shown to lead to

Hess K
 (Δ(1) +Δ(2), Δ(1) +Δ(2)) =
∫ +∞

0
4 tr
(
BΔ

(1)
CK

eΛsΔ
(2)
BK
CXope

ATsYop
)
ds.

By the construction ofΔ(1)
CK

andΔ
(2)
BK
, we haveΔ

(1)
CK
eΛsΔ

(2)
BK
= e−λse(m)

j e(p)T
i , and thus

Hess K
 (Δ(1) +Δ(2), Δ(1) +Δ(2)) =
∫ +∞

0
4e(p)T

i C Xope
(AT−λI )sYopBe

(m)
j ds

= 4e(p)T
i C Xop

(
λI − AT)−1YopBe(m)

j = 4G(λ),

which is nonzero by assumption. Consequently,

Hess K
 (Δ(1), Δ(2)) = 1

2

(
Hess K
 (Δ(1)+Δ(2), Δ(1)+Δ(2))

− Hess K
 (Δ(1), Δ(1))− Hess K
 (Δ(2), Δ(2))
)

= 2G(λ) �= 0.
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Together with the fact that Hess K
 (Δ(1), Δ(1)) = Hess K
 (Δ(2), Δ(2)) = 0, we can
see that neither Hess K
 nor −Hess K
 can be positive semidefinite. Thus Hess K
 has
at least one positive eigenvalue and one negative eigenvalue.
Part II: eig(−Λ) ⊆ Z  ⇒ the Hessian is zero. In this part, we will show that if
eig(−Λ) ⊆ Z , then Hess K
 (Δ,Δ) = 0 for any Δ ∈ Vn .

Let Δ =
[

0 ΔCK

ΔBK ΔAK

]
∈ Vn be arbitrary. Let

Δ(1) =
[
0 ΔCK

0 0

]
, Δ(2) =

[
0 0

ΔBK 0

]
, Δ(3) =

[
0 0
0 ΔAK

]
.

We have already shown that Hess K
 (Δ,Δ) = Hess K
 (Δ(1) + Δ(2), Δ(1) + Δ(2)).
Let T be an invertible n × n (complex) matrix that diagonalizes Λ as TΛT−1 =
diag(−λ1, . . . ,−λn). Define Uik = e(m)

i e(n)T
k T−1, Vjk = T e(n)

k e(p)T
j for each 1 ≤

i ≤ m, 1 ≤ j ≤ p and 1 ≤ k ≤ n. It is not hard to see that {Uik | 1 ≤ i ≤ m, 1 ≤
k ≤ n} forms a basis of C

m×n , and {Vjk | 1 ≤ j ≤ n, 1 ≤ k ≤ n} forms a basis of
C
n×q . Therefore ΔCK and ΔBK can be expanded as

ΔCK =
∑

1≤i≤m

∑
1≤k≤n

αikUik, ΔBK =
∑

1≤ j≤q

∑
1≤k≤n

β jkVjk .

By similar derivations as in Case 1, we can get

Hess K
 (Δ(1) +Δ(2), Δ(1) +Δ(2)) =
∫ +∞

0
4 tr
(
BΔCKe

ΛsΔBKCXope
ATsYop

)
ds.

Then, since

ΔCK e
ΛsΔBK =

∑
1≤i≤m

∑
1≤ j≤q

∑
1≤k≤n

∑
1≤k′≤n

αikβ jk′Uike
ΛsV jk′

=
∑

1≤i≤m

∑
1≤ j≤q

∑
1≤k≤n

∑
1≤k′≤n

αikβ jk′e
(m)
i e(n)T

k

⎡
⎢⎣
e−λ1s

. . .

e−λns

⎤
⎥⎦ e(n)

k′ e
(p)T
j

=
∑

1≤i≤m

∑
1≤ j≤q

∑
1≤k≤n

αikβ jke
−λk se(m)

i e(p)Tj ,

we have

Hess K
 (Δ(1) +Δ(2), Δ(1) +Δ(2))

=
∑

1≤i≤m

∑
1≤ j≤q

∑
1≤k≤n

∫ +∞

0
4αikβ jk · e(p)T

j C Xope
(A−λk I )TsYopBe

(m)
i ds

=
∑

1≤i≤m

∑
1≤ j≤q

∑
1≤k≤n

4αikβ jk · e(p)T
j C Xop

(
λk I − AT)−1YopBe(m)

i .
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Since eig(−Λ)\Z = ∅, we can see that CXop
(
λk I − AT

)−1
YopB = 0 for any 1 ≤

k ≤ n. Therefore, we have Hess K
 (Δ,Δ) = Hess K
 (Δ(1) +Δ(2), Δ(1) +Δ(2)) = 0,
which completes the proof.
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